JP2014214980A - Cooling device and method of condenser - Google Patents

Cooling device and method of condenser Download PDF

Info

Publication number
JP2014214980A
JP2014214980A JP2013093040A JP2013093040A JP2014214980A JP 2014214980 A JP2014214980 A JP 2014214980A JP 2013093040 A JP2013093040 A JP 2013093040A JP 2013093040 A JP2013093040 A JP 2013093040A JP 2014214980 A JP2014214980 A JP 2014214980A
Authority
JP
Japan
Prior art keywords
cooling
steam
condenser
condensate
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013093040A
Other languages
Japanese (ja)
Inventor
塚原 千幸人
Chisato Tsukahara
千幸人 塚原
宏樹 大久保
Hiroki Okubo
宏樹 大久保
大祥 川林
Hiroyoshi Kawabayashi
大祥 川林
理奈 橋本
Rina Hashimoto
理奈 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013093040A priority Critical patent/JP2014214980A/en
Publication of JP2014214980A publication Critical patent/JP2014214980A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide cooling device and method of a condenser free from cracking such as a pin hole, of cooling water capillaries of the condenser.SOLUTION: A cooling device includes an introduction passage 12 for introducing cooling water 11, an inlet water chamber 13 connected to the introduction passage 12 for introducing the cooling water 11, a condenser 26 to which steam 22 is introduced from a steam turbine 21, and which includes a plurality of vertical cooling capillaries 25 disposed on an upper tube plate 23 and a lower tube plate 24, a condensation water chamber 28 disposed on a bottom portion of the condenser 26 for storing condensed water 27 of the cooled steam 22, an outlet water chamber 14 for allowing the cooling water 11 introduced from the inlet water chamber 13 to pass through an outer periphery of the vertical cooling capillaries 25, and discharging the cooling water 11 after cooling, and a discharge passage 15 connected to the outlet water chamber 14 for discharging the cooling water 11.

Description

本発明は、復水器の冷却装置及び方法に関するものである。   The present invention relates to a condenser cooling apparatus and method.

従来より、火力発電設備等においては、ボイラ火炉で発生した蒸気を復水器で冷却凝縮させて復水とし、ボイラ給水として循環使用している。ここで、復水器内では、蒸気を冷却する冷却水細管が複数(例えば4000〜5000本)設けられ、該冷却水細管には冷却用の海水が冷却水として導入されている。この冷却水細管に例えば隙間やクラックやピンホール等の亀裂等が生じると、そこから冷却水である海水が液漏れする海水リークが発生する。   Conventionally, in thermal power generation facilities and the like, steam generated in a boiler furnace is cooled and condensed by a condenser to form condensate, which is circulated and used as boiler feed water. Here, in the condenser, a plurality of cooling water thin tubes (for example, 4000 to 5000) for cooling the steam are provided, and cooling seawater is introduced into the cooling water thin tubes as cooling water. For example, if a gap, a crack, a crack such as a pinhole or the like occurs in the cooling water thin tube, a seawater leak from which seawater as cooling water leaks occurs.

この海水リークが発生すると、凝縮した復水に混入し、該復水に塩分が混じって各種配管等を腐食させることになる。そこで、復水器からの海水の液漏れを監視すべく、各種の海水漏洩検出装置が提案されている(例えば、特許文献1及び2参照)。   When this seawater leak occurs, it is mixed in the condensed condensate, and salt is mixed in the condensate to corrode various pipes. Therefore, various seawater leakage detection devices have been proposed to monitor seawater leakage from the condenser (see, for example, Patent Documents 1 and 2).

特開2004−144708号公報JP 2004-144708 A 特開2006−267095号公報JP 2006-267095 A

ところで、特許文献1及び2にかかる漏れ検出装置で、例えば復水の冷却水用の海水の漏れを検出する場合には、その検出精度が常に適切であるかの確認のために、定期的に点検する必要がある。   By the way, in the leak detection device according to Patent Documents 1 and 2, for example, when detecting leakage of seawater for cooling water for condensate, it is periodically performed to check whether the detection accuracy is always appropriate. It is necessary to check.

すなわち、従来においては、海水リークの監視のために、定期点検(例えば2年に1回程度)ごとに監視装置のための点検が必要となる、という問題がある。また、定期点検の前に、監視装置に不具合があった場合には、定期点検において初めて異常が確認されるので、結果として、海水リークに起因する腐食が進展しても、定期点検まで確認することはできない、という問題がある。   That is, conventionally, there is a problem that inspection for the monitoring device is required every periodic inspection (for example, about once every two years) for monitoring seawater leaks. In addition, if there is a malfunction in the monitoring device before the periodic inspection, abnormalities are confirmed for the first time in the periodic inspection. As a result, even if corrosion due to seawater leaks progresses, check until the periodic inspection. There is a problem that you can't.

そこで、復水器の冷却水細管に隙間、クラック、ピンホール等の亀裂が発生せず、海水リークが解消される、復水器の冷却装置及び方法の出現が切望されている。   Therefore, the appearance of a condenser cooling apparatus and method that eliminates seawater leaks without causing cracks such as gaps, cracks, and pinholes in the condenser cooling water tubes is eagerly desired.

本発明は、前記問題に鑑み、復水器の冷却水細管に隙間、クラック、ピンホール等の亀裂が発生しない復水器の冷却装置及び方法を提供することを課題とする。   This invention makes it a subject to provide the cooling device and method of a condenser which does not generate | occur | produce cracks, such as a clearance gap, a crack, and a pinhole, in the cooling water thin tube of a condenser in view of the said problem.

上述した課題を解決するための本発明の第1の発明は、冷却水を導入する導入通路と、該導入通路と接続され、冷却水を導入する入口水室と、蒸気タービンからの蒸気を導入し、上部管板と下部管板とに複数配設される縦型冷却細管を備えた復水器と、前記復水器の底部に設けられ、前記蒸気が冷却された復水を貯蔵する復水用水室と、該入口水室から導入される冷却水を前記縦型冷却細管の外周を通過させ、冷却後の前記冷却水を排出する出口水室と、前記出口水室と接続され、冷却水を放水する排出通路と、を具備することを特徴とする復水器の冷却装置にある。   The first invention of the present invention for solving the above-mentioned problems is an introduction passage for introducing cooling water, an inlet water chamber connected to the introduction passage for introducing cooling water, and introduction of steam from a steam turbine. A condenser having a plurality of vertical cooling thin tubes disposed on the upper tube plate and the lower tube plate, and a condenser that is provided at the bottom of the condenser and stores the condensate in which the steam is cooled. A water chamber, an outlet water chamber for passing cooling water introduced from the inlet water chamber through the outer periphery of the vertical cooling capillary and discharging the cooled water after cooling, and the outlet water chamber, A condenser cooling device comprising a discharge passage for discharging water.

第1の発明によれば、縦型冷却細管により蒸気を冷却して復水とするので、縦型冷却細管に対して、蒸気ドレンと硬質の水蒸気酸化スケールとが直接衝突しないので、エロージョンが発生せず、その結果細管にピンホールが発生することが防止され、海水リークが生じることが無くなる。   According to the first aspect of the invention, the steam is cooled by the vertical cooling narrow tube to form condensate, so that the steam drain and the hard steam oxidation scale do not directly collide with the vertical cooling thin tube, so that erosion occurs. As a result, pinholes are prevented from occurring in the narrow tube, and seawater leaks do not occur.

第2の発明は、第1の発明において、前記上部管板の上方側に複数の開口を有する入口スリット部材を設けることを特徴とする復水器の冷却装置にある。   A second invention is the condenser cooling device according to the first invention, wherein an inlet slit member having a plurality of openings is provided above the upper tube sheet.

第2の発明によれば、各開口内に均等に蒸気が導入され、蒸気の偏りを防止することとなり、均一な冷却が可能となる。   According to the second aspect of the invention, the steam is uniformly introduced into each opening to prevent the steam from being biased, and uniform cooling is possible.

第3の発明は、第1又は2の発明において、前記下部管板の下方側に設けられ、複数の開口を有する出口スリット部材と、前記出口スリット部材の各開口内の復水を採取して復水の性状を分析する分析手段とを具備することを特徴とする復水器の冷却装置にある。   According to a third invention, in the first or second invention, an outlet slit member provided on a lower side of the lower tube sheet and having a plurality of openings, and condensate in each opening of the outlet slit member are collected. And a condenser cooling device characterized by comprising an analysis means for analyzing the properties of the condensate.

第3の発明によれば、冷却された復水の性状を、各開口毎に分析するので、仮に海水リークが発生した場合でも、海水リークの細管を特定することができる。   According to the third aspect of the invention, since the properties of the cooled condensate are analyzed for each opening, even if a seawater leak occurs, it is possible to specify a seawater leak tubule.

第4の発明は、蒸気及び蒸気ドレンを縦型の冷却細管に導入し、該冷却細管の周囲に冷却水を供給して、蒸気を復水とすることを特徴とする復水器の冷却方法にある。   According to a fourth aspect of the present invention, there is provided a cooling method for a condenser, characterized in that steam and steam drain are introduced into a vertical cooling narrow tube, cooling water is supplied around the cooling thin tube, and steam is used as condensate. It is in.

第4の発明によれば、縦型冷却細管により蒸気を冷却して復水とするので、縦型冷却細管に対して、蒸気ドレンと硬質の水蒸気酸化スケールとが直接衝突しないので、エロージョンが発生せず、その結果細管にピンホールが発生することが防止され、海水リークが生じることが無くなる。   According to the fourth aspect of the invention, the steam is cooled by the vertical cooling thin tube to form condensate, so that the steam drain and the hard steam oxidation scale do not directly collide with the vertical cooling thin tube, so that erosion occurs. As a result, pinholes are prevented from occurring in the narrow tube, and seawater leaks do not occur.

第5の発明は、第4の発明において、蒸気又は蒸気ドレンを区分けする開口を有する入口スリット部材を用い、複数の縦型冷却細管内に均等に蒸気又は蒸気ドレンを導入することを特徴とする復水器の冷却方法にある。   A fifth invention is characterized in that, in the fourth invention, the inlet slit member having an opening for dividing the steam or the steam drain is used, and the steam or the steam drain is uniformly introduced into the plurality of vertical cooling capillaries. It is in the condenser cooling method.

第5の発明によれば、各開口内に均等に蒸気が導入され、蒸気の偏りを防止することとなり、均一な冷却が可能となる。   According to the fifth aspect of the invention, the steam is uniformly introduced into each opening to prevent the steam from being biased, and uniform cooling is possible.

第6の発明は、第4又は5の発明において、復水を区分けする開口を有する出口スリット部材を用い、複数の縦型冷却細管から落下する復水を区分けし、この区分けした開口から復水の一部を採取して、復水の性状を分析することを特徴とする復水器の冷却方法にある。   A sixth invention is the fourth or fifth invention, wherein an outlet slit member having an opening for dividing condensate is used to separate condensate falling from a plurality of vertical cooling tubules, and condensate is discharged from the divided openings. This is a condenser cooling method characterized by collecting a part of the water and analyzing the nature of the condensate.

第6の発明によれば、冷却された復水の性状を、各開口毎に分析するので、仮に海水リークが発生した場合でも、海水リークの細管を特定することができる。   According to the sixth aspect of the invention, since the properties of the cooled condensate are analyzed for each opening, even if a seawater leak occurs, it is possible to identify a seawater leak tubule.

本発明によれば、復水器の冷却において、縦型冷却細管により蒸気を冷却して復水とするので、縦型冷却細管に対して、蒸気ドレンと硬質の水蒸気酸化スケールとが直接衝突することが無く、エロージョンが発生せず、その結果縦型冷却細管にピンホールが発生することが防止され、海水リークが生じることが無くなる。   According to the present invention, in the cooling of the condenser, the steam is cooled by the vertical cooling thin tube to form condensate, so that the steam drain and the hard steam oxidation scale directly collide with the vertical cooling thin tube. No erosion occurs, and as a result, the occurrence of pinholes in the vertical cooling thin tubes is prevented and seawater leaks do not occur.

図1は、実施例1に係る復水器の斜視図である。FIG. 1 is a perspective view of a condenser according to the first embodiment. 図2は、実施例1に係る復水器の冷却装置を有する火力発電ボイラ設備の一例を示す図である。FIG. 2 is a diagram illustrating an example of a thermal power generation boiler facility including the condenser cooling device according to the first embodiment. 図3は、縦型冷却細管の周囲を流れる冷却水の模式図である。FIG. 3 is a schematic diagram of the cooling water flowing around the vertical cooling capillary. 図4−1は、本実施例に係る縦型冷却細管に水滴やスケールが落下する様子を示す模式図である。FIG. 4A is a schematic diagram illustrating a state in which water droplets and scales fall on the vertical cooling thin tubes according to the present embodiment. 図4−2は、比較例に係る横置き水配管に水滴やスケールが落下する様子を示す模式図である。FIG. 4-2 is a schematic diagram illustrating a state in which water droplets and a scale are dropped on a horizontal water pipe according to a comparative example. 図5は、実施例2に係る復水器の斜視図である。FIG. 5 is a perspective view of the condenser according to the second embodiment. 図6は、その正面概略図である。FIG. 6 is a schematic front view thereof. 図7は、入口スリット部材の斜視図である。FIG. 7 is a perspective view of the entrance slit member. 図8は、実施例3に係る復水器の正面概略図である。FIG. 8 is a schematic front view of the condenser according to the third embodiment. 図9は、出口スリット部材の斜視図である。FIG. 9 is a perspective view of the outlet slit member.

以下に添付図面を参照して、本発明の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited by this Example, Moreover, when there exists multiple Example, what comprises combining each Example is also included.

図1は、実施例1に係る復水器の斜視図である。図2は、実施例1に係る復水器の冷却装置を有する火力発電ボイラ設備の一例を示す図である。図3は、縦型冷却細管の周囲を流れる冷却水の模式図である。
図1及び図2に示すように、実施例1に係る復水器の冷却装置は、冷却水11を導入する導入通路12と、該導入通路12と接続され、冷却水11を導入する入口水室13と、蒸気タービン21からの蒸気22を導入し、上部管板23と下部管板24とに複数配設される縦型冷却細管25を備えた復水器26と、復水器26の底部に設けられ、蒸気22が冷却された復水27を貯蔵する復水用水室28と、入口水室13から導入される冷却水11を縦型冷却細管25の外周を通過させ、冷却後の冷却水11を排出する出口水室14と、出口水室14と接続され、冷却水11を放水する排出通路35と、を具備するものである。
なお、図1、2において、符号31は海、32は取水路、33は取水槽、34は回転式スクリーン手段、35は導水通路、36は放水路、37は復水通路、38はボイラ、39は煙突、Gは発電機、P1は取水ポンプ、P10は復水ポンプを各々図示する。
FIG. 1 is a perspective view of a condenser according to the first embodiment. FIG. 2 is a diagram illustrating an example of a thermal power generation boiler facility including the condenser cooling device according to the first embodiment. FIG. 3 is a schematic diagram of the cooling water flowing around the vertical cooling capillary.
As shown in FIGS. 1 and 2, the condenser cooling device according to the first embodiment includes an introduction passage 12 that introduces cooling water 11 and an inlet water that is connected to the introduction passage 12 and introduces the cooling water 11. A condenser 26 provided with a plurality of vertical cooling thin tubes 25 into which the steam 22 from the chamber 13 and the steam turbine 21 is introduced and arranged in a plurality of upper tube plates 23 and lower tube plates 24; The condensate water chamber 28 for storing the condensate 27 cooled by the steam 22 and the cooling water 11 introduced from the inlet water chamber 13 are allowed to pass through the outer periphery of the vertical cooling capillary 25 and are provided after cooling. An outlet water chamber 14 that discharges the cooling water 11 and a discharge passage 35 that is connected to the outlet water chamber 14 and discharges the cooling water 11 are provided.
In FIGS. 1 and 2, reference numeral 31 is the sea, 32 is a water intake channel, 33 is a water intake tank, 34 is a rotary screen means, 35 is a water conduit, 36 is a water discharge channel, 37 is a condensate channel, 38 is a boiler, 39 is a chimney, G is a generator, P 1 is a water intake pump, and P 10 is a condensate pump.

復水器26内の冷却系統において、取水槽33まで導入された冷却水11である海水は、取水ポンプP1により吸引することにより、導入通路12を介して復水器26の入口水室13に導入される。この復水器26は、発電機Gと同軸状に連結された蒸気タービン21で仕事をした蒸気22を、復水器26内に配設され入口水室13から導かれる冷却水11が周囲を通過する多数の縦型冷却細管25によって冷却させ、復水27としている。 In the cooling system in the condenser 26, seawater, which is the cooling water 11 introduced up to the intake tank 33, is sucked by the intake pump P 1 , so that the inlet water chamber 13 of the condenser 26 through the introduction passage 12. To be introduced. In this condenser 26, the steam 22 worked in the steam turbine 21 connected coaxially with the generator G is disposed around the periphery of the cooling water 11 disposed in the condenser 26 and guided from the inlet water chamber 13. The water is cooled by a large number of vertical cooling thin tubes 25 passing therethrough to form condensate 27.

また、冷却水11は取水槽33において、図示しない塩素処理手段により、例えば次亜塩素酸ナトリウム等による塩素殺菌を行い、例えば海水に含まれる海洋生成物の系統内の付着を防止するようにしている。   The cooling water 11 is sterilized by chlorine treatment means (not shown) in the intake tank 33, for example, sodium hypochlorite, etc., for example, to prevent adhesion of marine products contained in seawater in the system. Yes.

本実施例では、復水器26内に設けた上部管板23と下部管板24とに縦型冷却細管25を複数(例えば4000本から100000本程度)設置し、図3に示すように、この縦型冷却細管25の周囲を冷却水11を通過させて冷却することで、蒸気タービン21からの蒸気22を冷却させ、復水27としている。   In this embodiment, a plurality of vertical cooling thin tubes 25 (for example, about 4000 to 100,000) are installed on the upper tube plate 23 and the lower tube plate 24 provided in the condenser 26, and as shown in FIG. The periphery of the vertical cooling narrow pipe 25 is cooled by passing the cooling water 11, whereby the steam 22 from the steam turbine 21 is cooled and used as condensed water 27.

この縦型冷却細管25を通過した冷却水11は、復水器26の出口水室14から導水通路35を介して、放水路36を経由して海31へ排出される。   The cooling water 11 that has passed through the vertical cooling narrow pipe 25 is discharged from the outlet water chamber 14 of the condenser 26 to the sea 31 via the water conduit 35 and the water discharge path 36.

本実施例では、蒸気22を復水27とする縦型冷却細管25を鉛直軸方向に多数配設しているので、縦型冷却細管25中を蒸気22が落下し、この落下の際に冷却水11が外側を通過して冷却することにより、ドレン化して復水27としている。   In the present embodiment, since a large number of vertical cooling tubes 25 having the steam 22 as the condensate 27 are arranged in the vertical axis direction, the steam 22 falls in the vertical cooling tubes 25, and cooling is performed at the time of the dropping. When the water 11 passes through the outside and cools, the water 11 is drained to form condensed water 27.

この結果、縦型冷却細管25の外側を冷却水11が通過することとなるので、従来とは異なり、細管に孔が生じることがない。   As a result, since the cooling water 11 passes outside the vertical cooling narrow tube 25, unlike the conventional case, no hole is generated in the narrow tube.

図4−1は、本実施例に係る縦型冷却細管に水滴やスケールが落下する様子を示す模式図である。図4−2は、比較例に係る横置き水配管に水滴やスケールが落下する様子を示す模式図である。
図4−1に示すように、本実施例では、縦型冷却細管25が縦方向に配設されているので、復水の水滴51や蒸気中のスケール52が縦型冷却細管25に沿って落下するので、管に対して水滴51やスケール52が穿つ作用となることはない。
FIG. 4A is a schematic diagram illustrating a state in which water droplets and scales fall on the vertical cooling thin tubes according to the present embodiment. FIG. 4-2 is a schematic diagram illustrating a state in which water droplets and a scale are dropped on a horizontal water pipe according to a comparative example.
As shown in FIG. 4A, in the present embodiment, the vertical cooling thin tubes 25 are arranged in the vertical direction, so that the condensate water droplets 51 and the scale 52 in the steam are along the vertical cooling thin tubes 25. Since it falls, it does not become the effect | action which the water droplet 51 and the scale 52 pierce | pierce with respect to a pipe | tube.

これに対し、図4−2に示すように、従来の鉛直方向と直交する方向に配置された横置きの冷却細管53では、復水の水滴51や蒸気中のスケール52が長期間に亙って落下することによる穿つ作用等のエロージョンが生じ、ピンホール54の発生となる。   On the other hand, as shown in FIG. 4B, in the horizontal cooling thin tubes 53 arranged in the direction orthogonal to the conventional vertical direction, the condensate water droplets 51 and the scale 52 in the steam are spread over a long period of time. As a result, erosion such as a piercing action due to falling occurs, and pinholes 54 are generated.

このように、本実施例では、縦型冷却細管25を縦配置としているため、当該細管に蒸気ドレンと硬質の水蒸気酸化スケールとが直接衝突することが防止されることとなり、エロージョンの発生が無く、ピンホールができず、この結果海水リークが生じないこととなる。   Thus, in this embodiment, since the vertical cooling thin tubes 25 are arranged vertically, it is possible to prevent the steam drain and the hard steam oxide scale from directly colliding with the thin tubes, and there is no occurrence of erosion. A pinhole cannot be formed, and as a result, no seawater leak occurs.

また、エロージョンが発生する箇所としては、上部管板23のみであるので、縦型冷却細管25の表面に対して、細孔が発生することがない。   In addition, since only the upper tube plate 23 is the place where erosion occurs, no pores are generated on the surface of the vertical cooling thin tube 25.

また、従来のように、横置きの冷却細管の中を冷却水である海水が通過する場合、冷却細管の内部において、海洋生物の付着による閉塞があったが、本実施例によれば、冷却水11である海水は、縦型冷却細管25の外周を通過するので、閉塞が生じることがない。   In addition, as in the past, when seawater as cooling water passes through a horizontally placed cooling thin tube, there was a blockage due to adhesion of marine organisms inside the cooling thin tube. Since the seawater which is the water 11 passes through the outer periphery of the vertical cooling thin tube 25, the blockage does not occur.

この結果、縦型冷却細管25の補修の頻度が低下することとなり、長期間安定して蒸気22を冷却することができる。   As a result, the frequency of repair of the vertical cooling thin tubes 25 is reduced, and the steam 22 can be cooled stably for a long period of time.

また、冷却設備としては、タービン出力に応じて、縦型冷却細管25の冷却室を2室(2段式)構造として、冷却能力を維持するようにしてもよい。   Further, as a cooling facility, the cooling capacity of the vertical cooling thin tube 25 may be a two-chamber (two-stage) structure depending on the turbine output so as to maintain the cooling capacity.

このように、本実施例の復水器の冷却装置によれば、縦型冷却細管25の設置により蒸気22を冷却して復水27とするので、縦型冷却細管25に対して、蒸気ドレンと硬質の水蒸気酸化スケールとが直接衝突しないので、エロージョンが発生せず、その結果細管にピンホールが発生することが防止され、海水リークが生じることが無くなる。   Thus, according to the condenser cooling device of the present embodiment, the steam 22 is cooled by the installation of the vertical cooling thin tube 25 to form the condensate 27. And the hard steam oxide scale do not directly collide, so that erosion does not occur, and as a result, pinholes are prevented from being generated in the narrow tubes, and seawater leaks do not occur.

図5は、実施例2に係る復水器の斜視図、図6は、その正面外略図、図7は、入口スリット部材の斜視図である。なお、実施例1に係る復水器の冷却装置の構成と重複する部材には同一符号を付してその説明は省略する。図5乃至7に示すように、本実施例に係る復水器の冷却装置は、実施例1の復水器の冷却装置において、上部管板23の上方側に複数の開口40を有する入口スリット部材41を設けている。
この開口40は入口側と出口側が連通しており、蒸気22が開口40の枡に応じて区画され、通過されることとなる。
FIG. 5 is a perspective view of a condenser according to the second embodiment, FIG. 6 is a schematic front view thereof, and FIG. 7 is a perspective view of an inlet slit member. In addition, the same code | symbol is attached | subjected to the member which overlaps with the structure of the cooling device of the condenser which concerns on Example 1, and the description is abbreviate | omitted. As shown in FIGS. 5 to 7, the condenser cooling device according to the present embodiment is the same as the condenser cooling device according to the first embodiment, but includes an inlet slit having a plurality of openings 40 above the upper tube plate 23. A member 41 is provided.
In this opening 40, the inlet side and the outlet side communicate with each other, and the vapor 22 is partitioned and passed through according to the trap of the opening 40.

この開口40を備えた入口スリット部材41を、上部管板23の上方側(蒸気22の入口側)に設置しているので、入口スリット部材41の各開口40に蒸気22が均等に導入され、蒸気22の偏りを防止することとなる。この結果、開口40内に均等導入された蒸気22が縦型冷却細管25に導入され、蒸気22の冷却が均一になされることとなる。   Since the inlet slit member 41 having the opening 40 is installed on the upper side of the upper tube plate 23 (the inlet side of the steam 22), the steam 22 is uniformly introduced into each opening 40 of the inlet slit member 41, The bias of the steam 22 will be prevented. As a result, the steam 22 introduced uniformly into the opening 40 is introduced into the vertical cooling thin tube 25, and the steam 22 is uniformly cooled.

ここで、開口40の一枡には、縦型冷却細管25の約50〜200本、好適には100本前後が区分けされるように開口面積を調整するのが好ましい。   Here, it is preferable to adjust the opening area so that about 50 to 200, preferably about 100, of the vertical cooling thin tubes 25 are divided into a part of the opening 40.

本実施例によれば、開口40を有する入口スリット部材41を冷却部である縦型冷却細管25の入口側に設けることで、各開口40内に均等に蒸気22が導入され、蒸気22の偏りを防止することとなり、均一な冷却が可能となる。   According to the present embodiment, by providing the inlet slit member 41 having the opening 40 on the inlet side of the vertical cooling thin tube 25 that is a cooling unit, the steam 22 is uniformly introduced into each opening 40, and the deviation of the steam 22 is obtained. Therefore, uniform cooling is possible.

本実施例によれば、蒸気22又は蒸気ドレンを区分けする開口40を有する入口スリット部材41を用い、複数の縦型冷却細管25内に均等に蒸気22又は蒸気ドレンを導入するので、各開口40内に均等に蒸気22が導入され、蒸気22の偏りを防止することとなり、均一な冷却が可能となる。   According to the present embodiment, since the inlet slit member 41 having the opening 40 for dividing the steam 22 or the steam drain is used and the steam 22 or the steam drain is uniformly introduced into the plurality of vertical cooling thin tubes 25, each opening 40 The steam 22 is evenly introduced into the inside, and the unevenness of the steam 22 is prevented, so that uniform cooling is possible.

図8は、実施例3に係る復水器の斜視図、図9は、出口スリット部材の斜視図である。なお、実施例1及び2に係る復水器の冷却装置の構成と重複する部材には同一符号を付してその説明は省略する。
図8及び9に示すように、本実施例に係る復水器の冷却装置は、実施例2の復水器の冷却装置において、さらに、下部管板24の下方側に設けられ、複数の開口42を有する出口スリット部材43と、出口スリット部材43の各開口42内の復水27を採取して復水27の性状を分析する分析手段とを具備している。
FIG. 8 is a perspective view of a condenser according to the third embodiment, and FIG. 9 is a perspective view of an outlet slit member. In addition, the same code | symbol is attached | subjected to the member which overlaps with the structure of the cooling device of the condenser which concerns on Example 1 and 2, and the description is abbreviate | omitted.
As shown in FIGS. 8 and 9, the condenser cooling device according to the present embodiment is the condenser cooling device according to the second embodiment, further provided below the lower tube plate 24, and having a plurality of openings. And an analyzing means for collecting the condensate 27 in each opening 42 of the outlet slit member 43 and analyzing the properties of the condensate 27.

本実施例では、縦型冷却細管25の下部に複数の開口42を有する出口スリット部材43を配置し、縦型冷却細管25で蒸気22がドレン化されて流れ落ちる復水27を復水用水室28の上部側で複数の開口42で仕切るようにしている。   In the present embodiment, an outlet slit member 43 having a plurality of openings 42 is disposed below the vertical cooling narrow tube 25, and the condensate 27 that flows down as the steam 22 drains in the vertical cooling thin tube 25 flows into the condensate water chamber 28. A plurality of openings 42 are partitioned on the upper side.

そして、各開口42に採取細管(図示せず)を配置させ、落下してくる復水27の一部を各採取細管で採取し、分析手段である例えば塩素分析計45で塩素イオン等の連続分析を行い、海水リーク発生を分析するようにしている。
この塩素分析計45の分析結果は、制御手段46に送られる。
Then, a collection capillary (not shown) is arranged in each opening 42, and a part of the falling condensate 27 is collected by each collection capillary, and a chlorine analyzer 45, which is an analysis means, continuously extracts chlorine ions and the like. Analysis is conducted to analyze the occurrence of seawater leaks.
The analysis result of the chlorine analyzer 45 is sent to the control means 46.

本実施例では、一つの開口42に対して、約100本程度の縦型冷却細管25を区分しているので、リーク細管の検知が早く正確となる。   In this embodiment, about 100 vertical cooling tubules 25 are divided with respect to one opening 42, so that leak tubules can be detected quickly and accurately.

これは、従来においては、復水通路37で復水器26から排出される復水27の性状を検知しているが、この検知だけでは、どの配管で海水リークがあったか特定することができなかった。   In the prior art, the nature of the condensate 27 discharged from the condenser 26 is detected by the condensate passage 37, but it is not possible to specify which pipe has the seawater leak only by this detection. It was.

これに対し、本実施例では、開口42の枡毎に採取細管より検知しているので、リークしている枡を特定することができる。   On the other hand, in the present embodiment, since the tubule of the opening 42 is detected from the collection capillary, the leaking fold can be identified.

また、連続分析を行う代わりとして、通常復水系統の復水ポンプの後流側で設置される検塩計での海水リークが発生したことを確認した際、バルブVを開放して、個々の開口42より採取細管により復水27の一部を採取し、海水リークの発生の有無を確認することができる。   As an alternative to continuous analysis, when it was confirmed that a seawater leak occurred in the salt analyzer installed on the downstream side of the condensate pump of the normal condensate system, the valve V was opened, A part of the condensate 27 can be collected from the opening 42 by a collecting thin tube, and the presence or absence of seawater leakage can be confirmed.

本実施例によれば、復水27を区分けする開口42を有する出口スリット部材43を用い、複数の縦型冷却細管25から落下する復水27を区分けし、この区分けした開口42から復水27の一部を採取細管を介して採取して、復水の性状を分析するので、冷却された復水の性状を、各開口42の単位毎に分析することで、仮に海水リークが発生した場合でも、海水リークの細管を特定することができる。   According to the present embodiment, the outlet slit member 43 having the opening 42 for partitioning the condensate 27 is used to partition the condensate 27 falling from the plurality of vertical cooling thin tubes 25, and the condensate 27 is separated from the partitioned openings 42. If a seawater leak occurs by analyzing the properties of the cooled condensate for each unit of each opening 42, a part of the sample is collected through a collection capillary and analyzed for the properties of the condensate. However, it is possible to identify the tubule of seawater leak.

なお、本実施例では、実施例2にさらに下部管板24の下方側に複数の開口42を有する出口スリット部材43及び分析手段45を設けているが、実施例1において、複数の開口40を有する入口スリット部材41を設けることなく、下部管板24の下側にのみ出口スリット部材43及び分析手段45を設けるようにしてもよい。   In this embodiment, the outlet slit member 43 and the analyzing means 45 having a plurality of openings 42 are further provided on the lower side of the lower tube sheet 24 in the second embodiment, but in the first embodiment, the plurality of openings 40 are provided. The outlet slit member 43 and the analyzing means 45 may be provided only on the lower side of the lower tube sheet 24 without providing the inlet slit member 41 having the above.

11 冷却水
12 導入通路
13 入口水室
14 出口水室
21 蒸気タービン
22 蒸気
23 上部管板
24 下部管板
25 縦型冷却細管
26 復水器
27 復水
28 復水用水室
DESCRIPTION OF SYMBOLS 11 Cooling water 12 Introductory passage 13 Inlet water chamber 14 Outlet water chamber 21 Steam turbine 22 Steam 23 Upper tube plate 24 Lower tube plate 25 Vertical cooling thin tube 26 Condenser 27 Condensate 28 Condensate water chamber

Claims (6)

冷却水を導入する導入通路と、
該導入通路と接続され、冷却水を導入する入口水室と、
蒸気タービンからの蒸気を導入し、上部管板と下部管板とに複数配設される縦型冷却細管を備えた復水器と、
前記復水器の底部に設けられ、前記蒸気が冷却された復水を貯蔵する復水用水室と、
該入口水室から導入される冷却水を前記縦型冷却細管の外周を通過させ、冷却後の前記冷却水を排出する出口水室と、
前記出口水室と接続され、冷却水を放水する排出通路と、を具備することを特徴とする復水器の冷却装置。
An introduction passage for introducing cooling water;
An inlet water chamber connected to the introduction passage and introducing cooling water;
A condenser that introduces steam from a steam turbine and includes a plurality of vertical cooling thin tubes disposed in an upper tube plate and a lower tube plate;
A condensate water chamber for storing condensate in which the steam is cooled, provided at the bottom of the condenser;
An outlet water chamber through which the cooling water introduced from the inlet water chamber passes through the outer periphery of the vertical cooling capillary and discharges the cooled cooling water;
A condenser cooling device, comprising: a discharge passage connected to the outlet water chamber and discharging the cooling water.
請求項1において、
前記上部管板の上方側に複数の開口を有する入口スリット部材を設けることを特徴とする復水器の冷却装置。
In claim 1,
A condenser cooling device, wherein an inlet slit member having a plurality of openings is provided on an upper side of the upper tube sheet.
請求項1又は2において、
前記下部管板の下方側に設けられ、複数の開口を有する出口スリット部材と、
前記出口スリット部材の各開口内の復水を採取して復水の性状を分析する分析手段とを具備することを特徴とする復水器の冷却装置。
In claim 1 or 2,
An outlet slit member provided on the lower side of the lower tube sheet and having a plurality of openings;
A condenser cooling device, comprising: analysis means for collecting condensate in each opening of the outlet slit member and analyzing the properties of the condensate.
蒸気及び蒸気ドレンを縦型の冷却細管に導入し、該冷却細管の周囲に冷却水を供給して、蒸気を復水とすることを特徴とする復水器の冷却方法。   A condenser cooling method, characterized in that steam and steam drain are introduced into a vertical cooling narrow tube, cooling water is supplied around the cooling thin tube, and steam is used as condensate. 請求項4において、
蒸気又は蒸気ドレンを区分けする開口を有する入口スリット部材を用い、複数の縦型冷却細管内に均等に蒸気又は蒸気ドレンを導入することを特徴とする復水器の冷却方法。
In claim 4,
A condenser cooling method, wherein an inlet slit member having an opening for dividing steam or steam drain is used, and steam or steam drain is uniformly introduced into a plurality of vertical cooling capillaries.
請求項4又は5において、
復水を区分けする開口を有する出口スリット部材を用い、複数の縦型冷却細管から落下する復水を区分けし、この区分けした開口から復水の一部を採取して、復水の性状を分析することを特徴とする復水器の冷却方法。
In claim 4 or 5,
Using an outlet slit member with an opening to separate the condensate, the condensate falling from multiple vertical cooling capillaries is divided, and a part of the condensate is sampled from the divided openings to analyze the condensate properties. A condenser cooling method characterized by:
JP2013093040A 2013-04-25 2013-04-25 Cooling device and method of condenser Pending JP2014214980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013093040A JP2014214980A (en) 2013-04-25 2013-04-25 Cooling device and method of condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013093040A JP2014214980A (en) 2013-04-25 2013-04-25 Cooling device and method of condenser

Publications (1)

Publication Number Publication Date
JP2014214980A true JP2014214980A (en) 2014-11-17

Family

ID=51940905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013093040A Pending JP2014214980A (en) 2013-04-25 2013-04-25 Cooling device and method of condenser

Country Status (1)

Country Link
JP (1) JP2014214980A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3741879A (en) * 1972-05-30 1973-06-26 T Best Apparatus for distillation of fluids
JPS5484106A (en) * 1977-12-16 1979-07-04 Nikkiso Co Ltd Method and apparatus for inhibiting corrosion of stea generating plant
JPH11101581A (en) * 1997-09-30 1999-04-13 Hitachi Ltd Condenser
JP2004144708A (en) * 2002-10-28 2004-05-20 Mitsubishi Heavy Ind Ltd Leakage detection device
JP2006267095A (en) * 2005-02-28 2006-10-05 Mitsubishi Heavy Ind Ltd Liquid-quality sensor, liquid-quality detection device and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3741879A (en) * 1972-05-30 1973-06-26 T Best Apparatus for distillation of fluids
JPS5484106A (en) * 1977-12-16 1979-07-04 Nikkiso Co Ltd Method and apparatus for inhibiting corrosion of stea generating plant
JPH11101581A (en) * 1997-09-30 1999-04-13 Hitachi Ltd Condenser
JP2004144708A (en) * 2002-10-28 2004-05-20 Mitsubishi Heavy Ind Ltd Leakage detection device
JP2006267095A (en) * 2005-02-28 2006-10-05 Mitsubishi Heavy Ind Ltd Liquid-quality sensor, liquid-quality detection device and method

Similar Documents

Publication Publication Date Title
Besner et al. Assessing the public health risk of microbial intrusion events in distribution systems: Conceptual model, available data, and challenges
KR101221881B1 (en) Apparatus sensing dissolved gases in insulating oil for a transformer
CN203849138U (en) Smoke concentration detection device
CN103383296A (en) Leakage detecting system for condensers
Valeh-e-Sheyda et al. Inhibition of corrosion in amine air cooled heat exchanger: experimental and numerical study
RU2461807C1 (en) Device for detecting leakage of water-steam mixture from pipeline
JP2014214980A (en) Cooling device and method of condenser
CN102879529A (en) Wet type sample gas analyzing system applicable to monitoring of combustion conditions of coal-fired kilns
US20190017698A1 (en) Saturated steam quality measurement system and method
CN205910038U (en) Smoke discharging monitoring system
CN111727352B (en) Method for evaluating fouling of heat exchanger
JP5292424B2 (en) Power plant outlet sampling device
US8449766B2 (en) Device for capturing odor and/or taste-generating substances present in water flowing in a network
CN207600680U (en) Nuclear power plant's condenser leakage detection system
KR101734837B1 (en) Visible device for tracking loose part in a nuclear power plant and method there of
De Vroey et al. Corrosion investigations in 2-ethanolamine based post-combustion CO2 capture pilot plants
JP5830875B2 (en) Corrosion environment monitoring sensor and corrosion environment monitoring system using the same
CN103776652B (en) A kind of high-pressure heater method for testing performance and system
CN203132798U (en) Leakage monitoring device for direct inserting type condenser
Heckmann et al. A metastable jet model for leaks in steam generator tubes
KR101393136B1 (en) Testing system for deaerater and method thereof
CN104374525A (en) Device for detecting and positioning leakage in water-guiding or water-contained equipment
JP2008241610A (en) Vapor sampling method
BR112013009804B1 (en) METHOD FOR DETECTION OF IMPURITIES IN A FLUID AND METHOD FOR REGULATING FLUID INPUT IN AN ENERGY TRANSFER SYSTEM
SE458484B (en) SET AND DEVICE CHARACTERIZING THE WATER IN THE PRIMARY CIRCUIT OF A NUCLEAR REACTOR

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150206

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20151028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170228