JP2014215206A5 - - Google Patents

Download PDF

Info

Publication number
JP2014215206A5
JP2014215206A5 JP2013093681A JP2013093681A JP2014215206A5 JP 2014215206 A5 JP2014215206 A5 JP 2014215206A5 JP 2013093681 A JP2013093681 A JP 2013093681A JP 2013093681 A JP2013093681 A JP 2013093681A JP 2014215206 A5 JP2014215206 A5 JP 2014215206A5
Authority
JP
Japan
Prior art keywords
pressure sensor
value
pressure
capacitance value
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013093681A
Other languages
Japanese (ja)
Other versions
JP5933480B2 (en
JP2014215206A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2013093681A priority Critical patent/JP5933480B2/en
Priority claimed from JP2013093681A external-priority patent/JP5933480B2/en
Priority to US14/154,813 priority patent/US9395258B2/en
Priority to CN201410100511.0A priority patent/CN104124244B/en
Publication of JP2014215206A publication Critical patent/JP2014215206A/en
Publication of JP2014215206A5 publication Critical patent/JP2014215206A5/ja
Application granted granted Critical
Publication of JP5933480B2 publication Critical patent/JP5933480B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

次に、熱酸化を施すことによって、シリコン窒化膜が除去された部分にシリコン酸化膜が形成される。これにより、第1ウェル領域12、第3ウェル領域14の表面に比較的厚いシリコン酸化膜が形成され、続いて、シリコン窒化膜が除去される。次に、比較的厚いシリコン酸化膜を注入マスクとして、MOS領域の第2ウェル領域13(図1参照)を形成するためのn型の不純物(たとえばリン)が注入される。 Then, by performing a thermal acid reduction, silicon oxide film is formed in a portion where the silicon nitride film is removed. Thereby, a relatively thick silicon oxide film is formed on the surfaces of the first well region 12 and the third well region 14, and then the silicon nitride film is removed. Next, n-type impurities (for example, phosphorus) for forming the second well region 13 (see FIG. 1) of the MOS region are implanted using the relatively thick silicon oxide film as an implantation mask.

こうして、図2に示すように、圧力センサ領域16ではフィールド酸化膜19が形成され、MOS領域17ではフィールド酸化膜15、19が形成される。フィールド酸化膜15、19の膜厚は、0.2〜1.0μm程度である。なお、シリコン窒化膜が除去された位置には、残された下敷酸化膜21が位置している。フィールド酸化膜15、19によって規定された領域内に形成されるMOSトランジスタ等の半導体素子が、フィールド酸化膜15、19とその直下に形成されたチャネルストッパー20によって電気的に絶縁されることになる。その後、下敷酸化膜21が除去される。 In this way, as shown in FIG. 2, the field oxide film 19 is formed in the pressure sensor region 16, and the field oxide films 15 and 19 are formed in the MOS region 17. The thickness of the field oxide films 15 and 19 is about 0.2 to 1.0 μm. Note that the remaining underlying oxide film 21 is located at the position where the silicon nitride film is removed. A semiconductor element such as a MOS transistor formed in a region defined by the field oxide films 15 and 19 is electrically insulated by the field oxide films 15 and 19 and a channel stopper 20 formed immediately below the field oxide films 15 and 19. . Thereafter, the underlying oxide film 21 is removed.

上述した半導体圧力センサでは、圧力センサ領域16における可動電極39の表面側を、開口部54を介して外部空間に開放させることによって、外部の圧力に対応して可動電極39が変位し、固定電極23と可動電極39との間隔(ギャップ)が変化する。半導体圧力センサでは、この間隔の変化を容量値の変化として検出することによって、圧力値が測定される。また、可動電極39の直下に位置する真空室51の圧力を基準圧力とすることで、この半導体圧力センサを絶対圧センサとして機能させることができる。 In the semiconductor pressure sensor described above, by opening the surface side of the movable electrode 39 in the pressure sensor region 16 to the external space through the opening 54, the movable electrode 39 is displaced corresponding to the external pressure, and the fixed electrode The distance (gap) between 23 b and the movable electrode 39 changes. In the semiconductor pressure sensor, the pressure value is measured by detecting the change in the interval as the change in the capacitance value. Further, by setting the pressure in the vacuum chamber 51 located directly below the movable electrode 39 as a reference pressure, this semiconductor pressure sensor can function as an absolute pressure sensor.

つまり、上述した半導体圧力センサは、容量の変化を圧力値として測定する容量式の圧力センサであり、容量値は、可動電極39と固定電極23との間の間隔の変化を容量値の変化として圧力が測定される。容量値として、より正確には、固定電極23と真空室51との間に位置する第1固定電極保護膜25bおよび第2固定電極保護膜27bのそれぞれの容量値(容量値Aおよび容量値B)、可動電極39と真空室51との間に位置する酸化膜35、38の容量値(容量値C)、ならびに、真空室51の容量値(容量値D)を合わせた容量値(合計値)である。このうち、外部の圧力によって容量が変化するのは真空室51の容量値Dだけであるため、圧力値をより精度よく測定するためには、容量値A〜Cのそれぞれの初期の容量値(初期値)を正確に把握する必要がある。 That is, the semiconductor pressure sensor described above, a pressure sensor of capacitive measuring changes in capacitance as the pressure value, the capacitance value, the change of the capacitance value changes in the distance between the fixed electrode 23 b and the movable electrode 39 As the pressure is measured. More precisely, the capacitance values (capacitance value A and capacitance value) of the first fixed electrode protective film 25b and the second fixed electrode protective film 27b located between the fixed electrode 23b and the vacuum chamber 51 are more accurately described. B) The capacitance value (capacitance value C) of the oxide films 35 and 38 positioned between the movable electrode 39 and the vacuum chamber 51 and the capacitance value (total value) of the vacuum chamber 51 (capacitance value D). Value). Among these, the capacity is changed only by the capacity value D of the vacuum chamber 51 due to the external pressure. Therefore, in order to measure the pressure value more accurately, the initial capacity values of the capacity values A to C ( It is necessary to accurately grasp the initial value.

さらに、圧力センサ領域16の犠牲膜30dは、MOS領域17におけるpチャネル型のMOSトランジスタのゲート電極30a、nチャネル型のMOSトランジスタのゲート電極30bおよびEPROMのゲート電極30cを形成する工程において同時に同じ材料から形成される。これらの工程の関係は、いずれも圧力センサを形成するための専用の工程が不要であることを意味している。 Further, the sacrificial film 30d in the pressure sensor region 16 is simultaneously the same in the step of forming the gate electrode 30a of the p-channel type MOS transistor, the gate electrode 30b of the n-channel type MOS transistor, and the gate electrode 30c of the EPROM in the MOS region 17. Formed from material. The relationship between these processes means that a dedicated process for forming the pressure sensor is unnecessary.

JP2013093681A 2013-04-26 2013-04-26 Semiconductor pressure sensor and manufacturing method thereof Expired - Fee Related JP5933480B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013093681A JP5933480B2 (en) 2013-04-26 2013-04-26 Semiconductor pressure sensor and manufacturing method thereof
US14/154,813 US9395258B2 (en) 2013-04-26 2014-01-14 Semiconductor pressure sensor and fabrication method thereof
CN201410100511.0A CN104124244B (en) 2013-04-26 2014-03-18 Semiconductor pressure sensor and its manufacture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013093681A JP5933480B2 (en) 2013-04-26 2013-04-26 Semiconductor pressure sensor and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2014215206A JP2014215206A (en) 2014-11-17
JP2014215206A5 true JP2014215206A5 (en) 2015-06-18
JP5933480B2 JP5933480B2 (en) 2016-06-08

Family

ID=51769602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013093681A Expired - Fee Related JP5933480B2 (en) 2013-04-26 2013-04-26 Semiconductor pressure sensor and manufacturing method thereof

Country Status (3)

Country Link
US (1) US9395258B2 (en)
JP (1) JP5933480B2 (en)
CN (1) CN104124244B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6119615B2 (en) 2014-01-08 2017-04-26 三菱電機株式会社 Manufacturing method of semiconductor device
US9340412B2 (en) * 2014-07-28 2016-05-17 Ams International Ag Suspended membrane for capacitive pressure sensor
JP6433349B2 (en) * 2015-03-19 2018-12-05 三菱電機株式会社 Semiconductor pressure sensor and manufacturing method thereof
CN107709227A (en) * 2015-04-21 2018-02-16 加泰罗尼亚理工大学 Including the integrated circuit and its preparation method of the multilayer micro mechanical structure for improving q&r with the through hole by using modification
US9846097B2 (en) * 2015-11-03 2017-12-19 Nxp Usa, Inc. Pressure sensor with variable sense gap
JP6532429B2 (en) * 2016-06-01 2019-06-19 三菱電機株式会社 Semiconductor pressure sensor
US10199424B1 (en) * 2017-07-19 2019-02-05 Meridian Innovation Pte Ltd Thermoelectric-based infrared detector having a cavity and a MEMS structure defined by BEOL metals lines
CN111684252B (en) * 2017-11-17 2022-02-01 希奥检测有限公司 Capacitive pressure sensor and other devices with suspended membrane and rounded corners at anchor edges

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19638969C2 (en) * 1996-09-23 2002-05-16 Mosel Vitelic Inc EEPROM with a polydistance floating gate and process for its production
US5933741A (en) * 1997-08-18 1999-08-03 Vanguard International Semiconductor Corporation Method of making titanium silicide source/drains and tungsten silicide gate electrodes for field effect transistors
US6472243B2 (en) 2000-12-11 2002-10-29 Motorola, Inc. Method of forming an integrated CMOS capacitive pressure sensor
US7429495B2 (en) * 2002-08-07 2008-09-30 Chang-Feng Wan System and method of fabricating micro cavities
DE102009027132A1 (en) * 2009-06-24 2010-12-30 Robert Bosch Gmbh Inductive Delta-C evaluation for pressure sensors
WO2011055734A1 (en) * 2009-11-04 2011-05-12 ローム株式会社 Pressure sensor and method for manufacturing pressure sensor
JP5504187B2 (en) * 2011-01-26 2014-05-28 株式会社東芝 Semiconductor device and manufacturing method thereof
JP5832417B2 (en) 2012-12-07 2015-12-16 三菱電機株式会社 Semiconductor pressure sensor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2014215206A5 (en)
JP2015187850A5 (en) Touch sensor
KR101921843B1 (en) Suspended membrane for capacitive pressure sensor
US9921238B2 (en) Sensor and its manufacturing method
US20170315008A1 (en) Capacitive Pressure Sensor and Method for its Production
WO2014200753A3 (en) Recessed field plate transistor structures
JP2015114318A (en) Pressure sensor with built-in calibration capability
US9488542B2 (en) Pressure sensor having multiple pressure cells and sensitivity estimation methodology
TWI630169B (en) Method of manufacturing amlcroelectromechanical system device
US9285404B2 (en) Test structure and methodology for estimating sensitivity of pressure sensors
JP2014115153A5 (en)
CN105222931A (en) MEMS capacitive pressure transducer and manufacture method thereof
TW201614736A (en) Manufacturing method of semiconductor device and semiconductor device
JP2016176755A5 (en)
JP2016085124A5 (en)
US9793055B2 (en) Electronic device and method of manufacturing the same
KR100853791B1 (en) Method for Measuring Thickness of Semiconductor Device
RU2015118120A (en) INTEGRAL DIAGRAM WITH NANO-CONDUCTIVE SENSORS, MEASURING DEVICE, METHOD OF MEASUREMENT AND METHOD OF MANUFACTURE
WO2017103683A3 (en) Microbolometer structure
JP4771329B2 (en) Capacitive sensor and manufacturing method thereof
CN103915360A (en) Method for detecting transistor overlap capacitance and method for eliminating transistor overlap capacitance
WO2018224403A8 (en) Method of fabricating a monolithic sensor device from a layered structure
US9972723B2 (en) Piezoelectric thin-film based flexible sensing device, method for fabrication thereof and method for operating the same
De Sagazan et al. MOSFET on thin Si diaphragm as pressure sensor
KR100850140B1 (en) Test structure for sampling overlap capacitance of metal-oxide semiconductor field effect transistor and method therefor