JP2014218907A - Air-fuel ratio control device for internal combustion engine using ion current - Google Patents

Air-fuel ratio control device for internal combustion engine using ion current Download PDF

Info

Publication number
JP2014218907A
JP2014218907A JP2013097217A JP2013097217A JP2014218907A JP 2014218907 A JP2014218907 A JP 2014218907A JP 2013097217 A JP2013097217 A JP 2013097217A JP 2013097217 A JP2013097217 A JP 2013097217A JP 2014218907 A JP2014218907 A JP 2014218907A
Authority
JP
Japan
Prior art keywords
ion current
internal combustion
combustion engine
ion
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013097217A
Other languages
Japanese (ja)
Other versions
JP6246489B2 (en
Inventor
光宏 泉
Mitsuhiro Izumi
光宏 泉
博 鴛海
Hiroshi Enkai
博 鴛海
竜也 新海
Tatsuya Shinkai
竜也 新海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamond Electric Manufacturing Co Ltd
Original Assignee
Diamond Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamond Electric Manufacturing Co Ltd filed Critical Diamond Electric Manufacturing Co Ltd
Priority to JP2013097217A priority Critical patent/JP6246489B2/en
Publication of JP2014218907A publication Critical patent/JP2014218907A/en
Application granted granted Critical
Publication of JP6246489B2 publication Critical patent/JP6246489B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that it is difficult to accurately determine a combustion state from an air-fuel ratio on the basis of an ion current because there is a change in the magnitude of a detected ion current value due to an individual difference between structural elements of an ion current detection device for detecting the ion current.SOLUTION: An air-fuel ratio control device for an internal combustion engine includes peak average value calculating means for calculating a peak average value for an ion current detected by an ion current detection device 60 during activating an Osensor 160, storage means for storing an ion current peak value calculated by the peak average value calculating means as an ion peak reference value, computing means for calculating an ion peak theoretical value corresponding to the air-fuel ratio of the internal combustion engine 170 after activating the Osensor 160 from the ion peak reference value stored in the storage means, and comparing means for comparing the ion peak theoretical value calculated by the computing means with the ion current peak value detected by the ion current detection device 60 after activating the Osensor 160. It determines the combustion state of the internal combustion engine 170 in accordance with the result of the comparing means.

Description

本発明は、自動車用エンジン等の内燃機関に供給する混合気において、空気と燃料の比率(空燃比:A/F)を制御する空燃比制御装置に関して、内燃機関の燃焼によって発生するイオン電流に基づいて空燃比制御を行うものである。 The present invention relates to an air-fuel ratio control apparatus that controls a ratio of air to fuel (air-fuel ratio: A / F) in an air-fuel mixture supplied to an internal combustion engine such as an automobile engine. Based on this, air-fuel ratio control is performed.

従来より、火花点火式の内燃機関において、検出した空燃比に基づいて内燃機関に供給される燃料を制御し、燃費や出力の向上を図っている。空燃比を検出する方法としては、Oセンサ、又は、空燃比センサを用いて検出しているが、内燃機関のコールドスタート時のようなOセンサ及び空燃比センサが不活性時の状態にあるときは測定値が安定せず、空燃比制御の精度を維持することができない。この問題を解決するために、内燃機関の燃焼によって点火プラグの電極間に発生するイオン電流を用いて空燃比を検出する方法が提案されており、例えば特開平5−222989号公報(以下「特許文献1」)が知られている。 Conventionally, in a spark ignition type internal combustion engine, fuel supplied to the internal combustion engine is controlled based on the detected air-fuel ratio to improve fuel consumption and output. As a method for detecting the air-fuel ratio, detection is performed using an O 2 sensor or an air-fuel ratio sensor, but the O 2 sensor and the air-fuel ratio sensor are in an inactive state, such as during a cold start of an internal combustion engine. In some cases, the measured value is not stable and the accuracy of air-fuel ratio control cannot be maintained. In order to solve this problem, a method for detecting an air-fuel ratio using an ionic current generated between electrodes of a spark plug by combustion of an internal combustion engine has been proposed. For example, Japanese Patent Application Laid-Open No. Hei 5-2222989 (hereinafter referred to as “patent”). Document 1 ") is known.

上記特許文献1において、排気ガス中の酸素濃度によって燃料噴射量を制御するエンジン制御装置において、点火後の燃焼室内のイオン電導度を測定するイオンセンサを備え、燃焼時の空燃比を求め、空燃比を制御する空燃比制御装置で回転数または出力トルクの変動から失火を判定し、失火限界まで空燃比をリーンにすることを特徴とする空燃比制御装置が提案されている。 In the above-mentioned Patent Document 1, an engine control apparatus that controls the fuel injection amount by the oxygen concentration in the exhaust gas includes an ion sensor that measures the ion conductivity in the combustion chamber after ignition, obtains the air-fuel ratio at the time of combustion, There has been proposed an air-fuel ratio control apparatus characterized in that an air-fuel ratio control apparatus that controls an air-fuel ratio determines misfire from fluctuations in rotational speed or output torque and makes the air-fuel ratio lean until the misfire limit.

特開平5−222989号公報Japanese Patent Laid-Open No. 5-2222989

しかしながら、上記従来の内燃機関の空燃比制御装置では次のような問題が生じている。即ち、特許文献1では、Oセンサが不活性の始動時であっても希薄空燃比制御が可能になると共に、Oセンサを活性化するためのヒータを必要としないため、内燃機関の負荷を軽減できる効果があるが、イオン電流を検出するイオン電流検出装置の構成素子の個体差によって検出されるイオン電流値の大きさが変化するため、イオン電流に基づいて空燃比に対する燃焼状態を正確に判定することは困難となる問題が生じる。このような正確に燃焼状態が判定できないと、現在の空燃比に対して燃料が不足している等と誤った判断をしてしまい、本来は不要な燃料を消費してしまうことが生じる。 However, the above-described conventional air-fuel ratio control device for an internal combustion engine has the following problems. That is, in Patent Document 1, the O 2 sensor becomes possible lean air-fuel ratio control even at the time of start-up of inert, does not require a heater for activating the O 2 sensor, the load of the internal combustion engine Although the magnitude of the ionic current value detected varies depending on the individual differences in the components of the ionic current detection device that detects the ionic current, the combustion state for the air-fuel ratio can be accurately determined based on the ionic current. This makes it difficult to make a determination. If the combustion state cannot be determined accurately in this way, it is erroneously determined that fuel is insufficient with respect to the current air-fuel ratio, and fuel that is originally unnecessary may be consumed.

本発明は上記の課題に鑑みなされたもので、イオン電流を検出するイオン電流検出装置の構成素子の個体差によって検出されるイオン電流値の大きさが変化しても、イオン電流に基づいた空燃比に対する内燃機関の燃焼状態を正確に判定することができる内燃機関の空燃比制御装置を提供することを目標とする。 The present invention has been made in view of the above-described problems, and even if the magnitude of the detected ion current value changes due to individual differences in the constituent elements of the ion current detection device that detects the ion current, the sky based on the ion current is used. An object of the present invention is to provide an air-fuel ratio control apparatus for an internal combustion engine that can accurately determine the combustion state of the internal combustion engine with respect to the fuel ratio.

上記課題を解決するために本発明は次のような構成とする。即ち、請求項1の発明は、1次コイルと2次コイルが電磁結合されて点火プラグに高電圧を印加する点火装置と、当該点火プラグに発生するイオン電流を検出するイオン電流検出装置と、内燃機関の排気経路内に備えられるOセンサと、を備える内燃機関の空燃比制御装置において、前記Oセンサの活性時に前記イオン電流検出装置によって検出されるイオン電流のピーク平均値を算出するピーク平均値算出手段と、当該ピーク平均値算出手段で算出したイオン電流ピーク値をイオンピーク基準値として記憶する記憶手段と、当該記憶手段に記憶されたイオンピーク基準値と前記Oセンサ活性後の前記イオン電流検出装置によって検出されるイオン電流と比較する比較手段と、を備え、当該比較手段の結果によって前記内燃機関の燃焼状態を判定することを特徴とする内燃機関の空燃比制御装置とする。 In order to solve the above problems, the present invention is configured as follows. Specifically, the invention of claim 1 is an ignition device in which a primary coil and a secondary coil are electromagnetically coupled to apply a high voltage to a spark plug, an ion current detection device that detects an ion current generated in the spark plug, the air-fuel ratio control apparatus for an internal combustion engine comprising a O 2 sensor provided in an exhaust passage of an internal combustion engine, and calculates the average peak value of the ion current detected by said ion current detecting device when the activity of the O 2 sensor Peak average value calculation means, storage means for storing the ion current peak value calculated by the peak average value calculation means as an ion peak reference value, ion peak reference value stored in the storage means and after the O 2 sensor activation Comparing means for comparing with the ionic current detected by the ionic current detecting device, and the fuel of the internal combustion engine according to the result of the comparing means. And air-fuel ratio control apparatus for an internal combustion engine, characterized in that to determine the state.

上記の発明においては、前記記憶手段に記憶されたイオンピーク基準値に対して前記Oセンサ活性後の前記内燃機関の空燃比に応じたイオンピーク理論値を算出する演算手段を備え、前記比較手段は、当該演算手段で算出されたイオンピーク理論値と前記Oセンサ活性後の前記イオン電流検出装置によって検出されるイオン電流ピーク値と比較する構成としてもよい。また、前記記憶手段は、前記内燃機関が始動する毎に前記記憶手段に記憶していたイオンピーク基準値又は指定面積基準位置を初期化する構成としてもよい。 In the above invention, the calculation means includes a calculation means for calculating an ion peak theoretical value corresponding to an air-fuel ratio of the internal combustion engine after the O 2 sensor is activated with respect to an ion peak reference value stored in the storage means, and the comparison The means may be configured to compare the theoretical ion peak value calculated by the computing means with the ion current peak value detected by the ion current detector after the O 2 sensor is activated. The storage means may be configured to initialize an ion peak reference value or a designated area reference position stored in the storage means every time the internal combustion engine is started.

上記の通り、1次コイルと2次コイルが電磁結合されて点火プラグに高電圧を印加する点火装置と、当該点火プラグに発生するイオン電流を検出するイオン電流検出装置と、内燃機関の排気経路内に備えられるOセンサと、を備える内燃機関の空燃比制御装置において、前記Oセンサの活性時に前記イオン電流検出装置によって検出されるイオン電流のピーク平均値を算出する学習手段と、当該学習手段で算出したイオン電流ピーク値をイオンピーク基準値として記憶する記憶手段と、当該記憶手段に記憶されたイオンピーク基準値に対して前記内燃機関の空燃比に応じたイオンピーク理論値を算出する演算手段と、当該演算手段で算出されたイオンピーク理論値と前記イオン電流検出装置によって検出されるイオン電流と比較する比較手段と、を備え、当該比較手段の結果によって前記内燃機関の燃焼状態を判定することで、イオン電流を検出するイオン電流検出装置の構成素子の個体差によって検出されるイオン電流値の大きさが変化しても、イオン電流に基づいて空燃比に対する燃焼状態を正確に判定する内燃機関の空燃比制御装置が実現できる。 As described above, an ignition device that applies a high voltage to the spark plug by electromagnetically coupling the primary coil and the secondary coil, an ion current detection device that detects an ion current generated in the spark plug, and an exhaust path of the internal combustion engine the air-fuel ratio control apparatus for an internal combustion engine comprising O and 2 sensors, the provided within, and learning means for calculating an average peak value of the ion current detected by said ion current detecting device when the activity of the O 2 sensor, the A storage means for storing the ion current peak value calculated by the learning means as an ion peak reference value, and an ion peak theoretical value corresponding to the air-fuel ratio of the internal combustion engine with respect to the ion peak reference value stored in the storage means And a ratio for comparing the theoretical ion peak value calculated by the calculation means with the ion current detected by the ion current detection device And determining the combustion state of the internal combustion engine based on the result of the comparison means, so that the magnitude of the ion current value detected by the individual difference of the constituent elements of the ion current detection device for detecting the ion current is increased. Even if it changes, an air-fuel ratio control apparatus for an internal combustion engine that accurately determines the combustion state with respect to the air-fuel ratio based on the ion current can be realized.

また、前記記憶手段は、前記内燃機関が始動する毎に前記記憶手段に記憶していたイオンピーク基準値又は指定面積基準位置を初期化する構成とすることで、内燃機関の始動直前に点火装置を交換する作業を行っても点火装置の個体差によるイオン電流のバラツキを反映した燃焼状態の判定ができる。 Further, the storage means is configured to initialize the ion peak reference value or the designated area reference position stored in the storage means every time the internal combustion engine is started, so that the ignition device immediately before the internal combustion engine is started. Even if the work of exchanging is performed, it is possible to determine the combustion state reflecting the variation of the ion current due to the individual difference of the ignition device.

本発明の第1の実施例とするイオン電流検出手段を備えた内燃機関用の点火装置の回路構成を示す図である。It is a figure which shows the circuit structure of the ignition device for internal combustion engines provided with the ion current detection means which is the 1st Example of this invention. 実施例1とする空燃比制御装置を備えた内燃機関の構成を示す図である。1 is a diagram illustrating a configuration of an internal combustion engine including an air-fuel ratio control apparatus according to a first embodiment. 実施例1とするOセンサ活性時のイオン電流波形と弱リーン制御時のイオン電流波形との関係を示す特性図である。It is a characteristic diagram showing the relationship between Example 1 and for O 2 sensor activation time of the ion current waveform and the weak lean control during the ion current waveform. 実施例1とするコールドスタートからの燃焼における内燃機関の空燃比の挙動を示すタイムチャートである。3 is a time chart showing the behavior of the air-fuel ratio of the internal combustion engine in the combustion from the cold start as Example 1. 実施例1とするイオン電流検出装置の個体差で生じるイオン電流のバラツキを示す特性図である。It is a characteristic view which shows the dispersion | variation in the ionic current which arises with the individual difference of the ion current detection apparatus made into Example 1. FIG. 実施例1とする空燃比制御装置の処理を示すフローチャートである。3 is a flowchart showing processing of the air-fuel ratio control apparatus according to the first embodiment.

以下に、本発明の実施の形態を示す実施例を図1乃至図6に基づいて説明する。 Hereinafter, an example showing the embodiment of the present invention will be described with reference to FIGS.

本発明の第1の実施例とするイオン電流検出手段を備えた内燃機関用の点火装置の回路構成を示す図を図1に、空燃比制御装置を備えた内燃機関の構成を示す図を図2に、Oセンサ活性時のイオン電流波形と弱リーン制御時のイオン電流波形との関係を示す特性図を図3に、コールドスタートからの燃焼における内燃機関の空燃比の挙動を示すタイムチャートを図4に、イオン電流検出装置の個体差で生じるイオン電流のバラツキを示す特性図を図5に、空燃比制御装置の処理を示すフローチャートを図6にそれぞれ示す。 FIG. 1 is a diagram showing a circuit configuration of an ignition device for an internal combustion engine provided with ion current detection means according to a first embodiment of the present invention, and FIG. 1 is a diagram showing a configuration of an internal combustion engine provided with an air-fuel ratio control device. 2, a characteristic diagram showing the relationship between the O 2 ion current waveform and the ion current waveform during the weak lean control during sensor activation 3, a time chart showing the behavior of the air-fuel ratio of an internal combustion engine in the combustion from cold start FIG. 4 is a characteristic diagram showing variations in ion current caused by individual differences in ion current detection devices, and FIG. 5 is a flowchart showing processing of the air-fuel ratio control device.

図1において、点火装置70は、1次コイル10、2次コイル12、鉄芯14、イグナイタ20、及び、イオン電流検出装置60から構成され、当該1次コイル10は1次巻線を100ターン前後巻き回し、当該2次コイル12は2次巻線を12000ターン前後巻き回し、当該鉄芯14は珪素鋼板を重ね合わせて形成されている。また、イグナイタ20は金属製リードフレーム上にIGBT(絶縁ゲートバイポーラトランジスタ)からなる半導体部品を配置して周囲を絶縁樹脂でモールドして形成されている。さらに、当該イオン電流検出回路60はバイアス電源として作用するコンデンサ64と燃焼時に検出されるイオン電流を検出信号に変換するオペアンプ66とから構成されている。 In FIG. 1, an ignition device 70 is composed of a primary coil 10, a secondary coil 12, an iron core 14, an igniter 20, and an ionic current detection device 60. The primary coil 10 has 100 turns of the primary winding. Winding back and forth, the secondary coil 12 winds the secondary winding around 12000 turns, and the iron core 14 is formed by overlapping silicon steel plates. The igniter 20 is formed by arranging a semiconductor component made of IGBT (insulated gate bipolar transistor) on a metal lead frame and molding the periphery with an insulating resin. Further, the ion current detection circuit 60 includes a capacitor 64 that acts as a bias power source and an operational amplifier 66 that converts an ion current detected during combustion into a detection signal.

また、前記1次コイル10の低圧側は自動車に搭載されるバッテリ電源30と接続され、前記1次コイル10の高圧側は前記イグナイタ20のコレクタ端子と接続されている。さらに、前記イグナイタ20のゲート端子はECU50と接続され、前記イグナイタ20のエミッタ端子は接地されている。 Further, the low voltage side of the primary coil 10 is connected to a battery power supply 30 mounted on an automobile, and the high voltage side of the primary coil 10 is connected to the collector terminal of the igniter 20. Further, the gate terminal of the igniter 20 is connected to the ECU 50, and the emitter terminal of the igniter 20 is grounded.

また、前記2次コイル12の低圧側は前記イオン電流検出回路60の第1のダイオード(ツェナーダイオード)62aのカソード側と接続され、前記2次コイル12の高圧側は空気と燃料の混合気を燃焼させる高電圧を放出すると共に、混合気の燃焼によって発生するイオン電流を検出する点火プラグ40と接続されている。さらに、当該第1のダイオード(ツェナーダイオード)62aのアノード側は第2のダイオード62bのアノード側と接続され、当該第2のダイオード62bのカソード側は接地されている。 The low-voltage side of the secondary coil 12 is connected to the cathode side of the first diode (zener diode) 62a of the ion current detection circuit 60, and the high-pressure side of the secondary coil 12 carries a mixture of air and fuel. It is connected to a spark plug 40 that discharges a high voltage to be burned and detects an ionic current generated by the combustion of the air-fuel mixture. Further, the anode side of the first diode (zener diode) 62a is connected to the anode side of the second diode 62b, and the cathode side of the second diode 62b is grounded.

また、前記第1のダイオード(ツェナーダイオード)62aはバイアス電源として機能する前記コンデンサ64が並列に接続され、前記コンデンサ64のプラス側は前記2次コイル12に、前記コンデンサ64のマイナス側は前記第2のダイオード62bのアノード側に接続されている。さらに、前記第1のダイオード(ツェナーダイオード)62aと前記第2のダイオード62bの接続部は抵抗68aを介して前記オペアンプ66の反転入力端子と接続され、前記オペアンプ66の出力端子は前記ECU50に接続されている。 The capacitor 64 functioning as a bias power source is connected in parallel to the first diode (zener diode) 62a. The plus side of the capacitor 64 is connected to the secondary coil 12, and the minus side of the capacitor 64 is the first side. The second diode 62b is connected to the anode side. Further, a connection portion between the first diode (zener diode) 62a and the second diode 62b is connected to an inverting input terminal of the operational amplifier 66 through a resistor 68a, and an output terminal of the operational amplifier 66 is connected to the ECU 50. Has been.

また、前記オペアンプ66の反転入力端子と出力端子に対して検出抵抗68bが並列に接続され、前記オペアンプ66の非反転入力端子及び負電源端子は接地されると共に正電源端子は前記電源30が接続されている。さらに、前記オペアンプ66は反転入力端子と前記抵抗68aの接続部は前記第3のダイオード62cのカソード側と接続され、当該第3のダイオード62cのアノード側は接地されている。 Further, a detection resistor 68b is connected in parallel to the inverting input terminal and the output terminal of the operational amplifier 66, the non-inverting input terminal and the negative power supply terminal of the operational amplifier 66 are grounded, and the power supply 30 is connected to the positive power supply terminal. Has been. Further, the operational amplifier 66 has a connection portion between the inverting input terminal and the resistor 68a connected to the cathode side of the third diode 62c, and the anode side of the third diode 62c is grounded.

図2において、内燃機関170はエンジンブロックに形成された複数のシリンダ110から構成されている。それぞれの当該シリンダ110の下部に備えられたピストン120と、当該ピストン120の上下方向の運動を回転方向の運動に変換するクランク122と、それぞれの当該クランク122を連動して回転させるためのクランクシャフト124とを備えている。また、前記シリンダ110内への燃料と空気の混合気を供給するための吸気経路130と、前記シリンダ110内からの燃焼後の排気ガスを排出するための排気経路150とを備えている。さらに、当該吸気経路130には当該内燃機関170の運転状態に応じて燃料を噴射するインジェクション140を備え、当該排気経路150には排気ガス中の酸素量を測定するOセンサ160を備えている。 In FIG. 2, the internal combustion engine 170 is composed of a plurality of cylinders 110 formed in an engine block. Pistons 120 provided at the lower portions of the respective cylinders 110, cranks 122 for converting the vertical movements of the pistons 120 into rotational movements, and crankshafts for rotating the cranks 122 in conjunction with each other And 124. Further, an intake path 130 for supplying a mixture of fuel and air into the cylinder 110 and an exhaust path 150 for discharging exhaust gas after combustion from the cylinder 110 are provided. Further, the intake path 130 is provided with an injection 140 that injects fuel according to the operating state of the internal combustion engine 170, and the exhaust path 150 is provided with an O 2 sensor 160 that measures the amount of oxygen in the exhaust gas. .

また、前記Oセンサ160はヒータ(図示しない)によってある程度の温度まで温められて活性化される。さらに、前記Oセンサ160は前記排気経路150に備えられているが、エンジンから触媒までの間の上流センサと当該触媒からマフラーまでの間の下流センサを備えられ、本実施例で説明するOセンサは当該エンジンから当該触媒までの間の当該上流センサを指している。 The O 2 sensor 160 is heated to a certain temperature by a heater (not shown) and activated. Further, the O 2 sensor 160 is provided in the exhaust passage 150, but is provided with an upstream sensor from the engine to the catalyst and a downstream sensor from the catalyst to the muffler, which will be described in this embodiment. Two sensors indicate the upstream sensor from the engine to the catalyst.

また、前記吸気経路130にはそれぞれの前記シリンダ110内への吸気量を調整する吸気バルブ132を備え、前記排気経路150にはそれぞれの前記シリンダ110内からの排気ガスの量を調整する排気バルブ152が備えられている。さらに、それぞれの前記シリンダ110上部には前記吸気バルブ132の開閉動作を行うための吸気カム134と、前記排気バルブ152の開閉動作を行うための排気カム154とを備えている。 In addition, the intake path 130 includes an intake valve 132 that adjusts the amount of intake air into each cylinder 110, and the exhaust path 150 includes an exhaust valve that adjusts the amount of exhaust gas from each cylinder 110. 152 is provided. Further, an intake cam 134 for opening / closing the intake valve 132 and an exhaust cam 154 for opening / closing the exhaust valve 152 are provided at the upper part of each cylinder 110.

また、それぞれの前記吸気カム134を連動して回転させるための吸気カムシャフト136と、それぞれの前記排気カム154を連動して回転させるための排気カムシャフト156とを備えている。さらに、前記クランクシャフト124、当該吸気カムシャフト136、及び、当該排気カムシャフト156はタイミングベルトによって連動して駆動している。 Also, an intake camshaft 136 for rotating the intake cams 134 in conjunction with each other and an exhaust camshaft 156 for rotating the exhaust cams 154 in conjunction with each other are provided. Further, the crankshaft 124, the intake camshaft 136, and the exhaust camshaft 156 are driven in conjunction by a timing belt.

また、それぞれの前記シリンダ110上部には前記シリンダ110内に供給された混合気に火花を飛ばすと共に、混合気の燃焼によって発生するイオン電流を検出するための電極を有した前記点火プラグ40が備えられている。さらに、それぞれの前記点火プラグ40は前記電源30の電圧を数十kVの電圧へと昇圧させる前記点火装置70と電気的に接続されている。 Each of the cylinders 110 is provided with an ignition plug 40 having an electrode for detecting an ion current generated by combustion of the air-fuel mixture while sparking the air-fuel mixture supplied into the cylinder 110. It has been. Further, each of the spark plugs 40 is electrically connected to the ignition device 70 that boosts the voltage of the power source 30 to a voltage of several tens of kV.

また、前記点火装置70は前記イグナイタ20へ適切な点火タイミングに応じた点火信号を供給すると共に前記イオン電流検出装置60から入力される検出信号に基づいて燃焼状態を判定する前記ECU50と電気的に接続されている。さらに、前記ECU50は前記Oセンサ160から前記排気経路150内を通過する排気ガスの酸素量の測定結果が入力されている。 The ignition device 70 supplies an ignition signal corresponding to an appropriate ignition timing to the igniter 20 and is electrically connected to the ECU 50 for determining a combustion state based on a detection signal input from the ion current detection device 60. It is connected. Further, the ECU 50 receives the measurement result of the oxygen amount of the exhaust gas passing through the exhaust path 150 from the O 2 sensor 160.

次に図3に示す特性図に基づいて、Oセンサ活性時のイオン電流波形と弱リーン制御時のイオン電流波形を説明する。 Next, an ion current waveform when the O 2 sensor is activated and an ion current waveform during weak lean control will be described based on the characteristic diagram shown in FIG.

図3において、X軸は時間を、Y軸はイオン電流値の大きさを示す。前記Oセンサ160の活性期間の前記イオン電流検出装置60で検出されたイオン電流波形及び前記内燃機関170の弱リーン制御時の前記イオン電流検出装置60で検出されたイオン電流波形は前記内燃機関170の燃焼時は検出できず、燃焼後に前記点火プラグ40から検出され、検出されたイオン電流はピーク値まで上昇し、その後減少していく。しかし、検出されるイオン電流のピーク値の高さは前記シリンダ110内の燃焼と比例するため、前記内燃機関170の高負荷時のような空燃比が低い(リッチ)場合では燃焼温度が高くなると共に、イオン電流のピーク値が高くなるが、前記内燃機関170の低負荷時のような空燃比が高い(リーン)場合では燃焼温度が低くなると共に、イオン電流のピーク値も低くなる。このことから、前記イオン電流検出装置60によって検出されるイオン電流は前記内燃機関170の空燃比によって一定の割合で変動するものであることがわかる。 In FIG. 3, the X axis indicates time, and the Y axis indicates the magnitude of the ion current value. The ion current waveform detected by the ion current detection device 60 during the active period of the O 2 sensor 160 and the ion current waveform detected by the ion current detection device 60 during the weak lean control of the internal combustion engine 170 are the internal combustion engine. It cannot be detected during combustion of 170, but is detected from the spark plug 40 after combustion, and the detected ion current rises to a peak value and then decreases. However, since the height of the peak value of the detected ionic current is proportional to the combustion in the cylinder 110, the combustion temperature becomes high when the air-fuel ratio is low (rich) as in the case of a high load of the internal combustion engine 170. At the same time, the peak value of the ion current increases. However, when the air-fuel ratio is high (lean) as in the low load of the internal combustion engine 170, the combustion temperature decreases and the peak value of the ion current also decreases. From this, it can be seen that the ion current detected by the ion current detection device 60 varies at a constant rate depending on the air-fuel ratio of the internal combustion engine 170.

次に図4に示すタイムチャートに基づいて、コールドスタートからの燃焼における内燃機関の空燃比の挙動を説明する。 Next, the behavior of the air-fuel ratio of the internal combustion engine in the combustion from the cold start will be described based on the time chart shown in FIG.

図4において、前記内燃機関170のコールドスタート時はリッチとなる空燃比の混合気で燃焼が行われており、セルモータによるクランキングが終了し前記内燃機関170の燃焼が安定するとリーンとなる空燃比の混合気で燃焼が行われる。また、前記Oセンサ160が前記ヒータによってある程度の温度となり活性する期間の付近では14.5前後の空燃比で燃焼が行われ、前記ECU50が前記内燃機関170の空燃比から前記Oセンサ160の活性化を判断する。さらに、前記内燃機関170の弱リーン制御中は15.5前後の空燃比で燃焼が行われ、燃費の向上が図られている。 In FIG. 4, when the internal combustion engine 170 is cold-started, combustion is performed with an air-fuel ratio mixture that becomes rich, and when the cranking by the cell motor ends and the combustion of the internal combustion engine 170 becomes stable, the air-fuel ratio becomes lean Combustion is performed with the air-fuel mixture. In the vicinity of a period in which the O 2 sensor 160 is activated to a certain temperature by the heater, combustion is performed at an air-fuel ratio of about 14.5, and the ECU 50 determines the O 2 sensor 160 from the air-fuel ratio of the internal combustion engine 170. Determine the activation. Further, during the weak lean control of the internal combustion engine 170, combustion is performed at an air-fuel ratio of around 15.5, and fuel efficiency is improved.

また、前記内燃機関170のコールドスタート時点での前記Oセンサ160は不活性となっており、前記Oセンサ160が前記ヒータによって活性するまで始動後数秒間(8秒前後)かかる。さらに、前記Oセンサ160が活性する期間に前記内燃機関170が32回燃焼行程を行い、前記内燃機関170が32回燃焼行程を行うのに0.7秒前後かかる。 Further, the O 2 sensor 160 at the time of cold start of the internal combustion engine 170 is inactive, and it takes several seconds (approximately 8 seconds) after the start until the O 2 sensor 160 is activated by the heater. Further, it takes about 0.7 seconds for the internal combustion engine 170 to perform 32 combustion strokes during the period in which the O 2 sensor 160 is activated, and for the internal combustion engine 170 to perform 32 combustion strokes.

図3に戻り、前記Oセンサ160の活性期間では14.5前後の空燃比で燃焼が行われているため、15.5前後の空燃比で燃焼が行われている弱リーン制御中と比べてイオン電流のピーク値が高いことが示されている。 Returning to FIG. 3, since the combustion is performed at an air-fuel ratio of about 14.5 during the active period of the O 2 sensor 160, compared with the weak lean control in which combustion is performed at an air-fuel ratio of about 15.5. It is shown that the peak value of the ion current is high.

次に図5に示す特性図に基づいてイオン電流検出装置の個体差で生じるイオン電流を説明する。 Next, based on the characteristic diagram shown in FIG. 5, the ion current generated by the individual difference of the ion current detection device will be described.

図5において、前記イオン電流検出装置60を構成する前記第1、第2、及び、第3のダイオード62a,62b,62c、前記コンデンサ64、前記オペアンプ66、前記抵抗68a、並びに、前記検出抵抗68bの個体差によって検出されるイオン電流に対する検出信号の大きさが変化する。このため、同じ燃焼状態でも取り付けられる前記点火装置70の個体差によって検出されるイオン電流に差が生じる。この個体差によって前記イオン電流検出装置60で検出されるイオン電流は実線で示す上限イオン電流と破線で示す下限イオン電流のような波形となる。しかし、上限イオン電流及び下限イオン電流において、14.5前後の空燃比で燃焼が行われている前記Oセンサ160の活性時のイオンピーク値に対して15.5前後の空燃比で燃焼が行われている弱リーン制御中のイオンピーク値は大凡等しい割合で減少している。よって、前記ECU50は前記内燃機関170の空燃比に応じたイオンピーク値の割合がマップとして保存されている。 In FIG. 5, the first, second, and third diodes 62a, 62b, 62c, the capacitor 64, the operational amplifier 66, the resistor 68a, and the detection resistor 68b that constitute the ion current detection device 60. The magnitude of the detection signal with respect to the detected ion current varies depending on the individual difference. For this reason, even in the same combustion state, a difference arises in the ion current detected by the individual difference of the said ignition device 70 attached. Due to this individual difference, the ion current detected by the ion current detector 60 has a waveform such as an upper limit ion current indicated by a solid line and a lower limit ion current indicated by a broken line. However, in the upper limit ion current and the lower limit ion current, combustion is performed at an air-fuel ratio of about 14.5 with respect to the ion peak value at the time of activation of the O 2 sensor 160 where combustion is performed at an air-fuel ratio of about 14.5. The ion peak value during the weak lean control that is being performed is decreasing at an approximately equal rate. Therefore, the ECU 50 stores a ratio of ion peak values corresponding to the air-fuel ratio of the internal combustion engine 170 as a map.

次に図6に示すフローチャートに基づいて、空燃比制御装置の処理を説明する。 Next, processing of the air-fuel ratio control apparatus will be described based on the flowchart shown in FIG.

図6において、前記内燃機関170はセルモータによるクランキングから始動し(S1)、前記ECU50は前記内燃機関170の始動から8秒前後経過した前記Oセンサ160の活性期間の32回の燃焼からイオン電流を検出する(S2)。また、前記ECU50は(S2)で検出したイオン電流から図3に示す32回分のイオンピーク値の平均値を算出し(S3)、前記ECU50は(S3)で算出したイオンピーク値の平均値をイオンピーク基準値として記憶する(S4)。さらに、前記ECU50は(S4)で記憶したイオンピーク基準値に対して前記内燃機関170の前記Oセンサ160活性後の空燃比に応じたイオン電流のピーク理論値を算出し(S5)、前記ECU50は前記内燃機関170の前記Oセンサ160活性後の(S5)と同時期燃焼におけるイオン電流を検出する(S6)。 In FIG. 6, the internal combustion engine 170 is started from cranking by a cell motor (S1), and the ECU 50 detects ions from 32 combustions during the active period of the O 2 sensor 160 after approximately 8 seconds have elapsed since the start of the internal combustion engine 170. A current is detected (S2). Further, the ECU 50 calculates the average value of the 32 ion peak values shown in FIG. 3 from the ion current detected in (S2) (S3), and the ECU 50 calculates the average value of the ion peak values calculated in (S3). Stored as the ion peak reference value (S4). Further, the ECU 50 calculates a theoretical peak value of the ion current according to the air-fuel ratio after activation of the O 2 sensor 160 of the internal combustion engine 170 with respect to the ion peak reference value stored in (S4) (S5). The ECU 50 detects the ion current in the simultaneous combustion (S6) after the activation of the O 2 sensor 160 of the internal combustion engine 170 (S5).

また、前記ECU50は(S5)で算出されたイオンピーク理論値と(S6)で検出したイオン電流のピーク値を比較して燃焼状態を判定し(S7)、前記内燃機関170の燃焼状態に応じて空燃比が決定され、前記インジェクション140からの燃料噴射量を変更する。前記内燃機関170の燃焼状態を判断する基準としては、例えば空燃比が14.5の前記Oセンサ160が活性時のイオンピーク基準値を100%とすると空燃比15.5%の弱リーン制御中に検出されるイオン電流のピーク値は90%前後の出力となると燃焼状態を正常と判定することが前記ECU50のマップに保存されており、実際に検出されたイオンピーク値と比較することで燃焼状態が判定される。 The ECU 50 compares the theoretical value of the ion peak calculated in (S5) with the peak value of the ion current detected in (S6) to determine the combustion state (S7), and according to the combustion state of the internal combustion engine 170. Thus, the air-fuel ratio is determined, and the fuel injection amount from the injection 140 is changed. As a reference for determining the combustion state of the internal combustion engine 170, for example, when the O 2 sensor 160 with an air-fuel ratio of 14.5 is activated and the ion peak reference value is 100%, a weak lean control with an air-fuel ratio of 15.5% is performed. It is stored in the map of the ECU 50 that the combustion state is determined to be normal when the peak value of the ion current detected during the output is around 90%, and by comparing with the actually detected ion peak value, The combustion state is determined.

上記構成により、前記Oセンサ160の活性期間の32回の燃焼から検出したイオンピーク値の平均値をイオンピーク基準値として記憶し、イオンピーク基準値に対して前記内燃機関170の前記Oセンサ160活性後の空燃比に応じたイオン電流のピーク理論値と前記内燃機関170の前記Oセンサ160活性後のイオン電流ピーク値を比較して燃焼状態を判定することで、前記イオン電流検出装置60の構成素子の個体差によって検出されるイオン電流値の大きさが変化しても、イオン電流に基づいて空燃比に対する燃焼状態を正確に判定する内燃機関の空燃比制御装置が実現できる。また、前記内燃機関170が始動する毎に記憶していたイオンピーク値を初期化(消去)し、改めて前記Oセンサ160の活性期間の32回の燃焼から検出したイオンピーク値の平均値をイオンピーク基準値として記憶することで、前記内燃機関170の始動直前に前記点火装置70を交換する作業を行っても前記点火装置70の個体差によるイオン電流のバラツキを反映した燃焼状態の判定ができる。 With the above configuration, an average value of ion peak values detected from 32 combustions during the active period of the O 2 sensor 160 is stored as an ion peak reference value, and the O 2 of the internal combustion engine 170 is compared with the ion peak reference value. By comparing the theoretical peak value of the ionic current according to the air-fuel ratio after activation of the sensor 160 and the ionic current peak value after activation of the O 2 sensor 160 of the internal combustion engine 170, the combustion state is determined, thereby determining the ionic current detection. Even if the magnitude of the ionic current value detected by the individual difference of the constituent elements of the device 60 changes, an air-fuel ratio control apparatus for an internal combustion engine that accurately determines the combustion state with respect to the air-fuel ratio based on the ionic current can be realized. In addition, each time the internal combustion engine 170 is started, the stored ion peak value is initialized (erased), and the average value of the ion peak values detected again from 32 times of combustion in the active period of the O 2 sensor 160 is obtained. By storing as an ion peak reference value, even if an operation for replacing the ignition device 70 is performed immediately before the internal combustion engine 170 is started, the determination of the combustion state that reflects variations in ion current due to individual differences of the ignition device 70 can be performed. it can.

なお、上記実施例1の変形例として、前記イオン電流検出装置60の回路構成及び前記内燃機関170の構成はあくまで一例であり、前記点火プラグ40の電極間に発生するイオン電流を検出する構成を有したエンジンであれば任意の構成に変更してもよい。また、イオンピーク値の平均値は前記内燃機関170の32回の燃焼から算出したが、設計事情によって任意の燃焼回数から算出してもよい。さらに、前記Oセンサ160が前記ヒータによって活性が完了するまで前記内燃機関170の始動から8秒前後としたが、前記内燃機関170を運転させる環境(気温)によって変動するものとし、前記内燃機関170の空燃比が14.5前後となると前記ECU50は前記Oセンサ160が活性したと判断するものとする。 As a modification of the first embodiment, the circuit configuration of the ion current detection device 60 and the configuration of the internal combustion engine 170 are merely examples, and a configuration for detecting an ion current generated between the electrodes of the spark plug 40 is used. Any engine may be used as long as it has the engine. Moreover, although the average value of the ion peak value is calculated from 32 combustions of the internal combustion engine 170, it may be calculated from any number of combustions depending on the design circumstances. Further, it is assumed that the O 2 sensor 160 is about 8 seconds from the start of the internal combustion engine 170 until the activation by the heater is completed, but it varies depending on the environment (temperature) in which the internal combustion engine 170 is operated. When the air-fuel ratio of 170 becomes around 14.5, the ECU 50 determines that the O 2 sensor 160 has been activated.

また、前記ECU50は前記Oセンサ160活性後の空燃比に対するイオン電流のピーク理論値を算出したが、前記Oセンサ160活性期間に検出されるイオンピーク基準値に対して前記Oセンサ160の活性後に検出されるイオン電流のピーク値の割合を算出し、前記内燃機関170の空燃比に応じたイオンピーク値の割合と比較して前記内燃機関170の燃焼状態を判定する構成としてもよい。さらに、前記Oセンサ160の活性期間中の1回(空燃比が14.5となるタイミング)の燃焼から検出したイオンピーク値をイオンピーク基準値として記憶し、イオンピーク基準値に対して前記内燃機関170の前記Oセンサ160活性後の空燃比に応じたイオン電流のピーク理論値と前記内燃機関170の前記Oセンサ160活性後のイオン電流ピーク値を比較して燃焼状態を判定する構成としてもよい。 Further, the ECU50 is to calculate the peak theoretical value of the ion current to the air-fuel ratio after the O 2 sensor 160 activity, the O 2 sensor 160 with respect to the O 2 sensor 160 ion peak reference value is detected active period The ratio of the peak value of the ion current detected after the activation of the engine may be calculated and compared with the ratio of the ion peak value corresponding to the air-fuel ratio of the internal combustion engine 170 to determine the combustion state of the internal combustion engine 170. . Further, the ion peak value detected from one combustion (the timing at which the air-fuel ratio becomes 14.5) during the active period of the O 2 sensor 160 is stored as an ion peak reference value, and the ion peak reference value is compared with the ion peak reference value. The combustion state is determined by comparing the theoretical peak value of the ionic current according to the air-fuel ratio after activation of the O 2 sensor 160 of the internal combustion engine 170 with the ionic current peak value after activation of the O 2 sensor 160 of the internal combustion engine 170. It is good also as a structure.

また、前記Oセンサ160の活性期間中の前記内燃機関170の少なくとも1回(空燃比が14.5となるタイミング)の燃焼から検出したイオンピーク基準値として記憶し、イオンピーク基準値に対して前記内燃機関170の前記Oセンサ160活性後の空燃比に応じたイオン電流のピーク理論値と前記内燃機関170の前記Oセンサ160活性後のイオン電流ピーク値の比較に基づいて前記Oセンサ160が活性後の前記内燃機関170の弱リーン制御中(エンジン始動開始から約20秒まで)に検出されるイオン電流を補正する構成としてもよい。 Further, it is stored as an ion peak reference value detected from at least one combustion of the internal combustion engine 170 during the active period of the O 2 sensor 160 (at a timing when the air-fuel ratio becomes 14.5). the O based on a comparison of the O 2 sensor 160 the O 2 sensor 160 ion current peak value after the activity of the peak theoretical value of the ion current corresponding to the air-fuel ratio after the active and the internal combustion engine 170 of the internal combustion engine 170 Te A configuration may be adopted in which the ion current detected during the weak lean control of the internal combustion engine 170 after the two sensors 160 are activated (from the start of the engine start to about 20 seconds) is corrected.

10:1次コイル
12:2次コイル
14:鉄芯
20:イグナイタ
30:電源
40:点火プラグ
50:ECU
60:イオン電流検出装置
62a:第1のダイオード(ツェナーダイオード)
62b:第2のダイオード
62c:第3のダイオード
64:コンデンサ
66:オペアンプ
68a:抵抗
68b:検出用抵抗
70:点火装置
110:シリンダ
120:ピストン
122:クランク
124:クランクシャフト
130:吸気経路
132:吸気バルブ
134:吸気カム
136:吸気カムシャフト
140:インジェクション
150:排気経路
152:排気バルブ
154:排気カム
156:排気カムシャフト
160:Oセンサ
170:内燃機関
10: 1 primary coil
12: Secondary coil
14: Iron core
20: Igniter
30: Power supply
40: Spark plug
50: ECU
60: Ion current detector
62a: First diode (Zener diode)
62b: second diode
62c: Third diode
64: Capacitor
66: Operational amplifier
68a: Resistance
68b: Detection resistor
70: Ignition system
110: Cylinder
120: Piston
122: Crank
124: Crankshaft
130: Intake route
132: Intake valve
134: Intake cam
136: Intake camshaft
140: Injection
150: Exhaust route
152: Exhaust valve
154: Exhaust cam
156: Exhaust camshaft
160: O 2 sensor
170: Internal combustion engine

Claims (3)

1次コイルと2次コイルが電磁結合されて点火プラグに高電圧を印加する点火装置と、当該点火プラグに発生するイオン電流を検出するイオン電流検出装置と、内燃機関の排気経路内に備えられるOセンサと、を備える内燃機関の空燃比制御装置において、
前記Oセンサの活性時に前記イオン電流検出装置によって検出されるイオン電流のピーク平均値を算出するピーク平均値算出手段と、
当該ピーク平均値算出手段で算出したイオン電流ピーク値をイオンピーク基準値として記憶する記憶手段と、
当該記憶手段に記憶されたイオンピーク基準値と前記Oセンサ活性後の前記イオン電流検出装置によって検出されるイオン電流と比較する比較手段と、を備え、
当該比較手段の結果によって前記内燃機関の燃焼状態を判定することを特徴とする内燃機関の空燃比制御装置。
An ignition device that applies a high voltage to a spark plug by electromagnetically coupling a primary coil and a secondary coil, an ion current detection device that detects an ion current generated in the spark plug, and an exhaust path of the internal combustion engine are provided. An air-fuel ratio control apparatus for an internal combustion engine comprising an O 2 sensor,
A peak average value calculating means for calculating a peak average value of an ion current detected by the ion current detection device when the O 2 sensor is activated;
Storage means for storing the ion current peak value calculated by the peak average value calculation means as an ion peak reference value;
Comparing means for comparing the ion peak reference value stored in the storage means with the ion current detected by the ion current detecting device after the O 2 sensor activation,
An air-fuel ratio control apparatus for an internal combustion engine that determines a combustion state of the internal combustion engine based on a result of the comparison means.
前記記憶手段に記憶されたイオンピーク基準値に対して前記Oセンサ活性後の前記内燃機関の空燃比に応じたイオンピーク理論値を算出する演算手段を備え、
前記比較手段は、当該演算手段で算出されたイオンピーク理論値と前記Oセンサ活性後の前記イオン電流検出装置によって検出されるイオン電流ピーク値と比較することを特徴とする請求項1に記載の内燃機関の空燃比制御装置。
Computation means for calculating an ion peak theoretical value corresponding to the air-fuel ratio of the internal combustion engine after the O 2 sensor activation with respect to the ion peak reference value stored in the storage means,
Said comparing means according to claim 1, characterized in that compared with the ion current peak value detected by the ion current detecting device after the ion peak theoretical value calculated with the O 2 sensor activation in the calculating means An air-fuel ratio control apparatus for an internal combustion engine.
前記記憶手段は、前記内燃機関が始動する毎に前記記憶手段に記憶していたイオンピーク基準値又は指定面積基準位置を初期化することを特徴とする請求項1又は2に記載の内燃機関の空燃比制御装置。 3. The internal combustion engine according to claim 1, wherein the storage unit initializes an ion peak reference value or a designated area reference position stored in the storage unit every time the internal combustion engine is started. Air-fuel ratio control device.
JP2013097217A 2013-05-06 2013-05-06 Air-fuel ratio control device for internal combustion engine using ion current Expired - Fee Related JP6246489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013097217A JP6246489B2 (en) 2013-05-06 2013-05-06 Air-fuel ratio control device for internal combustion engine using ion current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013097217A JP6246489B2 (en) 2013-05-06 2013-05-06 Air-fuel ratio control device for internal combustion engine using ion current

Publications (2)

Publication Number Publication Date
JP2014218907A true JP2014218907A (en) 2014-11-20
JP6246489B2 JP6246489B2 (en) 2017-12-13

Family

ID=51937610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013097217A Expired - Fee Related JP6246489B2 (en) 2013-05-06 2013-05-06 Air-fuel ratio control device for internal combustion engine using ion current

Country Status (1)

Country Link
JP (1) JP6246489B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323185A (en) * 1993-05-13 1994-11-22 Toyota Motor Corp Air-fuel ratio control device
JPH07293296A (en) * 1994-04-27 1995-11-07 Daihatsu Motor Co Ltd Fuel injection quantity control
JPH07293315A (en) * 1994-04-27 1995-11-07 Daihatsu Motor Co Ltd Air-fuel ratio detecting method
JPH08261048A (en) * 1995-03-27 1996-10-08 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JPH11343903A (en) * 1998-06-01 1999-12-14 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JP2000054942A (en) * 1998-08-07 2000-02-22 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JP2007032447A (en) * 2005-07-27 2007-02-08 Denso Corp Combustion condition determining device for internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323185A (en) * 1993-05-13 1994-11-22 Toyota Motor Corp Air-fuel ratio control device
JPH07293296A (en) * 1994-04-27 1995-11-07 Daihatsu Motor Co Ltd Fuel injection quantity control
JPH07293315A (en) * 1994-04-27 1995-11-07 Daihatsu Motor Co Ltd Air-fuel ratio detecting method
JPH08261048A (en) * 1995-03-27 1996-10-08 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JPH11343903A (en) * 1998-06-01 1999-12-14 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JP2000054942A (en) * 1998-08-07 2000-02-22 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JP2007032447A (en) * 2005-07-27 2007-02-08 Denso Corp Combustion condition determining device for internal combustion engine

Also Published As

Publication number Publication date
JP6246489B2 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
JP4799200B2 (en) Operation control method based on ion current of internal combustion engine
CN110300845B (en) Ignition control system
US20190040835A1 (en) Ignition control apparatus
JP6081248B2 (en) Ignition control device for internal combustion engine
JP4297848B2 (en) Method for determining the combustion state of an internal combustion engine
JP2010065549A (en) Internal combustion engine control device
CN113825900A (en) Control device for internal combustion engine
EP2253833A1 (en) Method for judging combustion state of internal combustion
US20150144101A1 (en) Control apparatus for an internal combustion engine
JP6375764B2 (en) Ignition control device
US10519879B2 (en) Determining in-cylinder pressure by analyzing current of a spark plug
JP6246488B2 (en) Air-fuel ratio control device for internal combustion engine using ion current
JP2018003635A (en) Control device of internal combustion engine
JP6246489B2 (en) Air-fuel ratio control device for internal combustion engine using ion current
JP2007138802A (en) Combustion condition detection device for internal combustion engine
JP6906106B2 (en) Control device for internal combustion engine
JP2000345950A (en) Ignition control device for cylinder injection-type spark ignition engine
JP5998949B2 (en) Ignition control device for internal combustion engine
JP7247364B2 (en) Control device for internal combustion engine
US11434862B2 (en) Internal-combustion-engine controller
JP6264167B2 (en) Control device
US11591997B2 (en) Internal-combustion-engine ignition apparatus
JP5907715B2 (en) Combustion state determination device for internal combustion engine
JP5560437B2 (en) Combustion control device for internal combustion engine
JPH0719151A (en) Ion current detecting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171115

R150 Certificate of patent or registration of utility model

Ref document number: 6246489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees