JP2014214243A - Selection method of caking filler, and manufacturing method of high strength coke using the filler - Google Patents

Selection method of caking filler, and manufacturing method of high strength coke using the filler Download PDF

Info

Publication number
JP2014214243A
JP2014214243A JP2013093385A JP2013093385A JP2014214243A JP 2014214243 A JP2014214243 A JP 2014214243A JP 2013093385 A JP2013093385 A JP 2013093385A JP 2013093385 A JP2013093385 A JP 2013093385A JP 2014214243 A JP2014214243 A JP 2014214243A
Authority
JP
Japan
Prior art keywords
caking
coal
temperature
rate
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013093385A
Other languages
Japanese (ja)
Other versions
JP6146109B2 (en
Inventor
秀幸 林崎
Hideyuki Hayashizaki
秀幸 林崎
基弘 岡谷
Motohiro Okaya
基弘 岡谷
洋土 石川
Yoji Ishikawa
洋土 石川
上坊 和弥
Kazuya Uebo
和弥 上坊
野村 誠治
Seiji Nomura
誠治 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2013093385A priority Critical patent/JP6146109B2/en
Publication of JP2014214243A publication Critical patent/JP2014214243A/en
Application granted granted Critical
Publication of JP6146109B2 publication Critical patent/JP6146109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • C10B57/06Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Coke Industry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for properly selecting a caking filler suitable for each type of coal in manufacturing of high strength coke; and a manufacturing method of a high strength coke using the filler.SOLUTION: By a testing method of swelling properties in accordance with JIS M8801, the maximum shrinkage temperature Tand the maximum expansion temperature Tof a caking coal are obtained. From premeasured mass decrease curves of a plurality of caking filler, the mass decrease rate of each caking filler in the temperature range of T-Tis obtained as a gas utilization rate. The selection method of caking filler includes selecting a caking filler having a gas utilization rate equal to or higher than the volatilization rate of caking coal in the temperature range of T-T. The manufacturing method of a high strength coke includes obtaining coke by adding the caking filler thus selected to caking coal.

Description

本発明は、高強度コークスの製造にあたり粘結炭に添加する粘結補填材を選択する方法、及び、この選択方法を利用して高強度コークスを製造する方法に関する。   The present invention relates to a method for selecting a caking filler to be added to caking coal in producing high-strength coke, and a method for producing high-strength coke using this selection method.

銑鉄を得る高炉において鉄鉱石の還元材として使用されるコークスは、単味炭や複数種の石炭を配合した配合炭を原料にしてコークス炉で乾留して製造されるが、高炉内での通気性を十分に確保できるといった高強度コークスを得るには、粘結性や炭化特性に優れた強粘結炭を多く含む必要がある。ところが、強粘結炭は高価であって資源としての制限もあることから、原料炭に粘結補填材を添加してコークス炉に装入する技術が広く採用されている。   Coke used as a reducing material for iron ore in a blast furnace to obtain pig iron is produced by dry distillation in a coke oven using raw coal or blended coal blended with multiple types of coal, but aeration in the blast furnace In order to obtain a high-strength coke that can secure sufficient properties, it is necessary to contain a large amount of strong caking coal having excellent caking properties and carbonization characteristics. However, since strong caking coal is expensive and has limited resources, a technique of adding caking filler to raw coal and charging it into a coke oven is widely adopted.

このような粘結補填材の添加に関して、例えば、芳香族性瀝青物(ASP)とコールタールとを相互溶解させたものを原料炭に添加混合して加圧成型することで、強度の高い成形炭を製造する方法が提案されている(特許文献1参照)。また、石炭の固化温度に近い温度で熱分解してガスを発生するプラスチック等の気孔生成剤と共に、石炭系又は石油系ピッチ等の粘結剤を配合炭に添加して、気孔率が高く且つ一定レベル以上の強度を有するコークスを得る方法が提案されている(特許文献2参照)。更には、石炭をコークス炉で乾留する際に所定の粒度上限値以下に制御した廃プラスチックを添加することで、熱分解して発生したガスが石炭の軟化溶融層内に内包され、軟化溶融層内部のガス圧により、軟化溶融した石炭同士の融着結合を強固にして強度の高いコークスを得る方法が提案されている(特許文献3参照)。   With regard to the addition of such a caking filler, for example, high strength molding is achieved by adding and mixing the raw material charcoal with a mixture of aromatic bituminous material (ASP) and coal tar dissolved together. A method for producing charcoal has been proposed (see Patent Document 1). In addition, together with a pore-generating agent such as plastic that decomposes thermally at a temperature close to the solidification temperature of coal, a binder such as coal-based or petroleum-based pitch is added to the blended coal, and the porosity is high and A method for obtaining coke having a strength of a certain level or more has been proposed (see Patent Document 2). Furthermore, when the coal is carbonized in a coke oven, by adding waste plastics controlled to a predetermined particle size upper limit or less, the gas generated by thermal decomposition is included in the softened molten layer of coal, and the softened molten layer A method has been proposed in which cohesion between softened and melted coals is strengthened by an internal gas pressure to obtain coke having high strength (see Patent Document 3).

しかしながら、石炭は産地や銘柄等によってその性状が異なることから、例えば、上記のような方法によって、ある原料炭に適した粘結補填材を見つけることはできても、炭種毎にそれぞれ適した粘結補填材を選択することまでには至らない。   However, since the properties of coal differ depending on the production area, brand, etc., for example, even though a caking filler suitable for a certain raw coal can be found by the above method, it is suitable for each coal type. It does not lead to the selection of caking filler.

一方で、粘結補填材を構成する成分をヘキサンに可溶な成分(HS成分)、ヘキサンに不溶でトルエンに可溶な成分(HITS成分)、及びトルエンに不溶な成分(TI成分)に分けて、粘結補填材におけるそれぞれの作用を見出し、添加する対象の原料炭の性状(揮発分含有量、粘結性等)に合わせて、適切な成分組成を有した粘結補填材を選択できるようにした方法が提案されている(特許文献4参照)。具体的には、粘結補填材を構成するHS成分(軽質成分)は、乾留途中でガス化し、軟化溶融した石炭中の気泡の成長および合体を促進して、気孔サイズを適切なサイズまで大きくする作用(気孔拡大作用)を有し、HITS成分(中間成分)は、乾留過程で軟化溶融した石炭の粘性を低下させ、気泡の形状を丸みのある形状とする作用(気孔丸状化作用)を有し、TI成分(重質成分)は、殆どが残差となるが、コークス壁を厚くする作用(壁厚増大作用)を有するとして、原料炭を全膨張率により4つの区分に分け、各区分に応じて粘結補填材における前記3成分の添加率の範囲を定めるようにしている。   On the other hand, the components that make up the caking filler are divided into components that are soluble in hexane (HS components), components that are insoluble in hexane and soluble in toluene (HITS components), and components that are insoluble in toluene (TI components). Thus, each action in the caking filler can be found, and a caking filler having an appropriate component composition can be selected in accordance with the properties (volatile content, caking nature, etc.) of the raw coal to be added. Such a method has been proposed (see Patent Document 4). Specifically, the HS component (light component) constituting the caking filler is gasified during dry distillation, promotes bubble growth and coalescence in the softened and melted coal, and increases the pore size to an appropriate size. The HITS component (intermediate component) reduces the viscosity of coal that has been softened and melted during the dry distillation process, and makes the bubble shape round (pore rounding effect). The TI component (heavy component) is mostly a residual, but the coking coal is divided into four categories according to the total expansion rate, assuming that it has an action to thicken the coke wall (wall thickness increasing action), The range of the addition ratio of the three components in the caking filler is determined according to each category.

或いは、原料炭の気孔率が最小になる温度と最大になる温度とを求めて、この温度域における粘結補填材からのガスを有効利用できる組み合わせから粘結補填材を選択する方法も提案されている(特許文献5参照)。詳しくは、予め複数種の粘結補填材の質量減少曲線を測定しておき、原料炭の気孔率が最小になる温度と最大になる温度での間の温度域で各粘結補填材の質量減少率をガス利用可能率として求めて、このガス利用可能率が原料炭の揮発率を超えるものを選択するようにしている。   Alternatively, a method has been proposed in which the temperature at which the porosity of the raw coal is minimized and the temperature at which the porosity is maximized are selected and the caking filler is selected from a combination that can effectively use the gas from the caking filler in this temperature range. (See Patent Document 5). Specifically, the mass reduction curves of plural types of caking filler materials are measured in advance, and the mass of each caking filler material in the temperature range between the temperature at which the porosity of the raw coal becomes the minimum and the maximum temperature. The reduction rate is obtained as a gas availability rate, and the gas availability rate exceeds the volatilization rate of the raw coal.

特公昭52−3402号公報Japanese Patent Publication No.52-3402 特開平11−236573号公報Japanese Patent Laid-Open No. 11-236573 特許第4231213号公報Japanese Patent No. 423213 特開2007−9030号公報Japanese Patent Laid-Open No. 2007-9030 特開2013−28800号公報JP2013-28800A

前述したように、原料炭に添加する粘結補填材は、これまでに様々なものが知られ、使用されてきたが、石炭自体も産地や銘柄等によってその性状が異なることから、実際には炭種毎に最適な粘結補填材の組み合わせが存在すると考えられる。そのため、上記特許文献4及び5に記載されるように、原料炭に適した粘結補填材を選び出すことは、高強度コークスを製造する上で極めて重要である。なかでも、特許文献5に記載された方法によれば、原料炭に応じてコークス強度の向上に資する粘結補填材を簡便に選択することができる。   As described above, various caking fillers added to coking coal have been known and used so far, but the nature of coal itself varies depending on the production area and brand, There seems to be an optimal combination of caking fillers for each type of coal. Therefore, as described in Patent Documents 4 and 5, selecting a caking filler suitable for raw coal is extremely important in producing high-strength coke. Especially, according to the method described in patent document 5, the caking filler which contributes to the improvement of coke strength according to raw coal can be selected easily.

ところが、本発明者らが更なる検討を進めたところ、粘結炭に添加する粘結補填材を選択する場合は、石炭が膨張し始めた状態から再固化が完了するまでの温度域(つまり、石炭が溶融している温度域)に注目することで、幅広い粘結補填材を対象とすることができ、これによりさらに的確に選択することができることを知見した。   However, when the inventors proceeded with further studies, when selecting a caking filler to be added to caking coal, the temperature range from the state where the coal began to expand to the completion of resolidification (that is, It was found that a wide range of caking fillers can be targeted by focusing on the temperature range in which the coal is melted, thereby enabling more accurate selection.

そこで、本発明の目的は、高強度コークスの製造において、粘結炭の炭種毎に適した粘結補填材を的確に選択することができる方法を提供することにある。また、本発明の他の目的は、この方法を利用して効果的に高強度コークスを製造することができる方法を提供することにある。   Accordingly, an object of the present invention is to provide a method capable of accurately selecting a caking filler suitable for each type of caking coal in the production of high-strength coke. Another object of the present invention is to provide a method capable of effectively producing high-strength coke using this method.

本発明者らは、上記課題を解決するために鋭意検討した結果、粘結補填材から生じたガスが石炭の膨張に寄与するためには、石炭が軟化して膨張し、再固化する過程において、粘結補填材由来のガスを十分に捕捉できる必要があり、粘結炭のように石炭自体がある程度の溶融成分を有していることが有利であることを新たに見出した。そして、粘結炭の最大収縮温度と最大膨張温度とを求めて、この温度域での粘結炭の揮発分を補い、さらには揮発分を超えることができる粘結補填材を選択することで、コークス強度の向上に資する粘結補填材を的確に選択できるようになることから、本発明を完成するに至った。
すなわち、本発明の要旨は次のとおりである。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the gas generated from the caking filler contributes to the expansion of the coal, in the process of coal softening and expanding and resolidifying. The present inventors have newly found that it is necessary that the gas derived from the caking filler material can be sufficiently captured, and that the coal itself has a certain amount of molten component like caking coal. Then, by finding the maximum shrinkage temperature and maximum expansion temperature of the caking coal, supplementing the volatile content of the caking coal in this temperature range, and further selecting a caking filler that can exceed the volatile content. The present invention has been completed since the caking filler that contributes to the improvement of coke strength can be selected accurately.
That is, the gist of the present invention is as follows.

(1) 高強度コークスの製造にあたり粘結炭に添加する粘結補填材を選択する方法であって、JIS M8801に記載される膨張性試験方法により粘結炭の最大収縮温度T1と最大膨張温度T2とを求め、また、予め測定した複数種の粘結補填材の質量減少曲線から、前記T1−T2の温度域における各粘結補填材の質量減少率をガス利用可能率として求めて、該ガス利用可能率が、前記T1−T2温度域における粘結炭の揮発率以上になる粘結補填材を選択することを特徴とする粘結補填材の選択方法。
(2) 前記T1−T2温度域における粘結炭の揮発率は、温度に対する粘結炭の質量減少曲線におけるT1−T2温度域での粘結炭の質量減少率である(1)に記載の粘結補填材の選択方法。
(3) 粘結補填材を窒素中で900℃まで3℃/min.で昇温したときの質量減少曲線を時間で一次微分して得られる質量減少速度曲線において、質量減少速度が最大になる温度が400℃以上の粘結補填材の中から選択する(1)又は(2)に記載の粘結補填材の選択方法。
(4) 前記T1−T2温度域における粘結補填材のガス利用可能率が粘結炭の揮発率以上になるもののうち、最もガス利用可能率が高い粘結補填材を選択する(1)〜(3)のいずれかに記載の粘結補填材の選択方法。
(1) A method of selecting a caking filler to be added to caking coal in producing high-strength coke, and the maximum shrinkage temperature T 1 and the max expansion of caking coal according to the expansibility test method described in JIS M8801. The temperature T 2 is obtained, and the mass reduction rate of each caking filler in the temperature range of T 1 -T 2 is determined from the mass reduction curves of the plurality of caking fillers measured in advance as the gas availability rate. determined, the gas available rates, selection methods caking filling material and selects the caking filling material becomes more volatile rate of coking coal in the T 1 -T 2 temperature range.
(2) volatilization rate of coking coal in the T 1 -T 2 temperature range, a mass reduction rate of the caking coal in T 1 -T 2 temperature range in weight loss curve of caking coal with respect to temperature (1 )).
(3) The caking filler is up to 900 ° C in nitrogen at 3 ° C / min. In the mass reduction rate curve obtained by first-order differentiation of the mass reduction curve when the temperature is raised with time, the temperature at which the mass reduction rate is maximized is selected from caking fillers having a temperature of 400 ° C. or higher (1) or The method for selecting the caking filler according to (2).
(4) Select a caking filler material having the highest gas availability rate from those where the caustic rate of the caking filler in the T 1 -T 2 temperature range is equal to or higher than the volatilization rate of caking coal (1 ) To (3). The method for selecting a caking filler according to any one of (3).

(5) 粘結炭に粘結補填材を添加して乾留し、高強度コークスを製造する方法であって、JIS M8801に記載される膨張性試験方法により粘結炭の最大収縮温度T1と最大膨張温度T2とを求め、また、予め測定した複数種の粘結補填材の質量減少曲線から、前記T1−T2の温度域における各粘結補填材の質量減少率をガス利用可能率として求めて、該ガス利用可能率が、前記T1−T2温度域における粘結炭の揮発率以上になる粘結補填材を選択して添加することを特徴とする高強度コークスの製造方法。
(6) 前記T1−T2温度域における粘結炭の揮発率は、温度に対する粘結炭の質量減少曲線におけるT1−T2温度域での粘結炭の質量減少率である(5)に記載の高強度コークスの製造方法。
(7) 粘結補填材を窒素中で900℃まで3℃/min.で昇温したときの質量減少曲線を時間で一次微分して得られる質量減少速度曲線において、質量減少速度が最大になる温度が400℃以上の粘結補填材の中から選択して添加する(5)又は(6)に記載の高強度コークスの製造方法。
(8) 前記T1−T2温度域における粘結補填材のガス利用可能率が粘結炭の揮発率以上になるもののうち、最もガス利用可能率が高い粘結補填材を選択して添加する(5)〜(7)のいずれかに記載の高強度コークスの製造方法。
(5) A method of producing a high-strength coke by adding a caking filler to caking coal, and producing high-strength coke, wherein the maximum shrinkage temperature T 1 of caking coal is determined by an expansibility test method described in JIS M8801. The maximum expansion temperature T 2 is obtained, and the mass reduction rate of each caking filler in the temperature range of T 1 -T 2 can be used from the mass reduction curves of plural kinds of caking fillers measured in advance. The high-strength coke is characterized by selecting and adding a caking filler that is obtained as a rate and the gas availability rate is equal to or higher than the volatilization rate of caking coal in the T 1 -T 2 temperature range. Method.
(6) Volatile ratio of caking coal in the T 1 -T 2 temperature range, a mass reduction rate of the caking coal in T 1 -T 2 temperature range in weight loss curve of caking coal with respect to temperature (5 The manufacturing method of the high intensity | strength coke as described in).
(7) The caking filler is up to 900 ° C in nitrogen at 3 ° C / min. In the mass reduction rate curve obtained by first-order differentiation of the mass reduction curve when the temperature is raised with time, the temperature at which the mass reduction rate is maximized is selected from among caking fillers having a temperature of 400 ° C. or more (added) ( The method for producing high-strength coke according to 5) or (6).
(8) Among the materials in which the gas availability rate of the caking filler in the T 1 -T 2 temperature range is equal to or higher than the volatilization rate of caking coal, the caking filler material having the highest gas availability rate is selected and added. The method for producing high-strength coke according to any one of (5) to (7).

本発明によれば、高強度コークスを製造するにあたり、粘結炭の炭種毎にコークス強度の向上に資する粘結補填材を的確に選択することができるようになる。また、この方法を利用すれば、粘結炭の炭種毎に効果的な粘結補填材を選択して添加することができるようになるため、高強度コークスの効果的な製造が可能になる。   According to the present invention, in producing high-strength coke, a caking filler that contributes to the improvement of coke strength can be accurately selected for each coal type of caking coal. In addition, if this method is used, an effective caking filler can be selected and added for each type of caking coal, so that it is possible to effectively produce high-strength coke. .

図1は、ディラトメーター法により求めた粘結炭の膨張率の温度変化を示すグラフである。FIG. 1 is a graph showing the temperature change of the expansion coefficient of caking coal obtained by the dilatometer method. 図2は、粘結炭(A炭)におけるガス利用指数と最大膨張率向上代ΔMDとの関係を示すグラフである。FIG. 2 is a graph showing the relationship between the gas utilization index and maximum expansion rate improvement allowance ΔMD in caking coal (A coal). 図3は、粘結炭(B炭)におけるガス利用指数と最大膨張率向上代ΔMDとの関係を示すグラフである。FIG. 3 is a graph showing the relationship between the gas utilization index and the maximum expansion rate improvement allowance ΔMD in caking coal (B charcoal). 図4は、粘結炭(C炭)におけるガス利用指数と最大膨張率向上代ΔMDとの関係を示すグラフである。FIG. 4 is a graph showing the relationship between the gas utilization index and maximum expansion rate improvement allowance ΔMD in caking coal (C charcoal). 図5は、非微粘結炭(D炭)におけるガス利用指数と最大膨張率向上代ΔMDとの関係を示すグラフである。FIG. 5 is a graph showing the relationship between the gas utilization index and the maximum expansion rate improvement allowance ΔMD in non-slightly caking coal (D charcoal). 図6は、非微粘結炭(E炭)におけるガス利用指数と最大膨張率向上代ΔMDとの関係を示すグラフである。FIG. 6 is a graph showing the relationship between the gas utilization index and the maximum expansion rate improvement allowance ΔMD in non-slightly caking coal (E charcoal). 図7は、実験に用いた粘結補填材(添加物1〜4)の重量減少曲線と石炭(A炭〜E炭)のT1−T2温度域とをまとめて示すグラフである。FIG. 7 is a graph collectively showing a weight reduction curve of the caking filler (additives 1 to 4) used in the experiment and a T 1 -T 2 temperature range of coal (A coal to E coal). 図8は、コークスの表面破壊強度DI150 6に及ぼす全膨張率の影響を示すグラフである。FIG. 8 is a graph showing the effect of the total expansion rate on the surface fracture strength DI 150 6 of coke.

以下、本発明について詳細に説明する。
本発明では、コークス強度の向上に資する粘結補填材を選択するにあたり、配合対象の石炭を粘結炭とし、その粘結炭の膨張を促進させて効果的にコークス強度を向上させることができる粘結補填材を見つけ出すようにする。
Hereinafter, the present invention will be described in detail.
In the present invention, when selecting a caking filler that contributes to the improvement of coke strength, the coal to be blended is caking coal, and the expansion of the caking coal can be promoted to effectively improve the coke strength. Try to find caking filler.

一般に、石炭は400℃前後の温度で軟化し始めてその後膨張し、500℃前後の温度で再固化するが、後述する実験結果からも分かるように、その際の石炭の溶融物が粘結補填材由来のガスを十分に捕捉して、石炭の膨張が促進されることで、好適に石炭粒子を接着させることができるようにするには、粘結炭のように石炭自体がある程度の溶融成分を有していることが有利であることを見出した。そこで、本発明においては、JIS M8801に記載される膨張性試験方法(ディラトメーター法)により粘結炭の最大収縮温度T1と最大膨張温度T2とを求めて、このT1−T2温度域で多量のガスを発生して粘結炭の揮発分を補うことができる粘結補填材を選択するようにする。 Generally, coal begins to soften at a temperature of about 400 ° C. and then expands and resolidifies at a temperature of about 500 ° C. As can be seen from the experimental results described later, the coal melt at that time is a caking filler. In order to sufficiently capture the gas from the source and promote the expansion of the coal so that the coal particles can be suitably adhered, the coal itself, like caking coal, has some molten component. It has been found advantageous to have. Therefore, in the present invention, the maximum shrinkage temperature T 1 and the maximum expansion temperature T 2 of the caking coal are obtained by the expansibility test method (dilatometer method) described in JIS M8801, and this T 1 -T 2 A caking filler that can generate a large amount of gas in the temperature range and compensate for the volatile content of caking coal is selected.

本発明では、選択対象となる複数種の粘結補填材について、温度に対する質量減少曲線を測定しておき、前記T1−T2温度域における各粘結補填材の質量減少率をガス利用可能率として求めるようにする。この求めたガス利用可能率が、T1−T2温度域における粘結炭の揮発率以上になる粘結補填材、好ましくは粘結炭の揮発率を超える粘結補填材を選択することで、効果的にコークス強度の向上を図ることができるようになる。 In the present invention, a mass reduction curve with respect to temperature is measured for a plurality of types of caking fillers to be selected, and the mass reduction rate of each caking filler in the T 1 -T 2 temperature range can be used as a gas. Try to find it as a rate. By selecting a caking filler that has a gas availability rate that is equal to or higher than the volatility of caking coal in the T 1 -T 2 temperature range, preferably a caking filler that exceeds the volatility of caking coal. Thus, the coke strength can be effectively improved.

ここで、JIS M8801記載の膨張性試験方法とは、微粉砕した試料(石炭)を規定の棒状に加圧成形して所定の細管に挿入し、その上にピストンを入れた後、規定の昇温速度で加熱して、ピストンの上下の変位を測定し、棒状に成形した試料の最初の長さに対する分率(%)をもって試料の軟化溶融特性を表すものであり、ピストンが初めて最低位置に達したときの温度を最大収縮温度(T1)と呼び、ピストンが最低位置に達してから後に初めて最高位置に達した温度を最大膨張温度(T2)と呼ぶ。図1は、ある粘結炭(後述するB炭)の膨張性試験方法による温度と変位の様子であり、最大収縮温度T1と最大膨張温度T2とが示されている。図1ではピストンの変位を膨張率(%)で表しており、この膨張率とは、ピストンのゼロ点から最高位置までの変位の、棒状に成形した試料の最初の長さに対する分率(%)を示す。 Here, the expansibility test method described in JIS M8801 is a method in which a finely pulverized sample (coal) is pressure-molded into a prescribed rod shape, inserted into a prescribed thin tube, a piston is placed on it, and a prescribed ascension is obtained. Heating at a temperature rate, measuring the displacement of the piston up and down, and expressing the softening and melting characteristics of the sample as a fraction (%) of the initial length of the rod-shaped sample. The temperature when it reaches is called the maximum contraction temperature (T 1 ), and the temperature that reaches the highest position for the first time after the piston reaches the lowest position is called the maximum expansion temperature (T 2 ). FIG. 1 shows a state of temperature and displacement according to an expansibility test method for a caking coal (B coal described later), and shows a maximum shrinkage temperature T 1 and a maximum expansion temperature T 2 . In FIG. 1, the displacement of the piston is expressed as an expansion rate (%). This expansion rate is a fraction (%) of the displacement from the zero point to the highest position of the piston with respect to the initial length of the rod-shaped sample. ).

本発明者らは、表1に示した5種類の石炭(A炭〜E炭)について、表2に示した添加物1〜4の粘結補填材を添加した場合における、JIS M8801の膨張性試験方法による最大膨張率の向上代(ΔMD)を調べる実験を行った。ここで、最大膨張率向上代(ΔMD)とは、各石炭をそれぞれ単独でディラトメーター法により測定した場合の最大膨張率MDと、各石炭に添加物を所定の割合で加えて同様にして測定した場合の最大膨張率MD’との差(ΔMD=MD'−MD)を表す。また、この実験においては、5種類の石炭のT1−T2温度域において、それぞれの粘結補填材の質量減少率をガス利用可能率として求めておき、下記式から得られるガス利用指数[−]と最大膨張率向上代(ΔMD)[%]との関係を求めた。結果は図2〜6に示したとおりである。なお、各石炭に添加した添加物の割合について、添加物1は3質量%、添加物2及び3はそれぞれ1質量%、2質量%、3質量%となるようにし、添加物4はC炭に対してのみ1wt.%添加するようにした(添加量はいずれも内数)。
ガス利用指数[−]=ガス利用可能率[質量%]×添加率[質量%]/100
The present inventors expanded the expandability of JIS M8801 when the caking filler of additives 1 to 4 shown in Table 2 was added to the five types of coal shown in Table 1 (A charcoal to E charcoal). An experiment was conducted to investigate the allowance for improving the maximum expansion rate (ΔMD) by the test method. Here, the maximum expansion rate improvement allowance (ΔMD) is the same as the maximum expansion rate MD when each coal is individually measured by the dilatometer method and an additive is added to each coal at a predetermined ratio. It represents the difference (ΔMD = MD′−MD) from the maximum expansion coefficient MD ′ when measured. Further, in this experiment, the T 1 -T 2 temperature range of five coal, the mass decrease rate of the respective caking filling material to previously obtain a gas available rate, gas utilization index obtained from the following equation [ The relationship between [−] and the maximum expansion rate improvement allowance (ΔMD) [%] was determined. The results are as shown in FIGS. In addition, about the ratio of the additive added to each coal, additive 1 is 3 mass%, additives 2 and 3 are 1 mass%, 2 mass%, and 3 mass%, respectively, and additive 4 is carbon C. 1 wt.% Was added only to the amount (both added amounts are internal numbers).
Gas utilization index [−] = gas availability rate [mass%] × addition rate [mass%] / 100

Figure 2014214243
Figure 2014214243

Figure 2014214243
Figure 2014214243

上記の実験で用いた石炭のうち、A〜C炭は粘結炭であり、D〜E炭は非微粘結炭である。粘結炭と非微粘結炭の区分けについては、JIS M8001に規定されたキーセラープラストメータ法での再固化温度が470℃未満の石炭を非微粘結炭とし、再固化温度が470℃以上の石炭を粘結炭とした。図2〜6に示したグラフから明らかなように、粘結炭(A〜C炭)の場合、ガス利用指数が大きくなるにつれて、最大膨張率向上代(ΔMD)が線形的に増加する。それに対して、非微粘結炭(D〜E炭)の場合には、ガス利用指数が大きくなっても、最大膨張率向上代(ΔMD)の増加分は小さい。   Among the coals used in the above experiments, AC charcoal is caking coal, and DE charcoal is non-caking coal. Regarding the classification of caking coal and non-caking caking coal, coal with a resolidification temperature of less than 470 ° C in the key celler plastometer method specified in JIS M8001 is made non-caking caking coal, and the resolidification temperature is 470 ° C. The above coal was used as caking coal. As apparent from the graphs shown in FIGS. 2 to 6, in the case of caking coal (A to C charcoal), the maximum expansion rate improvement (ΔMD) increases linearly as the gas utilization index increases. On the other hand, in the case of non-slightly caking coal (D to E charcoal), even if the gas utilization index increases, the increase in the maximum expansion rate improvement margin (ΔMD) is small.

また、表3には、高温NMR(NMR: Nuclear Magnetic Resonance)を用いてA〜E炭の溶融成分量を測定した結果が示されている。1H−NMRによる石炭のスペクトル測定では、緩和時間が長いmobile成分と緩和時間の短いimmobile成分とが存在することが知られている(参考文献:新日鐵技法新 第384号, p.48-52(2006)、日本エネルギー学会誌 Vol.83, pp.889-894(2004)、特開2002-195966号公報)。そこで、表3には、この高温NMRによって測定されたmobile成分を溶融成分として、A〜E炭についてその値(%)を示した。 Table 3 shows the results of measuring the amount of molten components of A to E charcoal using high temperature NMR (NMR: Nuclear Magnetic Resonance). In the spectrum measurement of coal by 1 H-NMR, it is known that there are a mobile component with a long relaxation time and an immobile component with a short relaxation time (reference: Nippon Steel Technology Shin No. 384, p. 48). -52 (2006), Journal of the Japan Institute of Energy Vol.83, pp.889-894 (2004), JP 2002-195966 A). Therefore, Table 3 shows the values (%) of A to E charcoal using the mobile component measured by the high temperature NMR as a molten component.

Figure 2014214243
Figure 2014214243

高温NMRの測定にあたり、詳しくは、水素90度のパルス幅は8μsec、エコー時間は50μsec〜3msec、繰り返し時間は5msec〜1secとして、積算回数は512回とした。データのサイズはX方向で512ポイント、Y方向で512ポイント、Z方向は1〜512ポイントに設定した。その際に試料を3℃/min.で昇温させながら、加熱温度域を30−550℃とし、X、Y、Zの3軸にそれぞれ、89gauss/cm、96gauss/cm、107gauss/cmの磁場勾配を短時間で与えるような方法で測定を行った。mobile(溶融成分)の存在量は、軟化溶融温度域で、横緩和時間が100マイクロ秒以上である成分の量を意味し、軟化溶融温度域での溶融している石炭中の成分割合に相当する。なお、多重パルスや横緩和時間に関しては、特開平11−326248号公報においても説明されている。   Specifically, in the measurement of high temperature NMR, the pulse width of 90 degrees hydrogen was 8 μsec, the echo time was 50 μsec to 3 msec, the repetition time was 5 msec to 1 sec, and the number of integrations was 512 times. The data size was set to 512 points in the X direction, 512 points in the Y direction, and 1 to 512 points in the Z direction. At that time, the sample was placed at 3 ° C / min. While raising the temperature, the heating temperature range is set to 30 to 550 ° C., and magnetic field gradients of 89 gauss / cm, 96 gauss / cm, and 107 gauss / cm are applied in a short time to the three axes of X, Y, and Z, respectively. Measurements were made. The abundance of mobile (melting component) means the amount of the component whose transverse relaxation time is 100 microseconds or more in the softening melting temperature region, and corresponds to the component ratio in the coal melted in the softening melting temperature region. To do. Note that multiple pulses and lateral relaxation time are also described in Japanese Patent Application Laid-Open No. 11-326248.

先の図2〜6に係る実験とあわせれば、ガス利用指数と共に最大膨張率向上代(ΔMD)が線形的に増加したA〜C炭に比べて、最大膨張率向上代(ΔMD)の増加が僅かであったD炭及びE炭では、溶融成分量が少ないことが分かる。すなわち、添加物(粘結補填材)から生じたガスが、石炭の膨張に寄与するためには、石炭が軟化してその後膨張し、再固化する過程において、添加物由来のガスを石炭の溶融物が十分にトラップ(捕捉)できることが重要であると考えられる。そして、これらの実験結果から、添加物由来のガスをトラップできる石炭の溶融成分量は40%前後必要になり、溶融成分を一定量以上含むもの、好適には40%以上含むものであるのがよい。   When combined with the experiments related to FIGS. 2 to 6, the increase in the maximum expansion rate improvement (ΔMD) is larger than that of the AC charcoal in which the maximum expansion rate improvement (ΔMD) increases linearly with the gas utilization index. It can be seen that the amount of molten component is small in the D and E coals, which were slight. That is, in order for the gas generated from the additive (caking filler) to contribute to the expansion of the coal, the coal derived from the additive is melted during the process of coal softening and then expanding and resolidifying. It is considered important that an object can be sufficiently trapped. From these experimental results, the amount of the molten component of the coal capable of trapping the additive-derived gas is required to be about 40%, and the coal should contain a certain amount or more, preferably 40% or more.

ここで、コークスの表面破壊強度DI150 6は、石炭の膨張性が高いほど、高強度であることが知られている(参考文献:新日鐵技法新 第384号, p.43-47(2006)参照)。図8は、この参考文献より引用したDI150 6に及ぼす全膨張率の影響を表すグラフである。この関係に基づけば、最大膨張率向上代(ΔMD)を効果的に増大させることができればコークス強度の向上に資することになり、ガス利用指数の高い粘結補填材とA〜C炭のような粘結炭との組み合わせを選択することで、高強度のコークスを効率的に製造することができると考えられる。その際、好適には、T1−T2温度域における粘結補填材のガス利用可能率が粘結炭の揮発率以上になるもののうち、最もガス利用可能率が高い粘結補填材を選択することで、粘結炭と粘結補填材との最適な組み合わせを見出すことができる。 Here, it is known that the surface fracture strength DI 150 6 of coke is higher as the expansibility of coal is higher (Reference: Shin-Nippon Technical New No. 384, p.43-47 ( 2006)). FIG. 8 is a graph showing the effect of total expansion on DI 150 6 quoted from this reference. Based on this relationship, if the maximum expansion rate improvement allowance (ΔMD) can be increased effectively, it will contribute to the improvement of coke strength, such as a caking filler with a high gas utilization index and AC charcoal. It is considered that high-strength coke can be efficiently produced by selecting a combination with caking coal. At that time, preferably, the caking filler material having the highest gas availability rate is selected from those having a caustic coal volatility rate higher than the caking rate of caking coal in the T 1 -T 2 temperature range. By doing so, the optimal combination of caking coal and caking filler can be found.

粘結補填材については、これまでに使用されている公知のものとして、主に石油系粘結補填材や石炭系粘結補填材が知られており、その他、廃プラスチック等も利用可能である。本発明においては、これら公知の粘結補填材のなかから配合の対象となる粘結炭に適したものを選ぶようにすればよいが、なかでも、前述したT1−T2温度域で多量のガスを発生して効果的にコークス強度を向上させることができる粘結補填材としては、好ましくは、窒素中で900℃まで3℃/min.で昇温したときの質量減少曲線を時間で一次微分して得られる質量減少速度曲線において、質量減少速度が最大になる温度が400℃以上(すなわち、一般的に石炭が溶融している温度)であるものであるのがよい。このような特性を有する粘結補填材の具体例としては、石油系粘結補填材(ユリカピッチや溶剤脱瀝アスファルトのような石油系ピッチ等)のほか、プラスチック(ポリエチレン等)が挙げられる。なお、先の表2に示した添加物1〜4は、いずれも石油系の粘結補填材である。 As for the caking filler, known petroleum-based caking fillers and coal-caking caking fillers are known as known ones used so far, and waste plastics can also be used. . In the present invention, a material suitable for the caking coal to be blended may be selected from these known caking fillers, and among them, a large amount in the T 1 -T 2 temperature range described above. As a caking filler that can effectively improve the coke strength by generating a high temperature gas, it is preferably 3 ° C./min. In the mass reduction rate curve obtained by first-order differentiation of the mass reduction curve when the temperature is raised with time, the temperature at which the mass reduction rate is maximized is 400 ° C. or higher (that is, the temperature at which coal is generally melted) It is good that it is. Specific examples of the caking filler having such properties include petroleum caking fillers (petroleum pitches such as yurika pitch and solvent-desulfurized asphalt) and plastics (polyethylene, etc.). In addition, all of the additives 1 to 4 shown in Table 2 above are petroleum-based caking fillers.

また、前記T1−T2温度域における粘結炭の揮発率については、一般に1〜3質量%程度である。そして、この粘結炭の揮発分は、石油系粘結補填材等のT1−T2温度域における揮発分とほぼ同様の成分と考えられる。そのため、質量減少曲線から求められるT1−T2温度域での粘結補填材の質量減少率をガス利用率とし、このガス利用率がT1−T2温度域における粘結炭の揮発率以上となるものを選択することで、その粘結炭に対してコークス強度の向上に資する粘結補填材を確実に見つけ出すことができる。ここで、T1−T2温度域における粘結炭の揮発率について、より正確に求めることができるなどの観点から、好ましくは、対象となる粘結炭の質量減少曲線を予め測定しておき、T1−T2温度域での粘結炭の質量減少率をその揮発率とするのがよい。 Further, the volatilization rate of the caking coal in the T 1 -T 2 temperature range is generally about 1 to 3 wt%. The volatiles of the caking coal is considered to be almost the same components as the volatiles in T 1 -T 2 temperature range, such as petroleum coking prosthetic material. Therefore, the mass reduction rate of the caking filler in the T 1 -T 2 temperature range obtained from the mass reduction curve is defined as the gas utilization rate, and this gas utilization rate is the volatilization rate of caking coal in the T 1 -T 2 temperature range. By selecting the above, it is possible to reliably find a caking filler that contributes to the improvement of coke strength for the caking coal. Here, from the viewpoint of more accurately determining the volatilization rate of the caking coal in the T 1 -T 2 temperature range, preferably, the mass reduction curve of the caking coal to be measured is measured in advance. The mass reduction rate of caking coal in the T 1 -T 2 temperature range is preferably the volatilization rate.

ここで、図7には、先の表2に示した添加物1〜4の粘結補填材の質量減少曲線と、表1に示したA〜E炭のT1−T2温度域とがまとめて示されている。また、表4には、これらA〜E炭の溶融温度域(T1−T2温度域)及びその温度域での各石炭の揮発分(揮発率)の詳細と、各石炭における溶融温度域での添加物1〜4の揮発分(ガス利用可能率)の詳細とが示されている。 Here, in FIG. 7, the mass reduction curve of the caking filler of additives 1 to 4 shown in Table 2 above and the T 1 to T 2 temperature range of A to E charcoal shown in Table 1 are shown. It is shown together. Table 4 shows the details of the melting temperature range (T 1 -T 2 temperature range) of these A to E coals and the volatile content (volatility) of each coal in that temperature range, and the melting temperature range for each coal. Details of the volatile content (gas availability) of additives 1 to 4 are shown.

Figure 2014214243
Figure 2014214243

上述したように、本発明では、JIS M8801に記載される膨張性試験方法により石炭の最大収縮温度T1と最大膨張温度T2とを求めて、このT1−T2温度域における石炭の揮発分を補う、あるいは揮発分を超えることができる量のガスを発生する粘結補填材を選択する。これに対して、従来の特許文献5に係る方法では、所定の温度変化(350℃から550℃まで)における石炭の気孔率が最小になる温度(ここではt1とする)と最大になる温度(ここではt2とする)とを求めて、そのt1−t2温度域での石炭の揮発分を補う量のガスを発生する粘結補填材を選択するようにしている。つまり、本発明と特許文献5に係る発明とでは、石炭が軟化して膨張し、再固化する過程において注目する指標が異なる点で相違する。 As described above, in the present invention, the maximum shrinkage temperature T 1 and the maximum expansion temperature T 2 of the coal are obtained by the expansibility test method described in JIS M8801, and the volatilization of coal in this T 1 -T 2 temperature range. A caking filler is selected that generates an amount of gas that can compensate for or exceed the volatile content. On the other hand, in the conventional method according to Patent Document 5, the temperature at which the porosity of coal at a predetermined temperature change (from 350 ° C. to 550 ° C.) is minimized (here, t 1 ) and the maximum temperature. (Here, t 2 ) is obtained, and a caking filler that generates an amount of gas that supplements the volatile content of coal in the temperature range of t 1 -t 2 is selected. That is, the invention according to the present invention and the invention according to Patent Document 5 are different in that the index to be noticed in the process of coal softening and expanding and resolidifying is different.

すなわち、特許文献5に係る発明では、気孔率が最小−最大になる温度を求めて、石炭が膨張し始めた状態から再固化し始めるまでの温度域(つまり、石炭が十分に溶融している温度域)に注目している。一方、本発明では、粘結炭の場合、石炭の再固化が起こり始めた後でも、石炭の一部が溶融していれば、粘結補填材由来のガスを捕捉することができると考え、ディラトメーター法による最大収縮温度T1と最大膨張温度T2とからT1−T2温度域を求めるようにする。 That is, in the invention according to Patent Document 5, the temperature range where the porosity is minimum-maximum is obtained, and the temperature range from the state where the coal starts to expand to the start of resolidification (that is, the coal is sufficiently melted). Focus on the temperature range. On the other hand, in the present invention, in the case of caking coal, even after the start of resolidification of the coal, if a part of the coal is melted, the gas derived from caking filler can be captured, The T 1 -T 2 temperature range is obtained from the maximum contraction temperature T 1 and the maximum expansion temperature T 2 by the dilatometer method.

また、特許文献5では、ディラトメーター法により石炭の最大収縮温度T1と最大膨張温度T2とを求めて、これらの中間温度T3=(T1+T2)/2によって、石炭の気孔率が最大になる温度t2が代用できるとしている(特許文献5の段落0054〜0056を参照)。すなわち、先の図1にはこの中間温度T3が示されているように、特許文献5によれば、ディラトメーター法により求めた石炭の最大収縮温度T1から中間温度T3までの温度域は、石炭の気孔率が最小−最大になるt1−t2温度域とみなすことができるとしている。これは、上記で説明したとおり、特許文献5では、石炭が十分に溶融している温度域に注目しているためである。本発明では、粘結炭を用いた場合に、石炭が膨張し始めた状態から再固化し終わるまでの温度域に注目しており、T3を超える温度からT2までの温度域も加えられることになる。つまり、本発明では粘結炭との配合を特定したことにより、特許文献5記載の方法と比較して、組み合わせの対象となる適切な粘結補填材の選択幅が広がり、これによりさらに最適な粘結補填材を選択することができる。 Further, in Patent Document 5, the maximum shrinkage temperature T 1 and the maximum expansion temperature T 2 of coal are obtained by the dilatometer method, and the pores of coal are obtained by using these intermediate temperatures T 3 = (T 1 + T 2 ) / 2. It is assumed that the temperature t 2 at which the rate is maximum can be substituted (see paragraphs 0054 to 0056 of Patent Document 5). That is, as shown in FIG. 1, the intermediate temperature T 3 is shown in FIG. 1, according to Patent Document 5, the temperature from the maximum shrinkage temperature T 1 of coal determined by the dilatometer method to the intermediate temperature T 3. The region can be regarded as the t 1 -t 2 temperature region where the porosity of coal is minimum-maximum. This is because, as described above, Patent Document 5 focuses on a temperature range in which coal is sufficiently melted. In the present invention, when caking coal is used, attention is paid to the temperature range from the state where the coal begins to expand to the end of resolidification, and the temperature range from T 3 to T 2 is also added. It will be. That is, in the present invention, by specifying the combination with caking coal, compared with the method described in Patent Document 5, the selection range of an appropriate caking filler to be combined is widened, thereby further optimizing. A caking filler can be selected.

例えば、先の図7に示した添加物4の質量減少曲線を見れば、400℃から500℃にかけて急激に熱分解していることが分かる。このような添加物4の場合、例えば配合対象をC炭としたときに、注目する温度域をT1−T3温度域とすると最適な粘結補填材として添加物4は選択されないが、注目する温度域をT1−T2温度域とすると添加物4は最適な粘結補填材として選択されることになる。 For example, when the mass decrease curve of the additive 4 shown in FIG. 7 is seen, it can be seen that the thermal decomposition is rapidly performed from 400 ° C. to 500 ° C. In the case of such an additive 4, for example, when the blending target is C charcoal, if the temperature range of interest is the T 1 -T 3 temperature range, the additive 4 is not selected as the optimum caking filler, If the temperature range to be performed is the T 1 -T 2 temperature range, the additive 4 is selected as an optimum caking filler.

すなわち、配合対象をC炭としたときに、添加物2を1質量%添加した場合と添加物4を1質量%添加した場合とにおいて、C炭のT1−T2温度域での揮発分(ガス利用可能率)を比べると、添加物2では25.0%、添加物4では46.3%になり、添加物4を用いた方がより効果的に石炭の膨張に寄与すると考えられる。
一方で、仮にT1−T3温度域での揮発分を比べると、添加物2では14.5%、添加物4では9.6%になり、添加物2の方がT1−T3温度域での揮発分(ガス利用可能率)が多い結果となる。しかし、実際には、図4に示したとおり、添加物4の方が最大膨張率向上代(ΔMD)を増大させることができ、C炭に対する粘結補填材として添加物4の方がより適していると言える。
That is, when the blending target is C charcoal, the volatile matter in the T 1 -T 2 temperature range of C charcoal when 1 mass% of additive 2 is added and when 1 mass% of additive 4 is added. (Gas availability) is 25.0% for additive 2 and 46.3% for additive 4, and using additive 4 is considered to contribute more effectively to the expansion of coal. .
On the other hand, if the volatile content in the T 1 -T 3 temperature range is compared, the additive 2 is 14.5% and the additive 4 is 9.6%, and the additive 2 is T 1 -T 3. This results in a large amount of volatile matter (availability of gas) in the temperature range. In practice, however, as shown in FIG. 4, additive 4 can increase the maximum expansion rate improvement (ΔMD), and additive 4 is more suitable as a caking filler for C charcoal. It can be said that.

したがって、例えば配合対象をC炭としたときに、注目する温度域をT1−T2温度域とすることにより、添加物4が選択されることになり、適切な粘結補填材の選択幅が広がるとともに、より最適な粘結補填材を選択することができる。
なお、添加物1〜3については、揮発分の量が最も多い最適な粘結補填材を決めるにあたって、T1−T2温度域の場合とT1−T3温度域の場合とで変わりはないことを確認している。
Therefore, for example, when the blending target is C charcoal, the additive 4 is selected by setting the temperature range of interest to be the T 1 -T 2 temperature range, and the selection range of an appropriate caking filler is selected. As the spread increases, a more optimal caking filler can be selected.
Regarding additives 1 to 3, when determining the optimum caking filler with the largest amount of volatile matter, there is a difference between the case of T 1 -T 2 temperature range and the case of T 1 -T 3 temperature range. Confirm that there is no.

本発明において高強度コークスを製造するに際しては、上述した粘結補填材の選択方法を利用して、T1−T2温度域における粘結炭の揮発率以上のガス利用可能率を有する粘結補填材を選択し、好適には、T1−T2温度域における粘結補填材のガス利用可能率が粘結炭の揮発率以上になるもののうち、最もガス利用可能率が高い粘結補填材を選択して、粘結炭に添加して乾留を行うようにすればよい。 When producing high-strength coke in the present invention, using the above-described method for selecting a caking filler, caking having a gas availability rate equal to or higher than the volatilization rate of caking coal in the T 1 -T 2 temperature range. A filler is selected, and preferably, the caustic filling material having the highest gas availability rate among the caking coal volatilization rate is higher than the caking rate of caking coal in the T 1 -T 2 temperature range. A material may be selected and added to caking coal for dry distillation.

ここで、選択した粘結補填材の添加量は特に制限されないが、一般には内数で0.1質量%以上10質量%以下程度である。また、高強度コークスを製造する際に、粘結補填材を添加する方法としては公知の方法を利用することができ、例えば、粘結炭をコークス炉に装入する前段階において流動層で乾燥・分級させるようにしてもよく、乾留条件等についても特に制限はない。但し、粘結炭を流動層で乾燥・分級させる場合は、乾燥後の石炭に粘結補填材を添加することが好ましい。なお、選択した粘結補填材のなかから少なくとも1種を原料炭に添加して乾留すればよいが、2種以上の粘結補填材を配合するようにしてもよい。また、複数の粘結炭を含んだ配合炭を原料にする場合には、粘結炭毎に本発明の選択方法を用いて粘結補填材を選択し、それぞれを添加するようにするのが望ましい。   Here, although the addition amount of the selected caking filler is not particularly limited, it is generally about 0.1% by mass to 10% by mass. In addition, when producing high-strength coke, a known method can be used as a method for adding a caking filler, for example, drying in a fluidized bed before charging caking coal into a coke oven. -Classification may be performed, and there are no particular restrictions on dry distillation conditions. However, when caking coal is dried and classified in a fluidized bed, it is preferable to add caking filler to the dried coal. Note that at least one of the selected caking fillers may be added to the raw coal and dry-distilled, but two or more caking fillers may be blended. Moreover, when using as a raw material a blended coal containing a plurality of caking coals, it is possible to select caking fillers using the selection method of the present invention for each caking coal and add each of them. desirable.

また、本発明においては、粘結炭に予め石炭系の粘結補填材を添加した上で、ディラトメーター法により最大収縮温度T1と最大膨張温度T2とを求めて、このT1−T2温度域における粘結補填材のガス利用率と石炭系粘結補填材を添加した状態での粘結炭の揮発率との関係から、上記のようにして粘結補填材を選択し、添加するようにしてもよい。すなわち、石炭系の粘結補填材を事前に粘結炭に添加すると、これを添加していない場合と比べてT1−T2温度域が広がる効果がある。そのため、石炭系の粘結補填材を配合した粘結炭を用いることで、選択された粘結補填材から発生するガスをより効果的に利用することができるようになる。 In the present invention, after adding a coal-based caking filler to caking coal in advance, the maximum shrinkage temperature T 1 and the maximum expansion temperature T 2 are obtained by the dilatometer method, and this T 1 − From the relationship between the gas utilization rate of the caking filler in the T 2 temperature range and the volatilization rate of caking coal with the coal-based caking filler added, the caking filler is selected as described above, You may make it add. That is, when a coal-based caking filler is added to caking coal in advance, there is an effect that the T 1 -T 2 temperature range is expanded as compared with the case where this is not added. Therefore, the gas generated from the selected caking filler can be used more effectively by using caking coal blended with a coal-based caking filler.

本発明について、実施例に基づきより具体的に説明するが、本発明はこれらの内容に制限されるものではない。   The present invention will be described more specifically based on examples, but the present invention is not limited to these contents.

上記表1に示した性状を有するA〜E炭と、表2に示した性状を有する添加物(粘結補填材)1〜4とを用いて、以下のようにして本発明の粘結補填材の選択方法に係る実験を行った。   Using the A to E charcoal having the properties shown in Table 1 and the additives (caking fillers) 1 to 4 having the properties shown in Table 2, the caking supplement of the present invention is as follows. An experiment related to a method of selecting a material was performed.

先ず、A〜E炭について、JIS M8801に記載される膨張性試験方法に従って、各石炭の軟化溶融特性を調べた。すなわち、微粉砕した試料(石炭)を規定の棒状に加圧成形して所定の細管に挿入し、その上にピストンを入れた後、規定の昇温速度で加熱して、ピストンの上下の変位を測定し、各石炭の軟化開始温度、最大収縮温度T1、最大膨張温度T2、最大収縮率、及び最大膨張率をそれぞれ求めた。また、石炭20mgを窒素雰囲気下で900℃まで3℃/minで昇温し、質量の経時変化を熱天秤で測定して、各石炭の質量減少曲線を求めた。同様に、添加物1〜4について、添加物20mgを窒素雰囲気下で900℃まで3℃/minで昇温し、質量の経時変化を熱天秤で測定して、それぞれの質量減少曲線を得た。図7には、上記で求めたA〜E炭のT1−T2温度域(溶融温度域)と添加物1〜4の質量減少曲線とがまとめて示されている。 First, the softening and melting characteristics of each coal were examined for A to E charcoal according to the expansibility test method described in JIS M8801. That is, a finely pulverized sample (coal) is pressure-molded into a specified rod shape, inserted into a specified thin tube, a piston is placed on it, and then heated at a specified rate of temperature rise and down. The softening start temperature, the maximum shrinkage temperature T 1 , the maximum expansion temperature T 2 , the maximum shrinkage rate, and the maximum expansion rate of each coal were determined. Further, 20 mg of coal was heated to 900 ° C. at 3 ° C./min under a nitrogen atmosphere, and the change with time in mass was measured with a thermobalance to obtain a mass reduction curve of each coal. Similarly, for Additives 1 to 4, 20 mg of the additive was heated to 900 ° C. at 3 ° C./min under a nitrogen atmosphere, and the mass change over time was measured with a thermobalance to obtain respective mass reduction curves. . FIG. 7 collectively shows the T 1 -T 2 temperature range (melting temperature range) of A to E charcoal obtained above and the mass reduction curves of the additives 1 to 4.

これらに基づき、A〜E炭のT1−T2温度域(溶融温度域)、質量減少曲線から求めた各石炭のT1−T2温度域での質量減少率(揮発分)、及び、質量減少曲線から求めた添加物1〜4のT1−T2温度域での質量減少率(揮発分)を求めて、上記の表4にまとめて示した。 Based on these, the T 1 -T 2 temperature range (melting temperature range) of A to E coals, the mass reduction rate (volatile matter) in the T 1 -T 2 temperature range of each coal determined from the mass reduction curve, and The mass reduction rate (volatile content) in the T 1 -T 2 temperature range of the additives 1 to 4 obtained from the mass reduction curve was obtained and summarized in Table 4 above.

ここで、実験番号1〜16に示した各石炭と添加物との組み合わせについて、T1−T2の温度域における各粘結補填材の質量減少率(揮発分)をガス利用可能率とすれば、添加物1〜4は、A〜E炭のいずれの組み合わせにおいてもT1−T2温度域における石炭の揮発率(揮発分)を上回ることになる。ところが、図2〜6に示したとおり、粘結炭であるA〜C炭の場合には、ガス利用指数が大きくなるにつれて、最大膨張率向上代(ΔMD)が線形的に増加するのに対し、非微粘結炭であるD〜E炭の場合には、ガス利用指数が大きくなっても、最大膨張率向上代(ΔMD)の増加分は僅かであり、非微粘結炭の場合には、粘結補填材から生じたガスが石炭の膨張に寄与する効果は小さいと考えられる。一方で、例えば、C炭において、ガス利用可能率が最も高くなるのは添加物4であり、実際に、添加量1質量%(内数)の場合で比較すれば、添加物2の場合はΔMD=8.9%、添加物3の場合はΔMD=6.1%、添加物4の場合はΔMD=20.2%であり、添加物4の場合が最もC炭の膨張に寄与する効果が高いと考えられる。 Here, regarding the combination of each coal and additive shown in Experiment Nos. 1 to 16, the mass reduction rate (volatile content) of each caking filler in the temperature range of T 1 -T 2 is regarded as the gas availability rate. For example, the additives 1 to 4 exceed the volatility (volatile content) of coal in the T 1 -T 2 temperature range in any combination of A to E charcoal. However, as shown in FIGS. 2 to 6, in the case of AC coal, which is caking coal, the maximum expansion coefficient improvement margin (ΔMD) increases linearly as the gas utilization index increases. In the case of D to E coal, which is non-slightly caking coal, even if the gas utilization index increases, the increase in the maximum expansion rate improvement margin (ΔMD) is slight. It is considered that the effect that the gas generated from the caking filler contributes to the expansion of coal is small. On the other hand, for example, in Coal C, the additive 4 has the highest gas availability rate. Actually, in the case of additive 2 when compared with the case where the additive amount is 1% by mass (inner number), ΔMD = 8.9%, Additive 3 for ΔMD = 6.1%, Additive 4 for ΔMD = 20.2%, and Additive 4 has the most contribution to C charcoal expansion Is considered high.

また、上記のなかからA炭、B炭、及びE炭を用いて配合炭を形成し、粘結補填材として添加物2及び3を用いて、以下のようにしてコークスを試験製造した。
先ず、A炭、B炭、及びE炭を、それぞれ3mm以下の粒径が質量比85%となるように粉砕し、表5に示すように、配合割合(質量%)がA炭25%、B炭25%、E炭50%となるように配合した。このような配合炭に対して、添加物2及び3を一切加えない場合(水準1)、添加物2のみ質量比で3%(内数)添加した場合(水準2)、添加物3のみ質量比で3%(内数)添加した場合(水準3)について、それぞれ嵩密度0.85g/cm3(乾燥状態)となるようにして実験用乾留装置に装入した。そして、これらについて、それぞれ炉温1250℃で18.5時間加熱して試験コークスを製造し、コークス強度DI150 15(−)およびDI150 6を測定した。
In addition, blended coal was formed from the above using A coal, B coal, and E coal, and additives 2 and 3 were used as caking filler, and coke was test-produced as follows.
First, A charcoal, B charcoal, and E charcoal were each pulverized so that the particle size of 3 mm or less was 85% by mass, and as shown in Table 5, the blending ratio (mass%) was 25% of A charcoal, It mix | blended so that it might become 25% of B charcoal and 50% of E charcoal. When additive 2 and 3 are not added at all to such a blended coal (level 1), only additive 2 is added in a mass ratio of 3% (internal number) (level 2), only additive 3 is mass When 3% (inner number) was added in a ratio (level 3), each was charged into an experimental dry distillation apparatus so that the bulk density was 0.85 g / cm 3 (dry state). Each of these was heated at a furnace temperature of 1250 ° C. for 18.5 hours to produce test coke, and coke strengths DI 150 15 (−) and DI 150 6 were measured.

なお、DI150 6とDI150 15とには、以下の関係がある。
DI150 15=DI150 6−DI150 6-15
DI150 6に関しては、図8に示すように石炭の膨張による石炭粒子同士の接着性の影響を受け、DI150 6-15に関しては、収縮による亀裂の影響を受ける。粘結補填材の添加により石炭の膨張性が変化するため、粘結補填材の添加による強度の変化は、主にDI150 6の変化に由来し、DI150 6-15はほとんど変化しない。以上により、結果として、DI150 15が向上する。
Note that DI 150 6 and DI 150 15 have the following relationship.
DI 150 15 = DI 150 6 -DI 150 6-15
As shown in FIG. 8, the DI 150 6 is affected by the adhesion between coal particles due to the expansion of the coal, and the DI 150 6-15 is affected by cracks due to shrinkage. Since the expandability of coal changes due to the addition of the caking filler, the change in strength due to the addition of the caking filler mainly originates from the change in DI 150 6 and DI 150 6-15 hardly changes. As a result, DI 150 15 is improved as a result.

Figure 2014214243
Figure 2014214243

結果は表5に示したとおりである。ここで、ΔDI150 6およびΔDI150 15は、それぞれ添加物を一切加えずに製造した場合のコークス強度DI150 6およびDI150 15からの増加分を示す。また、ガス利用指数は先の式から求められる値であり、ここでは粘結炭であるA炭及びB炭の配合割合に応じて、それぞれ単味炭でのガス利用指数を加重平均して算出している(非微粘結炭であるE炭へのガス利用指数はゼロとした)。これらの結果より、ガス利用指数が高い水準2の場合の方が、コークス強度の向上効果ΔDI150 6およびΔDI150 15が大きく、高強度のコークスを効率的に製造できることが分かる。 The results are as shown in Table 5. Here, ΔDI 150 6 and ΔDI 150 15 indicate the increments from coke strength DI 150 6 and DI 150 15 when manufactured without any additives, respectively. In addition, the gas utilization index is a value obtained from the previous equation. Here, the gas utilization index of simple coal is calculated by weighted average according to the blending ratio of coals A and B, which are caking coals. (The gas utilization index for non-slightly caking coal E is zero). From these results, it can be seen that the coke strength improvement effect ΔDI 150 6 and ΔDI 150 15 are larger in the case of level 2 where the gas utilization index is high, and high strength coke can be produced efficiently.

Claims (8)

高強度コークスの製造にあたり粘結炭に添加する粘結補填材を選択する方法であって、JIS M8801に記載される膨張性試験方法により粘結炭の最大収縮温度T1と最大膨張温度T2とを求め、また、予め測定した複数種の粘結補填材の質量減少曲線から、前記T1−T2の温度域における各粘結補填材の質量減少率をガス利用可能率として求めて、該ガス利用可能率が、前記T1−T2温度域における粘結炭の揮発率以上になる粘結補填材を選択することを特徴とする粘結補填材の選択方法。 This is a method for selecting a caking filler to be added to caking coal in the production of high-strength coke. The caking coal has a maximum shrinkage temperature T 1 and a maximum expansion temperature T 2 according to the expansibility test method described in JIS M8801. In addition, from the mass reduction curves of a plurality of types of caking fillers measured in advance, the mass reduction rate of each caking filler in the temperature range of T 1 -T 2 is obtained as a gas availability rate, A method for selecting a caking filler, wherein the caustic filling material is selected such that the gas availability rate is equal to or higher than the volatilization rate of caking coal in the T 1 -T 2 temperature range. 前記T1−T2温度域における粘結炭の揮発率は、温度に対する粘結炭の質量減少曲線におけるT1−T2温度域での粘結炭の質量減少率である請求項1に記載の粘結補填材の選択方法。 Volatilization rate of coking coal in the T 1 -T 2 temperature range, according to claim 1 wherein the mass reduction rate caking coal in T 1 -T 2 temperature range in weight loss curve of caking coal for temperature To select a caking filler material. 粘結補填材を窒素中で900℃まで3℃/min.で昇温したときの質量減少曲線を時間で一次微分して得られる質量減少速度曲線において、質量減少速度が最大になる温度が400℃以上の粘結補填材の中から選択する請求項1又は2に記載の粘結補填材の選択方法。   The caking filler is up to 900 ° C. in nitrogen at 3 ° C./min. In the mass reduction rate curve obtained by first-order differentiation of the mass reduction curve when the temperature is raised with time, the temperature at which the mass reduction rate is maximized is selected from caking fillers having a temperature of 400 ° C or higher. 2. A method for selecting a caking filler according to 2. 前記T1−T2温度域における粘結補填材のガス利用可能率が粘結炭の揮発率以上になるもののうち、最もガス利用可能率が高い粘結補填材を選択する請求項1〜3のいずれかに記載の粘結補填材の選択方法。 The caking filler having the highest gas availability rate is selected from among those in which the gas availability rate of the caking filler in the T 1 -T 2 temperature range is equal to or higher than the volatilization rate of caking coal. The method for selecting a caking filler according to any one of the above. 粘結炭に粘結補填材を添加して乾留し、高強度コークスを製造する方法であって、JIS M8801に記載される膨張性試験方法により粘結炭の最大収縮温度T1と最大膨張温度T2とを求め、また、予め測定した複数種の粘結補填材の質量減少曲線から、前記T1−T2の温度域における各粘結補填材の質量減少率をガス利用可能率として求めて、該ガス利用可能率が、前記T1−T2温度域における粘結炭の揮発率以上になる粘結補填材を選択して添加することを特徴とする高強度コークスの製造方法。 A method for producing a high-strength coke by adding a caking filler to caking coal, and producing a high-strength coke, the maximum shrinkage temperature T 1 and the maximum expansion temperature of the caking coal according to the expansibility test method described in JIS M8801 T 2 is obtained, and the mass reduction rate of each caking filler in the temperature range of T 1 -T 2 is obtained as a gas availability rate from the mass reduction curves of plural kinds of caking fillers measured in advance. A method for producing high-strength coke, characterized by selecting and adding a caking filler that makes the gas available rate equal to or higher than the volatilization rate of caking coal in the T 1 -T 2 temperature range. 前記T1−T2温度域における粘結炭の揮発率は、温度に対する粘結炭の質量減少曲線におけるT1−T2温度域での粘結炭の質量減少率である請求項5に記載の高強度コークスの製造方法。 Volatilization rate of coking coal in the T 1 -T 2 temperature range, according to claim 5 which is a mass reduction rate of the caking coal in T 1 -T 2 temperature range in weight loss curve of caking coal for temperature Manufacturing method of high strength coke. 粘結補填材を窒素中で900℃まで3℃/min.で昇温したときの質量減少曲線を時間で一次微分して得られる質量減少速度曲線において、質量減少速度が最大になる温度が400℃以上の粘結補填材の中から選択して添加する請求項5又は6に記載の高強度コークスの製造方法。   The caking filler is up to 900 ° C. in nitrogen at 3 ° C./min. In the mass reduction rate curve obtained by first-order differentiation of the mass reduction curve when the temperature is raised with time, the temperature at which the mass reduction rate is maximized is selected from among caking fillers having a temperature of 400 ° C. or more. Item 7. The method for producing high-strength coke according to Item 5 or 6. 前記T1−T2温度域における粘結補填材のガス利用可能率が粘結炭の揮発率以上になるもののうち、最もガス利用可能率が高い粘結補填材を選択して添加する請求項5〜7のいずれかに記載の高強度コークスの製造方法。 The caking filler with the highest gas availability rate is selected and added from among those in which the gas availability rate of the caking filler in the T 1 -T 2 temperature range is greater than or equal to the volatilization rate of caking coal. The manufacturing method of the high intensity | strength coke in any one of 5-7.
JP2013093385A 2013-04-26 2013-04-26 Method for selecting caking filler and method for producing high strength coke using the same Active JP6146109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013093385A JP6146109B2 (en) 2013-04-26 2013-04-26 Method for selecting caking filler and method for producing high strength coke using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013093385A JP6146109B2 (en) 2013-04-26 2013-04-26 Method for selecting caking filler and method for producing high strength coke using the same

Publications (2)

Publication Number Publication Date
JP2014214243A true JP2014214243A (en) 2014-11-17
JP6146109B2 JP6146109B2 (en) 2017-06-14

Family

ID=51940333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013093385A Active JP6146109B2 (en) 2013-04-26 2013-04-26 Method for selecting caking filler and method for producing high strength coke using the same

Country Status (1)

Country Link
JP (1) JP6146109B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014510417A (en) * 2011-03-30 2014-04-24 東京エレクトロン株式会社 Increase mask layer etch rate and selectivity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS481001A (en) * 1971-06-01 1973-01-19
JPS4971001A (en) * 1972-11-07 1974-07-09
JP2013028800A (en) * 2011-06-24 2013-02-07 Nippon Steel & Sumitomo Metal Corp Method of selecting binding supplementary material and method of producing high strength coke using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS481001A (en) * 1971-06-01 1973-01-19
JPS4971001A (en) * 1972-11-07 1974-07-09
JP2013028800A (en) * 2011-06-24 2013-02-07 Nippon Steel & Sumitomo Metal Corp Method of selecting binding supplementary material and method of producing high strength coke using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014510417A (en) * 2011-03-30 2014-04-24 東京エレクトロン株式会社 Increase mask layer etch rate and selectivity

Also Published As

Publication number Publication date
JP6146109B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
KR101300941B1 (en) Method of determining dilatation of coal, method of estimating specific volume of coal, method of determining degree of space filling, and method of coal blending
US10308513B2 (en) Method for producing graphite bodies
Benk et al. Investigation of resole, novalac and coal tar pitch blended binder for the production of metallurgical quality formed coke briquettes from coke breeze and anthracite
RU2411283C1 (en) Additive to coal charge
JP6379934B2 (en) Coke strength estimation method
JP6146109B2 (en) Method for selecting caking filler and method for producing high strength coke using the same
JP5884159B2 (en) Method for producing metallurgical coke
JP5655684B2 (en) Method for estimating strength of formed coke
JP6241336B2 (en) Method for producing blast furnace coke
JP5867307B2 (en) Method for selecting caking filler and method for producing high strength coke using the same
JP5846064B2 (en) Method for estimating strength of formed coke
JP2019007943A (en) Estimation method of coke strength
JPWO2014129337A1 (en) Method for producing metallurgical coke
JP5163247B2 (en) Coke production method
KR101864524B1 (en) Method for manufacturing blast furnace coke, and blast furnace coke
JP6590155B2 (en) Coke for metallurgy and method for producing the same
JP4279972B2 (en) Method for producing blast furnace coke
JP2019157073A (en) Manufacturing method of caking additive for producing coke
JP4418407B2 (en) A caking filler with excellent strength enhancement properties and a method for producing high strength coke
KR101887320B1 (en) Method for deciding blending amount of ash-free coal, and process for producing coke for blast furnace
JP7188245B2 (en) Method for estimating surface fracture strength of blast furnace coke
KR101503443B1 (en) Composition for cokes and method of manufacturing the cokes
JP2015174989A (en) Method of producing coke for blast furnace
JP6880904B2 (en) How to make coke
JP4418406B2 (en) Production method of raw materials for high strength coke

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170501

R151 Written notification of patent or utility model registration

Ref document number: 6146109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350