JP2014214995A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2014214995A
JP2014214995A JP2013093862A JP2013093862A JP2014214995A JP 2014214995 A JP2014214995 A JP 2014214995A JP 2013093862 A JP2013093862 A JP 2013093862A JP 2013093862 A JP2013093862 A JP 2013093862A JP 2014214995 A JP2014214995 A JP 2014214995A
Authority
JP
Japan
Prior art keywords
pipe
supercooling
heat exchanger
liquid refrigerant
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013093862A
Other languages
Japanese (ja)
Other versions
JP6081283B2 (en
Inventor
裕昭 金子
Hiroaki Kaneko
裕昭 金子
和彦 谷
Kazuhiko Tani
和彦 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2013093862A priority Critical patent/JP6081283B2/en
Publication of JP2014214995A publication Critical patent/JP2014214995A/en
Application granted granted Critical
Publication of JP6081283B2 publication Critical patent/JP6081283B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • F24F11/02
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • F25B41/04

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner capable of effectively using supercooling circuit not only during a cooling operation but also during a heating operation.SOLUTION: An air conditioner comprises: a heat source machine; and a use-side unit connected to the heat source machine via a gas pipe and a fluid pipe. The heat source machine includes: a compressor; a heat source-side heat exchanger; a first pipe that enables liquid refrigerant to flow between the heat source-side heat exchanger and the liquid pipe; and a supercooling circuit provided in the first pipe. The supercooling circuit includes: a supercooling heat exchanger for turning the liquid refrigerant flowing in the first pipe into a supercooled state; a second pipe that connects the first pipe to the supercooling heat exchanger and in which a part of the liquid refrigerant flowing in the first pipe flows; a third pipe connecting the second pipe to the compressor and feeding the liquid refrigerant flowing in the second pipe to the compressor; and switching means switching a flow direction of the liquid refrigerant flowing in the second pipe from the first pipe over between a flow to the supercooling heat exchanger and a flow to the compressor via the third pipe.

Description

本発明は、過冷却回路を有する空気調和装置に関する。   The present invention relates to an air conditioner having a supercooling circuit.

従来から、過冷却回路を有する熱源機と、利用側ユニットとを備え、熱源機と利用側ユニットが冷媒接続配管により接続された空気調和装置が知られている(例えば、特許文献1参照。)。過冷却回路は、流量調整弁と過冷却熱交換器とを備え、冷房運転時に冷却性能を向上させるために用いられる。   2. Description of the Related Art Conventionally, an air conditioner that includes a heat source device having a supercooling circuit and a use side unit, and in which the heat source device and the use side unit are connected by a refrigerant connection pipe is known (for example, see Patent Document 1). . The supercooling circuit includes a flow rate adjustment valve and a supercooling heat exchanger, and is used to improve cooling performance during cooling operation.

そして、ビル用マルチエアコンのように、利用側ユニットが多く接続され、ガス冷媒接続配管が長く圧力損失の影響を顕著に受ける空気調和装置の場合は、流量調整弁を調整することで、過冷却熱交換器に利用側ユニットに流れる冷媒の一部をバイパスさせ、過冷却度を増加させかつ圧力損失を低下させることによって、冷房性能を向上させている。   And in the case of an air conditioner that has many use-side units connected and has long gas refrigerant connection pipes that are significantly affected by pressure loss, such as a building multi-air conditioner, it is possible to overcool by adjusting the flow rate adjustment valve. Cooling performance is improved by bypassing a part of the refrigerant flowing to the use side unit in the heat exchanger, increasing the degree of supercooling, and reducing the pressure loss.

特開2003−269808号公報JP 2003-269808 A

しかし、上記の空気調和装置では、過冷却回路は冷房運転時には活用されるものの、暖房運転時においては、圧力損失を低下させる役割は必要なく、有効活用できていなかった。   However, in the above-described air conditioner, the supercooling circuit is utilized during the cooling operation, but during the heating operation, the role of reducing the pressure loss is not necessary and cannot be effectively utilized.

本発明は、上述の課題に鑑みてなされたもので、その目的は、冷房運転時だけでなく暖房運転時にも過冷却回路を有効活用することができる空気調和装置を提供することである。   The present invention has been made in view of the above-described problems, and an object thereof is to provide an air conditioner that can effectively utilize a supercooling circuit not only during cooling operation but also during heating operation.

上記課題を解決すべく、本発明の一態様である空気調和装置は、熱源機と、前記熱源機にガス配管及び液配管を介して接続され、空気と前記熱源機から供給される冷媒との間で熱交換を行う利用側ユニットと、を備える空気調和装置であって、前記熱源機は、前記冷媒を吐出する圧縮機と、前記冷媒と外気との間で熱交換するための熱源側熱交換器と、前記熱源側熱交換器と前記液配管との間での液冷媒の流動を可能にする第1の配管と、前記熱源側熱交換器から前記第1の配管へ流れる前記液冷媒の流量を調整可能な熱源用流量調整弁と、前記第1の配管に設けられた過冷却回路と、を備え、前記過冷却回路は、前記第1の配管を流れる前記液冷媒を過冷却状態にするための過冷却熱交換器と、前記第1の配管と前記過冷却熱交換器とを接続し、前記第1の配管を流れる液冷媒の一部が流入する第2の配管と、前記第2の配管と前記圧縮機とを接続し、前記第2の配管を流れる前記液冷媒を前記圧縮機へ流すための第3の配管と、前記第2の配管において前記第3の配管が前記第2の配管に接続している接続部よりも前記液冷媒の流れの上流側に設けられ、前記第2の配管から前記過冷却熱交換器へ流れる前記液冷媒の流量、又は、前記第2の配管から前記第3の配管へ流れる前記液冷媒の流量を調整可能な過冷却用流量調整弁と、前記第1の配管から前記第2の配管へ流入する前記液冷媒を、前記過冷却熱交換器へ流すか、又は、前記第3の配管を介して前記圧縮機へ流すかを切り替え可能な切替手段とを備える。   In order to solve the above-described problems, an air conditioner according to one aspect of the present invention includes a heat source device, air connected to the heat source device via a gas pipe and a liquid pipe, and air and a refrigerant supplied from the heat source device. A heat-source side heat for exchanging heat between the compressor that discharges the refrigerant and the refrigerant and outside air. An exchanger, a first pipe that enables a liquid refrigerant to flow between the heat source side heat exchanger and the liquid pipe, and the liquid refrigerant that flows from the heat source side heat exchanger to the first pipe. And a supercooling circuit provided in the first pipe, wherein the supercooling circuit is in a supercooled state of the liquid refrigerant flowing through the first pipe. A supercooling heat exchanger for connecting the first pipe and the supercooling heat exchanger. And connecting the second pipe into which a part of the liquid refrigerant flowing through the first pipe flows, the second pipe and the compressor, and compressing the liquid refrigerant flowing through the second pipe. A third pipe for flowing into the machine, and the third pipe in the second pipe is provided on the upstream side of the flow of the liquid refrigerant with respect to the connection portion connected to the second pipe, A subcooling flow rate adjustment valve capable of adjusting a flow rate of the liquid refrigerant flowing from the second pipe to the supercooling heat exchanger or a flow rate of the liquid refrigerant flowing from the second pipe to the third pipe; The liquid refrigerant flowing into the second pipe from the first pipe can be switched to the supercooling heat exchanger or to the compressor via the third pipe. Switching means.

本発明によれば、冷房運転時だけでなく暖房運転時にも過冷却回路を有効活用することができる空気調和装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the air conditioning apparatus which can utilize a subcooling circuit effectively not only at the time of air_conditionaing | cooling operation but at the time of heating operation can be provided.

本発明の第1の実施の形態による空気調和装置の冷凍サイクル系統図である。It is a refrigerating cycle system diagram of the air harmony device by a 1st embodiment of the present invention. 図1の空気調和装置の冷房運転時の冷凍サイクル系統図である。It is a refrigerating cycle system diagram at the time of air_conditionaing | cooling operation of the air conditioning apparatus of FIG. 図1の空気調和装置の暖房運転時の冷凍サイクル系統図である。It is a refrigerating cycle system diagram at the time of heating operation of the air conditioning apparatus of FIG. 本発明の第2の実施の形態による空気調和装置の暖房運転時の冷凍サイクル系統図である。It is a refrigerating-cycle system diagram at the time of the heating operation of the air conditioning apparatus by the 2nd Embodiment of this invention. 図4に示した第2の実施の形態による空気調和装置の構成の一部を変更した空気調和装置の暖房運転時の冷凍サイクル系統図である。It is the refrigeration cycle system diagram at the time of the heating operation of the air conditioning apparatus which changed a part of structure of the air conditioning apparatus by 2nd Embodiment shown in FIG.

以下、本発明の第1の実施の形態について、図面に基づいて説明する。図1は、第1の実施の形態による空気調和装置100の冷凍サイクル系統図である。本実施の形態の空気調和装置100で使用する冷媒は、R32だけから構成される冷媒、又は、R32を50重量%以上含む冷媒であり、より好ましくはR32を70重量%以上含む冷媒である。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a first embodiment of the invention will be described with reference to the drawings. FIG. 1 is a refrigeration cycle system diagram of an air-conditioning apparatus 100 according to the first embodiment. The refrigerant used in the air-conditioning apparatus 100 of the present embodiment is a refrigerant composed only of R32 or a refrigerant containing 50% by weight or more of R32, and more preferably a refrigerant containing 70% by weight or more of R32.

図1に示すように、空気調和システム(空気調和装置)100は、熱源機12と、複数台の利用側ユニット16a、16b、16cから構成されている。なお、図1には、3台の利用側ユニットの設置となっているが、本来は、熱源機の容量にもよるが、さらに多くの利用側ユニットが接続可能である。また、アルファベットの添え字に関しては、基本的には各利用側ユニットの個々の部品であるという意味で用いているが、各部品を代表的に取り扱う場合においては、省略する場合がある。   As shown in FIG. 1, the air conditioning system (air conditioning apparatus) 100 includes a heat source unit 12 and a plurality of usage side units 16a, 16b, and 16c. In FIG. 1, three usage-side units are installed, but more usage-side units can be connected depending on the capacity of the heat source unit. In addition, the alphabetic subscripts are basically used in the sense that they are individual parts of each usage-side unit, but may be omitted when each part is representatively handled.

熱源機12は、主に、圧縮機1と、オイルセパレータ2と、キャピラリ3と、逆止弁4と、四方弁5と、熱源側熱交換器6と、送風機7と、流量調整弁8と、過冷却回路9と、アキュームレータ11と、ガス阻止弁19と、液阻止弁20と、配管30〜34とを備える。配管32は第1の配管に、配管33は第4の配管に、流量調整弁8は熱源用流量調整弁に相当する。   The heat source unit 12 mainly includes a compressor 1, an oil separator 2, a capillary 3, a check valve 4, a four-way valve 5, a heat source side heat exchanger 6, a blower 7, and a flow rate adjustment valve 8. The subcooling circuit 9, the accumulator 11, the gas blocking valve 19, the liquid blocking valve 20, and the pipes 30 to 34 are provided. The pipe 32 corresponds to a first pipe, the pipe 33 corresponds to a fourth pipe, and the flow rate adjustment valve 8 corresponds to a heat source flow rate adjustment valve.

圧縮機1とオイルセパレータ2とは配管30により接続され、四方弁5と熱源側熱交換器6とは配管31により接続され、流量調整弁8と液阻止弁9とは配管32により接続され、四方弁5とアキュームレータ11とは配管33により接続される。圧縮機1は、圧縮過程にインジェクション可能に構成される。四方弁8を切り替えることで、冷媒の流れが変化し、冷房運転と暖房運転が切り替わる。   The compressor 1 and the oil separator 2 are connected by a pipe 30, the four-way valve 5 and the heat source side heat exchanger 6 are connected by a pipe 31, and the flow rate adjusting valve 8 and the liquid blocking valve 9 are connected by a pipe 32, The four-way valve 5 and the accumulator 11 are connected by a pipe 33. The compressor 1 is configured to be capable of being injected into the compression process. By switching the four-way valve 8, the flow of the refrigerant changes, and the cooling operation and the heating operation are switched.

過冷却回路9は、過冷却熱交換器9Aと、流量調整弁10と、第1の電磁弁21aと、第2の電磁弁21bと、配管35〜39とを有する。配管35は配管32と流量調整弁10とを接続し、配管36は流量調整弁10と第1の電磁弁21aと第2の電磁弁21bとを接続し、配管37は第1の電磁弁21aと過冷却熱交換器9Aとを接続し、配管38は過冷却熱交換器9Aと配管33とを接続し、配管39は第2の電磁弁21bと圧縮機1とを接続する。流量調整弁10は過冷却用流量調整弁に、第1の電磁弁21a及び第2の電磁弁21bは切替手段に相当する。   The supercooling circuit 9 includes a supercooling heat exchanger 9A, a flow rate adjustment valve 10, a first electromagnetic valve 21a, a second electromagnetic valve 21b, and pipes 35 to 39. The pipe 35 connects the pipe 32 and the flow rate adjustment valve 10, the pipe 36 connects the flow rate adjustment valve 10, the first electromagnetic valve 21a, and the second electromagnetic valve 21b, and the pipe 37 sets the first electromagnetic valve 21a. And the supercooling heat exchanger 9A are connected, the pipe 38 connects the supercooling heat exchanger 9A and the pipe 33, and the pipe 39 connects the second electromagnetic valve 21b and the compressor 1. The flow rate adjusting valve 10 corresponds to a subcooling flow rate adjusting valve, and the first electromagnetic valve 21a and the second electromagnetic valve 21b correspond to switching means.

配管36は、流量調整弁10と第1の電磁弁21aとを接続する主流部36Aと、主流部36Aから分岐し第2の電磁弁21bに接続する分岐部36Bとを有し、主流部36Aと分岐部36Bとは接続部36Cにおいて接続される。また、配管35、配管36の主流部36A、及び配管37は第2の配管に、配管33は第4の配管に、配管38は第5の配管に、配管36の分岐部36B及び配管39は第3の配管に相当する。第1の電磁弁21aは、第1の配管の流路を開閉し、第2の電磁弁21bは、第3の配管の流路を開閉する。   The pipe 36 includes a main flow portion 36A that connects the flow rate adjusting valve 10 and the first electromagnetic valve 21a, and a branch portion 36B that branches from the main flow portion 36A and connects to the second electromagnetic valve 21b. And the branch portion 36B are connected at a connection portion 36C. In addition, the main flow part 36A and the pipe 37 of the pipe 35 and the pipe 36 are the second pipe, the pipe 33 is the fourth pipe, the pipe 38 is the fifth pipe, the branch part 36B and the pipe 39 of the pipe 36 are This corresponds to the third pipe. The first electromagnetic valve 21a opens and closes the flow path of the first pipe, and the second electromagnetic valve 21b opens and closes the flow path of the third pipe.

熱源機12は、更に、外気サーミスタ22と、熱交換器出口サーミスタ23と、吐出温度サーミスタ24と、バイパスサーミスタ25と、低圧圧力センサ26と、高圧圧力センサ27とを備える。外気サーミスタ22、熱交換器出口サーミスタ23、吐出温度サーミスタ24、及びバイパスサーミスタ25により検知される冷媒の温度と、低圧圧力センサ26及び高圧圧力センサ27により検知される冷媒の圧力とは、図示せぬ制御部に送信され、図示せぬ制御部は、流量調整弁8、10、15の開度、及び、第1の電磁弁21a、第2の電磁弁21bの開閉を制御する。   The heat source device 12 further includes an outside air thermistor 22, a heat exchanger outlet thermistor 23, a discharge temperature thermistor 24, a bypass thermistor 25, a low pressure sensor 26, and a high pressure sensor 27. The refrigerant temperature detected by the outside air thermistor 22, the heat exchanger outlet thermistor 23, the discharge temperature thermistor 24, and the bypass thermistor 25, and the refrigerant pressure detected by the low pressure sensor 26 and the high pressure sensor 27 are not shown. The control unit (not shown) controls the opening degree of the flow rate adjusting valves 8, 10, 15 and the opening / closing of the first electromagnetic valve 21a and the second electromagnetic valve 21b.

外気サーミスタ22は、送風機7の吸込口に配置され、熱交換器出口サーミスタ23は、熱源側熱交換器6の出口に配置され、吐出温度サーミスタ24は、配管30の圧縮機1の出口近傍に配置され、バイパスサーミスタ25は、配管38に配置されている。低圧圧力センサ26は、配管33のアキュームレータ11の流入側に配置され、高圧圧力センサ27は、配管30の圧縮機1の出口近傍に配置されている。   The outside air thermistor 22 is disposed at the suction port of the blower 7, the heat exchanger outlet thermistor 23 is disposed at the outlet of the heat source side heat exchanger 6, and the discharge temperature thermistor 24 is disposed near the outlet of the compressor 1 in the pipe 30. The bypass thermistor 25 is disposed in the pipe 38. The low pressure sensor 26 is disposed on the inflow side of the accumulator 11 in the pipe 33, and the high pressure sensor 27 is disposed in the vicinity of the outlet of the compressor 1 in the pipe 30.

熱源機12と利用側ユニット16とは、ガス接続配管17及び液接続配管18の接続配管により接続される。ガス接続配管17は、熱源機12のガス阻止弁19に接続され、液接続配管18は、熱源機12の液阻止弁20に接続される。ガス阻止弁19は、熱源機1とガス接続配管17の間の流路を開閉し、液阻止弁20は、熱源機1と液接続配管18の間の流路を開閉する。   The heat source device 12 and the use side unit 16 are connected by a connection pipe including a gas connection pipe 17 and a liquid connection pipe 18. The gas connection pipe 17 is connected to the gas blocking valve 19 of the heat source apparatus 12, and the liquid connection pipe 18 is connected to the liquid blocking valve 20 of the heat source apparatus 12. The gas blocking valve 19 opens and closes the flow path between the heat source unit 1 and the gas connection pipe 17, and the liquid blocking valve 20 opens and closes the flow path between the heat source unit 1 and the liquid connection pipe 18.

利用側ユニット16は、室内熱交換器13と、送風機14と、流量調整弁15とを備える。各利用側ユニット16は、流量調整弁15の開度を制御することで、各部屋の室内温度を個別に制御している。   The use side unit 16 includes an indoor heat exchanger 13, a blower 14, and a flow rate adjustment valve 15. Each use side unit 16 controls the indoor temperature of each room individually by controlling the opening degree of the flow rate adjusting valve 15.

また、本実施形態の空気調和システム100としては、各利用側ユニット16の吸込み温度あるいは冷媒温度と各部屋の設定温度との差より、利用側ユニット16の流量制御弁15の開度あるいは圧縮機1の周波数を制御して、任意の冷媒量を熱源機12から各利用側ユニット16に循環させることで、温度コントロールを行っている。   Moreover, as the air conditioning system 100 of this embodiment, the opening degree of the flow control valve 15 of the use side unit 16 or the compressor based on the difference between the suction temperature or refrigerant temperature of each use side unit 16 and the set temperature of each room. The temperature is controlled by controlling the frequency of 1 and circulating an arbitrary amount of refrigerant from the heat source unit 12 to each use side unit 16.

次に、空気調和システム100における冷房運転について説明する。図2は、空気調和システム100の冷房運転における冷媒の流れを示している。また、冷房運転時には、第1の電磁弁21aは開け、第2の電磁弁21bは閉じた状態である。   Next, the cooling operation in the air conditioning system 100 will be described. FIG. 2 shows the flow of the refrigerant in the cooling operation of the air conditioning system 100. Further, during the cooling operation, the first electromagnetic valve 21a is opened and the second electromagnetic valve 21b is closed.

冷房運転時には冷媒は図2に示す矢印方向に流れる。このとき、四方弁5は、圧縮機1の吐出側(高圧側)を室外熱交換器6のガス側へ接続され、ガス接続配管17を圧縮機1の吸入側(低圧側)へ接続される。   During the cooling operation, the refrigerant flows in the direction of the arrow shown in FIG. At this time, in the four-way valve 5, the discharge side (high pressure side) of the compressor 1 is connected to the gas side of the outdoor heat exchanger 6, and the gas connection pipe 17 is connected to the suction side (low pressure side) of the compressor 1. .

圧縮機1にて圧縮され配管30へ吐出されたガス冷媒は、オイルセパレータ2に流入し、オイルセパレータ2にて、ガス冷媒中の油が分離される。分離された油はキャピラリ3を介して圧縮機1の吸入側へと送られる。一方、オイルセパレータ2を通過したガス冷媒は、逆止弁4を抜けて四方弁5を通過し、配管31を介して複数の冷媒通路から構成される熱源側熱交換器6へと流入する。熱源側熱交換器6へと入ったガス冷媒は、送風機7により凝縮潜熱を放出して液化し、凝縮した液冷媒は、流量調整弁8で減圧され、配管32を流れる。   The gas refrigerant compressed by the compressor 1 and discharged to the pipe 30 flows into the oil separator 2, and the oil in the gas refrigerant is separated by the oil separator 2. The separated oil is sent to the suction side of the compressor 1 through the capillary 3. On the other hand, the gas refrigerant that has passed through the oil separator 2 passes through the check valve 4, passes through the four-way valve 5, and flows into the heat source side heat exchanger 6 including a plurality of refrigerant passages via the piping 31. The gas refrigerant entering the heat source side heat exchanger 6 is liquefied by releasing condensation latent heat by the blower 7, and the condensed liquid refrigerant is decompressed by the flow rate adjusting valve 8 and flows through the pipe 32.

そして、配管32を流れる液冷媒は、過冷却熱交換器9Aの上流で分岐する。分岐した一方の液冷媒は、液阻止弁20へ流れ、他方の液冷媒は、配管35を介して流量調整弁10へ流れる。   And the liquid refrigerant which flows through the piping 32 branches upstream of 9 A of supercooling heat exchangers. One of the branched liquid refrigerants flows to the liquid blocking valve 20, and the other liquid refrigerant flows to the flow rate adjusting valve 10 via the pipe 35.

液阻止弁20へ向かった液冷媒は、過冷却熱交換器9Aを通過して過冷却状態となった後、液阻止弁20を介して液接続配管18より各利用側ユニット16a、16b、16cへと送られる。利用側ユニット16では、液冷媒は、複数の冷媒通路から構成する利用側熱交換器13にて蒸発する。この際、利用側熱交換器13の出口の冷媒の過熱度が、所定の過熱度となるように、流量調整弁15の絞り量を調整する。利用側熱交換器13にて液冷媒の蒸発潜熱の量だけ、送風機14により各利用側ユニット16に送り込まれる雰囲気空気から吸熱することで、冷風が各部屋に送られ、冷房運転を行う。   The liquid refrigerant headed to the liquid blocking valve 20 passes through the supercooling heat exchanger 9A and enters a supercooled state, and then is connected to the respective use side units 16a, 16b, 16c from the liquid connection pipe 18 via the liquid blocking valve 20. Sent to. In the usage-side unit 16, the liquid refrigerant evaporates in the usage-side heat exchanger 13 configured from a plurality of refrigerant passages. At this time, the throttle amount of the flow rate adjustment valve 15 is adjusted so that the degree of superheat of the refrigerant at the outlet of the use side heat exchanger 13 becomes a predetermined degree of superheat. The use side heat exchanger 13 absorbs heat from the atmospheric air sent to each use side unit 16 by the blower 14 by the amount of latent heat of evaporation of the liquid refrigerant, whereby cool air is sent to each room to perform the cooling operation.

蒸発されたガス冷媒は、ガス接続配管17を通り、ガス阻止弁19を介して熱源機12へと流入する。熱源機12へと戻ったガス冷媒は、四方弁5を経由し、配管33を介してアキュームレータ11に流入し適切な吸入かわき度に調整され、配管34を介して圧縮機1の吸入側へと戻る。通常、本実施形態の空気調和システム100としては、各利用側ユニット16の吸込み温度あるいは冷媒温度と各部屋の設定温度との差より、利用側ユニット16の流量制御弁15の開度あるいは圧縮機1の周波数を制御して、任意の冷媒量を熱源機12から各利用側ユニット16に循環させることで、温度コントロールを行っている。   The evaporated gas refrigerant passes through the gas connection pipe 17 and flows into the heat source unit 12 through the gas blocking valve 19. The gas refrigerant that has returned to the heat source machine 12 passes through the four-way valve 5 and flows into the accumulator 11 through the pipe 33, is adjusted to an appropriate suction degree, and passes through the pipe 34 to the suction side of the compressor 1. Return. Usually, in the air conditioning system 100 of this embodiment, the opening degree of the flow control valve 15 of the use side unit 16 or the compressor is determined based on the difference between the suction temperature or refrigerant temperature of each use side unit 16 and the set temperature of each room. The temperature is controlled by controlling the frequency of 1 and circulating an arbitrary amount of refrigerant from the heat source unit 12 to each use side unit 16.

また、本実施の形態のような、数多くの利用側ユニット16が接続し、熱源機12と利用側ユニット16を接続する接続配管が極めて長くなる空気調和システム100においては、冷房運転時のガス接続配管17を通過する際に生じる圧力損失によって、圧縮機1に流入するガス冷媒の吸入過熱度が大きくなり冷房性能は大きく低下する。このような状態において、過冷却熱交換器9Aを使用することで、圧力損失の低減が見込める。   Moreover, in the air conditioning system 100 in which a large number of use-side units 16 are connected and the connection piping connecting the heat source unit 12 and the use-side unit 16 is extremely long as in the present embodiment, gas connection during cooling operation is performed. Due to the pressure loss that occurs when passing through the pipe 17, the suction superheat degree of the gas refrigerant flowing into the compressor 1 increases, and the cooling performance significantly decreases. In such a state, the pressure loss can be reduced by using the supercooling heat exchanger 9A.

一方、分岐した他方の液冷媒は、流量調整弁10により減圧され、第2の電磁弁21bが閉じられているので、配管36、第1の電磁弁21a、及び配管37を介して、過冷却熱交換器9Aに流入する。過冷却熱交換器9Aにおいて、液冷媒は流量調整弁8から液阻止弁20へ向う液冷媒との間で熱交換され、過熱状態となり、配管38を介して低圧側配管のアキュームレータ11へバイパスされる。この際、流量調整弁10により、過冷却熱交換器9Aを介し圧縮機1の吸入側へバイパスさせる冷媒の流量を調整する。このように、回冷却回路9の流量調整弁10は、冷房運転時に過冷却用流量調整弁として機能する。   On the other hand, the other branched liquid refrigerant is depressurized by the flow rate adjusting valve 10 and the second electromagnetic valve 21b is closed, so that it is supercooled via the pipe 36, the first electromagnetic valve 21a, and the pipe 37. It flows into the heat exchanger 9A. In the supercooling heat exchanger 9A, the liquid refrigerant exchanges heat with the liquid refrigerant from the flow rate adjusting valve 8 toward the liquid blocking valve 20, and becomes overheated, and is bypassed to the accumulator 11 of the low-pressure side pipe via the pipe 38. The At this time, the flow rate adjustment valve 10 adjusts the flow rate of the refrigerant to be bypassed to the suction side of the compressor 1 via the supercooling heat exchanger 9A. In this way, the flow rate adjustment valve 10 of the regenerative circuit 9 functions as a subcooling flow rate adjustment valve during the cooling operation.

図示せぬ制御部は、バイパスサーミスタ25に検知されるガス冷媒の温度と低圧圧力センサ26の圧力により、過熱度を検出し、その過熱度を所定の値に保つように制御している。これにより、過冷却熱交換器9Aの性能を最大に発揮するよう制御することができる。以上の制御により、熱源機12から利用側ユニット16へ流れる冷媒の流量が減少するので、利用側ユニット16へと接続されるガス接続配管17における圧力損失を低下させることができる。   A control unit (not shown) detects the degree of superheat based on the temperature of the gas refrigerant detected by the bypass thermistor 25 and the pressure of the low-pressure sensor 26 so as to keep the degree of superheat at a predetermined value. Thereby, it can control to exhibit the performance of 9 A of supercooling heat exchangers to the maximum. With the above control, the flow rate of the refrigerant flowing from the heat source device 12 to the use side unit 16 is reduced, so that the pressure loss in the gas connection pipe 17 connected to the use side unit 16 can be reduced.

次に、空気調和システム100における暖房運転について説明する。図3は、空気調和システム100の暖房運転における冷媒の流れを示している。暖房運転時には、第1の電磁弁21aは閉じ、第2の電磁弁21bは開けた状態である。   Next, the heating operation in the air conditioning system 100 will be described. FIG. 3 shows the flow of the refrigerant in the heating operation of the air conditioning system 100. During the heating operation, the first electromagnetic valve 21a is closed and the second electromagnetic valve 21b is opened.

暖房運転時には冷媒は図3に示す矢印方向に流れる。このとき、四方弁5は、圧縮機1の吐出側(高圧側)を室外熱交換器6のガス側へ接続され、ガス接続配管17を圧縮機1の吸入側(低圧側)へ接続される。   During the heating operation, the refrigerant flows in the direction of the arrow shown in FIG. At this time, in the four-way valve 5, the discharge side (high pressure side) of the compressor 1 is connected to the gas side of the outdoor heat exchanger 6, and the gas connection pipe 17 is connected to the suction side (low pressure side) of the compressor 1. .

圧縮機1にて圧縮され配管30へ吐出されたガス冷媒は、オイルセパレータ2に流入し、オイルセパレータ2にて、ガス冷媒中の油が分離される。分離された油はキャピラリ3を介して圧縮機1の吸入側へと送られる。一方、オイルセパレータ2を通過したガス冷媒は、逆止弁4を抜けて四方弁5を通過し、ガス阻止弁19を介してガス接続配管17より各利用側ユニット16a、16b、16cへと送られる。   The gas refrigerant compressed by the compressor 1 and discharged to the pipe 30 flows into the oil separator 2, and the oil in the gas refrigerant is separated by the oil separator 2. The separated oil is sent to the suction side of the compressor 1 through the capillary 3. On the other hand, the gas refrigerant that has passed through the oil separator 2 passes through the check valve 4, passes through the four-way valve 5, and is sent from the gas connection pipe 17 to the use side units 16 a, 16 b, 16 c through the gas blocking valve 19. It is done.

利用側ユニット16では、ガス冷媒は、複数の冷媒通路から構成する利用側熱交換器13にて凝縮し、その後所定の過冷却度を確保すべく、流量制御弁15にて絞り量を任意に調整する。このとき、利用側ユニットにおける熱交換器13にて冷媒の凝縮潜熱が放出されることで、温風が各部屋に送られ、暖房運転を行う。凝縮された液冷媒は、熱源機12と利用側ユニット16とを接続する液接続配管18を通り、液阻止弁20を介して熱源機12へと流入する。   In the usage side unit 16, the gas refrigerant is condensed in the usage side heat exchanger 13 composed of a plurality of refrigerant passages, and then the throttle amount is arbitrarily controlled by the flow rate control valve 15 in order to ensure a predetermined degree of supercooling. adjust. At this time, the latent heat of condensation of the refrigerant is released by the heat exchanger 13 in the use side unit, so that warm air is sent to each room to perform the heating operation. The condensed liquid refrigerant passes through the liquid connection pipe 18 that connects the heat source unit 12 and the use side unit 16 and flows into the heat source unit 12 through the liquid blocking valve 20.

熱源機12へと戻った液冷媒は、配管32を流れ、過冷却熱交換器9Aを通過し、過冷却熱交換器9Aの下流で分岐する。分岐した一方の液冷媒は、熱源側熱交換器6へ流れ、他方の液冷媒は、配管35を介して流量調整弁10へ流れる。   The liquid refrigerant returned to the heat source unit 12 flows through the pipe 32, passes through the supercooling heat exchanger 9A, and branches downstream of the supercooling heat exchanger 9A. One of the branched liquid refrigerants flows to the heat source side heat exchanger 6, and the other liquid refrigerant flows to the flow rate adjustment valve 10 via the pipe 35.

熱源側熱交換器6へ向かった液冷媒は、流量調整弁8の任意の絞り量に応じて減圧され、減圧された液冷媒は多数の冷媒通路から構成される熱源側熱交換器6にて蒸発する。蒸発したガス冷媒は、配管31、四方弁5、及び配管33を経由し、アキュームレータ11にて適切な吸入かわき度に調整され、配管34を介して圧縮機1の吸入側へと戻る。   The liquid refrigerant headed to the heat source side heat exchanger 6 is depressurized in accordance with an arbitrary throttle amount of the flow rate adjusting valve 8, and the depressurized liquid refrigerant is in the heat source side heat exchanger 6 constituted by a large number of refrigerant passages. Evaporate. The evaporated gas refrigerant is adjusted to an appropriate suction degree by the accumulator 11 through the pipe 31, the four-way valve 5, and the pipe 33, and returns to the suction side of the compressor 1 through the pipe 34.

一方、分岐した他方の液冷媒は、流量調整弁10にて気液二層状態に減圧され、第1の電磁弁21aが閉じられているので、配管36、第2の電磁弁21b、及び配管39を介して、圧縮機1に液インジェクションされる。暖房運転時、特に外気が低温の場合、圧縮機1の吐出温度は急激に上昇するため、その際に液インジェクションを行うことにより、圧縮機1の吐出温度を下げことができる。   On the other hand, the other branched liquid refrigerant is decompressed to a gas-liquid two-layer state by the flow rate adjusting valve 10 and the first electromagnetic valve 21a is closed, so the pipe 36, the second electromagnetic valve 21b, and the pipe The liquid is injected into the compressor 1 through 39. During the heating operation, particularly when the outside air is at a low temperature, the discharge temperature of the compressor 1 rapidly increases. Therefore, by performing liquid injection at that time, the discharge temperature of the compressor 1 can be lowered.

圧縮機1にインジェクションさせる冷媒量制御は、圧縮機1の出口に設置された吐出温度サーミスタ24の温度(吐出温度)、又は、高圧圧力センサ27の圧力と吐出温度より求められる過熱度を検知して、それぞれの値がある所定の値を越えた場合に、流量調整弁10の絞り量を調整し、吐出温度を所定の温度以下となるよう制御する。このように、回冷却回路9の流量調整弁10は、暖房運転時に液インジェクション用流量調整弁として機能する。また、外気が低温であり、かつ利用側熱交換器13の出口のガス冷媒の過熱度(低圧圧力センサ26の圧力と熱交換器出口サーミスタ23の温度より算出)を所定の値に制御している場合には、さらに圧縮機1の吐出温度が高まりやすくなるため、この制御は有効である。   Control of the amount of refrigerant to be injected into the compressor 1 detects the degree of superheat determined from the temperature (discharge temperature) of the discharge temperature thermistor 24 installed at the outlet of the compressor 1 or the pressure and discharge temperature of the high pressure sensor 27. When each value exceeds a predetermined value, the throttle amount of the flow rate adjusting valve 10 is adjusted to control the discharge temperature to be equal to or lower than the predetermined temperature. In this way, the flow rate adjustment valve 10 of the regenerative circuit 9 functions as a liquid injection flow rate adjustment valve during heating operation. Further, the degree of superheat of the gas refrigerant at the outlet of the use side heat exchanger 13 (calculated from the pressure of the low pressure sensor 26 and the temperature of the heat exchanger outlet thermistor 23) is controlled to a predetermined value when the outside air is at a low temperature. In this case, since the discharge temperature of the compressor 1 is likely to increase, this control is effective.

また、暖房運転時には圧力損失の影響は受けないため、過冷却回路9を用いることはあまりしない。更に、暖房運転時に過冷却回路9を使用すると、熱源側熱交換器6に流れる流量が減り、熱伝達率が低下することによる暖房性能低下や、利用側熱交換器13に流入する際の冷媒のかわき度が小さくなることによる蒸発器の冷媒保有量の増加によるシステム全体の冷媒量増加等のデメリットが存在する。しかし、上記の本実施の形態では、過冷却回路9を、暖房運転時に圧縮機1に液インジェクションさせることのできる回路構成とているので、過冷却回路9の有効活用を図ることができる。   In addition, the subcooling circuit 9 is not often used because it is not affected by pressure loss during heating operation. Further, if the supercooling circuit 9 is used during heating operation, the flow rate flowing to the heat source side heat exchanger 6 is reduced, the heating performance is lowered due to the reduction of the heat transfer coefficient, and the refrigerant when flowing into the use side heat exchanger 13. However, there are disadvantages such as an increase in the amount of refrigerant in the entire system due to an increase in the amount of refrigerant held in the evaporator due to a decrease in the degree of air quality. However, in the above-described embodiment, the supercooling circuit 9 has a circuit configuration that allows the compressor 1 to perform liquid injection during the heating operation. Therefore, the supercooling circuit 9 can be effectively used.

次に、本発明の第2の実施の形態について、図4に基づいて説明する。図4は、第2の実施の形態による空気調和装置200の暖房運転時における冷凍サイクル系統図を示している。図4に示す矢印は暖房運転時の流れ方向を示す。なお、第1の実施の形態による空気調和装置100と同一の部材については同一の番号を付して説明を省略し、異なる部分についてのみ説明を行う。   Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 4 shows a refrigeration cycle diagram at the time of heating operation of the air-conditioning apparatus 200 according to the second embodiment. The arrows shown in FIG. 4 indicate the flow direction during heating operation. In addition, the same number is attached | subjected about the member same as the air conditioning apparatus 100 by 1st Embodiment, description is abbreviate | omitted, and only a different part is demonstrated.

本実施の形態の空気調和装置200は、第1の実施の形態の空気調和システム100の過冷却回路9に対し、更に配管38の分岐部38Aと、配管39の分岐部39Aと、第3の電磁弁21cと、第4の電磁弁21dとを追加した構成である。第3の電磁弁21cは、配管38の分岐部38Aと配管39の分岐部39Aとを接続するように設けられ、第4の電磁弁21dは、分岐部38Aよりも下流側において配管33と配管38とを接続するように設けられている。配管38の分岐部38A及び配管39の分岐部39Aは、第6の配管に相当する。よって、第3の電磁弁21cは、第6の配管の流路を開閉し、第4の電磁弁は、第5の配管の流路を開閉する。また、第1〜第4の電磁弁21a〜21dは切替手段に相当する。   The air conditioning apparatus 200 according to the present embodiment further includes a branch portion 38A of the pipe 38, a branch portion 39A of the pipe 39, and a third part with respect to the supercooling circuit 9 of the air conditioning system 100 of the first embodiment. It is the structure which added the solenoid valve 21c and the 4th solenoid valve 21d. The third solenoid valve 21c is provided so as to connect the branch portion 38A of the pipe 38 and the branch portion 39A of the pipe 39, and the fourth solenoid valve 21d is connected to the pipe 33 and the pipe on the downstream side of the branch portion 38A. 38 is connected. The branch part 38A of the pipe 38 and the branch part 39A of the pipe 39 correspond to a sixth pipe. Therefore, the third electromagnetic valve 21c opens and closes the flow path of the sixth pipe, and the fourth electromagnetic valve opens and closes the flow path of the fifth pipe. The first to fourth solenoid valves 21a to 21d correspond to switching means.

本実施の形態の過冷却回路9によれば、第1〜第4の電磁弁21a〜21dの開閉を制御することにより、3通りのパターンで流量調整弁を機能させることができる。即ち、3通りのパターンで過冷却回路9を機能させることができる。   According to the subcooling circuit 9 of the present embodiment, the flow rate adjusting valve can be caused to function in three patterns by controlling the opening and closing of the first to fourth electromagnetic valves 21a to 21d. In other words, the supercooling circuit 9 can function in three patterns.

まず1つ目は、主に冷房運転時に有効であり、第1及び第4の電磁弁21a、21dを開け、第2及び第3の電磁弁21b、21cを閉じた状態において、流量調整弁10にて過冷却熱交換器9に流れる冷媒量を調整するパターンである。2つ目は、主に暖房運転時に有効であり、第1、第3、第4の電磁弁21a、21c、21dを閉じ、第3の電磁弁21bを開けた状態において、流量調整弁10にて圧縮機1に液インジェクションする冷媒量を調整するパターンである。これら1つ目及び2つ目のパターンは、第1の実施の形態で説明した制御と同じであるので詳細な説明を省略する。   The first is mainly effective during cooling operation, and the flow rate adjusting valve 10 is in a state where the first and fourth electromagnetic valves 21a and 21d are opened and the second and third electromagnetic valves 21b and 21c are closed. It is a pattern which adjusts the refrigerant | coolant amount which flows into the supercooling heat exchanger 9. The second is mainly effective at the time of heating operation. In the state where the first, third, and fourth electromagnetic valves 21a, 21c, and 21d are closed and the third electromagnetic valve 21b is opened, the flow rate adjustment valve 10 is turned on. This is a pattern for adjusting the amount of refrigerant injected into the compressor 1. Since the first and second patterns are the same as the control described in the first embodiment, detailed description thereof is omitted.

3つ目は、主に冷房運転時に有効であり、第1及び第3の電磁弁21a、21cを開け、第2及び第4の電磁弁21b、21dを閉じた状態において、流量調整弁10にて圧縮機1にガスインジェクションする冷媒量を調整するパターンである。   The third is mainly effective during the cooling operation. In the state where the first and third electromagnetic valves 21a and 21c are opened and the second and fourth electromagnetic valves 21b and 21d are closed, the flow rate adjusting valve 10 This is a pattern for adjusting the amount of refrigerant gas injected into the compressor 1.

具体的には、液冷媒は、流量調整弁10により減圧され、配管36、第1の電磁弁21a、及び配管37を介して、過冷却熱交換器9Aに流入する。過冷却熱交換器9Aにおいて、液冷媒は流量調整弁8から液阻止弁20へ向う液冷媒との間で熱交換され、気化してガス冷媒となり、配管38、第3の電磁弁21c、及び配管39を介して圧縮機1にガスインジェクションされる。このように、冷媒は過冷却熱交換器9の前後で所定の過熱度を確保され、ガス状態で圧縮機1にインジェクションされる。   Specifically, the liquid refrigerant is decompressed by the flow rate adjusting valve 10 and flows into the supercooling heat exchanger 9A through the pipe 36, the first electromagnetic valve 21a, and the pipe 37. In the subcooling heat exchanger 9A, the liquid refrigerant is heat-exchanged with the liquid refrigerant from the flow rate adjustment valve 8 to the liquid blocking valve 20, and is vaporized to become a gas refrigerant. The pipe 38, the third electromagnetic valve 21c, and Gas is injected into the compressor 1 through the pipe 39. In this manner, the refrigerant is ensured to have a predetermined degree of superheat before and after the supercooling heat exchanger 9 and is injected into the compressor 1 in a gas state.

ガスインジェクションは、冷房運転時及び暖房運転時のいずれの場合に行っても良い。ガスインジェクションは、液インジェクションと比べ圧縮機の吐出温度を抑制する効果は小さい。そのため、主に暖房運転時の、外気温度が比較的高い状態に有効であり、外気が極低温のような、圧縮機1の吐出温度を増加させやすい環境においては、有効ではない。また冷房運転時においては、圧縮機1の吐出エンタルピーを増加させ、蒸発器入口のかわき度を小さくする効果があるので、冷房能力が増加する効果も見込める。以上の通り、空気調和システム200の回路においては、電磁弁21a〜21dの切替により流量調整弁10(過冷却回路9)に3通りのパターンの機能を持たせることが可能となり、比較的単純な回路構成で汎用性の高いシステムを構築することができる。   Gas injection may be performed in any of the cooling operation and the heating operation. Gas injection has a smaller effect of suppressing the discharge temperature of the compressor than liquid injection. Therefore, it is effective mainly in a state in which the outside air temperature is relatively high during heating operation, and is not effective in an environment where the discharge temperature of the compressor 1 is likely to increase, such as when the outside air is extremely low temperature. Further, at the time of cooling operation, the discharge enthalpy of the compressor 1 is increased and the degree of cleaning of the evaporator inlet is reduced, so that an effect of increasing the cooling capacity can be expected. As described above, in the circuit of the air conditioning system 200, the flow rate adjusting valve 10 (supercooling circuit 9) can be provided with three patterns of functions by switching the electromagnetic valves 21a to 21d, which is relatively simple. A highly versatile system can be constructed with a circuit configuration.

なお、本発明は、上述した実施例に限定されない。当業者であれば、本発明の範囲内で、種々の追加や変更等を行うことができる。   In addition, this invention is not limited to the Example mentioned above. A person skilled in the art can make various additions and changes within the scope of the present invention.

例えば、第1及び第2の電磁弁21a、21bに代えて、三方弁により、配管36、37、39を接続して、配管36から、配管37又は配管39への冷媒の流れを制御しても良い。   For example, instead of the first and second electromagnetic valves 21a, 21b, pipes 36, 37, 39 are connected by a three-way valve to control the flow of refrigerant from the pipe 36 to the pipe 37 or the pipe 39. Also good.

ここで図5は図4に示した第2の実施の形態による空気調和装置200の構成の一部を変更した空気調和装置300の暖房運転時における冷凍サイクル系統図を示している。空気調和装置300は、空気調和装置200の第1の電磁弁21aを省略した回路構成となっている。そして、空気調和装置300に示す回路構成であれば、空気調和装置200に比べ、電磁弁を一つ削減可能であり、空気調和装置200と同一の機能を有することができる。1つ目に、主に冷房運転時に有効であり、第4の電磁弁21dを開け、第2及び第3の電磁弁21b、21cを閉じた状態において、流量調整弁10にて過冷却熱交換器9に流れる冷媒量を調整するパターンである。2つ目は、主に暖房運転時に有効であり、第2の電磁弁21bを開き、第3及び第4の電磁弁21c、21dを閉じた状態において、流量調整弁10にて圧縮機1に液インジェクションする冷媒量を調整するパターンである。3つ目は、主に冷房運転時に有効であり、第3の電磁弁21cを開け、第2及び第4の電磁弁21b、21dを閉じた状態において、流量調整弁10にて圧縮機1にガスインジェクションする冷媒量を調整するパターンである。   Here, FIG. 5 shows a refrigeration cycle system diagram during the heating operation of the air conditioner 300 in which a part of the configuration of the air conditioner 200 according to the second embodiment shown in FIG. 4 is changed. The air conditioner 300 has a circuit configuration in which the first electromagnetic valve 21a of the air conditioner 200 is omitted. And if it is a circuit structure shown in the air conditioning apparatus 300, compared with the air conditioning apparatus 200, one electromagnetic valve can be reduced and it can have the same function as the air conditioning apparatus 200. First, it is effective mainly during the cooling operation, and the fourth solenoid valve 21d is opened and the second and third solenoid valves 21b and 21c are closed, and the supercooling heat exchange is performed by the flow rate adjustment valve 10. This is a pattern for adjusting the amount of refrigerant flowing in the vessel 9. The second is mainly effective during the heating operation, and the second electromagnetic valve 21b is opened and the third and fourth electromagnetic valves 21c and 21d are closed. It is a pattern which adjusts the refrigerant | coolant amount which carries out liquid injection. The third is mainly effective during cooling operation, and the third electromagnetic valve 21c is opened and the second and fourth electromagnetic valves 21b and 21d are closed. It is a pattern which adjusts the refrigerant | coolant amount which carries out gas injection.

1:圧縮機、 30〜39:配管、 9:過冷却回路、 9A:過冷却熱交換器、 10:流量調整弁、 12:熱源機、 16a、16b、16c:利用側ユニット、 21a:第1の電磁弁、 21b:第2の電磁弁、 36A:主流部、 36B:分岐部、 36C:接続部、 6:熱源側熱交換器、 8:流量調整弁、 21c:第3の電磁弁、 21d:第4の電磁弁、 100、200、300:空気調和システム
1: compressor, 30-39: piping, 9: supercooling circuit, 9A: supercooling heat exchanger, 10: flow control valve, 12: heat source machine, 16a, 16b, 16c: use side unit, 21a: first 21B: second solenoid valve, 36A: main flow portion, 36B: branching portion, 36C: connection portion, 6: heat source side heat exchanger, 8: flow rate adjustment valve, 21c: third solenoid valve, 21d : 4th solenoid valve, 100, 200, 300: Air conditioning system

Claims (6)

熱源機と、前記熱源機にガス配管及び液配管を介して接続され、空気と前記熱源機から供給される冷媒との間で熱交換を行う利用側ユニットと、を備える空気調和装置であって、
前記熱源機は、
前記冷媒を吐出する圧縮機と、
前記冷媒と外気との間で熱交換するための熱源側熱交換器と、
前記熱源側熱交換器と前記液配管との間での液冷媒の流動を可能にする第1の配管と、
前記熱源側熱交換器から前記第1の配管へ流れる前記液冷媒の流量を調整可能な熱源用流量調整弁と、
前記第1の配管に設けられた過冷却回路と、
を備え、
前記過冷却回路は、
前記第1の配管を流れる前記液冷媒を過冷却状態にするための過冷却熱交換器と、
前記第1の配管と前記過冷却熱交換器とを接続し、前記第1の配管を流れる液冷媒の一部が流入する第2の配管と、
前記第2の配管と前記圧縮機とを接続し、前記第2の配管を流れる前記液冷媒を前記圧縮機へ流すための第3の配管と、
前記第2の配管において前記第3の配管が前記第2の配管に接続している接続部よりも前記液冷媒の流れの上流側に設けられ、前記第2の配管から前記過冷却熱交換器へ流れる前記液冷媒の流量、又は、前記第2の配管から前記第3の配管へ流れる前記液冷媒の流量を調整可能な過冷却用流量調整弁と、
前記第1の配管から前記第2の配管へ流入する前記液冷媒を、前記過冷却熱交換器へ流すか、又は、前記第3の配管を介して前記圧縮機へ流すかを切り替え可能な切替手段と、
を備える空気調和装置。
An air conditioner comprising: a heat source unit; and a utilization side unit that is connected to the heat source unit via a gas pipe and a liquid pipe and performs heat exchange between air and a refrigerant supplied from the heat source unit. ,
The heat source machine is
A compressor that discharges the refrigerant;
A heat source side heat exchanger for exchanging heat between the refrigerant and outside air;
A first pipe that enables liquid refrigerant to flow between the heat source side heat exchanger and the liquid pipe;
A heat source flow rate adjustment valve capable of adjusting the flow rate of the liquid refrigerant flowing from the heat source side heat exchanger to the first pipe;
A subcooling circuit provided in the first pipe;
With
The supercooling circuit is
A supercooling heat exchanger for bringing the liquid refrigerant flowing through the first pipe into a supercooled state;
A second pipe that connects the first pipe and the supercooling heat exchanger and into which a part of the liquid refrigerant flowing through the first pipe flows;
A third pipe for connecting the second pipe and the compressor and flowing the liquid refrigerant flowing through the second pipe to the compressor;
In the second pipe, the third pipe is provided on the upstream side of the flow of the liquid refrigerant with respect to the connection portion connected to the second pipe, and the supercooling heat exchanger is provided from the second pipe. A subcooling flow rate adjustment valve capable of adjusting the flow rate of the liquid refrigerant flowing to the flow rate or the flow rate of the liquid refrigerant flowing from the second pipe to the third pipe;
Switching capable of switching whether the liquid refrigerant flowing from the first pipe to the second pipe flows to the supercooling heat exchanger or to the compressor via the third pipe Means,
An air conditioner comprising:
前記切替手段は、前記第2の配管の前記接続部と前記過冷却熱交換器との間に設けられ前記第2の配管の流路を開閉する第1の電磁弁と、前記第3の配管に設けられ前記第3の配管の流路を開閉する第2の電磁弁とを有し、
冷房運転時には、前記第1の電磁弁を開状態にし、前記第2の電磁弁を閉状態にすることにより、前記過冷却用流量調整弁により前記第1の配管から前記第2の配管へ流入する前記液冷媒を前記過冷却熱交換器へ流して、前記過冷却熱交換器により前記第1の配管を流れる前記液冷媒を過冷却状態にし、
暖房運転時には、前記第1の電磁弁を閉状態にし、前記第2の電磁弁を開状態にすることにより、前記過冷却用流量調整弁により前記第1の配管から前記第2の配管へ流入する前記液冷媒を前記第3の配管を介して前記圧縮機へインジェクションする
請求項1に記載の空気調和装置。
The switching means includes a first solenoid valve that is provided between the connection portion of the second pipe and the supercooling heat exchanger and opens and closes a flow path of the second pipe; and the third pipe And a second solenoid valve that opens and closes the flow path of the third pipe,
During the cooling operation, the first solenoid valve is opened and the second solenoid valve is closed, so that the subcooling flow rate adjustment valve flows into the second pipe from the first pipe. Flowing the liquid refrigerant to the supercooling heat exchanger, and making the liquid refrigerant flowing through the first pipe by the supercooling heat exchanger into a supercooled state,
During the heating operation, the first solenoid valve is closed and the second solenoid valve is opened, so that the subcooling flow control valve flows into the second pipe from the first pipe. The air conditioning apparatus according to claim 1, wherein the liquid refrigerant to be injected is injected into the compressor through the third pipe.
前記熱源機は、前記ガス配管又は前記熱源側熱交換器からのガス冷媒を前記圧縮機へ流すための第4の配管を更に備え、
前記過冷却回路は、
前記過冷却熱交換器と前記第4の配管とを接続し、前記過冷却熱交換器において前記第1の配管を流れる液冷媒との間での熱交換により気化したガス冷媒を前記第4の配管へ流すための第5の配管と、
前記第3の配管の前記第2の電磁弁よりも下流側の部分と前記第5の配管とを接続する第6の配管と、
を更に備え、
前記切替手段は、
前記第6の配管に設けられ前記第6の配管の流路を開閉する第3の電磁弁と、
前記第5の配管において前記第6の配管が前記第5の配管に接続している接続部よりも下流側に設けられ、前記第5の配管の流路を開閉する第4の電磁弁と、
を更に備え、
前記第1〜第4の電磁弁の開閉を切り替えることにより、前記過冷却回路を、前記過冷却熱交換器により前記第1の配管を流れる前記液冷媒を過冷却する回路、前記圧縮機へ液インジェクションを行う回路、又は、前記圧縮機へガスインジェクションを行う回路のいずれかの回路として機能させる
請求項2に記載の空気調和装置。
The heat source machine further includes a fourth pipe for flowing the gas refrigerant from the gas pipe or the heat source side heat exchanger to the compressor,
The supercooling circuit is
The supercooling heat exchanger and the fourth pipe are connected, and the gas refrigerant vaporized by heat exchange with the liquid refrigerant flowing through the first pipe in the supercooling heat exchanger is the fourth refrigerant. A fifth pipe for flowing to the pipe;
A sixth pipe that connects a portion of the third pipe downstream of the second solenoid valve and the fifth pipe;
Further comprising
The switching means is
A third solenoid valve provided in the sixth pipe and opening and closing a flow path of the sixth pipe;
A fourth solenoid valve provided on the downstream side of the connecting portion connecting the fifth pipe to the fifth pipe in the fifth pipe, and opening and closing the flow path of the fifth pipe;
Further comprising
By switching the opening and closing of the first to fourth solenoid valves, the supercooling circuit is supercooled by the supercooling heat exchanger and the liquid refrigerant flowing through the first pipe is liquidated to the compressor. The air conditioning apparatus according to claim 2, wherein the air conditioner functions as either a circuit that performs injection or a circuit that performs gas injection to the compressor.
冷房運転時には、前記第1及び第4の電磁弁を開状態にし、前記第2及び第3の電磁弁を閉状態にすることにより、前記過冷却用流量調整弁により、前記第1の配管から前記第2の配管へ流入する前記液冷媒を前記過冷却熱交換器へ流して、前記過冷却熱交換器により前記第1の配管を流れる前記液冷媒を過冷却状態にし、前記過冷却熱交換器において前記第1の配管を流れる液冷媒との間での熱交換により気化したガス冷媒を前記第5の配管を介して前記第4の配管へ流して、前記過冷却回路を、前記過冷却熱交換器により前記第1の配管を流れる前記液冷媒を過冷却する回路として機能させ、
暖房運転時には、前記第2の電磁弁を開状態にし、前記第1、第3、及び第4の電磁弁を閉状態にすることにより、前記過冷却用流量調整弁により、前記第1の配管から前記第2の配管へ流入する前記液冷媒を前記第3の配管を介して前記圧縮機へ液インジェクションさせて、前記過冷却回路を、前記圧縮機へ液インジェクションを行う回路として機能させる、
請求項3に記載の空気調和装置。
During the cooling operation, the first and fourth solenoid valves are opened, and the second and third solenoid valves are closed. The liquid refrigerant flowing into the second pipe is caused to flow to the supercooling heat exchanger, the liquid refrigerant flowing through the first pipe is brought into a supercooled state by the supercooling heat exchanger, and the supercooling heat exchange is performed. A gas refrigerant vaporized by heat exchange with the liquid refrigerant flowing through the first pipe in the vessel is caused to flow to the fourth pipe via the fifth pipe, and the supercooling circuit is connected to the supercooling circuit. Function as a circuit for supercooling the liquid refrigerant flowing through the first pipe by a heat exchanger;
During the heating operation, the first solenoid valve is opened, and the first, third, and fourth solenoid valves are closed, so that the first piping is controlled by the supercooling flow rate adjustment valve. The liquid refrigerant flowing from the second pipe into the second pipe is liquid-injected into the compressor via the third pipe, and the supercooling circuit functions as a circuit for liquid injection into the compressor.
The air conditioning apparatus according to claim 3.
冷房運転時には、前記第1及び第3の電磁弁を開状態にし、前記第2及び第4の電磁弁を閉状態にすることにより、前記過冷却用流量調整弁により、前記第1の配管から前記第2の配管へ流入する前記液冷媒を前記過冷却熱交換器へ流し、前記過冷却熱交換器において前記第1の配管を流れる液冷媒との間での熱交換により気化したガス冷媒を前記第5及び第6の配管を介して前記第3の配管へ流し、前記圧縮機へガスインジェクションさせて、前記過冷却回路を、前記圧縮機へガスインジェクションを行う回路として機能させ、
暖房運転時には、前記第2の電磁弁を開状態にし、前記第1、第2及び第4の電磁弁を閉状態にすることにより、前記過冷却用流量調整弁により、前記第1の配管から前記第2の配管へ流入する前記液冷媒を前記第3の配管を介して前記圧縮機へ液インジェクションさせて、前記過冷却回路を、前記圧縮機へ液インジェクションを行う回路として機能させる、
請求項3に記載の空気調和装置。
During the cooling operation, the first and third solenoid valves are opened, and the second and fourth solenoid valves are closed. The liquid refrigerant flowing into the second pipe is caused to flow to the supercooling heat exchanger, and the gas refrigerant vaporized by heat exchange with the liquid refrigerant flowing through the first pipe in the supercooling heat exchanger. Flowing to the third pipe through the fifth and sixth pipes, causing the compressor to perform gas injection, and causing the supercooling circuit to function as a circuit for performing gas injection to the compressor;
During the heating operation, the second solenoid valve is opened and the first, second, and fourth solenoid valves are closed, so that the supercooling flow rate adjustment valve allows the first piping to be removed from the first pipe. Causing the liquid refrigerant flowing into the second pipe to be liquid-injected into the compressor via the third pipe, and causing the supercooling circuit to function as a circuit for performing liquid injection into the compressor;
The air conditioning apparatus according to claim 3.
冷房運転時には、前記第1及び第4の電磁弁を開状態にし、前記第2及び第3の電磁弁を閉状態にすることにより、前記過冷却用流量調整弁により、前記第1の配管から前記第2の配管へ流入する前記液冷媒を前記過冷却熱交換器へ流して、前記過冷却熱交換器により前記第1の配管を流れる前記液冷媒を過冷却状態にし、前記過冷却熱交換器において前記第1の配管を流れる液冷媒との間での熱交換により気化したガス冷媒を前記第5の配管を介して前記第4の配管へ流して、前記過冷却回路を、前記過冷却熱交換器により前記第1の配管を流れる前記液冷媒を過冷却する回路として機能させ、
暖房運転時には、前記第1及び第3の電磁弁を開状態にし、前記第2及び第4の電磁弁を閉状態にすることにより、前記過冷却用流量調整弁により、前記第1の配管から前記第2の配管へ流入する前記液冷媒を前記過冷却熱交換器へ流して、前記過冷却熱交換器において前記第1の配管を流れる液冷媒との間での熱交換により気化したガス冷媒を前記第5及び第6の配管を介して前記第3の配管へ流し、前記圧縮機へガスインジェクションさせて、前記過冷却回路を、前記圧縮機へガスインジェクションを行う回路として機能させる
請求項3に記載の空気調和装置。
During the cooling operation, the first and fourth solenoid valves are opened, and the second and third solenoid valves are closed. The liquid refrigerant flowing into the second pipe is caused to flow to the supercooling heat exchanger, the liquid refrigerant flowing through the first pipe is brought into a supercooled state by the supercooling heat exchanger, and the supercooling heat exchange is performed. A gas refrigerant vaporized by heat exchange with the liquid refrigerant flowing through the first pipe in the vessel is caused to flow to the fourth pipe via the fifth pipe, and the supercooling circuit is connected to the supercooling circuit. Function as a circuit for supercooling the liquid refrigerant flowing through the first pipe by a heat exchanger;
During the heating operation, the first and third solenoid valves are opened, and the second and fourth solenoid valves are closed. The liquid refrigerant flowing into the second pipe flows to the supercooling heat exchanger, and gas refrigerant is vaporized by heat exchange with the liquid refrigerant flowing through the first pipe in the supercooling heat exchanger. 4 is caused to flow to the third pipe through the fifth and sixth pipes, and gas is injected into the compressor so that the supercooling circuit functions as a circuit for performing gas injection into the compressor. The air conditioning apparatus described in 1.
JP2013093862A 2013-04-26 2013-04-26 Air conditioner Active JP6081283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013093862A JP6081283B2 (en) 2013-04-26 2013-04-26 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013093862A JP6081283B2 (en) 2013-04-26 2013-04-26 Air conditioner

Publications (2)

Publication Number Publication Date
JP2014214995A true JP2014214995A (en) 2014-11-17
JP6081283B2 JP6081283B2 (en) 2017-02-15

Family

ID=51940917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013093862A Active JP6081283B2 (en) 2013-04-26 2013-04-26 Air conditioner

Country Status (1)

Country Link
JP (1) JP6081283B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016156557A (en) * 2015-02-24 2016-09-01 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration cycle device
JP2017026238A (en) * 2015-07-24 2017-02-02 株式会社富士通ゼネラル Heat pump cycle device
EP3367020A4 (en) * 2015-10-21 2018-08-29 Mitsubishi Electric Corporation Air conditioner

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337190A (en) * 1999-04-20 1999-12-10 Hitachi Ltd Heat pump air conditioner for cold district
JP2001012786A (en) * 1999-06-30 2001-01-19 Hitachi Ltd Heat pump type air conditioner
JP2005274085A (en) * 2004-03-26 2005-10-06 Mitsubishi Electric Corp Refrigerating device
JP2006524313A (en) * 2003-04-21 2006-10-26 キャリア コーポレイション Vapor compression system with bypass / economizer circuit
JP2008138921A (en) * 2006-11-30 2008-06-19 Mitsubishi Electric Corp Air conditioner
JP2009162410A (en) * 2007-12-28 2009-07-23 Daikin Ind Ltd Air conditioner and refrigerant amount determining method
JP2011242048A (en) * 2010-05-18 2011-12-01 Mitsubishi Electric Corp Refrigerating cycle device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337190A (en) * 1999-04-20 1999-12-10 Hitachi Ltd Heat pump air conditioner for cold district
JP2001012786A (en) * 1999-06-30 2001-01-19 Hitachi Ltd Heat pump type air conditioner
JP2006524313A (en) * 2003-04-21 2006-10-26 キャリア コーポレイション Vapor compression system with bypass / economizer circuit
JP2005274085A (en) * 2004-03-26 2005-10-06 Mitsubishi Electric Corp Refrigerating device
JP2008138921A (en) * 2006-11-30 2008-06-19 Mitsubishi Electric Corp Air conditioner
JP2009162410A (en) * 2007-12-28 2009-07-23 Daikin Ind Ltd Air conditioner and refrigerant amount determining method
JP2011242048A (en) * 2010-05-18 2011-12-01 Mitsubishi Electric Corp Refrigerating cycle device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016156557A (en) * 2015-02-24 2016-09-01 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration cycle device
JP2017026238A (en) * 2015-07-24 2017-02-02 株式会社富士通ゼネラル Heat pump cycle device
EP3367020A4 (en) * 2015-10-21 2018-08-29 Mitsubishi Electric Corporation Air conditioner

Also Published As

Publication number Publication date
JP6081283B2 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
JP7175985B2 (en) air conditioner system
EP3467406B1 (en) Air conditioner
EP3062031B1 (en) Air conditioner
WO2014141374A1 (en) Air conditioner
JP6223469B2 (en) Air conditioner
JP6880204B2 (en) Air conditioner
JP2008157557A (en) Air-conditioning system
WO2017138108A1 (en) Air conditioning device
JP2008170063A (en) Multiple type air conditioner
EP3093586A1 (en) Air conditioning device
WO2016208042A1 (en) Air-conditioning device
JP6246394B2 (en) Air conditioner
JP2011179783A (en) Refrigerating device
JP6415701B2 (en) Refrigeration cycle equipment
WO2014132433A1 (en) Air conditioning device
JP2010048506A (en) Multi-air conditioner
JP6081283B2 (en) Air conditioner
WO2016189739A1 (en) Air conditioning device
JP6539560B2 (en) Air conditioner
JP6431393B2 (en) Air conditioner
JP2018036002A (en) Air Conditioning Hot Water Supply System
JP2017146015A (en) Air conditioner
KR102390900B1 (en) Multi-type air conditioner and control method for the same
JP6017049B2 (en) Air conditioner
JP6573723B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150701

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

AA91 Notification of revocation by ex officio

Free format text: JAPANESE INTERMEDIATE CODE: A971091

Effective date: 20160607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170118

R150 Certificate of patent or registration of utility model

Ref document number: 6081283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250