JP2014218729A - Stainless steel local corrosion suppressing method - Google Patents

Stainless steel local corrosion suppressing method Download PDF

Info

Publication number
JP2014218729A
JP2014218729A JP2013100597A JP2013100597A JP2014218729A JP 2014218729 A JP2014218729 A JP 2014218729A JP 2013100597 A JP2013100597 A JP 2013100597A JP 2013100597 A JP2013100597 A JP 2013100597A JP 2014218729 A JP2014218729 A JP 2014218729A
Authority
JP
Japan
Prior art keywords
stainless steel
corrosion
local corrosion
nitrite
molar concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013100597A
Other languages
Japanese (ja)
Other versions
JP6225473B2 (en
Inventor
深谷 祐一
Yuichi Fukaya
祐一 深谷
敏史 平崎
Toshifumi Hirasaki
敏史 平崎
克彦 熊谷
Katsuhiko Kumagai
克彦 熊谷
高守 謙郎
Kenro Takamori
謙郎 高守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2013100597A priority Critical patent/JP6225473B2/en
Publication of JP2014218729A publication Critical patent/JP2014218729A/en
Application granted granted Critical
Publication of JP6225473B2 publication Critical patent/JP6225473B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors
    • C23F11/181Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors
    • C23F11/182Sulfur, boron or silicon containing compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors
    • C23F11/184Phosphorous, arsenic, antimony or bismuth containing compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors
    • C23F11/185Refractory metal-containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stainless steel local corrosion suppressing method using chemical species capable of suppressing local corrosion efficiently.SOLUTION: Provided is the stainless steel local corrosion suppressing method used in a wet environment, and a nitrite ion having mol concentration equal to or more than 0.1 times with respect to mol concentration of a chloride ion contained in water content coexists in the water content contacting to the stainless steel.

Description

本発明は、ステンレス鋼の局部腐食抑制方法に関するものである。   The present invention relates to a method for suppressing local corrosion of stainless steel.

一般に、腐食が許容されない構造物については、構成材料としてステンレス鋼が多く用いられている。ステンレス鋼は、材料表面に緻密な保護皮膜(不働態皮膜)が形成されているため、適切に使用すればほとんど腐食しない。   In general, stainless steel is often used as a constituent material for structures that do not allow corrosion. Since stainless steel has a dense protective film (passive film) formed on the surface of the material, it hardly corrodes if used properly.

しかし、ステンレス鋼であっても、使用環境によっては腐食が生じる。例えば、ステンレス鋼で構成される構造物(以下、単に「構造物」と称することがある)が海水(水分)などに接触する湿潤環境においては、構造物の表面に接触する海水に含まれる塩化物イオンの作用によりがステンレス鋼の不働態皮膜が局部的に損傷し、局部腐食を生じることがある。   However, even stainless steel may corrode depending on the usage environment. For example, in a humid environment in which a structure made of stainless steel (hereinafter, sometimes simply referred to as “structure”) is in contact with seawater (moisture) or the like, chloride contained in seawater in contact with the surface of the structure The passive film of stainless steel may be locally damaged due to the action of substance ions, resulting in local corrosion.

ここで、本明細書において「局部腐食」とは、ステンレス鋼の表面の不働態皮膜が局部的に損傷し、不働態皮膜が損傷した部位において露出する新生面が急速に腐食(溶解)する現象を指す。局部腐食は,鉄や炭素鋼などでみられる「全面腐食(全面がほぼ一様に腐食する形態)」と対照的な現象であり、腐食部位の面積が小さい分、深さ方向への進行速度が全面腐食に比べて著しく大きいのが特徴である。本明細書においては、局部腐食には、孔食、すきま腐食、応力腐食割れ(SCC)、粒界腐食を含むものとする。   As used herein, “local corrosion” refers to a phenomenon in which the passive film on the surface of stainless steel is locally damaged, and the new surface exposed at the site where the passive film is damaged rapidly corrodes (dissolves). Point to. Local corrosion is a phenomenon that contrasts with “total corrosion (a form in which the entire surface corrodes almost uniformly)” seen in iron and carbon steel, and the rate of progress in the depth direction as the area of the corrosion site is small. The feature is that is significantly larger than the overall corrosion. In this specification, local corrosion includes pitting corrosion, crevice corrosion, stress corrosion cracking (SCC), and intergranular corrosion.

局部腐食は進行が著しく速く、例えば孔食が生じると構造物の表面から構造物の深度方向へ急速に腐食が拡大し、数日から数か月で貫通損傷を生じさせることも起こりうる。そのため、装置材料としてステンレス鋼を用いる場合の重要な課題として、ステンレス鋼の局部腐食を抑制することが挙げられ、当該課題解決のために種々の検討がなされている。   Local corrosion proceeds remarkably fast. For example, when pitting occurs, corrosion rapidly expands from the surface of the structure to the depth of the structure, and penetration damage can occur in days to months. Therefore, as an important problem when using stainless steel as an apparatus material, it is possible to suppress local corrosion of stainless steel, and various studies have been made to solve the problem.

例えば、構造物の設計段階においては、(1)種々のステンレス鋼の中から、使用される環境に十分耐えうるだけの高い耐食性を有するステンレス鋼を選択することや、(2)局部腐食を起こしやすくするすきま構造を有さない設計、(3)すきまを生じさせないために表面への付着物を抑制する構造などが検討されている。   For example, at the design stage of the structure, (1) from among various stainless steels, select stainless steel having high corrosion resistance that can sufficiently withstand the environment in which it is used, or (2) cause local corrosion. Designs that do not have a clearance structure that facilitates the structure, and (3) a structure that suppresses deposits on the surface in order to prevent generation of a clearance are being studied.

また、(4)ステンレス鋼で構成された構造物に、電気防食用の設備を併設することも検討されている。   In addition, (4) it is also considered to install an anticorrosion facility on a structure made of stainless steel.

更には、構造物に接触する水溶液について、(5)塩化物イオンの除去、(6)溶存酸素の除去、を行うことで局部腐食の原因物質を除去することや、(7)水溶液を冷却することで、腐食反応の速度を低下させ、構造物の長寿命化を図る検討もなされている。   Furthermore, with respect to the aqueous solution in contact with the structure, (5) removal of chloride ions and (6) removal of dissolved oxygen are performed to remove substances causing local corrosion, or (7) the aqueous solution is cooled. Therefore, studies have been made to reduce the rate of the corrosion reaction and extend the life of the structure.

しかし、上記方法のうち(1)〜(3)は、構造物の設計段階でしか反映できないため、すでに使用している構造物や設備について局部腐食を抑制することができない。   However, among the above methods, (1) to (3) can be reflected only at the design stage of the structure, and therefore local corrosion cannot be suppressed for the structure and equipment already used.

(4)の方法は、非常に効果的な局部腐食抑制の方法であることが知られているが、立地上の制約などから電気防食用設備を設置することができない場合には適応できない。また、構造物が配管系統である場合、全域の局部腐食を抑制することは著しく困難である。   The method (4) is known to be a very effective method for suppressing local corrosion, but cannot be applied when the equipment for cathodic protection cannot be installed due to restrictions on location. Moreover, when a structure is a piping system, it is extremely difficult to suppress local corrosion of the whole area.

(5)〜(7)の方法は、局部腐食抑制効果が十分に立証されているとは言いがたく、また実施に大がかりな設備が必要となるため、適応が困難となりやすい。   It is difficult to say that the methods (5) to (7) have sufficiently proved the effect of suppressing local corrosion, and since large-scale equipment is required for implementation, adaptation is likely to be difficult.

他方、構造物に接触する水溶液に、局部腐食を抑制するための薬剤(腐食抑制剤)を添加する局部腐食抑制方法は、すでに供用中の構造物に対しても比較的小規模な設備増設で適用でき、構造物全域の局部腐食抑制が可能であることから、いくつかの方法が検討されている(例えば、特許文献1参照)。   On the other hand, the local corrosion control method for adding a chemical (corrosion inhibitor) for suppressing local corrosion to the aqueous solution in contact with the structure is a relatively small-scale addition to the structure already in service. Since it can be applied and local corrosion suppression of the whole structure is possible, several methods are examined (for example, refer patent document 1).

特開2009−270131号公報JP 2009-270131 A

上記特許文献1に記載の方法は、適用できる環境が腐食性の小さい穏和な条件に限定されており、また局部腐食を抑制する効果も十分ではないことから、さらなる改善が求められていた。   The method described in Patent Document 1 is limited to mild conditions with low corrosiveness, and the effect of suppressing local corrosion is not sufficient, and further improvement has been demanded.

しかし、本来ステンレス鋼は、使用される環境条件に応じて、構造物の腐食が問題とならないようなグレードの鋼種を選択すべき材料であり、構造物の腐食が問題となるようであれば、通常、多少の困難が伴っても上記(1)〜(3)のような抜本的な対策が選択される。または、上記(4)のような非常に効果が高いと知られている方法が選択される。そのため、腐食抑制剤を添加することによるステンレス鋼の局部腐食抑制方法については、十分に検討が進んでいなかった。   However, originally stainless steel is a material that should be selected for the grade of steel that does not cause corrosion of the structure, depending on the environmental conditions used, and if corrosion of the structure is a problem, Usually, even if some difficulties are involved, drastic measures such as the above (1) to (3) are selected. Alternatively, a method that is known to be very effective as in (4) above is selected. Therefore, studies have not been sufficiently made on a method for suppressing local corrosion of stainless steel by adding a corrosion inhibitor.

しかし、現実的には、当初想定していた環境より厳しい条件で構造物を使用せざるを得ない場合や、立地上の制約などから、すでに局部腐食を生じてしまった構造物を交換できず、現に進行中の局部腐食を抑制しなければならないケースなども往々にして存在する。   However, in reality, it is not possible to replace structures that have already caused local corrosion due to stricter conditions than the originally assumed environment or due to location restrictions. Often, there are cases where local corrosion must be suppressed.

本発明はこのような事情に鑑みてなされたものであって、簡便かつ効果的に局部腐食を抑制することができる化学種を用いた新たなステンレス鋼の局部腐食抑制方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a new method for suppressing local corrosion of stainless steel using a chemical species that can easily and effectively suppress local corrosion. And

上記の課題を解決するため、本発明の一態様は、湿潤環境におけるステンレス鋼の局部腐食抑制方法であって、前記ステンレス鋼に接触する水分において、前記水分中に含まれる塩化物イオンのモル濃度に対して、0.1倍以上のモル濃度の亜硝酸イオンを共存させるステンレス鋼の局部腐食抑制方法を提供する。   In order to solve the above-described problem, one aspect of the present invention is a method for suppressing local corrosion of stainless steel in a wet environment, and in moisture in contact with the stainless steel, the molar concentration of chloride ions contained in the moisture In contrast, the present invention provides a method for suppressing local corrosion of stainless steel in which nitrite ions having a molar concentration of 0.1 times or more coexist.

本発明の一態様においては、前記水分中に含まれる塩化物イオンのモル濃度を測定するステップと、前記塩化物イオンのモル濃度についての測定値に基づいて、前記水分中に亜硝酸塩を溶解させ、前記測定値の0.1倍以上のモル濃度の亜硝酸イオンを共存させるステップと、を有する方法としてもよい。   In one aspect of the present invention, nitrite is dissolved in the moisture based on the step of measuring the molar concentration of chloride ions contained in the moisture and the measured value of the molar concentration of chloride ions. And a step of coexisting nitrite ions having a molar concentration of 0.1 or more times the measured value.

本発明の一態様においては、前記亜硝酸イオンのモル濃度が、前記水分中に含まれる塩化物イオンのモル濃度に対して1倍以上である方法としてもよい。   In one aspect of the present invention, the molar concentration of the nitrite ions may be one or more times the molar concentration of chloride ions contained in the water.

本発明の一態様においては、前記ステンレス鋼は、下記式(1)で求められる耐孔食指数が18以上である方法としてもよい。
[数1]
(耐孔食指数)=[%Cr]+3.3×[%Mo]+n×[%N] …(1)
(式中、[%Cr]は、ステンレス鋼全体に含まれるクロムの割合(質量%)であり、[%Mo]は、ステンレス鋼全体に含まれるモリブデンの割合(質量%)であり、[%N]は、ステンレス鋼全体に含まれる窒素の割合(質量%)である)
In one aspect of the present invention, the stainless steel may have a pitting corrosion index determined by the following formula (1) of 18 or more.
[Equation 1]
(Pitting corrosion index) = [% Cr] + 3.3 × [% Mo] + n × [% N] (1)
(In the formula, [% Cr] is the ratio (mass%) of chromium contained in the entire stainless steel, and [% Mo] is the ratio (mass%) of molybdenum contained in the entire stainless steel, [% N] is the ratio (mass%) of nitrogen contained in the entire stainless steel)

本発明の一態様においては、前記水分中に含まれる塩化物イオンのモル濃度は、0.6mol/dm以下である方法としてもよい。 In one aspect of the present invention, the molar concentration of chloride ions contained in the water may be 0.6 mol / dm 3 or less.

本発明の一態様においては、前記水分の温度を45℃以下に管理する方法としてもよい。   In one aspect of the present invention, the moisture temperature may be controlled to 45 ° C. or lower.

本発明によれば、簡便かつ効果的に局部腐食を抑制することができる化学種を用いた新たなステンレス鋼の局部腐食抑制方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the new local corrosion suppression method of stainless steel using the chemical species which can suppress local corrosion simply and effectively can be provided.

定電位すきま腐食試験において用いた試験片を示す模式図である。It is a schematic diagram which shows the test piece used in the constant potential crevice corrosion test. 定電位すきま腐食試験における操作を示す図である。It is a figure which shows operation in a constant potential crevice corrosion test. 定電位すきま腐食試験のStep1における電位−電流曲線である。It is a potential-current curve in Step 1 of a constant potential crevice corrosion test. 実施例1〜3の腐食電流挙動を示すグラフである。It is a graph which shows the corrosion current behavior of Examples 1-3. 実施例2および比較例1〜3の腐食電流挙動を示すグラフである。It is a graph which shows the corrosion current behavior of Example 2 and Comparative Examples 1-3. 実施例4〜6の結果を示すグラフである。It is a graph which shows the result of Examples 4-6.

本発明の実施形態に係るステンレス鋼の局部腐食抑制方法は、湿潤環境におけるステンレス鋼の局部腐食抑制方法であって、前記ステンレス鋼に接触する水分において、前記水分中に含まれる塩化物イオンのモル濃度に対して、0.1倍以上のモル濃度の亜硝酸イオンを共存させるものである。   A method for inhibiting local corrosion of stainless steel according to an embodiment of the present invention is a method for inhibiting local corrosion of stainless steel in a wet environment, and in the moisture in contact with the stainless steel, the molarity of chloride ions contained in the moisture. A nitrite ion having a molar concentration of 0.1 times or more of the concentration coexists.

ステンレス鋼に接触する水分に、局部腐食を抑制することができる化学種として、上述のような量の亜硝酸イオンを共存させることにより、ステンレス鋼の局部腐食を抑制することができる。詳しくは、ステンレス鋼の局部腐食の発生と、局部腐食の進行との両方を抑制することができる。   As a chemical species capable of suppressing local corrosion in the moisture in contact with stainless steel, the local corrosion of stainless steel can be suppressed by allowing the amount of nitrite ions described above to coexist. Specifically, it is possible to suppress both the occurrence of local corrosion of stainless steel and the progress of local corrosion.

なお、本明細書において「局部腐食の発生」とは、水分に接触したステンレス鋼の表面において、不働態皮膜が局部的に損傷し、局部腐食がない状態から局部腐食が認められる状態に変化することを指す。   In this specification, “occurrence of local corrosion” means that the passive film is locally damaged on the surface of stainless steel in contact with moisture, and the state changes from a state where no local corrosion is observed to a state where local corrosion is observed. Refers to that.

また、本明細書において「局部腐食の進行」とは、ステンレス鋼に発生した局部腐食の範囲が拡大することを指す。「局部腐食の範囲が拡大」とは、ステンレス鋼表面の面方向への局部腐食の拡大と、ステンレス鋼の表面から深度方向への局部腐食の拡大と、の両方を含むものとする。   Further, in this specification, “progress of local corrosion” refers to expansion of the range of local corrosion that has occurred in stainless steel. “Expansion of the local corrosion range” includes both the expansion of the local corrosion in the surface direction of the stainless steel surface and the expansion of the local corrosion in the depth direction from the surface of the stainless steel.

本実施形態のステンレス鋼の局部腐食抑制方法において、「湿潤環境」とは、ステンレス鋼で構成された構造物に、恒常的に水分が接触しているような環境を指す。例えば、ステンレス鋼で構成された配管内を排水が通水している場合、ステンレス鋼で構成されたタンクに水溶液を貯留する場合、ステンレス鋼で構成された架台にしぶきがかかるような場合などの各環境を示すことができ、本実施形態のステンレス鋼の局部腐食抑制方法は、これらの環境において広く適用することが可能である。   In the method for suppressing local corrosion of stainless steel according to this embodiment, the “wet environment” refers to an environment in which moisture is constantly in contact with a structure made of stainless steel. For example, when drainage is flowing through a pipe made of stainless steel, when storing an aqueous solution in a tank made of stainless steel, or when a frame made of stainless steel is splashed Each environment can be shown, and the method for suppressing local corrosion of stainless steel according to the present embodiment can be widely applied in these environments.

本実施形態で用いることができるステンレス鋼としては、通常知られたステンレス鋼を挙げることができる。局部腐食を抑制するためには、ステンレス鋼自身の耐腐食性が高いことが好ましいことは言うまでもなく、本実施形態のステンレス鋼の局部腐食抑制方法は、下記式(1)で求められる耐孔食指数(PRE:Pitting Resistance Equivalent)が18以上であるステンレス鋼に好適に適用することができる。   Examples of stainless steel that can be used in the present embodiment include commonly known stainless steel. Needless to say, the corrosion resistance of stainless steel itself is preferably high in order to suppress local corrosion, and the method for suppressing local corrosion of stainless steel according to this embodiment is pitting corrosion resistance obtained by the following formula (1). The present invention can be suitably applied to stainless steel having an index (PRE) of 18 or more.

[数1]
(耐孔食指数)=[%Cr]+3.3×[%Mo]+n×[%N] …(1)
(式中、[%Cr]は、ステンレス鋼全体に含まれるクロムの割合(質量%)であり、[%Mo]は、ステンレス鋼全体に含まれるモリブデンの割合(質量%)であり、[%N]は、ステンレス鋼全体に含まれる窒素の割合(質量%)である)
[Equation 1]
(Pitting corrosion index) = [% Cr] + 3.3 × [% Mo] + n × [% N] (1)
(In the formula, [% Cr] is the ratio (mass%) of chromium contained in the entire stainless steel, and [% Mo] is the ratio (mass%) of molybdenum contained in the entire stainless steel, [% N] is the ratio (mass%) of nitrogen contained in the entire stainless steel)

上記式(1)中の[%N]の係数であるnは、研究者によって異なるが10〜30程度とされている値である。   N which is a coefficient of [% N] in the above formula (1) is a value which is about 10 to 30 although it varies depending on a researcher.

具体的には、JISG4303−1998「ステンレス鋼棒」に規定するステンレス鋼であるSUS304と同等以上の耐腐食性を有するステンレス鋼に対し、好適に適用することができる。   Specifically, it can be suitably applied to stainless steel having corrosion resistance equivalent to or higher than SUS304, which is a stainless steel specified in JIS G4303-1998 “stainless steel rod”.

ステンレス鋼に接触する水分に、許容限度を超える塩化物イオンが含まれていると、塩化物イオンの作用によりステンレス鋼で構成された構造物の表面の不働態皮膜が損傷し、局部腐食が発生し、進行する場合がある。本実施形態のステンレス鋼の局部腐食抑制方法においては、当該水分中に含まれる塩化物イオンのモル濃度に対して、0.1倍以上のモル濃度の亜硝酸イオンを共存させることにより、局部腐食の発生と進行との両方を抑制することが可能である。   If the moisture in contact with stainless steel contains chloride ions exceeding the allowable limit, the passive film on the surface of the structure made of stainless steel is damaged by the action of chloride ions, and local corrosion occurs. And may progress. In the method for inhibiting local corrosion of stainless steel according to the present embodiment, local corrosion is caused by allowing nitrite ions having a molar concentration of 0.1 times or more to coexist with the molar concentration of chloride ions contained in the moisture. It is possible to suppress both the occurrence and progression of

亜硝酸イオンを共存させる方法としては、水分に亜硝酸塩を溶解させる方法を採用することができる。亜硝酸塩としては、塩化物イオンを含む水分に必要な濃度の亜硝酸イオンを共存させることができれば種々の塩を用いることができ、亜硝酸ナトリウム(NaNO)、亜硝酸カリウム(KNO)などを好適に用いることができる。 As a method for allowing nitrite ions to coexist, a method for dissolving nitrite in water can be employed. As the nitrite, various salts can be used as long as nitrite ions having a concentration necessary for water containing chloride ions can coexist, such as sodium nitrite (NaNO 2 ) and potassium nitrite (KNO 2 ). It can be used suitably.

亜硝酸イオンの濃度は、水分中に含まれる塩化物イオンのモル濃度に対して、等量(1倍)以上であることが好ましい。このような濃度の亜硝酸イオンを共存させることにより、局部腐食の発生と進行との両方をより一層抑制することが可能となる。   The concentration of nitrite ions is preferably equal (1 times) or more to the molar concentration of chloride ions contained in the water. By coexisting such a concentration of nitrite ions, it is possible to further suppress both the occurrence and progression of local corrosion.

例えば、ステンレス鋼の局部腐食抑制作用のある化学種としては、硝酸イオン、硫酸イオン、リン酸イオン、モリブデン酸イオンが知られているが、本実施形態のステンレス鋼の局部腐食抑制方法で用いる亜硝酸イオンは、以下のような利点を有する。   For example, nitric acid ions, sulfuric acid ions, phosphoric acid ions, and molybdate ions are known as chemical species having a local corrosion inhibiting action on stainless steel. Nitrate ions have the following advantages.

まず、硝酸イオンや硫酸イオンは、ステンレス鋼の局部腐食抑制に有効とされているが、他の金属材料、例えば炭素鋼を構成材料とする構造物の腐食を促進する場合がある。そのため、ステンレス鋼と他の金属材料とが併用されている環境では使用上の制限がある。   First, nitrate ions and sulfate ions are effective in suppressing local corrosion of stainless steel, but may promote corrosion of structures made of other metal materials such as carbon steel. Therefore, there is a limitation in use in an environment where stainless steel and other metal materials are used in combination.

また、リン酸イオンは、カルシウムイオンと結合してカルシウム塩を生成する性質がある。そのため、海水のようにカルシウムイオン濃度が高い水中にリン酸塩を添加し、リン酸イオンを共存させると、白濁や沈殿を生じてしまい、冷却水系統などを閉塞させたり,熱交換器の伝熱障害を引き起こしたりする不具合が生じるおそれがある。   In addition, phosphate ions have the property of forming calcium salts by binding with calcium ions. For this reason, when phosphate is added to water with high calcium ion concentration, such as seawater, and phosphate ions coexist, white turbidity and precipitation occur, which can block the cooling water system and transfer heat from the heat exchanger. There is a risk of causing problems such as heat failure.

モリブデン酸イオンは、炭素鋼の腐食抑制に有効な化学種としても知られているため、炭素鋼とステンレス鋼が混在した系統でも使用は可能であり、不溶性の塩を生成することもない。しかしながら、モリブデン酸イオンを共存させることによる腐食抑制効果は、水中に溶存酸素が共存しないと発揮されないため、溶存酸素濃度が低い還元性環境では効果が低い。また、非常に高価であるため、大規模な構造物へ適用する場合、あるいは一過性の冷却水系へ適用する場合など、大量に消費する必要がある場面では適用しにくい。   Molybdate ion is also known as an effective chemical species for inhibiting the corrosion of carbon steel, so it can be used even in a system in which carbon steel and stainless steel are mixed, and does not produce an insoluble salt. However, the effect of inhibiting corrosion due to the coexistence of molybdate ions is not exhibited unless dissolved oxygen coexists in water, so the effect is low in a reducing environment where the dissolved oxygen concentration is low. In addition, since it is very expensive, it is difficult to apply it to a scene that needs to be consumed in large quantities, such as when applied to a large-scale structure or when applied to a transient cooling water system.

対して、本実施形態のステンレス鋼の局部腐食抑制方法で採用する亜硝酸イオンは、炭素鋼やアルミニウムの腐食を抑制する作用が知られている一方で、他の金属材料の腐食を促進するという報告はほとんどない。したがって、亜硝酸イオンは、硝酸イオンや硫酸イオンと異なり、炭素鋼やアルミニウムなど、他の材料を構成材料とする構造物を併用する環境においても使用可能である。   On the other hand, nitrite ions employed in the method for suppressing local corrosion of stainless steel according to the present embodiment are known to suppress the corrosion of carbon steel and aluminum, while promoting the corrosion of other metal materials. There are few reports. Therefore, nitrite ions, unlike nitrate ions and sulfate ions, can also be used in an environment where a structure including another material such as carbon steel or aluminum is used in combination.

また、亜硝酸イオンは、水に対して不溶性の塩を生成することもない。そのため、析出する塩に起因する不具合が生じない。   Also, nitrite ions do not produce a salt that is insoluble in water. Therefore, the malfunction resulting from the salt to precipitate does not arise.

また、亜硝酸イオンは、モリブデン酸イオンとは違って、腐食抑制作用を発揮するために水中の溶存酸素の酸化力を必要としないため、還元性環境でも良好な腐食抑制効果が得られる。さらに、モリブデン酸イオンと比べてはるかに安価であり、後述するようにステンレス鋼の局部腐食抑制の効果も高い。
したがって、効果的に局部腐食を抑制することができる。
In addition, nitrite ions, unlike molybdate ions, do not require the oxidizing power of dissolved oxygen in water in order to exert a corrosion-inhibiting action, so that a good corrosion-inhibiting effect can be obtained even in a reducing environment. Furthermore, it is much cheaper than molybdate ions, and as described later, the effect of suppressing local corrosion of stainless steel is also high.
Therefore, local corrosion can be effectively suppressed.

本実施形態のステンレス鋼の局部腐食抑制方法は、水分中に含まれる塩化物イオンのモル濃度が、例えば海水程度の濃度であっても適用可能である。具体的には、水分中に含まれる塩化物イオンのモル濃度が0.6mol/dm以下であれば、好適に適用することが可能である。 The method for inhibiting local corrosion of stainless steel according to the present embodiment is applicable even when the molar concentration of chloride ions contained in moisture is, for example, about the level of seawater. Specifically, if the molar concentration of chloride ions contained in the water is 0.6 mol / dm 3 or less, it can be suitably applied.

また、局部腐食の発生および局部腐食の進行を構成する各反応自身は、水分の温度が高いと速度論的に進行しやすいと考えられ、本実施形態のステンレス鋼の局部腐食抑制方法の効果が低下することが考えられる。そのため、ステンレス鋼に接触する水分の温度を45℃以下に管理することが好ましい。このような温度に管理することで、局部腐食に係る反応の反応速度を低下させ、本実施形態のステンレス鋼の局部腐食抑制方法の効果を高めることができる。水分の温度は、40℃以下に管理することがより好ましい。   In addition, it is considered that each reaction constituting the occurrence of local corrosion and the progress of local corrosion is likely to proceed kinetically when the temperature of moisture is high. It is thought that it falls. For this reason, it is preferable to manage the temperature of moisture in contact with the stainless steel at 45 ° C. or lower. By managing at such temperature, the reaction rate of the reaction related to local corrosion can be reduced, and the effect of the method for suppressing local corrosion of stainless steel of this embodiment can be enhanced. More preferably, the moisture temperature is controlled to 40 ° C. or lower.

本実施形態のステンレス鋼の局部腐食抑制方法においては、水分中に含まれる塩化物イオンのモル濃度を測定するステップと、塩化物イオンのモル濃度についての測定値に基づいて、水分に亜硝酸塩を溶解させ、前記測定値の0.1倍以上のモル濃度の亜硝酸イオンを共存させるステップと、を有するとよい。このような方法とすることで、ステンレス鋼に接触する水分に、局部腐食の抑制に必要な亜硝酸イオンを確実に共存させることが可能となる。   In the method for inhibiting local corrosion of stainless steel according to the present embodiment, nitrite is added to moisture based on the step of measuring the molar concentration of chloride ions contained in moisture and the measured value of the molar concentration of chloride ions. And dissolving the nitrite ion at a molar concentration of 0.1 times or more of the measured value. By setting it as such a method, it becomes possible to make the nitrite ion required for suppression of local corrosion coexist reliably in the water | moisture content which contacts stainless steel.

なお、水分に含まれる塩化物イオンのモル濃度が既知である場合や、塩化物イオンのモル濃度が変動する場合であっても代表値や変動幅が既知である場合には、これらの値を用いて、水分に亜硝酸イオンを共存させるとよい。例えば、水分として海水を想定する場合、海水に含まれる塩化物イオンのモル濃度は、海洋地域や季節などで変動することが考えられるが、変動幅の上限値を基準として0.1倍以上のモル濃度の亜硝酸イオンを共存させることで、水分に局部腐食の抑制に必要な亜硝酸イオンを確実に共存させることが可能となる。   If the molar concentration of chloride ions contained in moisture is known, or if the molar concentration of chloride ions fluctuates, the representative value and the fluctuation range are known. It is better to use nitrite ions in water. For example, when seawater is assumed as the moisture, the molar concentration of chloride ions contained in seawater may vary depending on the ocean area or season, but it is 0.1 times or more based on the upper limit of the fluctuation range. By allowing nitrite ions of a molar concentration to coexist, it becomes possible to reliably coexist nitrite ions necessary for suppressing local corrosion in moisture.

以上のようなステンレス鋼の局部腐食抑制方法によれば、簡便かつ効果的に局部腐食を抑制することができる。   According to the method for suppressing local corrosion of stainless steel as described above, local corrosion can be easily and effectively suppressed.

以上、本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。   As mentioned above, although the preferred embodiment which concerns on this invention was described, it cannot be overemphasized that this invention is not limited to the example which concerns. Various shapes, combinations, and the like of the constituent members shown in the above-described examples are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.

[実施例]
以下に本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
[Example]
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

[1.局部腐食(すきま腐食)の進行抑制に対する効果検証]
(試験片)
図1は、本実施例において用いた試験片を示す模式図であり、図1(a)は側面図、図1(b)は正面図である。
[1. Verification of the effect on the progress of local corrosion (crevice corrosion)]
(Test pieces)
FIG. 1 is a schematic view showing a test piece used in this example, in which FIG. 1 (a) is a side view and FIG. 1 (b) is a front view.

図に示すように、本実施例においては、50mm×24mm×3mmのステンレス鋼製の平板状の試験片1を用いた。ステンレス鋼としては、市販のSUS304鋼溶体化材を用い、機械加工により作製した。SUS304の化学成分(質量%)は、ステンレス鋼全体に対して、炭素(C):0.06%、珪素(Si):0.44%、マンガン(Mn):1.09%、リン(P):0.028%、硫黄(S):0.005%、クロム(Cr):18.30%、ニッケル(Ni):8.16%である。   As shown in the figure, in this example, a flat test piece 1 made of stainless steel of 50 mm × 24 mm × 3 mm was used. As the stainless steel, a commercially available SUS304 steel solution was used, and it was produced by machining. The chemical composition (mass%) of SUS304 is as follows: carbon (C): 0.06%, silicon (Si): 0.44%, manganese (Mn): 1.09%, phosphorus (P ): 0.028%, sulfur (S): 0.005%, chromium (Cr): 18.30%, nickel (Ni): 8.16%.

試験片1には、長手方向の一端から12mmの位置に直径6mmのボルト穴を形成し、表面に600メッシュの耐水研磨紙を用いて湿式研磨を施した。   The test piece 1 was formed with a bolt hole with a diameter of 6 mm at a position 12 mm from one end in the longitudinal direction, and wet-polished on the surface using 600 mesh water-resistant abrasive paper.

このような試験片1を、直径20mm×厚み5mmの円筒形のポリサルフォン製ガスケット2およびワッシャ3で挟持し、さらにボルト4を試験片1のボルト穴に挿通した後、ナット5を用いて2.0N・mのトルクでねじ止めした。ワッシャ3、ボルト4およびナット5は工業用純チタン製のものを用いた。   Such a test piece 1 is sandwiched between a cylindrical polysulfone gasket 2 having a diameter of 20 mm and a thickness of 5 mm and a washer 3, and a bolt 4 is inserted into a bolt hole of the test piece 1, and then a nut 5 is used. Screwed with a torque of 0 N · m. The washer 3, the bolt 4 and the nut 5 were made of industrial pure titanium.

さらに、試験片1の他端側には、リード線6を電気的に接続し、リード線6を絶縁被膜7で被覆した。   Furthermore, the lead wire 6 was electrically connected to the other end side of the test piece 1, and the lead wire 6 was covered with an insulating film 7.

(定電位すきま腐食試験)
脱イオン水と特級試薬から調整した0.0563mol/dmのNaCl水溶液(40℃水溶液のpH=5.6)を40℃に昇温し、アルゴンガス通気により脱気した後、上述の試験片1の下部約30mmをNaCl水溶液中に浸漬した。接液面積は、約16cmであった。
(Constant potential crevice corrosion test)
A 0.0563 mol / dm 3 NaCl aqueous solution prepared from deionized water and a special grade reagent (pH of aqueous solution of 40 ° C. = 5.6) was heated to 40 ° C. and degassed by aeration of argon gas, and then the above test piece The lower part of 1 was immersed in an aqueous NaCl solution. The wetted area was about 16 cm 2 .

さらにPt対極を浸漬し、ポテンショ/ガルバノスタット(Solartron社製、電気化学測定システム、型番:1280Z)を用いて以下の操作を行った。図2は、以下の操作を示す図である。図2(a)は、印加した電位の変化を示したグラフであり、横軸は試験時間(単位:時間)、縦軸は電位(単位:V)を示す。図2(b)は、図2(a)に示した電位変化により試験片1で測定される腐食電流を示すグラフであり、横軸は、図2(a)と同じスケールの試験時間(単位:時間)、縦軸は、測定される腐食電流(単位:μA)を示す。   Further, the Pt counter electrode was immersed, and the following operation was performed using a potentio / galvanostat (manufactured by Solartron, electrochemical measurement system, model number: 1280Z). FIG. 2 is a diagram showing the following operations. FIG. 2A is a graph showing changes in applied potential, where the horizontal axis represents test time (unit: time) and the vertical axis represents potential (unit: V). FIG. 2B is a graph showing the corrosion current measured by the test piece 1 by the potential change shown in FIG. 2A, and the horizontal axis indicates the test time (unit: same scale as FIG. 2A). : Time), and the vertical axis represents the measured corrosion current (unit: μA).

まず、ポテンショ/ガルバノスタットを電位制御モードとし、40℃のNaCl水溶液に浸漬した試験片1の電位を、電位送り速度30mV/minでアノード方向に掃引することにより、すきま腐食を強制的に発生させた(Step1)。Step1においてすきま腐食が発生すると、試験片に流れる電流(腐食電流と称する)が急増する。そのため、腐食電流値の挙動を確認することで、すきま腐食の発生の有無を判断することができる。   First, the potentio / galvanostat is set to the potential control mode, and the potential of the test piece 1 immersed in an aqueous NaCl solution at 40 ° C. is swept in the anode direction at a potential feed rate of 30 mV / min to forcibly generate crevice corrosion. (Step 1). When crevice corrosion occurs in Step 1, the current flowing through the test piece (referred to as corrosion current) increases rapidly. Therefore, it is possible to determine whether crevice corrosion has occurred by confirming the behavior of the corrosion current value.

腐食電流が1mAに到達した後、ポテンショ/ガルバノスタットを電流制御モードに切り替え、腐食電流を200μA一定として24時間保持し、すきま腐食を成長させた(Step2)。   After the corrosion current reached 1 mA, the potentio / galvanostat was switched to the current control mode, the corrosion current was kept constant at 200 μA for 24 hours, and crevice corrosion was grown (Step 2).

次いで、ポテンショ/ガルバノスタットを電位制御モードに切り替え、試験片1の電位を0.3V一定(Ehold)に保持し、定電位保持開始から4時間後に、必要量の薬剤を添加した(Step3)。ここで、保持電位は、中性の自然水中で不働態化して健全な状態にあるSUS304鋼の自然電位の報告例を参考に設定した。すなわち、図2(b)で例示するように、このStep3の薬剤添加後に腐食電流の低下傾向が確認されれば、すきま腐食の進行を抑制する効果があることを判別できる。 Subsequently, the potentio / galvanostat was switched to the potential control mode, the potential of the test piece 1 was kept constant at 0.3 V (E hold ), and a necessary amount of drug was added 4 hours after the start of holding the constant potential (Step 3). . Here, the holding potential was set with reference to a report example of the natural potential of SUS304 steel that was in a healthy state after being passivated in neutral natural water. That is, as illustrated in FIG. 2B, if the decrease tendency of the corrosion current is confirmed after the addition of the agent in Step 3, it can be determined that there is an effect of suppressing the progress of crevice corrosion.

試験片1の電位は、25℃の飽和KCl水溶液中におけるAg/AgCl電極の電位を参照して測定したが、本実施例および比較例においては、電位はすべて0.196Vを加算した標準水素電極(SHE)基準で表記した。例えば、上記定電位Eholdは、0.3Vvs.SHEである。 The potential of the test piece 1 was measured with reference to the potential of the Ag / AgCl electrode in a saturated KCl aqueous solution at 25 ° C. In this example and the comparative example, all the potentials were standard hydrogen electrodes added with 0.196V. (SHE) standard. For example, the constant potential E hold is 0.3 Vvs. SHE.

(実施例1)
Step3で添加する薬剤として、亜硝酸ナトリウム(NaNO)を用いた。水溶液中の亜硝酸イオン濃度が、塩化物イオン濃度である0.0563mol/dmの0.1倍(0.00563mol/dm)となるように亜硝酸ナトリウムの必要量をNaCl水溶液に溶解させた。薬剤添加後の水溶液のpH(40℃)は、別途測定したところ7.1であった。
Example 1
Sodium nitrite (NaNO 2 ) was used as a drug to be added at Step 3 . The required amount of sodium nitrite is dissolved in an aqueous NaCl solution so that the nitrite ion concentration in the aqueous solution is 0.1 times the 0.0063 mol / dm 3 chloride ion concentration (0.00563 mol / dm 3 ). It was. The pH (40 ° C.) of the aqueous solution after the addition of the drug was measured separately to be 7.1.

(実施例2)
Step3で添加する薬剤として、NaNOを用いた。水溶液中の亜硝酸イオン濃度が、塩化物イオン濃度と同濃度(1倍)である0.0563mol/dmとなるように亜硝酸ナトリウムの必要量をNaCl水溶液に溶解させたこと以外は実施例1と同様にして、定電位すきま腐食試験を行った。薬剤添加後の水溶液のpH(40℃)は、別途測定したところ8.8であった。
(Example 2)
NaNO 2 was used as a drug to be added at Step 3 . Example except that the required amount of sodium nitrite was dissolved in the NaCl aqueous solution so that the concentration of nitrite ion in the aqueous solution was 0.0563 mol / dm 3 which is the same concentration (1 times) as the chloride ion concentration. In the same manner as in No. 1, a constant potential crevice corrosion test was conducted. The pH (40 ° C.) of the aqueous solution after addition of the drug was 8.8 when measured separately.

(実施例3)
Step3で添加する薬剤として、NaNOを用いた。水溶液中の亜硝酸イオン濃度が、塩化物イオン濃度である0.0563mol/dmの10倍(0.563mol/dm)となるように亜硝酸ナトリウムの必要量をNaCl水溶液に溶解させたこと以外は実施例1と同様にして、定電位すきま腐食試験を行った。薬剤添加後の水溶液のpH(40℃)は、別途測定したところ9.6であった。
Example 3
NaNO 2 was used as a drug to be added at Step 3 . Nitrite ion concentration in the aqueous solution, to the required amount of sodium nitrite as a 10-fold 0.0563mol / dm 3 is a chloride ion concentration (0.563mol / dm 3) was dissolved in aqueous NaCl A constant potential crevice corrosion test was conducted in the same manner as in Example 1 except for the above. The pH (40 ° C.) of the aqueous solution after addition of the drug was measured separately and found to be 9.6.

(比較例1)
Step3で添加する薬剤として、リン酸ナトリウム(NaPO)を用いた。水溶液中のリン酸イオン濃度が、塩化物イオン濃度と同濃度である0.0563mol/dmとなるようにリン酸ナトリウムの必要量をNaCl水溶液に溶解させたこと以外は実施例1と同様にして、定電位すきま腐食試験を行った。薬剤添加後の水溶液のpH(40℃)は、別途測定したところ12.2であった。
(Comparative Example 1)
Sodium phosphate (Na 3 PO 4 ) was used as a drug to be added in Step 3 . The same procedure as in Example 1 was conducted except that the required amount of sodium phosphate was dissolved in an aqueous NaCl solution so that the phosphate ion concentration in the aqueous solution was 0.0563 mol / dm 3 , which is the same concentration as the chloride ion concentration. Then, a constant potential crevice corrosion test was conducted. The pH (40 ° C.) of the aqueous solution after addition of the drug was 12.2 as measured separately.

(比較例2)
Step3で添加する薬剤として、硫酸ナトリウム(NaSO)を用いた。水溶液中の硫酸イオン濃度が、塩化物イオン濃度と同濃度である0.0563mol/dmとなるように硫酸ナトリウムの必要量をNaCl水溶液に溶解させたこと以外は実施例1と同様にして、定電位すきま腐食試験を行った。薬剤添加後の水溶液のpH(40℃)は、別途測定したところ6.0であった。
(Comparative Example 2)
Sodium sulfate (Na 2 SO 4 ) was used as a drug to be added at Step 3 . Except that the required amount of sodium sulfate was dissolved in the NaCl aqueous solution so that the sulfate ion concentration in the aqueous solution was 0.0563 mol / dm 3 , which is the same concentration as the chloride ion concentration, in the same manner as in Example 1, A constant potential crevice corrosion test was conducted. The pH (40 ° C.) of the aqueous solution after the addition of the drug was 6.0 when measured separately.

(比較例3)
Step3で添加する薬剤として、モリブデン酸ナトリウム(NaMoO)を用いた。水溶液中のモリブデン酸イオン濃度が、塩化物イオン濃度と同濃度である0.0563mol/dmとなるようにモリブデン酸ナトリウムの必要量をNaCl水溶液に溶解させたこと以外は実施例1と同様にして、定電位すきま腐食試験を行った。薬剤添加後の水溶液のpH(40℃)は、別途測定したところ7.4であった。
(Comparative Example 3)
Sodium molybdate (Na 2 MoO 4 ) was used as a drug to be added in Step 3. Except that the required amount of sodium molybdate was dissolved in an aqueous NaCl solution so that the molybdate ion concentration in the aqueous solution was 0.0563 mol / dm 3 , which is the same concentration as the chloride ion concentration, the same as in Example 1. Then, a constant potential crevice corrosion test was conducted. The pH (40 ° C.) of the aqueous solution after addition of the drug was 7.4 when measured separately.

図3は、上述の定電位すきま腐食試験のStep1における電位−電流曲線であり、横軸は試験片1に印加した電位(単位:V)、縦軸は測定される腐食電流(単位:μA)を示す。図3では、実施例1〜3において測定された電流値を重ねて示している。   FIG. 3 is a potential-current curve at Step 1 of the above-mentioned constant potential crevice corrosion test, where the horizontal axis represents the potential applied to the test piece 1 (unit: V), and the vertical axis represents the measured corrosion current (unit: μA). Indicates. In FIG. 3, the current values measured in Examples 1 to 3 are shown superimposed.

図3の電位−電流曲線において、電流が急増する点(図中、符号Aを付した矢印で示す)よりも前の停滞電流は20μA〜40μA程度であり、停滞電流値を接液面積で除した値である電流密度は、1.3μA/cm〜2.5μA/cmであった。停滞電流値は、3回の試験において再現性を示した。ファラデーの法則により、この停滞電流密度をSUS304鋼の腐食速度に換算すると0.01〜0.03mm/年と微小であることから、このような停滞電流値を示している状態の試験片1には、まだすきま腐食は発生しておらず、健全な不動態が維持された状態にあると考えられる。 In the potential-current curve of FIG. 3, the stagnation current before the point at which the current rapidly increases (indicated by the arrow with the symbol A in the figure) is about 20 μA to 40 μA, and the stagnation current value is divided by the wetted area. The current density, which was a measured value, was 1.3 μA / cm 2 to 2.5 μA / cm 2 . The stagnation current value showed reproducibility in three tests. According to Faraday's law, when this stagnation current density is converted to the corrosion rate of SUS304 steel, it is as small as 0.01 to 0.03 mm / year. No crevice corrosion has occurred yet, and it is considered that healthy passive state is maintained.

そこで、Step1において測定される電流I=20μA〜40μAを、試験片1の表面に健全な不働態皮膜が形成されている状態、すなわち腐食が起こらずに健全な不働態が保持されている状態であると判断し、不働態保持電流Ipassとした。 Therefore, the current I = 20 μA to 40 μA measured in Step 1 is used in a state where a healthy passive film is formed on the surface of the test piece 1, that is, in a state where a healthy passive state is maintained without causing corrosion. It determines that was a passive holding current I pass.

定電位すきま腐食試験の評価においては、薬剤の添加により、測定される腐食電流値が低減する場合、すきま腐食の進行を抑制する効果があるとして判断した。また、試験片1において、薬剤の添加により腐食電流が低減し、測定される電流値が不働態保持電流Ipassと同等以下となった場合、試験片1のすきま腐食は進行を停止し、再び健全な不働態の状態に戻ったものと判断した。 In the evaluation of the constant potential crevice corrosion test, it was judged that there was an effect of suppressing the progress of crevice corrosion when the measured corrosion current value was reduced by the addition of a chemical. Further, in the test piece 1, the corrosion current is reduced by the addition of an agent, if the current value to be measured becomes equal to or less than the passivation holding current I pass, crevice corrosion of the test piece 1 stops the progression, again Judged to have returned to a healthy and passive state.

図4は、上述の定電位すきま腐食試験のStep2からStep3における実施例1〜3の腐食電流挙動を示すグラフであり、図2(b)に対応するグラフである。図4の横軸は、薬剤の添加時が0であることとして示した。図中、帯状に色付けしている領域は、図3で求めた不働態保持電流Ipassを示している。 FIG. 4 is a graph showing the corrosion current behavior of Examples 1 to 3 in Step 2 to Step 3 of the above-described constant potential crevice corrosion test, and is a graph corresponding to FIG. The horizontal axis of FIG. 4 indicates that the time when the drug is added is zero. Regions in, are colored strip figures show passivation holding current I pass obtained in FIG.

図に示すように、実施例1においては、NaNOを添加した後の腐食電流は一度900μA程度にまで上昇したが、その後に低下傾向となり、170時間経過後に60μA程度まで低下した。したがって、すきま腐食の進行が抑制されているものと考えられる。 As shown in the figure, in Example 1, the corrosion current after adding NaNO 2 once increased to about 900 μA, but then tended to decrease, and decreased to about 60 μA after 170 hours. Therefore, it is considered that the progress of crevice corrosion is suppressed.

実施例2においては、NaNOを添加した直後から腐食電流が急速に低下し、約40時間でIpassを下回った。その後、腐食電流がIpassを上回ることはなく、すきま腐食の進行が停止したものと考えられる。 In Example 2, the corrosion current decreased rapidly immediately after the addition of NaNO 2 and was lower than I pass in about 40 hours. Thereafter, the corrosion current does not exceed I pass, and it is considered that the progress of crevice corrosion has stopped.

実施例3においては、NaNO添加直後の腐食電流の低下傾向が実施例2よりさらに著しく、約3時間でIpassを下回った後、約50時間には1μA付近の微小電流値まで低下した。したがって、すきま腐食の進行は停止したものと考えられる。また、到達した腐食電流値がIpassより一桁以上小さいことから、NaCl水溶液中での不働態よりもさらに安定な状態に移行したものと考えられる。 In Example 3, the tendency of decrease in the corrosion current immediately after addition of NaNO 2 was more remarkable than that in Example 2. After decreasing below I pass in about 3 hours, it decreased to a minute current value of about 1 μA in about 50 hours. Therefore, it is considered that the progress of crevice corrosion has stopped. Further, since the reached corrosion current value is smaller by one digit or more than I pass , it is considered that the state has shifted to a more stable state than the passive state in the NaCl aqueous solution.

これらの結果より、水溶液中の亜硝酸イオン濃度が、水溶液中の塩化物イオン濃度に対して0.1倍以上であると、ステンレス鋼の局部腐食を抑制する効果が確認できた。   From these results, when the nitrite ion concentration in the aqueous solution was 0.1 times or more than the chloride ion concentration in the aqueous solution, an effect of suppressing local corrosion of stainless steel could be confirmed.

また、水溶液中の亜硝酸イオン濃度が高いほど局部腐食進行の抑制効果が大きく、等モル濃度以上の亜硝酸イオンを共存させることにより局部腐食の進行を停止させることが可能であることがわかった。   In addition, it was found that the higher the concentration of nitrite ions in the aqueous solution, the greater the effect of suppressing the progress of local corrosion, and it is possible to stop the progress of local corrosion by coexisting nitrite ions of equimolar concentration or more. .

また、図5は、実施例2および比較例1〜3の腐食電流挙動を示すグラフであり、図4に対応するグラフである。   Moreover, FIG. 5 is a graph which shows the corrosion current behavior of Example 2 and Comparative Examples 1-3, and is a graph corresponding to FIG.

比較例1においては、NaPOの添加から約5時間後に腐食電流が約500μAから約200μAまで低下したが、その後は100〜200μA程度で推移し、Ipassを下回らなかった。 In Comparative Example 1, the corrosion current decreased from about 500 μA to about 200 μA after about 5 hours from the addition of Na 3 PO 4 , but thereafter changed at about 100 to 200 μA and did not fall below I pass .

比較例2においては、NaSOの添加後も腐食電流は上昇を続け、1mA付近の大きな電流値で推移した。 In Comparative Example 2, the corrosion current continued to increase even after the addition of Na 2 SO 4 and changed at a large current value in the vicinity of 1 mA.

比較例3においては、NaMoOの添加後、一度腐食電流が2mA程度にまで上昇した後、約13時間後に腐食電流が低下し始め、約200μAまで低下した。しかし、その後は、200μA程度で推移し、Ipassを下回らなかった。 In Comparative Example 3, after the addition of Na 2 MoO 4 , the corrosion current once increased to about 2 mA, and after about 13 hours, the corrosion current began to decrease and decreased to about 200 μA. However, after that, it changed at about 200 μA and did not fall below I pass .

これらの結果より、水溶液中に、水溶液中の塩化物イオン濃度と等モル濃度(1倍)のイオン(化学種)を共存させた条件で比較すると、局部腐食抑制効果は亜硝酸イオン>リン酸イオン>モリブデン酸イオン>硫酸イオンの順に大きいことが分かった。また、等モル濃度の亜硝酸イオンを共存させると、局部腐食の進行を停止させることも可能であることが分かり、従来知られた腐食抑制剤を用いた局部腐食抑制方法と比べて、亜硝酸イオンを用いた本発明の局部腐食抑制方法は、ステンレス鋼の局部腐食抑制に非常に効果的であることが分かった。   From these results, when compared with the conditions in which ions (chemical species) at the same molar concentration (1 times) as the chloride ion concentration in the aqueous solution coexist in the aqueous solution, the local corrosion inhibitory effect is nitrite ion> phosphoric acid It was found that the order of ion> molybdate ion> sulfate ion was larger. In addition, it was found that the co-existence of equimolar nitrite ions can stop the progress of local corrosion. Compared with the conventional local corrosion inhibition methods using corrosion inhibitors, nitrite It has been found that the method for inhibiting local corrosion of the present invention using ions is very effective for inhibiting local corrosion of stainless steel.

[2.局部腐食(孔食)の発生抑制に対する効果検証]
(平板試験片)
本実施例においては、15mm×15mm×10mmのステンレス鋼製の平板試験片を用いた。ステンレス鋼としては、試験片1と同様に市販のSUS304鋼溶体化材を用いた。また、一端にリード線を電気的に接続し、リード線を絶縁被膜で被覆した。
[2. Verification of effects on suppression of occurrence of local corrosion (pitting corrosion)]
(Flat plate test piece)
In this example, a stainless steel flat plate test piece of 15 mm × 15 mm × 10 mm was used. As stainless steel, a commercially available SUS304 steel solution was used in the same manner as the test piece 1. Moreover, a lead wire was electrically connected to one end, and the lead wire was covered with an insulating film.

平板試験片としては、表面を600メッシュの耐水研磨紙を用いて湿式研磨した後、50℃の30%硝酸中に1時間浸漬し、不働態化処理を行った。   As a flat test piece, the surface was wet-polished using 600-mesh water-resistant abrasive paper, and then immersed in 30% nitric acid at 50 ° C. for 1 hour for passivation treatment.

(孔食電位測定)
JIS G 0577「ステンレス鋼の孔食電位測定方法」に準拠して、以下の方法により、ステンレス鋼の孔食電位を測定した。ここで「孔食電位」とは、孔食が発生し得る下限の電位であり、値が高いほど孔食が発生しにくいことを示す。
(Pitting corrosion potential measurement)
In accordance with JIS G 0577 “Method for Measuring Pitting Corrosion Potential of Stainless Steel”, the pitting corrosion potential of stainless steel was measured by the following method. Here, the “pitting corrosion potential” is a lower limit potential at which pitting corrosion can occur, and the higher the value, the less pitting corrosion occurs.

まず、平板試験片の表面が1cmだけ試験溶液に接するように、直径1.13cmの開口部を設けたテトラフルオロエチレン製の治具に、平板試験片を保持した。 First, the flat plate test piece was held in a tetrafluoroethylene jig provided with an opening having a diameter of 1.13 cm so that the surface of the flat plate test piece was in contact with the test solution by 1 cm 2 .

測定の直前に、平板試験片の接液部分の表面を600メッシュの研磨紙を用いて乾式研磨した後蒸留水にて洗浄した。亜硝酸ナトリウムを溶解させたNaCl水溶液を40℃に昇温し、窒素ガス通気により脱気した後、上述の平板試験片をNaCl水溶液中に浸漬した。   Immediately before the measurement, the surface of the wetted part of the flat plate test piece was dry-polished using 600 mesh abrasive paper and washed with distilled water. The NaCl aqueous solution in which sodium nitrite was dissolved was heated to 40 ° C. and degassed by aeration of nitrogen gas, and then the flat plate test piece was immersed in the NaCl aqueous solution.

さらにPt対極を浸漬し、平板試験片の自然電位を10分間測定した後、ポテンショ/ガルバノスタット(北斗電工社製、電気化学測定システム、型番:HZ−5000)を用いて、平板試験片の電位を20mV/minでアノード方向に掃引し、アノード電流密度が1000μA/cmに到達した時点で測定を終了させた。 Further, after immersing the Pt counter electrode and measuring the natural potential of the flat plate test piece for 10 minutes, the potential of the flat plate piece was measured using a potentio / galvanostat (manufactured by Hokuto Denko Corporation, electrochemical measurement system, model number: HZ-5000). Was swept in the anode direction at 20 mV / min, and the measurement was terminated when the anode current density reached 1000 μA / cm 2 .

JIS G 0577の規定に基づき,得られた電位−電流曲線において、アノード電流密度10μA/cmに対応する最も貴な値を孔食電位VC、PIT10と決定した。ただし、測定後の平板試験片の光学顕微鏡観察において、孔食が確認されなかった測定によるVC、PIT10は結果から除外した。 Based on the provisions of JIS G 0577, the most noble values corresponding to the anode current density of 10 μA / cm 2 in the obtained potential-current curve were determined as the pitting potential V C and PIT 10 . However, VC and PIT10 by the measurement in which pitting corrosion was not confirmed in the optical microscope observation of the flat test piece after the measurement were excluded from the results.

(実施例4)
0.00563mol/dmの濃度のNaCl水溶液に対して、水溶液中の亜硝酸イオン濃度が、塩化物イオン濃度である0.00563mol/dmの0倍(亜硝酸ナトリウム無添加)、0.1倍、1倍、10倍となるように亜硝酸ナトリウムの必要量を溶解させたものを試験溶液として用い、孔食電位VC、PIT10を測定した。
Example 4
With respect to a NaCl aqueous solution having a concentration of 0.00563 mol / dm 3, the nitrite ion concentration in the aqueous solution is 0 times the chloride ion concentration of 0.00563 mol / dm 3 (no sodium nitrite added), 0.1 A solution in which the required amount of sodium nitrite was dissolved so as to be 1 fold, 1 fold, and 10 fold was used as a test solution, and pitting potential VC and PIT10 were measured.

(実施例5)
0.0563mol/dmの濃度のNaCl水溶液に対して、水溶液中の亜硝酸イオン濃度が、塩化物イオン濃度である0.0563mol/dmの0倍(亜硝酸ナトリウム無添加)、0.1倍、1倍、10倍となるように亜硝酸ナトリウムの必要量を溶解させたものを試験溶液として用い、孔食電位VC、PIT10を測定した。
(Example 5)
With respect to a NaCl aqueous solution having a concentration of 0.0563 mol / dm 3, the nitrite ion concentration in the aqueous solution is 0 times the chloride ion concentration of 0.0563 mol / dm 3 (no addition of sodium nitrite), 0.1 A solution in which the required amount of sodium nitrite was dissolved so as to be 1 fold, 1 fold, and 10 fold was used as a test solution, and pitting potential VC and PIT10 were measured.

(実施例6)
0.563mol/dmの濃度のNaCl水溶液に対して、水溶液中の亜硝酸イオン濃度が、塩化物イオン濃度である0.563mol/dmの0倍(亜硝酸ナトリウム無添加)、0.1倍、1倍、10倍となるように亜硝酸ナトリウムの必要量を溶解させたものを試験溶液として用い、孔食電位VC、PIT10を測定した。
(Example 6)
Against the concentration of NaCl aqueous solution 0.563mol / dm 3, nitrite ion concentration in the aqueous solution, 0 times 0.563mol / dm 3 is a chloride ion concentration (sodium nitrite no addition), 0.1 A solution in which the required amount of sodium nitrite was dissolved so as to be 1 fold, 1 fold, and 10 fold was used as a test solution, and pitting potential VC and PIT10 were measured.

図6は、実施例4〜6の結果を示すグラフであり、横軸は、亜硝酸イオンと塩化物イオンとのモル濃度比を示し、縦軸は、孔食電位VC、PIT10(単位:V)を示す。 FIG. 6 is a graph showing the results of Examples 4 to 6, in which the horizontal axis indicates the molar concentration ratio between nitrite ions and chloride ions, and the vertical axis indicates the pitting potential V C, PIT10 (unit: V).

図に示すように、実施例4〜6において、塩化物イオン濃度の0.1倍の亜硝酸イオンを共存させると、孔食電位の上昇が認められ、孔食が発生しにくくなっていることが分かった。   As shown in the figure, in Examples 4 to 6, when nitrite ions having a chloride ion concentration of 0.1 times coexist, an increase in pitting potential is observed, and pitting corrosion is less likely to occur. I understood.

また、実施例4〜6において、塩化物イオン濃度の1倍以上の亜硝酸イオンを共存させると、1.2Vまで貴化させても孔食は発生しなくなっている。実際の環境において、1.2Vより高い電位で材料を使用するケースはほとんどないため、事実上、孔食の発生を防止することが可能であることが分かった。   In Examples 4 to 6, when nitrite ions having a concentration of 1 or more times the chloride ion concentration coexist, pitting corrosion does not occur even if the nitrite ions are made noble up to 1.2V. In the actual environment, it has been found that since there is almost no case of using the material at a potential higher than 1.2 V, it is possible to effectively prevent the occurrence of pitting corrosion.

なお、塩化物イオン濃度の1倍以上の亜硝酸イオンを共存させた場合の孔食電位について、これらの条件下では孔食が発生していないため、塩化物イオン濃度の1倍以上の亜硝酸イオンを共存させた場合の孔食電位は、少なくとも1.2Vよりも大きい値である。図6においては、塩化物イオン濃度の1倍以上の亜硝酸イオンを共存させた場合の孔食電位について、図示の便宜上1.2Vの位置に示しているが、上記理由により1.2Vより大きい値であることを示すため、それぞれ上向きの矢印を付している。   In addition, about the pitting corrosion potential when nitrite ion more than 1 times of chloride ion concentration coexists, pituitous corrosion does not occur under these conditions, so nitrite more than 1 time of chloride ion concentration. The pitting potential in the presence of ions is a value greater than at least 1.2V. In FIG. 6, the pitting corrosion potential when nitrite ions having a concentration of 1 or more times the chloride ion concentration coexist is shown at a position of 1.2 V for convenience of illustration, but is larger than 1.2 V for the above reason. In order to show that it is a value, an upward arrow is attached respectively.

これらの結果から、従来知られた腐食抑制剤を用いた局部腐食抑制方法と比べて、本発明はステンレス鋼の局部腐食の発生と進行のいずれの抑制にも非常に効果的であることが確かめられた。   From these results, it is confirmed that the present invention is very effective in suppressing both the occurrence and the progress of local corrosion of stainless steel, as compared with the conventional method of suppressing local corrosion using a corrosion inhibitor. It was.

1…試験片、2…ガスケット、3…ワッシャ、4…ボルト、5…ナット、6…リード線、7…絶縁被膜 DESCRIPTION OF SYMBOLS 1 ... Test piece, 2 ... Gasket, 3 ... Washer, 4 ... Bolt, 5 ... Nut, 6 ... Lead wire, 7 ... Insulation film

Claims (6)

湿潤環境におけるステンレス鋼の局部腐食抑制方法であって、
前記ステンレス鋼に接触する水分において、前記水分中に含まれる塩化物イオンのモル濃度に対して、0.1倍以上のモル濃度の亜硝酸イオンを共存させるステンレス鋼の局部腐食抑制方法。
A method for suppressing local corrosion of stainless steel in a wet environment,
A method for inhibiting local corrosion of stainless steel in which nitrite ions having a molar concentration of 0.1 times or more with respect to the molar concentration of chloride ions contained in the moisture are coexisting in the moisture contacting the stainless steel.
前記水分中に含まれる塩化物イオンのモル濃度を測定するステップと、
前記塩化物イオンのモル濃度についての測定値に基づいて、前記水分中に亜硝酸塩を溶解させ、前記測定値の0.1倍以上のモル濃度の亜硝酸イオンを共存させるステップと、を有する請求項1に記載のステンレス鋼の局部腐食抑制方法。
Measuring the molar concentration of chloride ions contained in the moisture;
A step of dissolving nitrite in the water based on a measured value of the molar concentration of the chloride ion and coexisting with a nitrite ion having a molar concentration of 0.1 times or more of the measured value. Item 2. A method for suppressing local corrosion of stainless steel according to Item 1.
前記亜硝酸イオンのモル濃度が、前記水分中に含まれる塩化物イオンのモル濃度に対して1倍以上である請求項1または2に記載のステンレス鋼の局部腐食抑制方法。   3. The method for inhibiting local corrosion of stainless steel according to claim 1, wherein the molar concentration of the nitrite ions is one or more times the molar concentration of chloride ions contained in the moisture. 前記ステンレス鋼は、下記式(1)で求められる耐孔食指数が18以上である請求項1から3のいずれか1項に記載のステンレス鋼の局部腐食抑制方法。
[数1]
(耐孔食指数)=[%Cr]+3.3×[%Mo]+n×[%N] …(1)
(式中、[%Cr]は、ステンレス鋼全体に含まれるクロムの割合(質量%)であり、[%Mo]は、ステンレス鋼全体に含まれるモリブデンの割合(質量%)であり、[%N]は、ステンレス鋼全体に含まれる窒素の割合(質量%)である)
The method for inhibiting local corrosion of stainless steel according to any one of claims 1 to 3, wherein the stainless steel has a pitting corrosion index determined by the following formula (1) of 18 or more.
[Equation 1]
(Pitting corrosion index) = [% Cr] + 3.3 × [% Mo] + n × [% N] (1)
(In the formula, [% Cr] is the ratio (mass%) of chromium contained in the entire stainless steel, and [% Mo] is the ratio (mass%) of molybdenum contained in the entire stainless steel, [% N] is the ratio (mass%) of nitrogen contained in the entire stainless steel)
前記水分中に含まれる塩化物イオンのモル濃度は、0.6mol/dm以下である請求項1から4のいずれか1項に記載のステンレス鋼の局部腐食抑制方法。 The method for suppressing local corrosion of stainless steel according to any one of claims 1 to 4, wherein the molar concentration of chloride ions contained in the moisture is 0.6 mol / dm 3 or less. 前記水分の温度を45℃以下に管理する請求項1から5のいずれか1項に記載のステンレス鋼の局部腐食抑制方法。   The method for inhibiting local corrosion of stainless steel according to any one of claims 1 to 5, wherein the moisture temperature is controlled to 45 ° C or lower.
JP2013100597A 2013-05-10 2013-05-10 Method for inhibiting local corrosion of stainless steel Active JP6225473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013100597A JP6225473B2 (en) 2013-05-10 2013-05-10 Method for inhibiting local corrosion of stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013100597A JP6225473B2 (en) 2013-05-10 2013-05-10 Method for inhibiting local corrosion of stainless steel

Publications (2)

Publication Number Publication Date
JP2014218729A true JP2014218729A (en) 2014-11-20
JP6225473B2 JP6225473B2 (en) 2017-11-08

Family

ID=51937467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013100597A Active JP6225473B2 (en) 2013-05-10 2013-05-10 Method for inhibiting local corrosion of stainless steel

Country Status (1)

Country Link
JP (1) JP6225473B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020169364A (en) * 2019-04-04 2020-10-15 日立Geニュークリア・エナジー株式会社 Liquid treatment system and adsorption system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185989A (en) * 1981-05-07 1982-11-16 Tokuyama Soda Co Ltd Protecting method for stainless steel
JPH0726395A (en) * 1993-07-12 1995-01-27 Sumitomo Metal Ind Ltd Stainless steel having excellent microbiological corrosion resistance and its production
JPH1030196A (en) * 1996-07-19 1998-02-03 Sumitomo Metal Ind Ltd Method for preventing microorganismic corrosion of stainless steel
JPH11241191A (en) * 1998-01-26 1999-09-07 Elf Atochem Sa Passivation of stainless steel in organic sulfonic acid medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185989A (en) * 1981-05-07 1982-11-16 Tokuyama Soda Co Ltd Protecting method for stainless steel
JPH0726395A (en) * 1993-07-12 1995-01-27 Sumitomo Metal Ind Ltd Stainless steel having excellent microbiological corrosion resistance and its production
JPH1030196A (en) * 1996-07-19 1998-02-03 Sumitomo Metal Ind Ltd Method for preventing microorganismic corrosion of stainless steel
JPH11241191A (en) * 1998-01-26 1999-09-07 Elf Atochem Sa Passivation of stainless steel in organic sulfonic acid medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020169364A (en) * 2019-04-04 2020-10-15 日立Geニュークリア・エナジー株式会社 Liquid treatment system and adsorption system
JP7312593B2 (en) 2019-04-04 2023-07-21 日立Geニュークリア・エナジー株式会社 Liquid handling system and adsorption system

Also Published As

Publication number Publication date
JP6225473B2 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
Albrimi et al. Inhibition of the pitting corrosion of 304 stainless steel in 0.5 M hydrochloric acid solution by heptamolybdate ions
Tyusenkov Chemical resistance of steel 13CrV (rus 13ХФА)
Ho et al. Pitting corrosion of inconel 600 in chloride and thiosulfate anion solutions at low temperature
Ashassi-Sorkhabi et al. Influence of flow on the corrosion inhibition of St52-3 type steel by potassium hydrogen-phosphate
Suprapto et al. Comparation of the analytical and experimental models of 304SS corrosion rate in 0.5 m H2SS4 with bee wax propolis extract
JP6225473B2 (en) Method for inhibiting local corrosion of stainless steel
Besghaier et al. Heat exchanger failure analysis in the simulated marine environment: Prediction of the fouling removal temperature
Mobin et al. Corrosion behavior of mild steel and SS 304L in presence of dissolved nickel under aerated and deaerated conditions
Yang et al. Corrosion performance of typical stainless steels in concentrated seawater under vacuum and boiling condition
Delblanc et al. Comparison of Critical Pitting Temperatures of Stainless Steels in Different Salt Solutions
Shaban et al. Laboratory assessment of inhibition efficiency and mechanism of inhibitor blend on mild steel corrosion in high chloride containing water
Keserovic et al. Geothermal systems of Indonesia-influence of different factors on the corrosion performance of carbon steel API Q125
JP2017218656A (en) Local corrosion inhibition method of stainless steel and storage method of metal container
Hornus et al. Effect of Temperature and Chloride Concentration on the Crevice Corrosion Resistance of Austenitic Stainless Steels
Kumar et al. Corrosion resistance of austenitic Cr-Ni stainless steel in 1 M HCl
Laouali et al. Evaluation of inhibitor efficiency on corrosion of the aluminium heart exchangers and radiators in central heating
Mobin Electrochemical studies on the corrosion behavior of carbon steel in presence of Cu and Ni
Loto et al. Inhibition effect of phenylamine on the corrosion of austenitic stainless steel type 304 in dilute sulphuric acid
Lund et al. Comparing critical pitting temperatures of stainless steels measured electrochemically in NaCl and MgCl2 solutions
Vysotskaya et al. INDICATORS OF CORROSION RESISTANCE OF EQUIPMENT IN VARIOUS AGGRESSIVE ENVIRONMENTS
Bojinov et al. Corrosion of copper in anoxic 1M NaCl solution
Ramirez-Arteaga et al. Corrosion Inhibition of a Cu-Ni Alloy in LiBr+ Ethylene Glycol+ H2O Mixtures with Nitrates, Chromates and Molybdates
Junxi et al. The applicability of EIS to determine the optimal polarization potential for impressed current cathodic protection
Souto et al. Inhibition of the pitting corrosion of 304 stainless steel in 0.5 M hydrochloric acid solution by heptamolybdate ions
Ketusky et al. Savannah River Site Tank Cleaning: Corrosion Rate for One Versus Eight percent Oxalic acid Solution-11413

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170925

R150 Certificate of patent or registration of utility model

Ref document number: 6225473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150