JP2014217990A - Mixing water for cement-based hardening material increasing strength - Google Patents

Mixing water for cement-based hardening material increasing strength Download PDF

Info

Publication number
JP2014217990A
JP2014217990A JP2013097503A JP2013097503A JP2014217990A JP 2014217990 A JP2014217990 A JP 2014217990A JP 2013097503 A JP2013097503 A JP 2013097503A JP 2013097503 A JP2013097503 A JP 2013097503A JP 2014217990 A JP2014217990 A JP 2014217990A
Authority
JP
Japan
Prior art keywords
cement
seawater
water
strength
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013097503A
Other languages
Japanese (ja)
Other versions
JP6277599B2 (en
Inventor
宣典 竹田
Nobufumi Takeda
宣典 竹田
新村 亮
Akira Niimura
亮 新村
誠 金井
Makoto Kanai
誠 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2013097503A priority Critical patent/JP6277599B2/en
Publication of JP2014217990A publication Critical patent/JP2014217990A/en
Application granted granted Critical
Publication of JP6277599B2 publication Critical patent/JP6277599B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Abstract

PROBLEM TO BE SOLVED: To simply produce a cement-based hardening material equivalent to a cement-based hardening material using seawater and sea sand even in a place difficult to obtain seawater and sea sand.SOLUTION: Mixing water for a cement-based hardening material is used for kneading and mixing constituent materials including cement and an aggregate when producing the cement-based hardening material such as mortar and concrete. Chloride ion concentration and sulfate ion concentration are increased to a concentration equivalent to seawater. Sodium chloride and sodium sulfate are preferable as the supply sources of a chloride ion and a sulfuric acid ion. Blast furnace cement is preferable as the cement.

Description

本発明は、モルタルやコンクリートといったセメント系硬化材の作製時に用いられる練り混ぜ水に関し、特に硬化体(硬化状態のセメント系硬化材)の強度を増進させるものに関する。   The present invention relates to kneading water used when producing a cement-based hardener such as mortar and concrete, and more particularly to a material for increasing the strength of a hardened body (hardened cement-based hardener).

離島や沿岸地域においては、練り混ぜ水に海水を用い、細骨材に海砂を用いざるを得ない状況が想定される。このような状況下であっても必要な耐久性を備えた構造物を得るべく、本出願人は、結合材として高炉系セメントを用い、かつ、耐用年数に応じた補強材を選定することで、海水や海砂を利用する技術を提案している(特許文献1を参照)。   In remote islands and coastal areas, it is assumed that seawater must be used for mixing water and sea sand for fine aggregate. In order to obtain a structure having the required durability even under such circumstances, the present applicant uses a blast furnace cement as a binder and selects a reinforcing material according to the service life. Have proposed a technique using seawater or sea sand (see Patent Document 1).

このような中、結合材として高炉系セメントを用い、練り混ぜ水に海水を用いると、硬化時における早期強度を高めることができ、かつ、硬化体を緻密化できるという知見が得られた。そして、離島や沿岸地域のように海水や海砂の入手が容易な場所では、海水や海砂を用いてセメント系硬化材を作製できるので、早期強度が高く、緻密な硬化体を容易に構築できる。   Under such circumstances, it has been found that the use of blast furnace cement as the binder and seawater as the kneaded water can increase the early strength at the time of curing, and the hardened body can be densified. And in places where seawater and sea sand are easily available, such as remote islands and coastal areas, cement-based hardeners can be made using seawater and sea sand, making it easy to build dense hardened bodies with high early strength. it can.

特開2012−126627号公報JP 2012-126627 A

一方、山間部など沿岸地域から離れた場所では、海水や海砂を現地で調達することは困難である。そして、海水や海砂を沿岸地域から調達しようとしても、運搬費や設備費が嵩むことから不経済である。このため、海水や海砂を用いてセメント系硬化材を作製することは簡単でなかった。   On the other hand, it is difficult to procure seawater and sea sand locally at places far from coastal areas such as mountains. And even if it is going to procure seawater and sea sand from the coastal area, it is uneconomical due to increased transportation costs and equipment costs. For this reason, it was not easy to produce a cement hardening material using seawater or sea sand.

本発明は、このような事情に鑑みてなされたものであり、その目的は、沿岸地域から離れた場所のように、海水や海砂の入手が困難な場所であっても、海水や海砂を用いたセメント系硬化材と同等なセメント系硬化材を簡単に作製することにある。   The present invention has been made in view of such circumstances, and its purpose is to provide seawater and sea sand even in places where it is difficult to obtain seawater and sea sand, such as places away from coastal areas. The purpose is to easily produce a cement-based hardener equivalent to the cement-based hardener using the above.

本願発明等は、鋭意検討を重ねた結果、海水に含まれる種々のイオンのうち、塩化物イオンと硫酸イオンを選択し、練り混ぜ水におけるこれらのイオン濃度を海水相当にまで高めることで、セメント系硬化材の硬化時における早期強度を高めることができ、且つ、緻密な硬化体が得られるという知見を得て、本発明を完成するに至ったものである。   As a result of intensive studies, the present invention, etc., as a result of selecting chloride ions and sulfate ions from various ions contained in seawater and increasing the concentration of these ions in the kneaded water to seawater equivalent, The present invention has been completed by obtaining the knowledge that the early strength at the time of curing of the system curing material can be increased and a dense cured body can be obtained.

すなわち、本発明は、セメント系硬化材を作製すべく、セメント及び骨材を含んだ構成材料の練り混ぜに用いられる練り混ぜ水であって、塩化物イオン濃度及び硫酸イオン濃度が海水相当濃度まで高められていることを特徴とする。   That is, the present invention is a kneading water used for kneading constituent materials including cement and aggregate in order to produce a cement-based hardener, and the chloride ion concentration and the sulfate ion concentration are up to seawater equivalent concentration. It is characterized by being raised.

本発明によれば、構成材料の練り混ぜに用いられる練り混ぜ水に関し、海水中に含まれる種々のイオンのうちの塩化物イオン及び硫酸イオンを、海水相当濃度まで高めればよいので、海水や海砂の入手が困難な場所であっても、海水や海砂を用いたセメント系硬化材と同等なセメント系硬化材を作製できる。   According to the present invention, with respect to the kneaded water used for kneading the constituent materials, chloride ions and sulfate ions among various ions contained in the sea water may be increased to a concentration equivalent to sea water. Even in places where it is difficult to obtain sand, it is possible to produce a cement-based hardener equivalent to a cement-based hardener using seawater or sea sand.

前述の発明において、塩化ナトリウム及び硫酸ナトリウムを水道水に溶解することにより、前記塩化物イオン濃度及び前記硫酸イオン濃度を高めるようにした場合には、入手が容易な物質である塩化ナトリウム及び硫酸ナトリウムが用いられていることから、前述のセメント系硬化材を一層容易に作製できる。   In the above-mentioned invention, sodium chloride and sodium sulfate, which are easily available, are obtained by increasing the chloride ion concentration and the sulfate ion concentration by dissolving sodium chloride and sodium sulfate in tap water. Therefore, the above-mentioned cement-based hardener can be more easily produced.

前述の発明において、前記セメントを高炉セメントとした場合には、このセメント系硬化材を硬化させることで、長期強度に優れた硬化体が得られる。   In the above-described invention, when the cement is blast furnace cement, a cured product having excellent long-term strength can be obtained by curing the cement-based hardener.

本発明によれば、沿岸地域から離れた場所のように、海水や海砂の入手が困難な場所であっても、海水や海砂を用いたセメント系硬化材と同等な特性を有するセメント系硬化材を簡単に作製できる。   According to the present invention, even in a place where it is difficult to obtain seawater and sea sand, such as a place away from the coastal area, a cement system having characteristics equivalent to cement-based hardeners using seawater and sea sand. Hardened material can be easily produced.

使用材料並びに海水成分を説明する表である。It is a table | surface explaining a use material and a seawater component. N系列(普通ポルトランドセメント系列)とBB系列(高炉セメント系列)の各サンプルについて、材齢毎の圧縮強度を棒グラフ形式で示す図である。It is a figure which shows the compressive strength for every age in bar graph format about each sample of N series (normal Portland cement series) and BB series (blast furnace cement series). BB系列の各サンプルについて材齢毎の圧縮強度を表形式で示す図である。It is a figure which shows the compressive strength for every material age about each sample of BB series in a tabular form. BB系列の各サンプルについて材齢毎の圧縮強度を折れ線グラフ形式で示す図である。It is a figure which shows the compressive strength for every material age about each sample of BB series in a line graph format. N系列及びBB系列の各サンプルについて、水道水を用いたサンプル(N−WP,BB−WP)の圧縮強度を100%とした場合の圧縮強度比を折れ線グラフ形式で示す図である。It is a figure which shows the compression strength ratio at the time of setting the compression strength of the sample (N-WP, BB-WP) using a tap water to 100% about each sample of N series and BB series in a line graph format. BB系列の各サンプルについて、人工海水を用いたサンプル(BB−WS)の圧縮強度を1.00とした場合の圧縮強度比、及び、水道水を用いたサンプル(BB−WP)の圧縮強度を1.00とした場合の圧縮強度比を表形式で示す図である。For each sample of the BB series, the compression strength ratio when the compression strength of the sample (BB-WS) using artificial seawater is 1.00, and the compression strength of the sample (BB-WP) using tap water It is a figure which shows the compression strength ratio at the time of setting to 1.00 in a tabular form. N系列とBB系列の各サンプルについて、細孔量と平均細孔直径をグラフ形式で示す図である。It is a figure which shows the amount of pores and an average pore diameter in a graph format about each sample of N series and BB series.

以下、本発明の実施形態について説明する。まず、今回の試験における使用材料について説明する。図1(a)に示すように、今回の試験では、セメント系硬化材の一種であるモルタルを試験対象にした。このため、構成材料として結合材、練り混ぜ水、及び砂を使用した。   Hereinafter, embodiments of the present invention will be described. First, materials used in this test will be described. As shown in FIG. 1 (a), in this test, mortar, which is a kind of cement-based hardener, was used as a test target. For this reason, binder, kneading water, and sand were used as constituent materials.

結合材は、普通ポルトランドセメント(N)と高炉セメントB種(BB)の2種類を用いた。普通ポルトランドセメントは、代表的な結合材であるため選定した。また、高炉セメントB種は、普通ポルトランドセメントに比べて耐海水性が高いといわれているため選定した。なお、高炉セメントB種は、普通ポルトランドセメント(OPC)に、高炉スラグ微粉末(BS,石こう入り:SO=2.0%)を50%置換した試製品を使用した。 Two types of binders, ordinary Portland cement (N) and blast furnace cement type B (BB), were used. Ordinary Portland cement was selected because it is a typical binder. The blast furnace cement type B was selected because it is said to have higher seawater resistance than ordinary Portland cement. As the blast furnace cement type B, a trial product in which 50% of blast furnace slag fine powder (BS, with gypsum: SO 3 = 2.0%) was substituted for ordinary Portland cement (OPC) was used.

練り混ぜ水は、水道水(WP)、人工海水(WS)、塩化ナトリウム溶液(WCL)、硫酸ナトリウム溶液(WSO)、及び塩化ナトリウムと硫酸ナトリウムの混合溶液(WCS)の5種類を使用した。そして、結合材に対する練り混ぜ水の添加量は、W/C=50%となるように設定した。   As the kneading water, five kinds of tap water (WP), artificial seawater (WS), sodium chloride solution (WCL), sodium sulfate solution (WSO), and a mixed solution of sodium chloride and sodium sulfate (WCS) were used. And the addition amount of the kneading water with respect to the binder was set to be W / C = 50%.

人工海水は、溶存する各イオンの濃度が、図1(b)に示す海水中の各イオン濃度に揃えられた溶液である。今回の試験では、市販の人工海水を用いた。この人工海水では、塩化物イオン(Cl)濃度が19.8g/L(海水:18980mg/L)に調整され、硫酸イオン(SO 2−)濃度が2.77g/L(海水:2640mg/L)に調整されていた。 Artificial seawater is a solution in which the concentration of each dissolved ion is equal to the concentration of each ion in the seawater shown in FIG. In this test, commercially available artificial seawater was used. In this artificial seawater, the chloride ion (Cl ) concentration was adjusted to 19.8 g / L (seawater: 18980 mg / L), and the sulfate ion (SO 4 2− ) concentration was 2.77 g / L (seawater: 2640 mg / L). L).

塩化ナトリウム溶液は、塩化物イオンの影響を評価するためのものである。今回の試験では、人工海水中の塩化物イオン濃度と同じ濃度となるように、塩化ナトリウム(特級)を水道水に溶解することで作製した。具体的には、塩化物イオンの濃度が1.8重量%(18g/L)となるように溶解した。   The sodium chloride solution is for evaluating the influence of chloride ions. In this test, it was prepared by dissolving sodium chloride (special grade) in tap water so that it would have the same concentration as the chloride ion concentration in artificial seawater. Specifically, it was dissolved so that the chloride ion concentration was 1.8 wt% (18 g / L).

硫酸ナトリウム溶液は、硫酸イオンの影響を評価するためのものである。今回の試験では、人工海水中の硫酸イオン濃度と同じ濃度となるように、硫酸ナトリウム(特級)を水道水に溶解することで作製した。具体的には、硫酸イオンの濃度が0.2重量%(2g/L)となるように溶解した。   The sodium sulfate solution is for evaluating the influence of sulfate ions. In this test, sodium sulfate (special grade) was dissolved in tap water so that the concentration would be the same as the sulfate ion concentration in artificial seawater. Specifically, it was dissolved so that the concentration of sulfate ions was 0.2% by weight (2 g / L).

混合溶液は、塩化物イオンと硫酸イオンが混在した際の影響を評価するためのものである。今回の試験では、人工海水中の塩化物イオン濃度及び硫酸イオン濃度と同じ濃度となるように、塩化ナトリウム(特級)及び硫酸ナトリウムを(特級)を水道水に溶解することで作製した。具体的には、塩化物イオン濃度が1.8重量%、硫酸イオン濃度が0.2重量%となるように溶解した。   The mixed solution is for evaluating the influence when chloride ions and sulfate ions are mixed. In this test, sodium chloride (special grade) and sodium sulfate (special grade) were dissolved in tap water so as to have the same concentration as chloride ion concentration and sulfate ion concentration in artificial seawater. Specifically, it was dissolved so that the chloride ion concentration was 1.8% by weight and the sulfate ion concentration was 0.2% by weight.

砂は骨材の一種であり、今回の試験ではセメント強さ試験用標準砂(S)を用いた。そして、この砂を全てのサンプルの細骨材として使用した。   Sand is a kind of aggregate, and standard sand (S) for cement strength test was used in this test. This sand was used as fine aggregate for all samples.

以上の結合材2種と練り混ぜ水5種をそれぞれ組み合わせて10水準のモルタル(セメント系硬化材)を作製した。そして、これらのモルタルを用いて、結合材や練り混ぜ水の種類が、硬化材の硬化時における強度発現性に与える影響を評価した。また、硬化体における細孔構造に与える影響も評価した。   A 10-level mortar (cement-based hardener) was prepared by combining the above two binders and 5 kinds of water. And using these mortars, the influence which the kind of binder and mixing water gives on the strength expression at the time of hardening of a hardening material was evaluated. The influence on the pore structure in the cured product was also evaluated.

硬化時の強度発現性については、「セメントの物理試験方法」(JIS R5201)に従い、圧縮強度を測定することで評価を行った。この評価では、前述のモルタルを水中養生し、材齢3日,7日,28日,56日,91日,182日のそれぞれで圧縮強度を測定した。   The strength development at the time of curing was evaluated by measuring the compressive strength in accordance with “Cement physical test method” (JIS R5201). In this evaluation, the above-mentioned mortar was cured in water, and the compressive strength was measured at the age of 3 days, 7 days, 28 days, 56 days, 91 days, and 182 days.

また、細孔構造については、細孔径分布を測定することで評価を行った。この評価では、前述のモルタルを材齢7日,28日,91日にて粒径2−5mmに切断した。そして、アセトンを用いて水和反応を停止させた後、水銀圧入式ポロシメータを用いて細孔径分布を測定した。   Further, the pore structure was evaluated by measuring the pore size distribution. In this evaluation, the mortar described above was cut to a particle size of 2-5 mm at the age of 7 days, 28 days, and 91 days. And after stopping the hydration reaction using acetone, the pore size distribution was measured using a mercury intrusion porosimeter.

まず、練り混ぜ水に含まれるイオンが硬化時の強度発現性に与える影響について説明する。図2(a)には、普通ポルトランドセメントを用いたモルタルの各サンプル(N系列)における材齢毎の圧縮強度を示し、図2(b)には、高炉セメントを用いたモルタルの各サンプル(BB系列)における材齢毎の圧縮強度を示す。   First, the effect of ions contained in the kneaded water on strength development at the time of curing will be described. FIG. 2 (a) shows the compressive strength for each age in each sample (N series) of mortar using ordinary Portland cement, and FIG. 2 (b) shows each sample of mortar using blast furnace cement ( (BB series) shows the compressive strength for each material age.

便宜上、以下の説明では、各材齢の圧縮強度を「〜日強度」という。例えば、材齢3日の圧縮強度を3日強度といい、材齢7日の圧縮強度を7日強度といい、材齢182日の圧縮強度を182日強度という。   For convenience, in the following description, the compressive strength of each age is referred to as “˜day strength”. For example, the compressive strength at 3 days of age is referred to as 3 day strength, the compressive strength at 7 days of age is referred to as 7 day strength, and the compressive strength at 182 days of age is referred to as 182 day strength.

結合材として普通ポルトランドセメントを用いたN系列では、3日強度に関し、練り混ぜ水の塩化物イオンが海水相当濃度とされたサンプル(N−WS,N−WCL,N−WCS)が、練り混ぜ水として水道水を用いたN−WPや硫酸ナトリウム溶液を用いたN−WSOよりも高い値を示した。そして、7日強度と3日強度の差、及び、28日強度と7日強度の差に関しては、N−WPやN−WSOの方が、N−WS,N−WCL,N−WCSよりも大きくなった。また、材齢56日以降の圧縮強度に関しては、水の種類の影響は小さいものの、N−WS,N−WCL,N−WCSの方が、N−WPやN−WSOに比べてやや強度が高い傾向にあった。   In the N series using ordinary Portland cement as a binder, samples with mixed chloride chloride concentration corresponding to seawater (N-WS, N-WCL, N-WCS) are mixed for 3 days strength. The value was higher than N-WP using tap water as water and N-WSO using sodium sulfate solution. And regarding the difference between the 7-day intensity and the 7-day intensity, and the difference between the 28-day intensity and the 7-day intensity, the N-WP or N-WSO is better than the N-WS, N-WCL, N-WCS. It became bigger. Moreover, regarding the compressive strength after the age of 56 days, although the influence of the kind of water is small, N-WS, N-WCL, and N-WCS are slightly stronger than N-WP and N-WSO. It was high.

さらに、材齢91日以降の圧縮強度に関しては、N−WSの圧縮強度が最も高く、それにN−WCLやN−WCSが続いた。また、N−WPの圧縮強度は、N−WCLやN−WCSの圧縮強度よりも低く、N−WSOの圧縮強度よりも高かった。   Furthermore, regarding the compressive strength after the age of 91 days, the compressive strength of N-WS was the highest, followed by N-WCL and N-WCS. Moreover, the compressive strength of N-WP was lower than the compressive strength of N-WCL and N-WCS, and higher than the compressive strength of N-WSO.

結合材として高炉セメントを用いたBB系列でも、3日強度に関し、練り混ぜ水の塩化物イオンが海水相当濃度とされたサンプル(BB−WS,BB−WCL,BB−WCS)が、練り混ぜ水として水道水を用いたBB−WPや硫酸ナトリウム溶液を用いたBB−WSOよりも高い値を示した。そして、7日強度と3日強度の差に関しては、各サンプルの差は小さかった。さらに、28日強度と7日強度の差、及び、56日強度と28日強度の差に関しては、BB−WPやBB−WSOの方が、BB−WS,BB−WCL,BB−WCSよりも大きくなった。   Samples (BB-WS, BB-WCL, BB-WCS) in which the chloride ion of the mixing water is set to a concentration equivalent to seawater are also mixed in the BB series using blast furnace cement as the binder. The value was higher than BB-WP using tap water and BB-WSO using sodium sulfate solution. And the difference of each sample was small regarding the difference of 7 day intensity | strength and 3 day intensity | strength. Furthermore, regarding the difference between the 28-day intensity and the 7-day intensity, and the difference between the 56-day intensity and the 28-day intensity, the BB-WP and BB-WSO are better than the BB-WS, BB-WCL, and BB-WCS. It became bigger.

さらに、材齢91日以降の圧縮強度に関しては、BB−WPが、BB−WS,BB−WCL,BB−WSO,BB−WCSよりも高くなった。そして、材齢182日では、BB−WCSの圧縮強度がBB−WS,BB−WCL,BB−WSOの圧縮強度よりも高くなった。   Furthermore, regarding the compressive strength after the age of 91 days, BB-WP became higher than BB-WS, BB-WCL, BB-WSO, BB-WCS. And in material age 182 days, the compressive strength of BB-WCS became higher than the compressive strength of BB-WS, BB-WCL, and BB-WSO.

以上の結果から、練り混ぜ水の種類は、結合材の種類に関わらず、3日強度や7日強度といった短期強度に与える影響が、91日強度や182日強度といった長期強度に与える影響よりも大きいことが確認された。具体的には、練り混ぜ水に含まれる塩化物イオンを海水相当濃度まで高めることで、早期強度を向上できることが確認された。そして、BB系列においては、練り混ぜ水として人工海水を用いるよりも、混合溶液を用いた方が長期強度を向上させることが確認された。   From the above results, regardless of the type of binder, the effect of the mixing water on the short-term strength such as the 3-day strength and the 7-day strength is greater than the effect on the long-term strength such as the 91-day strength and the 182-day strength. It was confirmed to be large. Specifically, it was confirmed that the early strength can be improved by increasing the chloride ion contained in the kneaded water to a concentration equivalent to seawater. In the BB series, it was confirmed that the use of the mixed solution improved the long-term strength rather than using artificial seawater as the mixing water.

次に、図3及び図4に示すように、BB系列の各サンプル(BB−WP,BB−WS,BB−WCL,BB−WSO,BB−WCS)について、材齢毎の圧縮強度を評価した。これらの図から判るように、練り混ぜ水の塩化物イオンが海水相当濃度とされた各サンプル(BB−WS,BB−WCL,BB−WCS)では、材齢28日以前の圧縮強度が水道水を用いたBB−WPよりも高くなる傾向が確認された。その一方で、材齢51日以降の圧縮強度はBB−WPの方が高くなる傾向も確認された。   Next, as shown in FIG.3 and FIG.4, about each sample (BB-WP, BB-WS, BB-WCL, BB-WSO, BB-WCS) of BB series, the compressive strength for every age was evaluated. . As can be seen from these figures, in each sample (BB-WS, BB-WCL, BB-WCS) in which the chloride ion of the mixing water is set to the seawater equivalent concentration, the compressive strength before the age of 28 days is tap water. The tendency which becomes higher than BB-WP using was confirmed. On the other hand, it was also confirmed that the compressive strength after the age of 51 days was higher in BB-WP.

ここで、硫酸ナトリウム溶液を用いたBB−WSOに関しては、各材齢での圧縮強度が複数のサンプルの中で最も低い値を示した。しかしながら、塩化ナトリウムと硫酸ナトリウムの混合溶液を用いたBB−WCSでは、材齢28日以前の圧縮強度が水道水を用いたBB−WPよりも高く、材齢51日以降の圧縮強度もBB−WPに近い値を示した。このことから、結合材として高炉セメントBBを用いた場合、練り混ぜ水に含まれる海水相当濃度の硫酸イオンは、同じく練り混ぜ水に含まれる海水相当濃度の塩化物イオンの存在を条件に、長期強度を向上させることが確認された。   Here, regarding BB-WSO using a sodium sulfate solution, the compressive strength at each age showed the lowest value among a plurality of samples. However, in BB-WCS using a mixed solution of sodium chloride and sodium sulfate, the compressive strength before the age of 28 days is higher than that of BB-WP using tap water, and the compressive strength after the age of 51 days is also BB-. A value close to WP was shown. From this, when blast furnace cement BB is used as the binder, the sulfate ion of seawater equivalent concentration contained in the kneaded water is long-term on condition that the salt ion of seawater equivalent concentration contained in the kneaded water is present. It was confirmed that the strength was improved.

次に、図5に示すように、N系列とBB系列の各サンプルについて、練り混ぜ水として水道水を用いたサンプル(N−WP,BB−WP)の圧縮強度を100%とし、材齢毎の圧縮強度比によって整理した。   Next, as shown in FIG. 5, for each of the N-series and BB-series samples, the compressive strength of the sample (N-WP, BB-WP) using tap water as the mixing water is set to 100%. These were arranged according to the compression strength ratio.

図5から、練り混ぜ水の塩化物イオンが海水相当濃度とされたサンプル(N−WS,N−WCL,N−WCS,BB−WS,BB−WCL,BB−WCS)の何れも、材齢3,7日ではN−WP,BB−WPに比べて高い圧縮強度比を示した。また、N系列のサンプルに比べてBB系列のサンプルの方が、高い圧縮強度比を示し、かつ、水の種類の影響が大きいことが確認された。圧縮強度比でみると、N系列のサンプルが約110%〜140%に対して、BB系列のサンプルでは140〜180%であった。   From FIG. 5, all of the samples (N-WS, N-WCL, N-WCS, BB-WS, BB-WCL, BB-WCS) in which the chloride ion of the mixed water has a seawater equivalent concentration are used. On the 3rd and 7th days, a higher compressive strength ratio was shown compared to N-WP and BB-WP. In addition, it was confirmed that the BB series sample showed a higher compressive strength ratio and the influence of the type of water was larger than the N series sample. In terms of the compression strength ratio, the N series samples were about 110% to 140%, while the BB series samples were 140 to 180%.

また、材齢28日以降においては、練り混ぜ水の種類による影響は小さいことが確認された。そして、BB系列の各サンプルは、N系列の各サンプルに比べて材齢28日以降の強度が低くなる傾向が確認された。   In addition, after 28 days of age, it was confirmed that the influence of the kind of mixed water was small. And each BB series sample confirmed the tendency for the intensity | strength after 28 days of age to become low compared with each N series sample.

次に、図6(a)に示すように、BB系列の各サンプルについて、人工海水を用いたサンプル(BB−WS)の圧縮強度を1.00として圧縮強度比を求めた。同様に、図6(b)に示すように、水道水を用いたサンプル(BB−WP)の圧縮強度を1.00として圧縮強度比を求めた。   Next, as shown to Fig.6 (a), the compression strength ratio was calculated | required by setting the compression strength of the sample (BB-WS) using artificial seawater to 1.00 about each sample of BB series. Similarly, as shown in FIG.6 (b), the compression strength ratio was calculated | required by setting the compression strength of the sample (BB-WP) using a tap water to 1.00.

図6(a)に示すように、7日までの初期材齢において、BB−WCSはBB−WCLよりも圧縮強度比で0.01(1%)高く、182日の長期材齢において、BB−WCSはBB−WCLよりも圧縮強度比で0.05(5%)高くなった。また、図6(b)に示すように、7日までの初期材齢において、BB−WCSはBB−WCLよりも圧縮強度比で0.02(2%)〜0.03(3%)高く、182日の長期材齢において、BB−WCSはBB−WCLよりも圧縮強度比で0.05(5%)高くなった。   As shown in FIG. 6 (a), BB-WCS is 0.01 (1%) higher in compressive strength ratio than BB-WCL at an initial age of up to 7 days. -WCS was 0.05 (5%) higher in compressive strength ratio than BB-WCL. Moreover, as shown in FIG.6 (b), BB-WCS is 0.02 (2%)-0.03 (3%) higher in compressive strength ratio than BB-WCL in the initial age to 7th. BB-WCS was 0.05 (5%) higher in compressive strength ratio than BB-WCL at the long term age of 182 days.

この結果からも、練り混ぜ水に関し、塩化物イオンだけを海水相当濃度にするよりも、塩化物イオンと硫酸イオンの両方を海水相当濃度にした方が、長期強度を一層向上できることが確認された。   From this result, it was also confirmed that long-term strength can be further improved by mixing both chloride ions and sulfate ions with seawater equivalent concentration with respect to kneaded water rather than only chloride ions with seawater equivalent concentration. .

次に、練り混ぜ水の種類が硬化体の細孔構造に与える影響について説明する。図7(a)には、N系列の各サンプルにおける材齢毎の細孔量と平均細孔直径を示す。また、図7(b)には、BB系列の各サンプルにおける材齢毎の細孔量と平均細孔直径を示す。   Next, the effect of the type of kneading water on the pore structure of the cured body will be described. FIG. 7 (a) shows the amount of pores and the average pore diameter for each age in each N-series sample. Moreover, in FIG.7 (b), the amount of pores and average pore diameter for every age in each sample of BB series are shown.

N系列に関し、練り混ぜ水の塩化物イオンが海水相当濃度とされたサンプル(N−WS,N−WCL,N−WCS)と、それ以外のサンプル(N−WP,N−WSO)とを比較した。50−1000nmの細孔量に関し、前者のサンプルでは、何れの材齢においても後者のサンプルよりも大きく減少した。反対に、6−50nmの細孔量に関し、前者のサンプルでは、何れの材齢においても後者のサンプルよりも増加した。さらに、平均細孔直径に関し、前者のサンプルでは、何れの材齢においても後者のサンプルよりも小さくなった。   Compare N-series samples (N-WS, N-WCL, N-WCS) with mixed water chloride ion equivalent to seawater and other samples (N-WP, N-WSO) did. Regarding the amount of pores of 50-1000 nm, the former sample was greatly reduced compared to the latter sample at any age. On the other hand, regarding the amount of pores of 6-50 nm, the former sample increased more than the latter sample at any age. Furthermore, regarding the average pore diameter, the former sample was smaller than the latter sample at any age.

同様に、BB系列に関しても、練り混ぜ水の塩化物イオンが海水相当濃度とされたサンプル(BB−WS,BB−WCL,BB−WCS)と、それ以外のサンプル(BB−WP,BB−WSO)とを比較した。材齢7日ではN系列と同様の傾向を示すことが確認された。そして、材齢28日や91日においては、練り混ぜ水の種類の影響は小さいものの、50nm以下の細孔量がN系列よりも多いことから、各サンプルは十分に緻密化されていることが確認された。   Similarly, with regard to the BB series, the sample (BB-WS, BB-WCL, BB-WCS) in which the chloride ion of the mixing water has a concentration equivalent to seawater, and the other samples (BB-WP, BB-WSO) ). It was confirmed that the same tendency as that of the N series was exhibited at the age of 7 days. And at the age of 28 days or 91 days, although the influence of the kind of the mixed water is small, the amount of pores of 50 nm or less is larger than that of the N series, so that each sample is sufficiently densified. confirmed.

これらの結果から、塩化物イオンが海水相当濃度とされた練り混ぜ水を用いることで、少なくとも7日までの短期材齢については、結合材の種類に関わらず硬化体を緻密化できることが確認された。また、結合材として高炉セメントを用いることで、長期材齢における緻密化を促進できることが確認された。   From these results, it is confirmed that the hardened body can be densified regardless of the type of the binder for short-term ages up to 7 days by using the kneaded water in which chloride ions have a concentration equivalent to seawater. It was. Moreover, it was confirmed that densification in a long-term age can be promoted by using blast furnace cement as a binder.

以上の試験結果を総括すると、次のことがいえる。   Summarizing the above test results, the following can be said.

まず、セメント及び骨材を含んだ構成材料の練り混ぜに用いられる練り混ぜ水として、塩化物イオン濃度及び硫酸イオン濃度が海水相当濃度まで高められた水を用いることで、海水で練ったセメント系硬化材と同等なセメント系硬化材が作製できる。すなわち、硬化時における早期強度に優れ、緻密な硬化体を得ることのできるセメント系硬化材が作製できる。   First, cement water kneaded with seawater by using water whose chloride ion concentration and sulfate ion concentration are increased to seawater equivalent concentration as kneading water used for kneading the constituent materials including cement and aggregate. A cement-type hardener equivalent to the hardener can be produced. That is, it is possible to produce a cement-based curing material that has excellent early strength at the time of curing and can obtain a dense cured body.

そして、練り混ぜ水に関し、海水中に種々存在するイオンの中から塩化物イオンと硫酸イオンの2種類を選択していることから、人工海水のように多種のイオンを水に溶存させる必要はなく、容易に作製できる。これにより、海水や海砂の入手が困難な場所であっても、セメント系硬化材を容易に作製できる。   And with regard to the kneaded water, since two types of chloride ion and sulfate ion are selected from various ions present in seawater, there is no need to dissolve various ions in water like artificial seawater. Can be easily manufactured. Thereby, even if it is a place where acquisition of seawater and sea sand is difficult, a cement hardening material can be easily produced.

また、入手が容易で水道水に対する溶解度の高い塩化ナトリウムを塩化物イオンの供給源として用い、同じく入手が容易で水道水に対する溶解度の高い硫酸ナトリウムを硫酸イオンの供給源として用いているので、セメント系硬化材を一層容易に作製できる。   Also, sodium chloride, which is easily available and highly soluble in tap water, is used as a source of chloride ions, and sodium sulfate, which is also easily available and highly soluble in tap water, is used as a source of sulfate ions. A system hardening material can be produced more easily.

さらに、結合材として高炉セメントを用いた場合には、長期強度も高い硬化体を作製できる。   Furthermore, when blast furnace cement is used as the binder, a cured product with high long-term strength can be produced.

以上の説明は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれる。例えば、次のように構成してもよい。   The above description is intended to facilitate understanding of the present invention and is not intended to limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof. For example, you may comprise as follows.

前述の試験では、セメント系硬化材としてモルタルを例示したが、コンクリートであっても同様に実現できる。この場合、骨材として細骨材及び粗骨材を用いればよい。   In the above-described test, mortar was exemplified as the cement-based hardener, but it can be similarly realized even with concrete. In this case, a fine aggregate and a coarse aggregate may be used as the aggregate.

また、前述の試験では、塩化物イオンの供給源及び硫酸イオンの供給源として、塩化ナトリウム及び硫酸ナトリウムを用いたが、これらの薬品に限定されるものではない。例えば、カリウム塩等の他の水溶性塩を用いてもよい。   Moreover, in the above-mentioned test, sodium chloride and sodium sulfate were used as the supply source of chloride ions and the supply source of sulfate ions, but it is not limited to these chemicals. For example, other water-soluble salts such as potassium salt may be used.

また、前述の試験において、塩化物イオン濃度を1.8重量%(18g/L)とし、硫酸イオン濃度を0.2重量%(2g/L)としたが、これらの濃度に限定されるものではない。実海水における塩化物イオン濃度や硫酸イオン濃度は幅を有している。例えば、塩化物イオン濃度は1.9重量%、硫酸イオン濃度は0.27重量%ともいわれている。このため、塩化物イオン濃度や硫酸イオン濃度も実海水の含有範囲内で調整すればよい。   In the above test, the chloride ion concentration was set to 1.8 wt% (18 g / L) and the sulfate ion concentration was set to 0.2 wt% (2 g / L). is not. Chloride ion concentration and sulfate ion concentration in actual seawater have a range. For example, the chloride ion concentration is said to be 1.9% by weight and the sulfate ion concentration is said to be 0.27% by weight. For this reason, what is necessary is just to adjust a chloride ion concentration and a sulfate ion concentration within the content range of real seawater.

さらに、前述の実施形態では、混和剤について言及しなかったが、必要に応じて混和剤を構成材料に加えてもよい。   Furthermore, in the above-described embodiment, the admixture was not mentioned, but the admixture may be added to the constituent material as necessary.

Claims (3)

セメント系硬化材を作製すべく、セメント及び骨材を含んだ構成材料の練り混ぜに用いられる練り混ぜ水であって、
塩化物イオン濃度及び硫酸イオン濃度が海水相当濃度まで高められていることを特徴とするセメント系硬化材用練り混ぜ水。
Mixing water used for mixing components including cement and aggregate to produce a cement-based hardener,
A mixed water for cement-based hardeners, characterized in that the chloride ion concentration and the sulfate ion concentration are increased to seawater equivalent concentrations.
塩化ナトリウム及び硫酸ナトリウムを水道水に溶解することにより、前記塩化物イオン濃度及び前記硫酸イオン濃度を高めたことを特徴とする請求項1に記載のセメント系硬化材用練り混ぜ水。   The mixed water for cement-based hardener according to claim 1, wherein the chloride ion concentration and the sulfate ion concentration are increased by dissolving sodium chloride and sodium sulfate in tap water. 前記セメントが高炉セメントであることを特徴とする請求項1又は2に記載のセメント系硬化材用練り混ぜ水。   The cement-based hardener mixing water according to claim 1 or 2, wherein the cement is a blast furnace cement.
JP2013097503A 2013-05-07 2013-05-07 Mixing water for cement-based hardener to increase strength Active JP6277599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013097503A JP6277599B2 (en) 2013-05-07 2013-05-07 Mixing water for cement-based hardener to increase strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013097503A JP6277599B2 (en) 2013-05-07 2013-05-07 Mixing water for cement-based hardener to increase strength

Publications (2)

Publication Number Publication Date
JP2014217990A true JP2014217990A (en) 2014-11-20
JP6277599B2 JP6277599B2 (en) 2018-02-14

Family

ID=51936933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013097503A Active JP6277599B2 (en) 2013-05-07 2013-05-07 Mixing water for cement-based hardener to increase strength

Country Status (1)

Country Link
JP (1) JP6277599B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01286946A (en) * 1988-05-13 1989-11-17 Nittetsu Cement Co Ltd White hydraulic material
US5284513A (en) * 1992-10-22 1994-02-08 Shell Oil Co Cement slurry and cement compositions
JP2001163656A (en) * 1999-12-03 2001-06-19 Tajima Roofing Co Ltd Hydraulic composition and building material produced from the same
JP2012126627A (en) * 2010-12-17 2012-07-05 Ohbayashi Corp Concrete structure constructed with seawater-mixed concrete and method for designing concrete structure
JP2012126628A (en) * 2010-12-17 2012-07-05 Ohbayashi Corp Seawater-mixed concrete and concrete structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01286946A (en) * 1988-05-13 1989-11-17 Nittetsu Cement Co Ltd White hydraulic material
US5284513A (en) * 1992-10-22 1994-02-08 Shell Oil Co Cement slurry and cement compositions
JP2001163656A (en) * 1999-12-03 2001-06-19 Tajima Roofing Co Ltd Hydraulic composition and building material produced from the same
JP2012126627A (en) * 2010-12-17 2012-07-05 Ohbayashi Corp Concrete structure constructed with seawater-mixed concrete and method for designing concrete structure
JP2012126628A (en) * 2010-12-17 2012-07-05 Ohbayashi Corp Seawater-mixed concrete and concrete structure

Also Published As

Publication number Publication date
JP6277599B2 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
JP2017149595A (en) Hardening method of waste gypsum
CN109455992A (en) A kind of machine-made sand concrete and preparation method thereof
CN103896527A (en) Lightweight high-strength cement based composite material
JP5310193B2 (en) Method for producing cement composition
CN105084837A (en) Sea sand powder concrete
CN105272004A (en) Light-weight high-strength cement-based composite material
KR20140027981A (en) Cementitious binders containing pozzolanic materials
Reddy et al. Partial replacement of cement in concrete with sugarcane bagasse ash and its behaviour in aggressive environments
JP6404629B2 (en) High fluidity retention type underwater non-separable grout composition
JP5626420B2 (en) Cement composition
CN107324713B (en) A kind of self-compaction concrete filled steel tube and preparation method thereof
JP2009269786A (en) Hydraulic composition and concrete using the hydraulic composition
JP5053572B2 (en) Cement-based solidification material and solidification treatment method
Sakthivel et al. Experimental investigation on behaviour of nano concrete
Olonade et al. Effects of sulphuric acid on the compressive strength of blended cement-cassava peel ash concrete
JP2013249214A (en) Underwater anti-washout non-shrink grout
KR20130087663A (en) High durable concrete containing high volume slag
JP6277599B2 (en) Mixing water for cement-based hardener to increase strength
MX2021011516A (en) Aluminate-enhanced type i portland cements with short setting times and cement boards produced therefrom.
JP2015063420A (en) Salt damage-resistant cement hardened body
Bachtiar et al. Microstructure characteristics of self compacting concrete using sea water
JP2015134697A (en) concrete composition
JP2012214317A (en) Slag hardening composition and creating method thereof
CN103755253A (en) Novel concrete
KR20140112841A (en) nature-friendly concrete comprising Cement zero binder for floor finishing work

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180101

R150 Certificate of patent or registration of utility model

Ref document number: 6277599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150