JP2014219178A - Heat removal device - Google Patents

Heat removal device Download PDF

Info

Publication number
JP2014219178A
JP2014219178A JP2013100511A JP2013100511A JP2014219178A JP 2014219178 A JP2014219178 A JP 2014219178A JP 2013100511 A JP2013100511 A JP 2013100511A JP 2013100511 A JP2013100511 A JP 2013100511A JP 2014219178 A JP2014219178 A JP 2014219178A
Authority
JP
Japan
Prior art keywords
heat exchange
fluid
heat
refrigerant
heat removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013100511A
Other languages
Japanese (ja)
Inventor
直矢 亀井
Naoya Kamei
直矢 亀井
一義 青木
Kazuyoshi Aoki
一義 青木
三男 小室
Mitsuo Komuro
三男 小室
美香 田原
Mika Tawara
美香 田原
靖己 北島
Yasuki Kitajima
靖己 北島
敏美 飛松
Toshimi Tobimatsu
敏美 飛松
崚 鈴木
Shun Suzuki
崚 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013100511A priority Critical patent/JP2014219178A/en
Publication of JP2014219178A publication Critical patent/JP2014219178A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat removal device small in size, capable of being easily additionally installed in existing facilities, and excellent in heat exchange efficiency by fluid natural circulation.SOLUTION: A heat removal device 10 comprises: a plurality of heat exchange sections 16 each including a supply port 12 via which refrigerant 11a is supplied, an exhaust port for discharging the supplied refrigerant 11b, and passing holes 15 penetrating the heat exchange section 16 from an upper surface through a lower surface and passing through a surrounding fluid 14 (14a, 14b); a partition plate 20 provided in a gap between the heat exchange sections 16 arranged vertically for partitioning an area into a fluid area in contact with an upper surface of one heat exchange section 16 and a fluid area in contact with a lower surface of the other heat exchange section 20; and a refrigerant flow path communicating with the supply ports 12 of the respective heat exchange sections 16, also communicating with the exhaust ports of the respective heat exchange sections 16, and moving refrigerant 11 (11a, 11b).

Description

本発明は、流体の自然循環を利用した除熱装置に関する。   The present invention relates to a heat removal apparatus using natural circulation of fluid.

熱出力密度の高い熱源を電力により冷却する場合、電力の大量消費に伴い、排熱量の増加が懸念される。そこで、この熱源の周囲を取り巻く流体の自然循環を利用して電力の使用を極力抑えた除熱システムが検討されている(例えば特許文献1)。   When a heat source having a high heat output density is cooled by electric power, there is a concern about an increase in the amount of exhaust heat accompanying a large consumption of electric power. Thus, a heat removal system that uses the natural circulation of the fluid surrounding the heat source to minimize the use of electric power has been studied (for example, Patent Document 1).

特開2010−65912号公報JP 2010-65912 A

しかし、流体の自然循環を利用した公知の除熱システムは、熱源に対する流体の循環路を規定した専用スペースを新設する必要があるために、装置が大規模化したり既存設備への適用が困難であったりする課題があった。   However, the known heat removal system using the natural circulation of the fluid needs a new dedicated space that defines the fluid circulation path with respect to the heat source, which makes it difficult to increase the scale of the device or to apply to existing facilities. There was a problem.

本発明はこのような事情を考慮してなされたもので、小型で既存設備への追設が容易であるとともに流体の自然循環による熱交換効率に優れる除熱装置を提供することを目的とする。   The present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a heat removal device that is small in size and can be easily added to an existing facility and is excellent in heat exchange efficiency by natural circulation of fluid. .

本発明に係る除熱装置において、冷媒が供給される供給口、供給された冷媒を排出する排出口、及び上面から下面にわたって貫通し周囲の流体を通過させる通過孔を有する熱交換部と、上下方向に配列する複数の前記熱交換部の間隙においてこの熱交換部の上面に接する前記流体の領域とその下面に接する前記流体の領域とを仕切る仕切板と、複数の前記熱交換部の前記供給口の各々に連通しさらに前記排出口の各々にも連通して前記冷媒を移動させる冷媒流路と、を備えることを特徴とする。   In the heat removal apparatus according to the present invention, a heat exchange unit having a supply port to which a refrigerant is supplied, a discharge port for discharging the supplied refrigerant, and a passage hole that passes from the upper surface to the lower surface and allows the surrounding fluid to pass through, A partition plate that partitions the fluid region in contact with the upper surface of the heat exchange unit and the fluid region in contact with the lower surface in a gap between the heat exchange units arranged in a direction, and the supply of the plurality of heat exchange units And a refrigerant flow path that communicates with each of the ports and further communicates with each of the discharge ports to move the refrigerant.

本発明により、小型で既存設備への追設が容易であるとともに流体の自然循環による熱交換効率に優れる除熱装置が提供される。   According to the present invention, there is provided a heat removal apparatus that is small in size and can be easily added to an existing facility and that is excellent in heat exchange efficiency by natural circulation of fluid.

本発明に係る除熱装置の第1実施形態を示す斜視図。The perspective view which shows 1st Embodiment of the heat removal apparatus which concerns on this invention. (A)第1実施形態に係る除熱装置の側面図、(B)その正面図。(A) The side view of the heat removal apparatus which concerns on 1st Embodiment, (B) The front view. (A)適用される仕切板の第1変形例を示す除熱装置の側面図、(B)その第2変形例を示す除熱装置の側面図。(A) The side view of the heat removal apparatus which shows the 1st modification of the partition plate applied, (B) The side view of the heat removal apparatus which shows the 2nd modification. 第2実施形態に係る除熱装置の側面図。The side view of the heat removal apparatus which concerns on 2nd Embodiment. (A)第3実施形態に係る除熱装置の側面図、(B)その正面図。(A) The side view of the heat removal apparatus which concerns on 3rd Embodiment, (B) The front view. 各実施形態に係る除熱装置が適用された使用済み核燃料の冷却プールの断面図。Sectional drawing of the cooling pool of the used nuclear fuel to which the heat removal apparatus which concerns on each embodiment was applied.

(第1実施形態)
以下、本発明の実施形態を添付図面に基づいて説明する。
図1及び図2に示すように第1実施形態の除熱装置10は、冷媒11a(11)が供給される供給口12、供給された冷媒11b(11)を排出する排出口13(図2(B))、及び上面から下面にわたって貫通し周囲の流体14(14a,14b)を通過させる通過孔15を有する熱交換部16と、上下方向に配列する複数の熱交換部16の間隙においてこの熱交換部の上面17に接する流体の領域18aとその下面19に接する流体の領域18bとを仕切る仕切板20と、複数の熱交換部16の供給口12の各々に連通しさらに排出口13の各々にも連通して冷媒11(11a,11b)を移動させる冷媒流路21(21a,21b)と、を備えている。
(First embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
As shown in FIGS. 1 and 2, the heat removal apparatus 10 of the first embodiment includes a supply port 12 to which a refrigerant 11a (11) is supplied, and a discharge port 13 (FIG. 2) that discharges the supplied refrigerant 11b (11). (B)), and in the gap between the heat exchanging portion 16 having a passage hole 15 that passes from the upper surface to the lower surface and allows the surrounding fluid 14 (14a, 14b) to pass therethrough, and a plurality of heat exchanging portions 16 arranged in the vertical direction. A partition plate 20 that divides a fluid region 18a in contact with the upper surface 17 of the heat exchange unit and a fluid region 18b in contact with the lower surface 19 thereof, communicates with each of the supply ports 12 of the plurality of heat exchange units 16, and further has a discharge port 13 Refrigerant flow paths 21 (21a, 21b) that move in communication with the refrigerant 11 (11a, 11b) are also provided.

冷媒11(11a,11b)は、液状のまま熱交換部16の内部を通り抜けて、通過孔15を通過する流体14(14a,14b)と熱交換する。
また、冷媒11は、液状で供給口12に供給された後、少なくともその一部が流体14との熱交換により気化してから排出口13より排出される性状を示すものも採用され得る。
The refrigerant 11 (11a, 11b) passes through the inside of the heat exchanging section 16 in a liquid state and exchanges heat with the fluid 14 (14a, 14b) passing through the passage hole 15.
In addition, the refrigerant 11 may be used in the form of a liquid that is supplied to the supply port 12 in a liquid state and is then discharged from the discharge port 13 after at least a part thereof is vaporized by heat exchange with the fluid 14.

通過孔15は、その両端が熱交換部16の上面と下面に開口し、互いに混合しないように冷媒11aと流体14aとを熱交換させ、除熱されて比重の増した流体14bを下方向に通過させる。   Both ends of the passage hole 15 are opened on the upper surface and the lower surface of the heat exchanging portion 16 so that the refrigerant 11a and the fluid 14a are heat-exchanged so as not to mix with each other, and the fluid 14b having increased specific gravity is removed downward. Let it pass.

仕切板20は、両端がそれぞれ上側の熱交換部16の下面19の一方の縁と下側の熱交換部16の上面17の他方の縁とに接続されている。
このように仕切板20が設けられることにより、上下方向に配列する複数の熱交換部16の上面17に接する流体の領域18aとその下面19に接する流体の領域18bとを仕切る。
仕切板20は、熱伝導係数の小さな断熱材を用いることにより、除熱前の流体14aと除熱後の流体14bが、この仕切板20を隔てて熱交換することを抑制して除熱効率の低下を防止する。
Both ends of the partition plate 20 are connected to one edge of the lower surface 19 of the upper heat exchange unit 16 and the other edge of the upper surface 17 of the lower heat exchange unit 16.
By providing the partition plate 20 in this manner, the fluid region 18 a in contact with the upper surfaces 17 of the plurality of heat exchange units 16 arranged in the vertical direction and the fluid region 18 b in contact with the lower surface 19 are partitioned.
By using a heat insulating material having a small heat conduction coefficient, the partition plate 20 suppresses heat exchange between the fluid 14a before heat removal and the fluid 14b after heat removal across the partition plate 20, thereby improving heat removal efficiency. Prevent decline.

なお、仕切板20は図2(A)に示されるように平板斜面を示す場合の他に種々の形状を取り得る。
例えば、図3(A)に示すように仕切板20Aは、流体14bの案内される方向に沿って曲面構造を示す場合もあるし、図3(B)に示すように両端が直角に曲げられた矩形構造を示す場合もある。
このような構造により、熱交換部の上面17及び下面19と仕切板20A,20Bとの間隔が均一化して各通過孔15(図1)の流量の均一化をもたらし、熱交換部16の伝熱性能の一定化が保たれる。
In addition, the partition plate 20 can take various shapes other than the case where a flat plate slope is shown as shown in FIG.
For example, as shown in FIG. 3 (A), the partition plate 20A may have a curved surface structure along the direction in which the fluid 14b is guided, or both ends are bent at right angles as shown in FIG. 3 (B). In some cases, a rectangular structure is shown.
With such a structure, the space between the upper surface 17 and the lower surface 19 of the heat exchange part and the partition plates 20A, 20B is made uniform, and the flow rate of each through hole 15 (FIG. 1) is made uniform. Constant thermal performance is maintained.

図2(B)に示すように冷媒流路21aは、複数の熱交換部の供給口12の各々に連通して冷媒11aを熱交換部16に供給する。そして、流体14と熱交換して昇温した冷媒11bは、排出口13の各々に連通する冷媒流路21bにより熱交換部16の外部に排出される。   As illustrated in FIG. 2B, the refrigerant flow path 21 a communicates with each of the supply ports 12 of the plurality of heat exchange units and supplies the refrigerant 11 a to the heat exchange unit 16. And the refrigerant | coolant 11b heated up by exchanging heat with the fluid 14 is discharged | emitted outside the heat exchange part 16 by the refrigerant | coolant flow path 21b connected to each of the discharge port 13. FIG.

冷媒流路21aが接続する供給口12から冷媒流路21bが接続する排出口13にわたり密閉系で構成され、冷媒11が流体14に混合することが防止される。
そして、冷媒流路21の内部は、大気圧よりも減圧された状態を維持することができ、この冷媒流路21の内部圧力を調整することにより、冷媒11の気化温度を調整することができる。
これにより、昇温過程にある流体14に対し、冷媒流路21の内部圧力を調整することにより、除熱装置10の動作開始温度を設定することができる。
A closed system is formed from the supply port 12 to which the refrigerant flow path 21 a is connected to the discharge port 13 to which the refrigerant flow path 21 b is connected, so that the refrigerant 11 is prevented from being mixed with the fluid 14.
And the inside of the refrigerant | coolant flow path 21 can maintain the state pressure-reduced rather than atmospheric pressure, By adjusting the internal pressure of this refrigerant | coolant flow path 21, the vaporization temperature of the refrigerant | coolant 11 can be adjusted. .
Thereby, the operation start temperature of the heat removal apparatus 10 can be set by adjusting the internal pressure of the refrigerant flow path 21 with respect to the fluid 14 in the temperature rising process.

以上述べた構成により、上下方向に配列する複数の熱交換部16の上面17に接する領域18aにある流体14aは、冷媒11によって除熱されると、通過孔15を通過した後に仕切板20により下面19に接する領域18bに案内される。
このように、除熱前の流体14aと除熱後の流体14bとは、仕切板20を隔てて混合することはない。このために、除熱前の流体14aと冷媒11bとは、温度勾配を大きく維持したまま熱交換部16に供給され続け、効率的な除熱が実現される。
With the configuration described above, the fluid 14a in the region 18a in contact with the upper surfaces 17 of the plurality of heat exchanging units 16 arranged in the vertical direction is removed by the partition plate 20 after passing through the passage holes 15 when heat is removed by the refrigerant 11. 19 is guided to a region 18b in contact with 19.
Thus, the fluid 14a before heat removal and the fluid 14b after heat removal are not mixed across the partition plate 20. For this reason, the fluid 14a and the refrigerant 11b before heat removal continue to be supplied to the heat exchange unit 16 while maintaining a large temperature gradient, thereby realizing efficient heat removal.

そして、除熱後の流体14bは、熱交換部の下面19に接する領域18bをさらに下降して、熱源(図示略)に到達する。
この熱源により再加熱された流体14aは、比重が軽くなるために上昇し、再び領域18aにおいて上面17から熱交換部16に入力される。
このようにして、流体14a,14bの自然循環が持続し、熱源により加熱され続ける流体14は、除熱装置10により効率的に除熱処理される。
Then, the fluid 14b after heat removal further descends the region 18b in contact with the lower surface 19 of the heat exchange part and reaches a heat source (not shown).
The fluid 14a reheated by the heat source rises because the specific gravity is reduced, and is again input to the heat exchange unit 16 from the upper surface 17 in the region 18a.
In this way, the natural circulation of the fluids 14 a and 14 b continues, and the fluid 14 that is continuously heated by the heat source is efficiently heat-treated by the heat removal device 10.

(第2実施形態)
次に図4に基づいて本発明における第2実施形態について説明する。
なお、図4において図2と共通の構成又は機能を有する部分は、同一符号で示し、重複する説明を省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described based on FIG.
4, parts having the same configuration or function as those in FIG. 2 are denoted by the same reference numerals, and redundant description is omitted.

図4に示すように第2実施形態に係る除熱装置10は、熱交換部の下面19において、仕切板20が接続する側とは反対の縁端に、通過孔15(図1)を通過した流体14bを案内する第1案内部材23が設けられている。
これにより、それぞれの熱交換部16において除熱後の流体14bが合流するポイントにおける流体抵抗を小さくすることができる。
As shown in FIG. 4, the heat removal apparatus 10 according to the second embodiment passes through the passage hole 15 (FIG. 1) at the edge opposite to the side to which the partition plate 20 is connected on the lower surface 19 of the heat exchange unit. A first guide member 23 for guiding the fluid 14b is provided.
Thereby, in each heat exchange part 16, the fluid resistance in the point where the fluid 14b after heat removal joins can be made small.

さらに、上下方向に配列する複数の熱交換部16の側方に、各々の熱交換部16を通過した流体14bを案内する第2案内部材24が設けられている。
これにより、除熱後の流体14bが拡散して除熱前の流体14aに合流することが防止されるとともに、第2案内部材24の内側に下降流を生じさせ、除熱前の流体14aに対する熱交換部16の吸引力を増大させる。
Furthermore, the 2nd guide member 24 which guides the fluid 14b which passed each heat exchange part 16 is provided in the side of the several heat exchange part 16 arranged in an up-down direction.
This prevents the fluid 14b after heat removal from diffusing and joining the fluid 14a before heat removal, and causes a downward flow to occur inside the second guide member 24, so that the fluid 14b before heat removal The suction force of the heat exchange unit 16 is increased.

このようにして、第2実施形態に係る除熱装置10では、自然循環量が増加して、流体14の除熱効果を向上させることができる。   Thus, in the heat removal apparatus 10 according to the second embodiment, the amount of natural circulation can be increased and the heat removal effect of the fluid 14 can be improved.

(第3実施形態)
次に図5に基づいて本発明における第3実施形態について説明する。
なお、図5において図2と共通の構成又は機能を有する部分は、同一符号で示し、重複する説明を省略する。
第3実施形態に係る除熱装置10は、上下方向に配列する複数の熱交換部16の間隙において、この熱交換部16を通過する前又は後の流体14を冷却する冷却部材25が設けられている。
(Third embodiment)
Next, a third embodiment of the present invention will be described based on FIG.
5 that have the same configuration or function as those in FIG. 2 are denoted by the same reference numerals, and redundant description is omitted.
The heat removal apparatus 10 according to the third embodiment is provided with a cooling member 25 that cools the fluid 14 before or after passing through the heat exchange unit 16 in the gap between the plurality of heat exchange units 16 arranged in the vertical direction. ing.

このような冷却部材25としては、熱交換部16と熱的に連結されているフィン又はヒートパイプとすることができる。
これにより、流体14と熱交換する伝熱面積が増大し、除熱効率の向上が図れる。
Such a cooling member 25 may be a fin or a heat pipe that is thermally connected to the heat exchange unit 16.
Thereby, the heat transfer area which heat-exchanges with the fluid 14 increases, and the improvement of heat removal efficiency can be aimed at.

図6は、各実施形態に係る除熱装置10が適用された使用済み核燃料の冷却プール30の断面図を示している。
原子炉から排出される使用済み核燃料は、複数の角管が格子状に配列してなる燃料ラック31に、燃料集合体を単位として収容される。そして、放射線及び崩壊熱が減衰するまで冷却プール30において一定期間冷却される。
FIG. 6 shows a cross-sectional view of a spent nuclear fuel cooling pool 30 to which the heat removal apparatus 10 according to each embodiment is applied.
Spent nuclear fuel discharged from the nuclear reactor is accommodated in a fuel rack 31 in which a plurality of square tubes are arranged in a lattice shape, with a fuel assembly as a unit. And it cools for a fixed period in the cooling pool 30 until a radiation and decay | heat decay | decay heat attenuate | damp.

除熱装置10は、冷却プール30の内壁と使用済み燃料を収容したラック31との隙間に、プール水32に浸漬するように設けられている。
そして、除熱装置10と冷却プール30とは、その底部において固定部材27により固定されている。
これにより、既設の原子力プラントにおいて使用済み燃料を抜き取ることなく、除熱装置10を追設することができる。
The heat removal apparatus 10 is provided so as to be immersed in the pool water 32 in the gap between the inner wall of the cooling pool 30 and the rack 31 containing spent fuel.
And the heat removal apparatus 10 and the cooling pool 30 are being fixed by the fixing member 27 in the bottom part.
Thereby, the heat removal apparatus 10 can be additionally installed without extracting spent fuel in an existing nuclear power plant.

熱交換部16の内部に保持されている冷媒は、水が用いられている。
この熱交換部16は、保持されている冷媒水がプール水32の沸点温度よりも低温で気化するように、その内部気圧が流路21a,21bを介して冷媒循環制御部28により減圧されている。
この冷媒循環制御部28は、気化した冷媒を流路21bから受け取ると、冷却して液体に凝縮した冷媒を流路21aを介して熱交換部16に返送する。
Water is used as the refrigerant held inside the heat exchange unit 16.
The heat exchange unit 16 has its internal pressure reduced by the refrigerant circulation control unit 28 via the flow paths 21a and 21b so that the retained refrigerant water is vaporized at a temperature lower than the boiling point temperature of the pool water 32. Yes.
When the refrigerant circulation control unit 28 receives the vaporized refrigerant from the channel 21b, the refrigerant circulation control unit 28 returns the cooled and condensed refrigerant to the heat exchange unit 16 through the channel 21a.

なお、熱交換部16の内部保持される冷媒は、水に限定されるものではなく、プール水32が通常設定温度である場合に液状を示しこの通常設定温度を超える温度で気化するものであれば、適宜採用される。
また、使用する冷媒は、通常設定温度を超える温度で気化しないものであってもよく、この場合、冷媒循環制御部28において液状冷媒の除熱機能を備えることにすればよい。
In addition, the refrigerant | coolant hold | maintained inside the heat exchange part 16 is not limited to water, When the pool water 32 is normal setting temperature, it will show liquid state and will vaporize at the temperature exceeding this normal setting temperature. If appropriate.
Moreover, the refrigerant | coolant to be used may be a thing which does not evaporate at the temperature exceeding normal setting temperature, and should just provide the heat removal function of a liquid refrigerant in the refrigerant | coolant circulation control part 28 in this case.

天災等の被害によって、通常運転されている燃料プール冷却浄化系(FPC)の機能が失われると、崩壊熱によりプール水32が蒸発し、気中に露出した燃料ラック31に収容された使用済み燃料がさらに高温化して損傷するおそれがある。
本実施形態に係る除熱装置10は、このような異常事態が発生した場合であっても、わずかな補助動力によりもしくは動力を使用せずに、昇温したプール水32の除熱を実行することができる。
When the function of the fuel pool cooling and purification system (FPC), which is normally operated, is lost due to natural disasters, the pool water 32 evaporates due to decay heat and is used in the fuel rack 31 exposed to the air. There is a risk that the fuel will be further heated and damaged.
Even if such an abnormal situation occurs, the heat removal apparatus 10 according to the present embodiment performs heat removal of the heated pool water 32 with a slight auxiliary power or without using power. be able to.

以上述べた少なくともひとつの実施形態の除熱装置によれば、上下方向に配列する複数の熱交換部の間隙において仕切板により除熱前の流体と除熱後の流体を仕切ることによって、流体を自然循環させて優れた熱交換効率を発揮する。   According to the heat removal apparatus of at least one embodiment described above, the fluid is separated by partitioning the fluid before heat removal and the fluid after heat removal by the partition plate in the gap between the plurality of heat exchange units arranged in the vertical direction. Naturally circulates and exhibits excellent heat exchange efficiency.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, changes, and combinations can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

10…除熱装置、11(11a,11b)…冷媒、12…供給口、13…排出口、14(14a,14b)…流体、15…通過孔、16…熱交換部、17…熱交換部の上面、18a…熱交換部の上面に接する流体の領域、18b…熱交換部の下面に接する流体の領域、19…熱交換部の下面、20,20A,20B…仕切板、21(21a,21b)…冷媒流路、23…第1案内部材、24…第2案内部材、25…冷却部材、27…固定部材、28…冷媒循環制御部、30…冷却プール、31…燃料ラック、32…プール水。   DESCRIPTION OF SYMBOLS 10 ... Heat removal apparatus, 11 (11a, 11b) ... Refrigerant, 12 ... Supply port, 13 ... Discharge port, 14 (14a, 14b) ... Fluid, 15 ... Pass-through hole, 16 ... Heat exchange part, 17 ... Heat exchange part 18a: Fluid region in contact with the upper surface of the heat exchange unit, 18b: Fluid region in contact with the lower surface of the heat exchange unit, 19: Lower surface of the heat exchange unit, 20, 20A, 20B ... Partition plates, 21 (21a, 21b) ... refrigerant flow path, 23 ... first guide member, 24 ... second guide member, 25 ... cooling member, 27 ... fixing member, 28 ... refrigerant circulation controller, 30 ... cooling pool, 31 ... fuel rack, 32 ... Pool water.

Claims (8)

冷媒が供給される供給口、供給された冷媒を排出する排出口、及び上面から下面にわたって貫通し周囲の流体を通過させる通過孔を有する熱交換部と、
上下方向に配列する複数の前記熱交換部の間隙においてこの熱交換部の上面に接する前記流体の領域とその下面に接する前記流体の領域とを仕切る仕切板と、
複数の前記熱交換部の前記供給口の各々に連通しさらに前記排出口の各々にも連通して前記冷媒を移動させる冷媒流路と、を備えることを特徴とする除熱装置。
A heat exchange section having a supply port through which a refrigerant is supplied, a discharge port through which the supplied refrigerant is discharged, and a passage hole that passes from the upper surface to the lower surface and allows the surrounding fluid to pass through;
A partition plate that partitions the fluid region in contact with the upper surface of the heat exchange unit and the fluid region in contact with the lower surface in a gap between the plurality of heat exchange units arranged in the vertical direction;
A heat removal apparatus comprising: a refrigerant flow path that communicates with each of the supply ports of the plurality of heat exchange units and further communicates with each of the discharge ports to move the refrigerant.
前記熱交換部の下面において、前記仕切板が接続する側とは反対の縁端に、前記通過孔を通過した流体を案内する第1案内部材が設けられている請求項1に記載の除熱装置。   2. The heat removal device according to claim 1, wherein a first guide member that guides the fluid that has passed through the passage hole is provided at an edge opposite to a side to which the partition plate is connected on a lower surface of the heat exchange unit. apparatus. 上下方向に配列する複数の前記熱交換部の側方に、各々の前記熱交換部を通過した流体を案内する第2案内部材が設けられている請求項1又は請求項2に記載の除熱装置。   The heat removal according to claim 1 or 2, wherein a second guide member that guides the fluid that has passed through each of the heat exchange units is provided on a side of the plurality of heat exchange units arranged in the vertical direction. apparatus. 上下方向に配列する複数の前記熱交換部の間隙において、前記熱交換部を通過する前又は後の前記流体を冷却する冷却部材が設けられている請求項1から請求項3のいずれか1項に記載の除熱装置。   4. The cooling member for cooling the fluid before or after passing through the heat exchange unit is provided in a gap between the plurality of heat exchange units arranged in the vertical direction. 5. The heat removal apparatus described in 1. 前記冷媒は、液状で前記熱交換部に供給されたのちに、少なくともその一部が気化してから排出される請求項1から請求項4のいずれか1項に記載の除熱装置。   The heat removal device according to any one of claims 1 to 4, wherein the refrigerant is discharged in a liquid state after at least a part thereof is vaporized after being supplied to the heat exchange unit. 前記冷媒流路の内部は、大気圧よりも減圧されている請求項1から請求項5のいずれか1項に記載の除熱装置。   The heat removal apparatus according to any one of claims 1 to 5, wherein the inside of the refrigerant flow path is depressurized from atmospheric pressure. 前記仕切板は、前記流体の案内される方向に沿って曲面構造又は矩形構造を示す請求項1から請求項6のいずれか1項に記載の除熱装置。   The heat removal apparatus according to any one of claims 1 to 6, wherein the partition plate exhibits a curved surface structure or a rectangular structure along a direction in which the fluid is guided. 使用済み核燃料の冷却プールに配置されている請求項1から請求項7のいずれか1項に記載の除熱装置。   The heat removal apparatus according to any one of claims 1 to 7, wherein the heat removal apparatus is disposed in a cooling pool for spent nuclear fuel.
JP2013100511A 2013-05-10 2013-05-10 Heat removal device Pending JP2014219178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013100511A JP2014219178A (en) 2013-05-10 2013-05-10 Heat removal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013100511A JP2014219178A (en) 2013-05-10 2013-05-10 Heat removal device

Publications (1)

Publication Number Publication Date
JP2014219178A true JP2014219178A (en) 2014-11-20

Family

ID=51937799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013100511A Pending JP2014219178A (en) 2013-05-10 2013-05-10 Heat removal device

Country Status (1)

Country Link
JP (1) JP2014219178A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102185670B1 (en) * 2019-12-18 2020-12-02 한국수력원자력 주식회사 Cooling system for steam ejected from pressurizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102185670B1 (en) * 2019-12-18 2020-12-02 한국수력원자력 주식회사 Cooling system for steam ejected from pressurizer

Similar Documents

Publication Publication Date Title
RU2695089C2 (en) System for direct liquid cooling of electronic components
US10820454B2 (en) Vapor chamber heat spreaders with engineered vapor and liquid flow paths
US20180020571A1 (en) Electronic apparatus and cooling system for electronic apparatus
US20180070477A1 (en) Electronic-device cooling system
JP6283276B2 (en) Air conditioning equipment for server systems
JP6564596B2 (en) Lithium ion secondary battery device
GB2532351A (en) Balanced heat exchanger systems and methods
KR102145652B1 (en) A fluid handling device and a method of heating or cooling a fluid flow
JP2013161528A (en) Battery pack
EP3026990B1 (en) Apparatus
US20200029466A1 (en) Liquid-heat-transmission device
CN104661494A (en) Cooling element
JP3181289U (en) Heat dissipation device
JP2014219178A (en) Heat removal device
EP2705561B1 (en) Freeze-resistant fuel cell condensers
JP6283277B2 (en) Air conditioning equipment for server systems
JP2010217091A (en) Containment vessel passive cooling system and liquid-metal-cooled reactor
JP2013185992A (en) Cooling system for spent fuel storage pool
WO2014132085A1 (en) A module for cooling one or more heat generating components
KR102101030B1 (en) Air conditioner using thermoelement module
KR101831220B1 (en) Flash box and steam condenser having the same
KR102094776B1 (en) Heat radiating plate for oil immersed transformer
KR101367021B1 (en) Heat dissipation system for power module
RU2731439C2 (en) Cooling system of electronic system
JP5668347B2 (en) Heat absorption structure of outdoor equipment