JP2014213275A - Recovery method and recovery device of carbon dioxide - Google Patents

Recovery method and recovery device of carbon dioxide Download PDF

Info

Publication number
JP2014213275A
JP2014213275A JP2013093386A JP2013093386A JP2014213275A JP 2014213275 A JP2014213275 A JP 2014213275A JP 2013093386 A JP2013093386 A JP 2013093386A JP 2013093386 A JP2013093386 A JP 2013093386A JP 2014213275 A JP2014213275 A JP 2014213275A
Authority
JP
Japan
Prior art keywords
absorption
regeneration
heat
carbon dioxide
absorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013093386A
Other languages
Japanese (ja)
Other versions
JP6064770B2 (en
Inventor
真也 奥野
Masaya Okuno
真也 奥野
至高 中村
Noritaka Nakamura
至高 中村
知哉 村本
Tomoya Muramoto
知哉 村本
裕一 西山
Yuichi Nishiyama
裕一 西山
俊一朗 上野
Toshiichiro Ueno
俊一朗 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2013093386A priority Critical patent/JP6064770B2/en
Priority to PCT/JP2014/061441 priority patent/WO2014175337A1/en
Publication of JP2014213275A publication Critical patent/JP2014213275A/en
Application granted granted Critical
Publication of JP6064770B2 publication Critical patent/JP6064770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1406Multiple stage absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/65Employing advanced heat integration, e.g. Pinch technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a recovery method and a recovery device of carbon dioxide which can reduce operation cost by reducing energy necessary to regenerate an absorbent.SOLUTION: An absorption tower and a regeneration tower of a recovery device are structured by two stages or more. Gas is supplied to a second absorption part through a first absorption part of the absorption tower. A first regeneration part of the regeneration tower includes external heating means, and a second regeneration part is heated by heat of gas emitted from the first regeneration part. Recovery gas discharged from the regeneration tower is compressed by a compressor, heat of the recovery gas is recovered by a heat recovery system and is supplied to the regeneration tower, and condensed water of the recovery gas is separated by a gas-liquid separator. A circulation system of the absorbent includes a first circulation system for circulating the first absorption part and the second regeneration part, and a second circulation system for circulating the second absorption part and the first regeneration part, and supplies water in the gas-liquid separator to the absorbent refluxed from the first regeneration part to the second absorption part.

Description

本発明は、燃焼ガスなどの二酸化炭素を含むガスから二酸化炭素を分離回収し、清浄なガスを大気に還元するための二酸化炭素の回収方法及び回収装置に関する。   The present invention relates to a carbon dioxide recovery method and recovery device for separating and recovering carbon dioxide from a gas containing carbon dioxide such as combustion gas and reducing clean gas to the atmosphere.

火力発電所や製鉄所、ボイラーなどの設備では、石炭、重油、超重質油などの燃料を多量に使用しており、燃料の燃焼によって排出される硫黄酸化物、窒素酸化物及び二酸化炭素は、大気汚染防止や地球環境保全の見地から放出に関する量的及び濃度的制限が必要とされている。近年、二酸化炭素は地球温暖化の主原因として問題視され、世界的にも排出を抑制する動きが活発化している。このため、燃焼排ガスやプロセス排ガスの二酸化炭素を大気中に放出せずに回収・貯蔵を可能とするために、様々な研究が精力的に進められ、二酸化炭素の回収方法として、例えば、PSA(圧力スウィング)法、膜分離濃縮法や、塩基性化合物による反応吸収を利用する化学吸収法などが知られている。   Facilities such as thermal power plants, steelworks, and boilers use large amounts of fuel such as coal, heavy oil, and super heavy oil. Sulfur oxides, nitrogen oxides, and carbon dioxide emitted by the combustion of fuel are There is a need for quantitative and concentration restrictions on emissions from the perspective of air pollution prevention and global environmental protection. In recent years, carbon dioxide has been seen as a major cause of global warming, and movements to suppress emissions have become active worldwide. For this reason, in order to enable the recovery and storage of carbon dioxide from combustion exhaust gases and process exhaust gases without releasing them into the atmosphere, various researches have been vigorously advanced. As a carbon dioxide recovery method, for example, PSA ( Known are pressure swinging), membrane separation and concentration, and chemical absorption using reaction absorption by basic compounds.

化学吸収法においては、主にアルカノールアミン系の塩基性化合物を吸収剤として用い、その処理プロセスでは、概して、吸収剤を含む水性液を吸収液として、ガスに含まれる二酸化炭素を吸収液に吸収させる吸収工程と、吸収された二酸化炭素を吸収液から放出させて吸収液を再生する再生工程とを交互に繰り返すように吸収液を循環させる(例えば、下記特許文献1参照)。再生工程においては、二酸化炭素を放出させるための加熱が必要であり、二酸化炭素回収の操業費用を削減するには、再生のために加熱/冷却に要するエネルギーを低減することが重要となる。この点に関し、特許文献1に示されるように、再生工程において二酸化炭素を放出した高温の吸収液(リーン液)を、吸収工程において二酸化炭素を吸収した吸収液(リッチ液)と熱交換することによって、熱エネルギーを回収して再生工程で再利用することができる。   In the chemical absorption method, mainly alkanolamine-based basic compounds are used as the absorbent. In the treatment process, an aqueous liquid containing the absorbent is generally used as the absorbent, and carbon dioxide contained in the gas is absorbed into the absorbent. The absorbing solution is circulated so as to alternately repeat the absorbing step to be performed and the regeneration step of regenerating the absorbing solution by releasing the absorbed carbon dioxide from the absorbing solution (see, for example, Patent Document 1 below). In the regeneration process, heating for releasing carbon dioxide is necessary, and in order to reduce the operating cost of carbon dioxide recovery, it is important to reduce the energy required for heating / cooling for regeneration. In this regard, as shown in Patent Document 1, heat exchange of a high-temperature absorption liquid (lean liquid) from which carbon dioxide has been released in the regeneration process is performed with an absorption liquid (rich liquid) that has absorbed carbon dioxide in the absorption process. Thus, thermal energy can be recovered and reused in the regeneration process.

また、再生工程から排出される二酸化炭素を含んだガスは、回収利用可能な熱エネルギーを含んでいるので、その回収を目的として、下記特許文献2では、再生塔から排出される二酸化炭素を含んだガスを圧縮する圧縮器と、圧縮器から吐出するガスの熱交換を行う熱交換器とを用いて、再生塔が保有する吸収液を熱交換器に供給してガスとの熱交換によって加熱して再生塔に戻すことを記載する。   In addition, since the gas containing carbon dioxide discharged from the regeneration process contains heat energy that can be recovered and used, in Patent Document 2 below, for the purpose of recovery, the carbon dioxide discharged from the regeneration tower is included. Using a compressor that compresses the gas and a heat exchanger that performs heat exchange of the gas discharged from the compressor, the absorption liquid held in the regeneration tower is supplied to the heat exchanger and heated by heat exchange with the gas. To return to the regeneration tower.

特開2009−214089号公報JP 2009-214089 A 特開2010−235395号公報JP 2010-235395 A

吸収液の再生に必要とされるエネルギーには、吸収液の温度上昇に要する顕熱、吸収液から二酸化炭素を放出する際の反応熱、及び、吸収液の水分蒸発による熱損失を補うための潜熱がある。上述の先行技術では、これらに関する熱エネルギーが回収されるが、潜熱に関するエネルギーの回収及び再利用においては、効率的に未だ改善の余地がある。   The energy required to regenerate the absorption liquid is to compensate for the sensible heat required to raise the temperature of the absorption liquid, the heat of reaction when carbon dioxide is released from the absorption liquid, and the heat loss due to moisture evaporation of the absorption liquid. There is latent heat. In the above-described prior art, thermal energy related to these is recovered, but there is still room for improvement in the recovery and reuse of energy related to latent heat.

環境保全のために二酸化炭素の回収を普及させるには、経済的観点から、可能な限りエネルギー効率を高めて回収に要する費用を削減することが望ましく、吸収液からの熱エネルギーの回収効率を高めることは省エネルギーにおいて重要であり、又、二酸化炭素の回収効率に対しても有効に作用し得る。   In order to promote the capture of carbon dioxide for environmental conservation, it is desirable from the economic point of view to increase the energy efficiency as much as possible to reduce the cost required for the recovery, and increase the recovery efficiency of thermal energy from the absorbent. This is important for energy saving, and can also effectively affect the carbon dioxide recovery efficiency.

本発明の課題は、上述の問題を解決し、吸収液を再生するために要するエネルギーを削減して操業費用を低減可能な二酸化炭素の回収方法及び回収装置を提供することである。   An object of the present invention is to provide a carbon dioxide recovery method and a recovery apparatus that can solve the above-described problems and reduce the energy required for regenerating the absorbing liquid to reduce the operating cost.

又、本発明の課題は、装置や吸収液への負担を軽減でき、二酸化炭素の回収率を低下させずに吸収液の再生に要するエネルギーを削減して二酸化炭素の回収コストを低減可能な二酸化炭素の回収方法及び回収装置を提供することである。   Another object of the present invention is to reduce the burden on the apparatus and the absorption liquid, reduce the energy required for regeneration of the absorption liquid without reducing the carbon dioxide recovery rate, and reduce the carbon dioxide recovery cost. It is to provide a carbon recovery method and a recovery apparatus.

上記課題を解決するために、本発明者らは、鋭意研究を重ねた結果、潜熱に関する熱エネルギーの十分な回収を容易に行う上で、回収二酸化炭素に含まれる水蒸気量の低減が有効であり、吸収工程及び再生工程を各々少なくとも2段階に区分する構成を利用すると装置構成において有利であることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have conducted extensive research. As a result, it is effective to reduce the amount of water vapor contained in the recovered carbon dioxide in order to easily recover sufficient heat energy related to latent heat. The inventors have found that it is advantageous in the apparatus configuration to use the configuration in which the absorption process and the regeneration process are each divided into at least two stages, and the present invention has been completed.

本発明の一態様によれば、二酸化炭素の回収装置は、ガスを吸収液に接触させて前記ガスに含まれる二酸化炭素を前記吸収液に吸収させる吸収塔であって、第1吸収部及び第2吸収部を有し、前記ガスは前記第1吸収部を経て前記第2吸収部に供給されるように配設される前記吸収塔と、前記吸収塔で二酸化炭素を吸収した前記吸収液を加熱し二酸化炭素を放出させて前記吸収液を再生する再生塔であって、第1再生部及び第2再生部を有し、前記第1再生部は外部加熱手段を有し、前記第2再生部は前記第1再生部から放出されるガスの熱によって加熱されるように配設される前記再生塔と、前記第1吸収部と前記第2再生部との間で前記吸収液を循環させる第1循環系と、前記第2吸収部と前記第1再生部との間で前記吸収液を循環させる第2循環系とを有する循環システムと、前記再生塔から排出される水蒸気及び二酸化炭素を含んだ回収ガスをそのまま圧縮する圧縮器と、前記圧縮器によって圧縮された前記回収ガスの熱を回収して前記再生塔へ供給する熱回収システムとを有することを要旨とする。   According to one aspect of the present invention, the carbon dioxide recovery device is an absorption tower that causes a gas to contact the absorption liquid and absorbs the carbon dioxide contained in the gas into the absorption liquid. The absorption tower disposed so as to be supplied to the second absorption section through the first absorption section, and the absorption liquid that has absorbed carbon dioxide in the absorption tower. A regeneration tower for heating and releasing carbon dioxide to regenerate the absorbing solution, comprising a first regeneration unit and a second regeneration unit, wherein the first regeneration unit has an external heating means, and the second regeneration A part circulates the absorbing liquid between the regeneration tower disposed so as to be heated by the heat of the gas released from the first regeneration part, and the first absorption part and the second regeneration part. Circulating the absorption liquid between the first circulation system, the second absorption part and the first regeneration part; A circulation system having a second circulation system, a compressor that compresses the recovered gas containing water vapor and carbon dioxide discharged from the regeneration tower as it is, and recovers the heat of the recovered gas compressed by the compressor. And a heat recovery system for supplying the regeneration tower.

上記回収装置は、更に、前記熱回収システムによって熱を回収した回収ガスから凝縮する水を分離する気液分離器と、前記第2循環系において前記第1再生部から前記第2吸収部へ還流する吸収液に、前記気液分離器において分離した水を供給する水供給路とを有すると良い。   The recovery device further includes a gas-liquid separator that separates water condensed from the recovered gas from which heat has been recovered by the heat recovery system, and reflux from the first regeneration unit to the second absorption unit in the second circulation system. It is preferable to have a water supply path for supplying the water separated in the gas-liquid separator to the absorbing liquid.

又、本発明の一態様によれば、二酸化炭素の回収方法は、ガスを吸収液に接触させて前記ガスに含まれる二酸化炭素を前記吸収液に吸収させる吸収処理であって、第1吸収工程及び第2吸収工程を有し、ガスは前記第1吸収工程を経て前記第2吸収工程に供給される前記吸収処理と、前記吸収処理で二酸化炭素を吸収した前記吸収液を加熱し二酸化炭素を放出させて前記吸収液を再生する再生処理であって、第1再生工程及び第2再生工程を有し、前記第1再生工程では外部加熱手段を利用して加熱し、前記第2再生工程では前記第1再生工程において放出されるガスの熱によって加熱する前記再生処理と、前記第1吸収工程と前記第2再生工程との間で前記吸収液を循環させる第1循環工程と、前記第2吸収工程と前記第1再生工程との間で前記吸収液を循環させる第2循環工程と、前記再生処理から排出される水蒸気及び二酸化炭素を含んだ回収ガスをそのまま圧縮する圧縮工程と、前記圧縮工程によって圧縮された回収ガスの熱を回収して前記再生処理へ供給する熱回収工程とを有することを要旨とする。   Moreover, according to one aspect of the present invention, the method for recovering carbon dioxide is an absorption process in which a gas is brought into contact with an absorption liquid and the carbon dioxide contained in the gas is absorbed into the absorption liquid. And a second absorption step, wherein the gas is supplied to the second absorption step through the first absorption step, and the absorption liquid that has absorbed carbon dioxide in the absorption treatment is heated to generate carbon dioxide. A regeneration process for regenerating the absorbing liquid by discharging, comprising a first regeneration process and a second regeneration process, wherein heating is performed using an external heating means in the first regeneration process, and in the second regeneration process The regeneration process for heating by the heat of the gas released in the first regeneration process, the first circulation process for circulating the absorbent between the first absorption process and the second regeneration process, and the second Between the absorption process and the first regeneration process A second circulation step for circulating the absorbent, a compression step for compressing the recovered gas containing water vapor and carbon dioxide discharged from the regeneration process, and recovering the heat of the recovered gas compressed by the compression step. And a heat recovery step for supplying to the regeneration process.

上記回収方法は、更に、前記熱回収工程の後の回収ガスから凝縮する水を分離する分離工程と、前記第2循環工程において前記第1再生工程から前記第2吸収工程へ循環する吸収液に、前記分離工程において分離した水を供給する水供給工程とを有すると良い。   The recovery method further includes a separation step of separating water condensed from the recovered gas after the heat recovery step, and an absorption liquid circulated from the first regeneration step to the second absorption step in the second circulation step. And a water supply step for supplying water separated in the separation step.

本発明によれば、ガスに含まれる二酸化炭素を回収するプロセスにおいて、吸収液の再生に使用する熱の回収効率が向上し、二酸化炭素の回収率を低下させずに再生に要する熱エネルギーを削減できるので、運転コストの軽減に有効な二酸化炭素の回収方法及び回収装置が提供される。回収ガスから得られる凝縮水を用いた吸収液の濃度補整を、温度調整にも有利な形態で行うことができ、二酸化炭素の回収及び吸収液の再生を効率的に行うことができるので、吸収液に対する再生時の負荷が軽減され、効率よく安定的に吸収液を利用することができるため、操業費及び設備維持費の低減に有効である。特殊な装備や高価な装置を必要とせず、一般的な設備を活用して簡易に実施できるので、経済的に有利である。   According to the present invention, in the process of recovering carbon dioxide contained in gas, the recovery efficiency of heat used for regeneration of the absorbing liquid is improved, and the thermal energy required for regeneration is reduced without reducing the recovery rate of carbon dioxide. Therefore, it is possible to provide a carbon dioxide recovery method and a recovery device that are effective in reducing operation costs. Absorption liquid concentration correction using condensed water obtained from recovered gas can be performed in a form that is advantageous for temperature adjustment, and carbon dioxide recovery and absorption liquid regeneration can be performed efficiently. Since the load upon regeneration with respect to the liquid is reduced and the absorbing liquid can be used efficiently and stably, it is effective in reducing the operating cost and the equipment maintenance cost. It is economically advantageous because it can be carried out easily using general equipment without requiring special equipment or expensive equipment.

本発明に係る二酸化炭素の回収装置の第1の実施形態を示す概略構成図。1 is a schematic configuration diagram showing a first embodiment of a carbon dioxide recovery apparatus according to the present invention. 本発明に係る二酸化炭素の回収装置の第2の実施形態を示す概略構成図。The schematic block diagram which shows 2nd Embodiment of the collection | recovery apparatus of the carbon dioxide which concerns on this invention. 本発明に係る二酸化炭素の回収装置の第3の実施形態を示す概略構成図。The schematic block diagram which shows 3rd Embodiment of the collection | recovery apparatus of the carbon dioxide which concerns on this invention. 本発明に係る二酸化炭素の回収装置の第4の実施形態を示す概略構成図。The schematic block diagram which shows 4th Embodiment of the collection | recovery apparatus of the carbon dioxide which concerns on this invention.

化学吸収法による二酸化炭素の吸収プロセスにおいては、ガスに含まれる二酸化炭素を低温の吸収液に吸収させる吸収処理と、吸収された二酸化炭素を吸収液から放出させて吸収液を再生する高温の再生処理との間で吸収液を循環させて、吸収処理と再生処理とを交互に繰り返す。再生処理における吸収液の再生度は吸収液の加熱温度に依存し、温度が高いほど二酸化炭素ガスを放出して吸収液の残留二酸化炭素濃度が低くなる(参照:Jong I. Lee, Frederick D. Otto and Alan E. Mather, "Equilibrium Between carbon Dioxide and Aqueous Monoethanolamine Solutions", J. appl. Chem. Biotechnol. 1976, 26, PP541-549)。従って、通常、再生処理における吸収液は、外部熱源から供給される熱エネルギーを用いた外部加熱手段によって沸騰温度近辺に維持される。再生処理において二酸化炭素を放出した高温の再生吸収液(リーン液)は、吸収処理で二酸化炭素を吸収した吸収液(リッチ液)と熱交換することによって、加熱されたリッチ液が再生処理に供給されるので、熱エネルギーが回収・再利用される。しかし、再生処理において吸収液から放出される二酸化炭素を含んだガスは、その熱を含んだ高温の状態で排出され、排出ガスに含まれる熱量は無駄になる。排出ガスの温度低下、つまり、再生塔の塔頂温度の低下は、上述のリッチ液とリーン液との熱交換率を下げることによって可能であるが、熱交換において回収される顕熱が減少するため、熱量の削減には寄与しない。   In the absorption process of carbon dioxide by the chemical absorption method, absorption treatment that absorbs carbon dioxide contained in the gas into a low-temperature absorption liquid and high-temperature regeneration that regenerates the absorption liquid by releasing the absorbed carbon dioxide from the absorption liquid The absorption liquid is circulated between the treatments, and the absorption treatment and the regeneration treatment are alternately repeated. The regeneration rate of the absorbent in the regeneration process depends on the heating temperature of the absorbent. The higher the temperature, the more carbon dioxide gas is released and the residual carbon dioxide concentration in the absorbent becomes lower (see: Jong I. Lee, Frederick D. Otto and Alan E. Mather, “Equilibrium Between carbon Dioxide and Aqueous Monoethanolamine Solutions”, J. appl. Chem. Biotechnol. 1976, 26, PP541-549). Therefore, normally, the absorbing liquid in the regeneration process is maintained near the boiling temperature by external heating means using thermal energy supplied from an external heat source. The high-temperature regenerated absorbent (lean liquid) that has released carbon dioxide in the regeneration process exchanges heat with the absorbent (rich liquid) that has absorbed carbon dioxide in the absorption process, so that the heated rich liquid is supplied to the regenerative process. Heat energy is recovered and reused. However, the gas containing carbon dioxide released from the absorbing solution in the regeneration process is discharged in a high temperature state including the heat, and the amount of heat contained in the exhaust gas is wasted. The temperature of the exhaust gas can be lowered, that is, the temperature at the top of the regeneration tower can be lowered by lowering the heat exchange rate between the rich liquid and the lean liquid, but the sensible heat recovered in the heat exchange is reduced. Therefore, it does not contribute to the reduction of heat.

本発明では、吸収処理及び再生処理を、各々、少なくとも二段階に区分して2組の吸収工程及び再生工程を構成し、吸収液を循環させる循環路も独立した2つの経路に分離して各組の吸収工程及び再生工程間で吸収液を個別に循環させるように構成する。1つの再生工程では外部エネルギー源を利用する外部加熱手段によって吸収液を積極的に加熱するが、この工程で放出される高温のガスは、もう1つの再生工程に供給されて熱源となることで吸収液が加熱再生される。つまり、ガスからの放出回収熱が吸収液の再生に直接利用される。更に、再生塔からの排出ガスを圧縮して、放出される熱エネルギーを回収する熱交換器を導入し、回収熱エネルギーを再生塔に供給するように構成することによって、外部熱源から供給される熱エネルギーの利用効率は格段に高くなる。この際、熱エネルギーを回収した排出ガスから水分が凝縮するので、この凝縮水を吸収液に供給して吸収液の濃度調整に利用する。上述のように吸収塔及び再生塔で使用する吸収液を独立した2組の経路によって循環させる構成は、吸収液から気化する水蒸気が一方の経路から他方の経路へ移動することによって、一方の経路の吸収液が濃縮され易いという問題があるが、この問題を効果的に解消する手段として、上述の排出ガスから分離される凝縮水の利用は好都合である。又、再生塔からの排出ガスには吸収剤(アミン化合物)等が混入し得るが、再生塔を二段階に区分することで塔頂温度は低下するため、吸収剤の混入量は格段に減少する。この点は、排出ガスを圧縮する圧縮器や装置接続部のシール材がガス中の混入物による腐食等を受け難くなる点でも有利な構成である。   In the present invention, the absorption process and the regeneration process are each divided into at least two stages to constitute two sets of absorption process and regeneration process, and the circulation path for circulating the absorbent is also separated into two independent paths. The absorbent is configured to be circulated individually between the pair of absorption processes and the regeneration process. In one regeneration process, the absorbing liquid is positively heated by an external heating means using an external energy source. The high-temperature gas released in this process is supplied to another regeneration process and becomes a heat source. The absorbent is regenerated by heating. That is, the heat recovered from the gas is directly used for the regeneration of the absorbent. Further, the exhaust gas from the regeneration tower is compressed, and a heat exchanger for recovering the released heat energy is introduced, and the recovered heat energy is supplied to the regeneration tower, thereby being supplied from an external heat source. The use efficiency of thermal energy becomes much higher. At this time, since water is condensed from the exhaust gas from which the thermal energy has been recovered, this condensed water is supplied to the absorbent and used for adjusting the concentration of the absorbent. As described above, the configuration in which the absorption liquid used in the absorption tower and the regeneration tower is circulated by two independent paths is such that the water vapor evaporated from the absorption liquid moves from one path to the other path, However, the use of condensed water separated from the exhaust gas is advantageous as a means for effectively solving this problem. In addition, the absorbent (amine compound) can be mixed into the exhaust gas from the regeneration tower. However, since the top temperature of the regeneration tower is lowered by dividing the regeneration tower into two stages, the amount of absorbent mixed in is greatly reduced. To do. This point is also advantageous in that the compressor for compressing the exhaust gas and the sealing material for the device connection portion are less susceptible to corrosion due to contaminants in the gas.

尚、上記構成において、2組の経路を循環する吸収液は、各々、個別に選定可能となるので、各経路の処理条件に応じて適した特性に各々調整することができ、異なる組成に調製した2種類の吸収液の使用も可能になる。吸収液に含まれる吸収剤は、概して、吸収性及び再生性の両方に優れたものを開発するのは難しく、何れか一方に優れているのが一般的であるので、異なる濃度・組成の吸収液が使用可能な構成では、各循環系の吸収工程及び再生工程の処理条件に特化した吸収液を選択して用いることにより、吸収効率及び再生効率の低下を回避しつつ再生に要するエネルギーの削減を有利に進めることができる。   In the above configuration, the absorption liquid circulating through the two sets of paths can be individually selected, and can be adjusted to characteristics suitable for the processing conditions of each path, and prepared in different compositions. It is also possible to use two types of absorbents. In general, it is difficult to develop an absorbent that is excellent in both absorption and regenerative properties, and it is generally excellent in either one. In the configuration in which the liquid can be used, the energy required for regeneration can be reduced while avoiding a decrease in absorption efficiency and regeneration efficiency by selecting and using an absorption liquid specialized for the processing conditions of the absorption process and regeneration process of each circulation system. Reduction can be advantageously promoted.

以下、本発明の二酸化炭素の回収方法及び回収装置について、図面を参照して詳細に説明する。   Hereinafter, the carbon dioxide recovery method and recovery apparatus of the present invention will be described in detail with reference to the drawings.

図1は、本発明の二酸化炭素の回収装置の一実施形態を示す。回収装置1は、二酸化炭素を含有するガスGを吸収液に接触させて二酸化炭素を吸収液に吸収させる吸収塔10と、二酸化炭素を吸収した吸収液を加熱して二酸化炭素を吸収液から放出させ、吸収液を再生する再生塔20とを有する。回収装置1に供給されるガスGについて特に制限はなく、燃焼排ガスやプロセス排ガスなどの様々なガスの取扱いが可能である。吸収塔10及び再生塔20は、各々、向流型気液接触装置として構成され、接触面積を大きくするための充填材11,21が各々内部に装填されている。吸収液として、アルカノールアミン類等の二酸化炭素に親和性を有する化合物を吸収剤として含有する水性液が用いられる。充填材11,21は、処理温度における耐久性及び耐腐食性を有する素材製で、所望の接触面積を提供し得る形状のものを適宜選択して使用することができ、概して、ステンレス鋼、炭素鋼等の鉄系金属材料製のものが用いられるが、特に限定されない。更に、必要に応じて、吸収塔10に供給されるガスGを二酸化炭素の吸収に適した低温に維持するための冷却塔を設けてもよい。   FIG. 1 shows an embodiment of the carbon dioxide recovery apparatus of the present invention. The recovery device 1 is configured to bring the gas G containing carbon dioxide into contact with the absorption liquid and absorb the carbon dioxide into the absorption liquid, and heat the absorption liquid that has absorbed the carbon dioxide to release the carbon dioxide from the absorption liquid. And a regeneration tower 20 for regenerating the absorbent. There is no restriction | limiting in particular about the gas G supplied to the collection | recovery apparatus 1, Handling of various gas, such as combustion exhaust gas and process exhaust gas, is possible. The absorption tower 10 and the regeneration tower 20 are each configured as a countercurrent gas-liquid contact device, and are filled with fillers 11 and 21 for increasing the contact area. As the absorbing liquid, an aqueous liquid containing a compound having an affinity for carbon dioxide such as alkanolamines as an absorbent is used. The fillers 11 and 21 are made of a material having durability at a processing temperature and corrosion resistance, and can be appropriately selected and used in a shape capable of providing a desired contact area. Although those made of an iron-based metal material such as steel are used, it is not particularly limited. Furthermore, if necessary, a cooling tower for maintaining the gas G supplied to the absorption tower 10 at a low temperature suitable for carbon dioxide absorption may be provided.

二酸化炭素を含んだガスGは、吸収塔10の下部から供給される。吸収塔10内は、充填材11aが収容される下側の第1吸収部12aと、充填材11bが収容される上側の第2吸収部12bとに区画され、第1吸収部12aと第2吸収部12bとの間には、水平環状板の中央穴周縁に管状壁が立設された区画部材13が介在し、区画部材13の管状壁の上端穴の上方を笠が覆い、吸収塔10の内側壁と区画部材13の管状壁との間において水平環状板上に液溜まりが形成されるように構成されている。吸収塔10下部から供給されるガスGは、塔内を上昇して第1吸収部12aの充填材11aを通過した後に、区画部材13の管状壁内孔を通って第2吸収部12bの充填材11bを通過する。一方、吸収液は、第1及び第2吸収液の2つに分けられ、第1吸収液は、吸収塔10の第1吸収部12a上部に供給されて、充填材11aを流下した後に吸収塔10底部に貯留され、第2吸収液は、吸収塔10の第2吸収部12b上部に供給されて、充填材11bを流下した後に区画部材13の液溜まりに貯留され、第1吸収部12aには流下せずに塔外へ導出されるように構成されている。ガスGが充填材11a,11bを通過する間に2つの吸収液と順次気液接触してガスG中の二酸化炭素が吸収液に吸収される。第1吸収部12aを通過した後のガスの二酸化炭素濃度は低下しているので、第2吸収液は、第1吸収液が接触するガスGより二酸化炭素濃度が低いガスと接触する。第1吸収部12aにおいて二酸化炭素を吸収した第1吸収液(リッチ液)A1’は、吸収塔10底部に貯溜され、ポンプ14によって、吸収塔10底部と再生塔20上部とを接続する第1供給路15を通じて再生塔20へ供給される。第2吸収部12bにおいて二酸化炭素を吸収した第2吸収液(リッチ液)A2’は、区画部材13の液溜まりに貯溜され、ポンプ16によって、吸収塔10中央部と再生塔20中央部とを接続する第2供給路17を通じて再生塔20へ供給される。二酸化炭素が除去されたガスG’は、吸収塔10の頂部から排出される。   The gas G containing carbon dioxide is supplied from the lower part of the absorption tower 10. The inside of the absorption tower 10 is partitioned into a lower first absorption part 12a in which the filler 11a is accommodated and an upper second absorption part 12b in which the filler 11b is accommodated, and the first absorption part 12a and the second absorption part 12b. A partition member 13 having a tubular wall standing on the periphery of the central hole of the horizontal annular plate is interposed between the absorber 12b and a shade covering the upper end hole of the tubular wall of the partition member 13 so that the absorption tower 10 A liquid pool is formed on the horizontal annular plate between the inner wall of the partition member 13 and the tubular wall of the partition member 13. The gas G supplied from the lower part of the absorption tower 10 rises in the tower, passes through the filler 11a of the first absorption part 12a, and then fills the second absorption part 12b through the tubular wall inner hole of the partition member 13. It passes through the material 11b. On the other hand, the absorption liquid is divided into two parts, a first absorption liquid and a second absorption liquid. The first absorption liquid is supplied to the upper part of the first absorption part 12a of the absorption tower 10 and flows down the filler 11a, and then the absorption tower. 10 is stored at the bottom, and the second absorption liquid is supplied to the upper part of the second absorption part 12b of the absorption tower 10, and after flowing down the filler 11b, is stored in the liquid reservoir of the partition member 13 and is stored in the first absorption part 12a. Is configured to be led out of the tower without flowing down. While the gas G passes through the fillers 11a and 11b, the two absorbing liquids are sequentially brought into gas-liquid contact, and the carbon dioxide in the gas G is absorbed by the absorbing liquid. Since the carbon dioxide concentration of the gas after passing through the first absorption portion 12a is lowered, the second absorption liquid comes into contact with a gas having a lower carbon dioxide concentration than the gas G with which the first absorption liquid comes into contact. The first absorption liquid (rich liquid) A1 ′ that has absorbed carbon dioxide in the first absorption section 12a is stored at the bottom of the absorption tower 10 and is connected to the bottom of the absorption tower 10 and the top of the regeneration tower 20 by the pump 14. It is supplied to the regeneration tower 20 through the supply path 15. The second absorption liquid (rich liquid) A2 ′ that has absorbed carbon dioxide in the second absorption section 12b is stored in the liquid pool of the partition member 13, and the central portion of the absorption tower 10 and the regeneration tower 20 are separated by the pump 16. It is supplied to the regeneration tower 20 through the connected second supply path 17. The gas G ′ from which carbon dioxide has been removed is discharged from the top of the absorption tower 10.

吸収液が二酸化炭素を吸収することによって発熱して液温が上昇するので、必要に応じて、ガスG’に含まれ得る水蒸気等を凝縮するための冷却凝縮部18が吸収塔10頂部に設けられ、これにより、水蒸気等が塔外へ漏出するのをある程度抑制できる。これを更に確実にするために、吸収塔外に付設される冷却器31及びポンプ32を有し、冷却凝縮部18下に貯留される凝縮水の一部(塔内のガスG’を含んでも良い)は、ポンプ32によって冷却器31との間で循環させる。冷却器31で冷却されて塔頂部に供給される凝縮水等は冷却凝縮部18を低温に維持し、冷却凝縮部18を通過するガスG’を確実に冷却する。塔外へ排出されるガスG’の温度は60℃程度以下が好ましく、より好ましくは45℃以下となるようにポンプ32の駆動が制御される。図1の構成において、冷却凝縮部18で凝縮する水は充填材11bに供給されるが、凝縮水は塔内の吸収液の組成変動を補整するために使用できるので、必要に応じて第1及び第2吸収液の濃度組成を検知して濃度変動の割合に応じて凝縮水を分配して充填材11a,11bに供給するように構成すると良く、冷却凝縮部18における凝縮水の供給は、後述する再生塔20における凝縮水による補整を勘案して適宜設定・変更することができる。   The absorption liquid absorbs carbon dioxide to generate heat and the liquid temperature rises. Therefore, if necessary, a cooling condensing unit 18 for condensing water vapor or the like that can be contained in the gas G ′ is provided at the top of the absorption tower 10. Thereby, it can suppress to some extent that water vapor | steam etc. leak out of a tower. In order to further ensure this, there is a cooler 31 and a pump 32 attached outside the absorption tower, and a part of the condensed water stored under the cooling condensing unit 18 (including the gas G ′ in the tower). Is good) is circulated between the cooler 31 and the pump 32. Condensed water or the like cooled by the cooler 31 and supplied to the top of the tower maintains the cooling condensing unit 18 at a low temperature and reliably cools the gas G ′ passing through the cooling condensing unit 18. The drive of the pump 32 is controlled so that the temperature of the gas G ′ discharged to the outside of the tower is preferably about 60 ° C. or less, more preferably 45 ° C. or less. In the configuration of FIG. 1, the water condensed in the cooling condensing unit 18 is supplied to the packing material 11b, but the condensed water can be used to compensate for the composition variation of the absorption liquid in the tower, so the first is necessary. And it is good to comprise so that concentration composition of the 2nd absorption liquid may be detected and condensed water may be distributed according to the rate of concentration fluctuation, and supplied to fillers 11a and 11b, and supply of condensed water in cooling condensation part 18 is It can be set and changed as appropriate in consideration of compensation by condensed water in the regeneration tower 20 described later.

再生塔20内は、充填材21aが収容される下側の第1再生部22aと、充填材21bが収容される上側の第2再生部22bとに区画され、第1再生部22aと第2再生部22bとの間には、区画部材13と同様の構造によって液溜まりを形成する区画部材23が介在する。吸収塔10底部から第1供給路15を通じて供給される第1吸収液A1’は、再生塔20の第2再生部22b上部に導入されて、充填材21bを流下した後に区画部材23の液溜まりに貯留され、第1再生部22aには流下せずに塔外へ導出されるように構成される。吸収塔10の第2吸収部12bから第2供給路17を通じて供給される第2吸収液A2’は、第1再生部22a上部に供給されて、充填材21aを流下した後に再生塔20底部に貯留される。   The regeneration tower 20 is partitioned into a lower first regeneration unit 22a in which the filler 21a is accommodated and an upper second regeneration unit 22b in which the filler 21b is accommodated, and the first regeneration unit 22a and the second regeneration unit 22b. A partition member 23 that forms a liquid pool with a structure similar to that of the partition member 13 is interposed between the regenerator 22b. The first absorbing liquid A1 ′ supplied from the bottom of the absorption tower 10 through the first supply path 15 is introduced into the upper part of the second regeneration section 22b of the regeneration tower 20 and flows down through the packing material 21b, and then pools in the partition member 23. And is led out of the tower without flowing down to the first regeneration unit 22a. The second absorption liquid A2 ′ supplied from the second absorption part 12b of the absorption tower 10 through the second supply path 17 is supplied to the upper part of the first regeneration part 22a, and flows down the filler 21a and then flows into the bottom part of the regeneration tower 20. Stored.

再生塔20の底部には、外部からの供給エネルギーを用いて吸収液を積極的に加熱するための外部加熱手段としてリボイラーが付設される。即ち、再生塔20外に付設されるスチームヒーター24と、塔底部に貯留される第2吸収液A2をスチームヒーター24を介して循環させる循環路25とが付設され、塔底部の第2吸収液A2の一部が循環路25を通してスチームヒーター24に分流され、高温蒸気との熱交換によって継続的に加熱されて塔内へ還流される。従って、底部の第2吸収液A2は、積極的に加熱されて二酸化炭素を十分に放出し、又、充填材21aも間接的に加熱されて充填材21a上での気液接触による二酸化炭素の放出が促進される。第2吸収液から放出される二酸化炭素及び水蒸気を含む高温のガスは、上昇して第1再生部22aの充填材21aを通過した後に、区画部材23の管状壁内孔を通って第2再生部22bの充填材21bを通過する。この間に、充填材21aを流下する第2吸収液A2’、及び、充填材21bを流下する第1吸収液A1’は加熱され、これらの吸収液中の二酸化炭素が放出される。第2再生部22bに供給される第1吸収液A1’は、外部加熱手段による積極加熱を受けず、第1再生部22aから放出されるガスの熱によってのみ加熱されるので、その温度は第2吸収液A2’より低い。従って、第1吸収液と第2吸収液が同じ組成である場合は、区画部材23の液溜まりの第1吸収液A1の再生度は、塔底部の第2吸収液A2の再生度より低くなり、セミリーン液となる。二酸化炭素を放出した第1吸収液A1は、区画部材23の液溜まりからポンプ26によって、再生塔20中央部と吸収塔10中央部とを接続する第1還流路27を通じて吸収塔10の第1吸収部12aの上部へ還流される。再生塔20底部に貯溜されて二酸化炭素を十分に放出した第2吸収液A2(リーン液)は、ポンプ28によって、吸収塔10上部と再生塔20底部とを接続する第2還流路29を通じて吸収塔10の第2吸収部12bの上部へ還流される。この結果、第1吸収液A1,A1’が第1吸収部12aと第2再生部22bとの間を往復する第1循環系が、第1供給路15及び第1還流路27によって構成され、第2吸収液A2,A2’が第2吸収部12bと第1再生部22aとの間を往復する第2循環系が、第2供給路17及び第2還流路29によって構成される。再生塔20において吸収液から放出された二酸化炭素を含むガスは、再生塔20頂部から排出される。   A reboiler is attached to the bottom of the regeneration tower 20 as an external heating means for positively heating the absorption liquid using externally supplied energy. That is, a steam heater 24 attached outside the regeneration tower 20 and a circulation path 25 for circulating the second absorbent A2 stored in the tower bottom through the steam heater 24 are attached, and the second absorbent at the bottom of the tower is added. A part of A2 is diverted to the steam heater 24 through the circulation path 25, continuously heated by heat exchange with high-temperature steam, and refluxed into the tower. Accordingly, the second absorbing liquid A2 at the bottom is actively heated to sufficiently release carbon dioxide, and the filler 21a is also indirectly heated to cause carbon dioxide by gas-liquid contact on the filler 21a. Release is accelerated. The high temperature gas containing carbon dioxide and water vapor released from the second absorbing liquid rises and passes through the filler 21a of the first regeneration unit 22a, and then passes through the tubular wall inner hole of the partition member 23 for the second regeneration. It passes through the filler 21b of the part 22b. During this time, the second absorbing liquid A2 'flowing down the filler 21a and the first absorbing liquid A1' flowing down the filler 21b are heated, and carbon dioxide in these absorbing liquids is released. The first absorbing liquid A1 ′ supplied to the second regeneration unit 22b is not actively heated by the external heating means, and is heated only by the heat of the gas released from the first regeneration unit 22a. 2 lower than the absorption liquid A2 ′. Therefore, when the first absorption liquid and the second absorption liquid have the same composition, the regeneration degree of the first absorption liquid A1 in the pool of the partition member 23 is lower than the regeneration degree of the second absorption liquid A2 at the bottom of the column. It becomes semi-lean liquid. The first absorption liquid A1 from which carbon dioxide has been released is supplied to the first absorption tower 10 through the first reflux path 27 that connects the central portion of the regeneration tower 20 and the central portion of the absorption tower 10 by the pump 26 from the pool of the partition member 23. It is refluxed to the upper part of the absorption part 12a. The second absorption liquid A2 (lean liquid) that has been stored at the bottom of the regeneration tower 20 and has sufficiently released carbon dioxide is absorbed by the pump 28 through the second reflux path 29 that connects the top of the absorption tower 10 and the bottom of the regeneration tower 20. It is refluxed to the upper part of the second absorption part 12b of the tower 10. As a result, a first circulation system in which the first absorption liquids A1 and A1 ′ reciprocate between the first absorption unit 12a and the second regeneration unit 22b is configured by the first supply path 15 and the first return path 27. A second circulation system in which the second absorption liquids A2 and A2 ′ reciprocate between the second absorption unit 12b and the first regeneration unit 22a is configured by the second supply path 17 and the second reflux path 29. The gas containing carbon dioxide released from the absorbent in the regeneration tower 20 is discharged from the top of the regeneration tower 20.

第2再生部22bで二酸化炭素を放出した第1吸収液A1は、第1還流路27を還流する間に第1熱交換器33を通過する。第1熱交換器33は、第1供給路15と第1還流路27との間で熱交換を行うように設置されるので、第1吸収液A1は、第1供給路15の第1吸収液A1’によって冷却され、更に、冷却水を用いた冷却器35によって二酸化炭素の吸収に適した温度まで十分に冷却された後に第1吸収部12a上部に導入される。又、第1再生部22aで二酸化炭素を放出した第2吸収液A2は、第2還流路29を流れる間に第2熱交換器34を通過する。第2熱交換器34は、第2供給路17と第2還流路29との間で熱交換を行うように設置されるので、第2吸収液A2は、第2供給路17の第2吸収液A2’によって冷却され、更に、冷却水を用いた冷却器36によって同様に十分に冷却された後に、第2吸収部12b上部に導入される。熱交換器には、スパイラル式、プレート式、二重管式、多重円筒式、多重円管式、渦巻管式、渦巻板式、タンクコイル式、タンクジャケット式、直接接触液液式等の様々な種類があり、本発明における第1及び第2熱交換器33,34として何れのタイプを使用しても良いが、装置の簡素化及び清掃分解の容易さの点ではプレート式が優れている。   The first absorbing liquid A1 from which the carbon dioxide has been released by the second regeneration unit 22b passes through the first heat exchanger 33 while refluxing the first reflux path 27. Since the first heat exchanger 33 is installed so as to exchange heat between the first supply path 15 and the first reflux path 27, the first absorption liquid A <b> 1 is absorbed in the first absorption path 15 in the first supply path 15. After being cooled by the liquid A1 ′ and further sufficiently cooled to a temperature suitable for absorption of carbon dioxide by the cooler 35 using cooling water, it is introduced into the upper part of the first absorption part 12a. Further, the second absorbent A2 from which the carbon dioxide has been released by the first regeneration unit 22a passes through the second heat exchanger 34 while flowing through the second reflux path 29. Since the second heat exchanger 34 is installed so as to exchange heat between the second supply path 17 and the second reflux path 29, the second absorption liquid A <b> 2 is absorbed by the second absorption path 17 in the second supply path 17. After being cooled by the liquid A2 ′ and further sufficiently cooled in the same manner by the cooler 36 using cooling water, it is introduced into the upper part of the second absorption part 12b. There are various types of heat exchangers such as spiral type, plate type, double pipe type, multiple cylinder type, multiple circular pipe type, spiral tube type, spiral plate type, tank coil type, tank jacket type, direct contact liquid type, etc. There are various types, and any type may be used as the first and second heat exchangers 33 and 34 in the present invention, but the plate type is superior in terms of simplification of the apparatus and ease of cleaning and disassembly.

再生塔20における加熱によって吸収液から放出される二酸化炭素を含む回収ガスCは、水蒸気及び吸収剤の放出を抑制するために再生塔20上部に設けられる凝縮部37を通過した後に、頂部から排気管38を通って排出される。本発明においては、再生塔20から排出される回収ガスCから熱を回収して再利用するために、圧縮及び熱交換による熱回収システムを有し、熱回収効率を高めるために、再生塔20から排出される回収ガスCは、冷却による水蒸気の凝縮分離を経ることなく、そのまま圧縮する。この圧縮によって発生するガス圧縮熱及び水の凝縮熱の両方を纏めて回収して再利用する。詳細には、回収装置1は、再生塔20と直接連通するように排気管38上に設けられる圧縮器40と、再生塔20底部の第2吸収液A2の一部を分流して再生塔外との間を循環させる循環路50と、圧縮器40によって圧縮された回収ガスCと前記循環路50の第2吸収液A2との間で熱交換を行うように設置される熱交換器41とを有する。熱交換において、回収ガスCに含まれる水蒸気が冷却凝縮して凝縮熱を放出するので、熱交換器41では、圧縮熱と共に水の凝縮熱も回収される。回収ガスCと吸収液との熱交換には、一般的に気−液熱交換に用いられる種々の熱交換器から適宜選択して使用可能であり、例えば、直接接触式やフィンチューブ型、プレート式等の熱交換器が挙げられる。本発明の再生塔20は、再生部を2段に構成しており、1段構成の場合に比べて再生塔20の塔頂温度は低いので、吸収剤の塔外への排出は凝縮部37において適正に防止される。従って、圧縮器40や接続部のシール材の腐食防止の観点において好適な構成である。熱交換器41による熱交換後の第2吸収液A2は、再生塔20の底部に還流される。つまり、回収ガスCから回収した熱は第2吸収液A2を介して再生塔20の第1再生部22aへ供給される。尚、この実施形態では、熱交換後の第2吸収液A2を直接再生塔20に還流しているが、スチームヒーター24を介して再生塔20へ還流するように循環路50を接続してもよい。   The recovered gas C containing carbon dioxide released from the absorbing liquid by heating in the regeneration tower 20 passes through a condensing part 37 provided at the upper part of the regeneration tower 20 in order to suppress the release of water vapor and absorbent, and then exhausted from the top. It is discharged through the tube 38. In the present invention, in order to recover and reuse heat from the recovered gas C discharged from the regeneration tower 20, the regeneration tower 20 has a heat recovery system by compression and heat exchange, and in order to increase heat recovery efficiency. The recovered gas C discharged from the gas is compressed as it is without undergoing condensation separation of water vapor by cooling. Both the heat of gas compression generated by this compression and the heat of condensation of water are collected and reused. Specifically, the recovery apparatus 1 shunts a part of the second absorbing liquid A2 at the bottom of the regeneration tower 20 by dividing the compressor 40 provided on the exhaust pipe 38 so as to directly communicate with the regeneration tower 20 and outside the regeneration tower. And a heat exchanger 41 installed so as to exchange heat between the recovered gas C compressed by the compressor 40 and the second absorbent A2 in the circulation path 50. Have In the heat exchange, the water vapor contained in the recovered gas C is cooled and condensed to release the heat of condensation. Therefore, in the heat exchanger 41, the heat of condensation of water is recovered together with the heat of compression. For the heat exchange between the recovered gas C and the absorption liquid, various heat exchangers generally used for gas-liquid heat exchange can be appropriately selected and used. For example, direct contact type, fin tube type, plate A heat exchanger such as an equation is mentioned. In the regeneration tower 20 of the present invention, the regeneration section is configured in two stages, and the top temperature of the regeneration tower 20 is lower than in the case of the one-stage structure. Is properly prevented. Therefore, this is a preferable configuration from the viewpoint of preventing corrosion of the compressor 40 and the sealing material of the connection portion. The second absorbent A2 after heat exchange by the heat exchanger 41 is refluxed to the bottom of the regeneration tower 20. That is, the heat recovered from the recovered gas C is supplied to the first regeneration unit 22a of the regeneration tower 20 via the second absorption liquid A2. In this embodiment, the second absorbent A2 after heat exchange is directly refluxed to the regeneration tower 20, but the circulation path 50 may be connected so as to be refluxed to the regeneration tower 20 via the steam heater 24. Good.

上記熱回収システムによる熱回収を経た回収ガスCは、冷却水を用いた冷却器42によって充分に冷却し、含まれる水蒸気を可能な限り凝縮した後、気液分離器43によって凝縮水を除去して回収される。回収ガスCの二酸化炭素は、例えば、地中又は油田中に注入することによって、地中での炭酸ガス固定及び再有機化が可能である。圧縮器40による回収ガスCの圧力は、回収二酸化炭素の処理において注入圧等の作業圧として利用するなど、有効活用が可能である。   The recovered gas C that has undergone heat recovery by the heat recovery system is sufficiently cooled by the cooler 42 that uses cooling water, condenses water vapor as much as possible, and then the condensed water is removed by the gas-liquid separator 43. Collected. Carbon dioxide in the recovered gas C can be fixed and reorganized in the ground by, for example, injecting it into the ground or an oil field. The pressure of the recovered gas C by the compressor 40 can be effectively used, for example, as a working pressure such as an injection pressure in the processing of recovered carbon dioxide.

気液分離器43は、加えられた圧力を開放する減圧手段として設けられる減圧弁44を有する水供給路45によって第2還流路29の冷却器36下流側と接続され、気液分離器43において分離された凝縮水は、減圧弁44によって、吸収塔10への導入に適した圧力に減圧調整されて、水供給路45から第2還流路29の第2吸収液A2に添加され、吸収塔10の第2吸収部12b上部に還流される。つまり、凝縮水は、吸収塔10へ供給する第2吸収液A2の組成変動の補整に用いられる。減圧弁44は、例えば圧力調整弁や背圧弁として一般に使用されるものを利用すればよい。   The gas / liquid separator 43 is connected to the downstream side of the cooler 36 of the second reflux path 29 by a water supply path 45 having a pressure reducing valve 44 provided as a pressure reducing means for releasing the applied pressure. The separated condensed water is depressurized and adjusted to a pressure suitable for introduction into the absorption tower 10 by the pressure reducing valve 44 and added to the second absorbent A2 in the second reflux path 29 from the water supply path 45, and the absorption tower. 10 is recirculated to the upper part of the second absorption part 12b. That is, the condensed water is used to compensate for the composition variation of the second absorbent A2 supplied to the absorption tower 10. As the pressure reducing valve 44, for example, what is generally used as a pressure adjusting valve or a back pressure valve may be used.

排気管38には、再生塔20内の圧力を検出するために圧力計46が接続され、検出される圧力値に応じて圧縮器40のモーター40Mの出力を制御することによって、再生塔20内の圧力を一定に維持するように圧縮器40の作動が調整される(図中、破線で表す接続は、電気接続を示す)。モーター40Mの制御において、例えばインバータ等を用いた出力制御を利用すると、エネルギー効率が良い。   A pressure gauge 46 is connected to the exhaust pipe 38 in order to detect the pressure in the regeneration tower 20, and the output of the motor 40M of the compressor 40 is controlled in accordance with the detected pressure value. The operation of the compressor 40 is adjusted so as to maintain a constant pressure (the connection indicated by a broken line in the figure indicates an electrical connection). In the control of the motor 40M, for example, if output control using an inverter or the like is used, energy efficiency is good.

上述の実施形態において、凝縮水の圧力開放及び調整は、減圧弁44の代わりに膨張器を用いて行うように変更することも可能であり、この場合、膨張器と圧縮器40とが同軸ロータで協働駆動するヒートポンプとして構成すると、作動効率が向上する。或いは、エジェクタを利用して流動凝縮水を減圧したり、タービン等を用いて加圧凝縮水の流動圧から動力エネルギーを回収して圧縮器の駆動等に利用するように構成してもエネルギー効率を改善できる。又、上述の実施形態は、複数組の圧縮器及び熱交換器を用いて回収熱量を増加させるように変形することができる。つまり、熱交換器41を経た回収ガスCが、冷却器42に至る前に2組目の圧縮器及び熱交換器を通過するように排気管38上に直列に接続して圧縮及び熱交換を再度繰り返すことによって、2組目の熱交換器での熱交換による分だけ熱回収量が増加する。必要に応じて、3組以上の圧縮器及び熱交換器を設置して多段階の圧縮及び熱交換の組み合わせを適宜繰り返すことができる。このような複数段の熱交換において、循環路50を分岐させて吸収液が並列に熱交換するように構成しても、或いは、吸収液の流れが回収ガスCの流れと対向して直列に熱交換器を通過するように構成してもよい。尚、各熱交換器による熱回収毎に、回収ガスから凝縮水を分離するように気液分離器を配置すると更に好ましい。   In the above-described embodiment, the pressure release and adjustment of the condensed water can be changed by using an expander instead of the pressure reducing valve 44. In this case, the expander and the compressor 40 are coaxial rotors. If it is configured as a heat pump that cooperates to drive, the operating efficiency is improved. Alternatively, it is possible to reduce the flow condensate using an ejector, or to recover the power energy from the flow pressure of the pressurized condensate using a turbine or the like and use it for driving the compressor. Can be improved. Further, the above-described embodiment can be modified to increase the amount of recovered heat using a plurality of sets of compressors and heat exchangers. That is, the recovered gas C that has passed through the heat exchanger 41 is connected in series on the exhaust pipe 38 so as to pass through the second set of compressors and heat exchangers before reaching the cooler 42 for compression and heat exchange. By repeating again, the heat recovery amount is increased by the amount of heat exchange in the second heat exchanger. If necessary, three or more sets of compressors and heat exchangers can be installed, and the combination of multi-stage compression and heat exchange can be repeated as appropriate. In such a multi-stage heat exchange, the circulation path 50 may be branched so that the absorption liquid exchanges heat in parallel, or the flow of the absorption liquid faces the flow of the recovered gas C in series. You may comprise so that it may pass through a heat exchanger. In addition, it is more preferable to arrange a gas-liquid separator so as to separate condensed water from the recovered gas for each heat recovery by each heat exchanger.

再生塔20において、第1再生部22aの底部で加熱された第2吸収液A2の温度をT1とし、第2熱交換器34から第1再生部22a上部へ導入される第2吸収液A2’の温度をT2とすると、T1>T2となる。又、第1再生部22aから放出されるガスによって第2再生部22bで加熱された液溜まりの第1吸収液A1の温度をT3とし、第1熱交換器33から第2再生部22bへ導入される第1吸収液A1’の温度をT4、第1再生部22aから第2再生部22bへ放出されるガスの温度をt1、第2再生部22bから放出されるガスの温度をt2とすると、t1>T3>T4、t1>t2となる。一般的に、再生塔における吸収液は、再生度を高めるために吸収液の沸点近辺に加熱され、熱交換性能が高い熱交換器を用いて熱回収率を高めて温度差(T1−T2)が小さくなると、第1再生部22aから放出されるガスの温度t1も高くなる。このガスがそのまま再生塔20から排出すれば、顕熱分のエネルギーを放出するだけでなく、水蒸気と共に多量の潜熱分のエネルギーも放出することになるが、本発明においては、第1再生部22aから放出されるガスの熱量を第2再生部22bにおいて回収して吸収液の再生に利用し、ガスの温度をt1からt2へ低下させて顕熱の放出量を削減する。温度低下に伴って水蒸気の凝縮も進行するので、第2再生部22bから放出されるガスに含まれる水蒸気及び潜熱も減少する。尚、上述の構成においては、吸収液から気化する水蒸気の凝縮水は、吸収塔10内では第2吸収部12bの第2吸収液A2,A2’へ、再生塔20内では第2再生部22bの第1吸収液A1,A1’に供給されるが、第1再生部22aにおける第2吸収液A2からの気化水量が第2吸収部12bにおいて補われる凝縮水量を超え易い傾向があるので、第2吸収液の濃度上昇を抑制するための希釈水として気液分離器43の凝縮水を利用するように構成することは有用である。尚、同一組成の第1吸収液及び第2吸収液を使用する場合、気化による濃度変動が大きい時に、第1吸収液及び第2吸収液の濃度を均一化するために、第1吸収液の一部を第2吸収液に混合するか、或いは、第2液の一部を第1吸収液に混合してもよい。この場合、吸収液の部分混合に起因するエネルギー損失は、運転条件(吸収液の循環量等)の調整によって低減可能であり、再生後の第1吸収液A1及び吸収後の第2吸収液A2’の二酸化炭素濃度が同程度になるように運転条件を調整して吸収液を混合するとよい。   In the regeneration tower 20, the temperature of the second absorbent A2 heated at the bottom of the first regenerator 22a is T1, and the second absorbent A2 ′ introduced from the second heat exchanger 34 to the top of the first regenerator 22a. If T2 is T2, then T1> T2. Further, the temperature of the first absorbing liquid A1 in the liquid pool heated in the second regeneration unit 22b by the gas released from the first regeneration unit 22a is set to T3, and is introduced from the first heat exchanger 33 to the second regeneration unit 22b. When the temperature of the first absorbing liquid A1 ′ is T4, the temperature of the gas released from the first regeneration unit 22a to the second regeneration unit 22b is t1, and the temperature of the gas released from the second regeneration unit 22b is t2. , T1> T3> T4 and t1> t2. In general, the absorption liquid in the regeneration tower is heated in the vicinity of the boiling point of the absorption liquid in order to increase the degree of regeneration, and the heat difference is increased by using a heat exchanger having a high heat exchange performance to increase the temperature difference (T1-T2). When becomes smaller, the temperature t1 of the gas released from the first regeneration unit 22a also becomes higher. If this gas is discharged from the regeneration tower 20 as it is, not only energy for sensible heat will be released, but also a large amount of energy for latent heat will be released together with water vapor. The amount of heat released from the gas is recovered in the second regeneration unit 22b and used for regeneration of the absorbent, and the temperature of the gas is lowered from t1 to t2 to reduce the amount of sensible heat released. As the temperature decreases, the condensation of the water vapor also proceeds, so that the water vapor and latent heat contained in the gas released from the second regeneration unit 22b also decrease. In the above-described configuration, the condensed water vapor evaporated from the absorption liquid is converted into the second absorption liquids A2 and A2 ′ of the second absorption section 12b in the absorption tower 10 and the second regeneration section 22b in the regeneration tower 20. However, since the amount of vaporized water from the second absorbing liquid A2 in the first regeneration unit 22a tends to exceed the amount of condensed water supplemented in the second absorbing unit 12b, It is useful to use the condensed water of the gas-liquid separator 43 as dilution water for suppressing an increase in the concentration of the two absorbents. In addition, when using the 1st absorption liquid and the 2nd absorption liquid of the same composition, in order to equalize the density | concentration of a 1st absorption liquid and a 2nd absorption liquid when the density | concentration fluctuation | variation by vaporization is large, A part of the second liquid may be mixed with the second absorbent, or a part of the second liquid may be mixed with the first absorbent. In this case, the energy loss caused by the partial mixing of the absorbing liquid can be reduced by adjusting the operating conditions (such as the circulating amount of the absorbing liquid), and the first absorbing liquid A1 after regeneration and the second absorbing liquid A2 after absorption. It is advisable to adjust the operating conditions so that the carbon dioxide concentration of 'is approximately the same and mix the absorbent.

図1の回収装置1の稼動によって実施される回収方法について説明する。   The collection method implemented by the operation of the collection apparatus 1 in FIG. 1 will be described.

吸収塔10において、燃焼排ガスやプロセス排ガスなどの二酸化炭素を含有するガスGを底部から供給し、ポンプ14,16,26,28を駆動して第1及び第2吸収液A1,A2を循環させ(第1及び第2循環工程)、第1及び第2吸収部12a,12bの上部から各々供給されると、充填材11a,11b上でガスGと第1及び第2吸収液A1,A2とが気液接触して、吸収液に二酸化炭素が吸収される吸収処理(第1及び第2吸収工程)が進行する。二酸化炭素は、低温において良好に吸収されるので、概して50℃程度以下、好ましくは40℃以下となるように吸収液A1,A2の液温又は吸収塔10(特に充填材11a,11b)の温度を調整する。吸収液は二酸化炭素の吸収によって発熱するので、これによる液温上昇を考慮し、液温が60℃を超えないように配慮することが望ましい。吸収塔10に供給されるガスGについても、上述を勘案して、必要に応じて冷却塔を用いて予め適正な温度に調整するとよい。第1及び第2吸収液A1,A2として、二酸化炭素に親和性を有する化合物を吸収剤として含有する水性液が用いられる。吸収剤としては、アルカノールアミン類やアルコール性水酸基を有するヒンダードアミン類などが挙げられ、具体的には、アルカノールアミンとして、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N−メチルジエタノールアミン(MDEA)、ジイソプロパノールアミン、ジグリコールアミン等を例示することができ、アルコール性水酸基を有するヒンダードアミンとしては、2−アミノ−2−メチル−1−プロパノール(AMP)、2−(エチルアミノ)エタノール(EAE)、2−(メチルアミノ)エタノール(MAE)等を例示でき、上記のような化合物の複数種を混合使用しても良い。吸収液の吸収剤濃度は、処理対象とするガスに含まれる二酸化炭素量や処理速度、吸収液の流動性や消耗損失抑制等に応じて適宜設定することができ、概して、10〜50質量%程度の濃度で使用され、例えば、二酸化炭素含有量20%程度のガスGの処理について、濃度30質量%程度の吸収液が好適に使用される。   In the absorption tower 10, a gas G containing carbon dioxide such as combustion exhaust gas or process exhaust gas is supplied from the bottom, and the pumps 14, 16, 26, 28 are driven to circulate the first and second absorption liquids A1, A2. (First and second circulation step) When supplied from the upper part of the first and second absorption parts 12a and 12b, respectively, the gas G and the first and second absorption liquids A1 and A2 on the fillers 11a and 11b Is in gas-liquid contact, and an absorption process (first and second absorption steps) in which carbon dioxide is absorbed by the absorption liquid proceeds. Since carbon dioxide is well absorbed at a low temperature, the liquid temperature of the absorbing liquids A1 and A2 or the temperature of the absorption tower 10 (particularly the packing materials 11a and 11b) is generally about 50 ° C. or lower, preferably 40 ° C. or lower. Adjust. Since the absorbing liquid generates heat due to absorption of carbon dioxide, it is desirable to take into consideration the increase in liquid temperature caused by this, so that the liquid temperature does not exceed 60 ° C. The gas G supplied to the absorption tower 10 may be adjusted in advance to an appropriate temperature using a cooling tower as necessary in consideration of the above. As the first and second absorbing liquids A1 and A2, aqueous liquids containing a compound having affinity for carbon dioxide as an absorbent are used. Examples of the absorbent include alkanolamines and hindered amines having an alcoholic hydroxyl group. Specific examples of the alkanolamine include monoethanolamine, diethanolamine, triethanolamine, N-methyldiethanolamine (MDEA), Examples of the hindered amine having an alcoholic hydroxyl group include 2-amino-2-methyl-1-propanol (AMP), 2- (ethylamino) ethanol (EAE), and the like. Examples include 2- (methylamino) ethanol (MAE), and a plurality of the above compounds may be used in combination. The absorbent concentration of the absorbing liquid can be appropriately set according to the amount of carbon dioxide contained in the gas to be processed, the processing speed, the fluidity of the absorbing liquid, the suppression of consumption loss, and the like. For example, for treatment of gas G having a carbon dioxide content of about 20%, an absorbing solution having a concentration of about 30% by mass is preferably used.

本発明においては、第1及び第2吸収液A1,A2として、同じ吸収剤を含んだ同質の吸収液を用ることも、或いは、1)吸収剤濃度の異なる吸収液、2)吸収剤の種類や含有組成割合が異なる吸収液を用いることも可能である。例えば、1)の形態では、再生塔20における加熱温度が相対的に高い第2吸収液A2の吸収剤濃度が第1吸収液より低くなるように設定することによって、第1再生部22a(第1再生工程)での第2吸収液A2の熱変質を抑制して耐熱性を高め、第1吸収液A1は吸収能を高くすることができるので、耐熱性に難のある吸収剤の中から吸収性及び再生性(再生容易性)の良いものを選択して用いることが可能となる。2)の形態では、第1吸収部12a(第1吸収工程)で処理するガスの二酸化炭素濃度が第2吸収部12b(第2吸収工程)より高く、二酸化炭素の吸収が容易な条件であるので、第1吸収液A1については吸収液の再生性を優先し、ガスの二酸化炭素濃度が相対的に低い第2吸収部12bで接触する第2吸収液A2については、吸収性を優先して吸収剤を選択することによって、全体として吸収効率を低下させずに吸収液の再生を容易にして再生に要するエネルギーを削減することができる。再生性の良い吸収液を第1吸収液A1として使用することにより、第2再生部22b(第2再生工程)における低めの温度での再生度が高まり、第1吸収部12aへ還流する吸収液をリーン液に近づけることができる。一般的に使用が好まれるモノエタノールアミン(MEA)は、吸収性が高い吸収剤であり、他方、再生性の良い吸収剤としては、AMPやMDEAが挙げられる。屡々、AMPやMDEAの吸収性を改善する目的でMEAを混合して吸収液が構成されているが、混合割合によって吸収性及び再生性をある程度調整することができるので、本発明においてこの手法を利用して第1及び第2吸収液を調製すると、各吸収液の特性を活かして吸収処理及び再生処理を効率よく実施できる。例えば、第1吸収液A1として、MDEA又はAMPの濃度が相対的に高く再生性の良い吸収液を使用し、第2吸収液A2として、MEAの濃度が相対的に高く吸収性の高い吸収液を使用すると、再生エネルギーを削減する上で好ましい。   In the present invention, it is also possible to use the same absorption liquid containing the same absorbent as the first and second absorbents A1 and A2, or 1) an absorbent having a different absorbent concentration and 2) an absorbent. It is also possible to use absorption liquids with different types and composition ratios. For example, in the form of 1), by setting the absorbent concentration of the second absorbent A2 having a relatively high heating temperature in the regeneration tower 20 to be lower than that of the first absorbent, the first regeneration unit 22a (first The heat absorption of the second absorbent A2 in the first regeneration step) is suppressed to increase the heat resistance, and the first absorbent A1 can increase the absorption capacity. It is possible to select and use one having good absorbability and reproducibility (reproducibility). In the form 2), the carbon dioxide concentration of the gas processed in the first absorption unit 12a (first absorption step) is higher than that of the second absorption unit 12b (second absorption step), and the carbon dioxide is easily absorbed. Therefore, priority is given to the regenerative property of the absorbent for the first absorbent A1, and priority is given to the absorbability for the second absorbent A2 that is in contact with the second absorbent 12b where the carbon dioxide concentration of the gas is relatively low. By selecting the absorbent, it is possible to easily regenerate the absorbing liquid without reducing the absorption efficiency as a whole, and to reduce the energy required for the regeneration. By using an absorbent having a good regenerative property as the first absorbent A1, the degree of regeneration at a lower temperature in the second regeneration unit 22b (second regeneration step) is increased, and the absorbent recirculates to the first absorption unit 12a. Can be brought close to the lean solution. Monoethanolamine (MEA), which is generally preferred for use, is an absorbent having high absorbability, and examples of the absorbent having good regenerative properties include AMP and MDEA. Often, for the purpose of improving the absorption of AMP and MDEA, MEA is mixed to form an absorption liquid. However, the absorption and regeneration can be adjusted to some extent depending on the mixing ratio. If the 1st and 2nd absorption liquid is prepared using, the absorption process and the regeneration process can be efficiently implemented using the characteristic of each absorption liquid. For example, an absorbent solution having a relatively high concentration of MDEA or AMP is used as the first absorbent solution A1, and an absorbent solution having a relatively high MEA concentration and a high absorbability is used as the second absorbent solution A2. Is preferable in terms of reducing the regenerative energy.

ガスGの供給速度及び第1及び第2吸収液の循環速度は、ガスGに含まれる二酸化炭素量、吸収液の二酸化炭素吸収能及び充填材における気液接触効率等を考慮して、吸収が良好に進行するように適宜設定される。各吸収液の循環によって、吸収処理/再生処理が繰り返し実行される。   The supply speed of the gas G and the circulation speed of the first and second absorption liquids are determined in consideration of the amount of carbon dioxide contained in the gas G, the carbon dioxide absorption capacity of the absorption liquid, the gas-liquid contact efficiency in the filler, and the like. It is set as appropriate so as to proceed well. The absorption process / regeneration process is repeatedly executed by circulation of each absorption liquid.

二酸化炭素を吸収した第2吸収液A2’は、第2供給路17から第1再生部22aに供給されるが、この間に、再生塔20から還流する第2吸収液A2との熱交換によって加熱される(第2熱交換工程)。第1再生部22aにおいて外部熱により加熱される第2吸収液A2の温度T1は、使用する吸収液組成や再生条件によって異なるが、概して100〜130℃程度(沸点付近)に設定され、これに基づくと、第2吸収液A2’の第2熱交換器34の出口温度、つまり、第1再生部22aへの導入温度T2は、90〜125℃程度とすることができる。第1再生部22aから第2再生部22bへ放出されるガスの温度t1は、85〜115℃程度となり、又、第1再生部22aから放出されるガスによって第2再生部22bで加熱された第1吸収液A1の温度T3は、85〜115℃程度となる。第1熱交換器33における熱交換(第1熱交換工程)によって、第2再生部22bに導入される第1吸収液A1’の温度T4は、80〜110℃程度とすることができる。第2再生部22bから放出されるガスの温度t2は、100℃以下に低下させることが可能である。   The second absorption liquid A2 ′ that has absorbed carbon dioxide is supplied from the second supply path 17 to the first regeneration unit 22a, and during this time, is heated by heat exchange with the second absorption liquid A2 that is refluxed from the regeneration tower 20. (Second heat exchange step). The temperature T1 of the second absorbent A2 heated by external heat in the first regeneration unit 22a varies depending on the composition of the absorbent used and the regeneration conditions, but is generally set to about 100 to 130 ° C. (near the boiling point). Based on this, the outlet temperature of the second heat exchanger 34 of the second absorbing liquid A2 ′, that is, the introduction temperature T2 to the first regeneration unit 22a can be about 90 to 125 ° C. The temperature t1 of the gas released from the first regeneration unit 22a to the second regeneration unit 22b is about 85 to 115 ° C., and is heated by the second regeneration unit 22b by the gas released from the first regeneration unit 22a. The temperature T3 of the first absorbing liquid A1 is about 85 to 115 ° C. The temperature T4 of the first absorbent A1 'introduced into the second regeneration unit 22b by the heat exchange (first heat exchange step) in the first heat exchanger 33 can be about 80 to 110 ° C. The temperature t2 of the gas released from the second regeneration unit 22b can be lowered to 100 ° C. or lower.

第2再生部22bにおいて第1再生部22aより低い温度において再生を行うことにより、再生塔20上部の温度t2は、投入される第1吸収液A1’の温度T4に近い温度に低下させることができる(t2<t1、T4<T3<t1)。従って、凝縮部37を通過する回収ガスに含まれる吸収剤は減少し、排気管38に設けられる機器や材料の吸収剤による腐食を防止できる。低い温度で吸収液の再生を進行させるには、吸収液の二酸化炭素含有量が高いことが重要であるが、第1吸収部12aにおいて二酸化炭素濃度が高いガスと接触する第1吸収液は、相対的に二酸化炭素含有量が高くなり易いので、第2再生部22bにおいてガスの熱を利用した再生を行う上で都合がよい。   By performing regeneration at a temperature lower than that of the first regeneration unit 22a in the second regeneration unit 22b, the temperature t2 at the top of the regeneration tower 20 can be lowered to a temperature close to the temperature T4 of the first absorbent A1 ′ to be charged. (T2 <t1, T4 <T3 <t1). Therefore, the absorbent contained in the recovered gas passing through the condensing part 37 is reduced, and corrosion of the equipment and materials provided in the exhaust pipe 38 by the absorbent can be prevented. In order to advance the regeneration of the absorbing solution at a low temperature, it is important that the carbon dioxide content of the absorbing solution is high, but the first absorbing solution that contacts the gas having a high carbon dioxide concentration in the first absorbing portion 12a is: Since the carbon dioxide content tends to be relatively high, it is convenient to perform regeneration using the heat of gas in the second regeneration unit 22b.

再生塔20底部に貯留される第2吸収液A2は、部分循環加熱によって沸点付近に加熱され、この時、吸収液の沸点は組成(吸収剤濃度)及び再生塔20内の圧力に依存する。加熱において、吸収液から失われる水の気化潜熱及び吸収液の顕熱の供給が必要であり、加圧によって気化を抑制すると、沸点上昇により顕熱が増加する。従って、これらのバランスを考慮すると、再生塔20内を100kPaG程度に加圧し、吸収液を120〜130℃に加熱する条件設定を適用すると、エネルギー効率上好ましい。尚、圧縮器40の作動は、再生塔20の内圧を下げる作用を有するので、再生塔20内を加圧するには、排気管38からの排気を開閉弁(図示せず)等によって制御して圧力を高めた後に、圧縮器40の作動を制御しながら再生塔20の内圧及び圧縮器40の出口圧力を調整すればよい。   The second absorbent A2 stored at the bottom of the regeneration tower 20 is heated to the vicinity of the boiling point by partial circulation heating. At this time, the boiling point of the absorbent depends on the composition (absorbent concentration) and the pressure in the regeneration tower 20. In heating, it is necessary to supply the latent heat of vaporization of water lost from the absorbing liquid and the sensible heat of the absorbing liquid. When the vaporization is suppressed by pressurization, the sensible heat increases due to the rise in boiling point. Therefore, considering these balances, it is preferable in terms of energy efficiency to apply a condition setting in which the inside of the regeneration tower 20 is pressurized to about 100 kPaG and the absorbent is heated to 120 to 130 ° C. The operation of the compressor 40 has the effect of lowering the internal pressure of the regeneration tower 20. Therefore, in order to pressurize the regeneration tower 20, the exhaust from the exhaust pipe 38 is controlled by an on-off valve (not shown) or the like. After increasing the pressure, the internal pressure of the regeneration tower 20 and the outlet pressure of the compressor 40 may be adjusted while controlling the operation of the compressor 40.

再生塔20において、吸収液から放出される二酸化炭素を含んだ回収ガスCは、圧縮器40によって直ぐに圧縮されて(圧縮行程)、圧力増加によりガス温度が上昇し、熱交換によって熱回収し易くなる。熱交換器41による熱回収工程において、温度低下により回収ガスCに含まれる水蒸気が凝縮して水の凝縮熱も放出する。効率的に熱回収するには、圧縮後の温度が120〜500℃程度、好ましくは、吸収液の沸点より5℃程度高い温度となるように、圧縮器40による圧縮率を調節するとよい。回収ガスCに含まれる水蒸気量によっても異なるが、概して、圧縮工程によって回収ガスCの圧力が0.3〜2.0MPaG程度となるように設定すると好ましい。複数の圧縮器を用いて多段階の圧縮工程を行う場合は、後段になるに従って高圧が必要となるので、例えば、3段階の圧縮を行う場合には、1段目の圧縮工程による圧力は0.3〜1.0MPaG程度、2段目の圧縮行程では0.5〜1.5MPaG程度、3段目の圧縮行程では1.0〜2.0MPaG程度となるように設定するとよい。   In the regeneration tower 20, the recovered gas C containing carbon dioxide released from the absorbing liquid is immediately compressed by the compressor 40 (compression stroke), the gas temperature rises due to an increase in pressure, and it is easy to recover heat by heat exchange. Become. In the heat recovery process by the heat exchanger 41, the water vapor contained in the recovered gas C is condensed due to the temperature decrease, and the heat of condensation of the water is also released. In order to efficiently recover the heat, the compression rate by the compressor 40 may be adjusted so that the temperature after compression is about 120 to 500 ° C., preferably about 5 ° C. higher than the boiling point of the absorbing liquid. Although it depends on the amount of water vapor contained in the recovered gas C, it is generally preferable that the pressure of the recovered gas C is set to about 0.3 to 2.0 MPaG by the compression process. When performing a multi-stage compression process using a plurality of compressors, a higher pressure is required as the latter stage is reached. For example, when performing a three-stage compression, the pressure in the first stage compression process is 0. About 0.3 to 1.0 MPaG, about 0.5 to 1.5 MPaG in the second stage compression stroke, and about 1.0 to 2.0 MPaG in the third stage compression stroke may be set.

圧縮によって発生する圧縮熱及び水の凝縮熱は、熱交換器41における熱交換処理において、再生塔20から循環する一部の吸収液A2を介して回収され、これが再生塔20の第1再生部22aへ還流することで、回収熱は再生塔20の吸収液に供給される。これにより、スチームヒーター24による再生塔20の吸収液A2の加熱に要する熱エネルギーが削減できる。上述の熱回収工程後の回収ガスCから凝縮する凝縮水は、気液分離器43による分離工程を経た後、減圧弁44によって圧力が開放されて、第2還流路29を流れる第2吸収液A2に添加され(水供給工程)、吸収塔10の第2吸収部12bへ還流される。気液分離器43の凝縮水の温度は40〜50℃程度であり、減圧弁44での減圧による気化に伴って更に低下するので、吸収塔10への導入に都合がよく、冷却器36における冷却熱量の削減にも有効である。又、第1再生部22aから第2再生部22bへの水蒸気の移行によって第2吸収液に起こり易い濃縮を補整する濃度調整を行う点でも、第2還流路29への凝縮水の添加は好適である。尚、水供給路45を分岐させて第1還流路27にも接続するように変更すると、気液分離器43の凝縮水の一部を分取して第1還流路27の第1吸収液A1の希釈に利用することができ、吸収液の濃度調整の自由度が高まる。   The heat of compression and the heat of condensation of water generated by the compression are recovered through a part of the absorbing liquid A2 circulated from the regeneration tower 20 in the heat exchange process in the heat exchanger 41, and this is recovered in the first regeneration section of the regeneration tower 20. By recovering to 22a, the recovered heat is supplied to the absorption liquid of the regeneration tower 20. Thereby, the heat energy required for heating the absorption liquid A2 of the regeneration tower 20 by the steam heater 24 can be reduced. The condensed water condensed from the recovered gas C after the heat recovery step is subjected to the separation step by the gas-liquid separator 43, and then the pressure is released by the pressure reducing valve 44 and the second absorption liquid flowing in the second reflux path 29. It is added to A2 (water supply step) and refluxed to the second absorption part 12b of the absorption tower 10. The temperature of the condensed water in the gas-liquid separator 43 is about 40 to 50 ° C., and further decreases with vaporization due to the pressure reduction in the pressure reducing valve 44, which is convenient for introduction into the absorption tower 10 and in the cooler 36. It is also effective in reducing the amount of cooling heat. The addition of condensed water to the second reflux path 29 is also preferable in terms of adjusting the concentration to compensate for the concentration that is likely to occur in the second absorbent due to the transfer of water vapor from the first regeneration unit 22a to the second regeneration unit 22b. It is. If the water supply path 45 is branched and connected to the first reflux path 27, a part of the condensed water in the gas-liquid separator 43 is separated and the first absorption liquid in the first reflux path 27 is separated. This can be used for dilution of A1, and the degree of freedom in adjusting the concentration of the absorbing solution is increased.

図2は、本発明の二酸化炭素の回収方法及びそれを実施する回収装置の第2の実施形態を示す。この回収装置2は、圧縮後の回収ガスCと熱交換する吸収液の流路が第1の実施形態とは異なり、熱回収工程で回収される熱は、吸収塔10から再生塔20へ導入される直前の第2吸収液A2’に供給される。   FIG. 2 shows a second embodiment of the carbon dioxide recovery method of the present invention and a recovery apparatus for carrying out the method. Unlike the first embodiment, the recovery device 2 is different from the first embodiment in the flow path of the absorbing liquid that exchanges heat with the recovered recovery gas C after compression, and the heat recovered in the heat recovery process is introduced from the absorption tower 10 into the regeneration tower 20. Is supplied to the second absorbing liquid A2 ′ immediately before being carried out.

詳細には、第2供給路17の第2熱交換器34下流側から分岐して熱交換器41aを経て第2供給路17に合流する循環路51が設けられ、吸収塔10の第2吸収部12bから送出されて第2熱交換器34を経た後の第2吸収液A2’の一部は、直接再生塔20に供給されずに、循環路51を通って熱交換器41aにおける熱交換処理を経た後に第2供給路17に還流して再生塔20の第1再生部22aへ供給されるように構成されている。熱交換器41aは、排気管38の圧縮された回収ガスCと循環路51の第2吸収液A2’との熱交換を行うように設置される。従って、再生塔20から排出される回収ガスCから回収される熱は、第2吸収液A2’を介して再生塔20の第1再生部22aに供給される。   Specifically, a circulation path 51 that branches from the downstream side of the second heat exchanger 34 of the second supply path 17 and joins the second supply path 17 via the heat exchanger 41 a is provided, and the second absorption of the absorption tower 10. Part of the second absorbing liquid A2 ′ sent from the section 12b and passed through the second heat exchanger 34 is not directly supplied to the regeneration tower 20, but passes through the circulation path 51 to exchange heat in the heat exchanger 41a. After the processing, the refrigerant is refluxed to the second supply path 17 and supplied to the first regeneration unit 22a of the regeneration tower 20. The heat exchanger 41a is installed so as to exchange heat between the compressed recovered gas C in the exhaust pipe 38 and the second absorbent A2 'in the circulation path 51. Accordingly, the heat recovered from the recovered gas C discharged from the regeneration tower 20 is supplied to the first regeneration portion 22a of the regeneration tower 20 via the second absorption liquid A2 '.

図2の回収装置2における熱回収工程では、吸収工程後の第2吸収液A2’の一部を、再生工程に供給する前に回収ガスCと熱交換しており、第2吸収液A2’の第1再生部22aへの導入温度T2を図1の温度より高くすることができ、例えば、95〜130℃程度とすることができる。これに伴って、第1再生部22aから第2再生部22bへ放出されるガスの温度t1、及び、第2再生部22bで加熱された第1吸収液A1の温度T3も高くすることができる。この実施形態は、第2熱交換器34における熱交換を補う必要がある場合に有用であり、逆に、第2熱交換器34の小型化が可能でもある。更にこれを強化する場合には、第2供給路17が循環路51を介して再生塔20に接続されるように変更して、第2供給路17の第2吸収液A2’が全て熱交換器41aを経るように構成することができる。   In the heat recovery process in the recovery device 2 of FIG. 2, a part of the second absorbent A2 ′ after the absorption process is heat-exchanged with the recovered gas C before being supplied to the regeneration process, and the second absorbent A2 ′. The introduction temperature T2 to the first regeneration unit 22a can be made higher than the temperature in FIG. 1, and can be, for example, about 95 to 130 ° C. Along with this, the temperature t1 of the gas released from the first regeneration unit 22a to the second regeneration unit 22b and the temperature T3 of the first absorbing liquid A1 heated by the second regeneration unit 22b can also be increased. . This embodiment is useful when it is necessary to supplement heat exchange in the second heat exchanger 34, and conversely, the second heat exchanger 34 can be downsized. In order to further strengthen this, the second supply path 17 is changed so as to be connected to the regeneration tower 20 via the circulation path 51, and all the second absorbing liquid A2 'in the second supply path 17 is subjected to heat exchange. It can comprise so that it may pass through the container 41a.

図2の実施形態において、上記の点以外は、図1の実施形態と同様に構成されているので、説明は省略する。   In the embodiment of FIG. 2, the configuration other than the above is the same as that of the embodiment of FIG.

図3は、本発明の二酸化炭素の回収方法及びそれを実施する回収装置の第3の実施形態を示す。この回収装置3も、圧縮後の回収ガスCと熱交換する吸収液の流路が第1の実施形態とは異なり、熱回収工程で回収される熱は、吸収塔10から再生塔20の第2再生部22bへ導入される直前の第1吸収液A1’に供給される。   FIG. 3 shows a third embodiment of the carbon dioxide recovery method of the present invention and a recovery apparatus for carrying it out. Unlike the first embodiment, the recovery device 3 is different from the first embodiment in the flow path of the absorbing liquid that exchanges heat with the recovered recovery gas C after compression, and the heat recovered in the heat recovery process is from the absorption tower 10 to the regeneration tower 20. 2 is supplied to the first absorbent A1 ′ just before being introduced into the regenerator 22b.

詳細には、第1供給路15の第1熱交換器下流側から分岐して熱交換器41bを経て第1供給路15に合流する循環路52が設けられ、吸収塔10の第1吸収部12aから送出されて第1熱交換器33を経た後の第1吸収液A1’の一部は、直接再生塔20に供給されずに、循環路52を通って熱交換器41bにおける熱交換処理を経た後に第1供給路15に還流して再生塔20の第2再生部22bへ供給されるように構成されている。熱交換器41bは、排気管38の圧縮された回収ガスCと循環路52の第1吸収液A1’との熱交換を行うように設置される。従って、再生塔20から排出される回収ガスCから回収される熱は、第1吸収液A1’を介して再生塔20の第2再生部22bに供給される。   Specifically, a circulation path 52 that branches from the first heat exchanger downstream of the first supply path 15 and joins the first supply path 15 via the heat exchanger 41b is provided, and the first absorption section of the absorption tower 10 is provided. Part of the first absorbing liquid A1 ′ sent from 12a and passed through the first heat exchanger 33 is not directly supplied to the regeneration tower 20, but passes through the circulation path 52 and is subjected to heat exchange processing in the heat exchanger 41b. Then, the refrigerant is refluxed to the first supply path 15 and supplied to the second regeneration unit 22b of the regeneration tower 20. The heat exchanger 41b is installed so as to exchange heat between the compressed recovered gas C in the exhaust pipe 38 and the first absorbent A1 'in the circulation path 52. Accordingly, the heat recovered from the recovered gas C discharged from the regeneration tower 20 is supplied to the second regeneration portion 22b of the regeneration tower 20 via the first absorption liquid A1 '.

図3の回収装置3における熱回収工程では、吸収工程後の第1吸収液A1’の一部を、再生工程に供給する前に回収ガスCと熱交換しており、第2再生部22bに導入される第1吸収液A1’の温度T4を図1の温度より高くすることができ、例えば、85〜115℃程度とすることができる。これに伴って、第2再生部22b底部の吸収液A1の温度T3、及び、第2再生部22bから放出されるガスの温度t2も高くすることができる。この実施形態は、第1熱交換器33における熱交換を補う必要がある場合に有用であり、逆に、第1熱交換器33の小型化が可能でもある。更にこれを強化する場合には、第1供給路15が循環路52を通じて再生塔20に接続されるように変更して、第1供給路15の第1吸収液A1’が全て熱交換器41bを経るように構成することができる。   In the heat recovery step in the recovery device 3 of FIG. 3, a part of the first absorbent A1 ′ after the absorption step is heat-exchanged with the recovery gas C before being supplied to the regeneration step, and the second regeneration unit 22b The temperature T4 of the first absorbing liquid A1 ′ to be introduced can be made higher than the temperature in FIG. 1, and can be, for example, about 85 to 115 ° C. Accordingly, the temperature T3 of the absorbing liquid A1 at the bottom of the second regeneration unit 22b and the temperature t2 of the gas released from the second regeneration unit 22b can also be increased. This embodiment is useful when it is necessary to supplement heat exchange in the first heat exchanger 33, and conversely, the first heat exchanger 33 can be downsized. In order to further strengthen this, the first supply path 15 is changed so as to be connected to the regeneration tower 20 through the circulation path 52, and all of the first absorbent A1 ′ in the first supply path 15 is heat exchanger 41b. It can be configured to pass through.

図3の実施形態において、上記の点以外は、図1の実施形態と同様に構成されているので、説明は省略する。   In the embodiment of FIG. 3, the configuration other than the above is the same as that of the embodiment of FIG.

図4は、本発明の二酸化炭素の回収方法及びそれを実施する回収装置の第4の実施形態を示す。この回収装置4は、図1〜図3の構成を組みあわせたものであり、熱回収システムは、圧縮後の回収ガスCが、再生塔20底部の第2吸収液A2、第1再生部22aに導入される直前の第2吸収液A2’、及び、第2再生部22bに導入される直前の第1吸収液A1’の全てと順次熱交換するように構成される。   FIG. 4 shows a fourth embodiment of the carbon dioxide recovery method of the present invention and a recovery apparatus for implementing the method. The recovery device 4 is a combination of the configurations shown in FIGS. 1 to 3, and the heat recovery system is configured such that the recovered gas C after compression is converted into the second absorbent A2 at the bottom of the regeneration tower 20 and the first regeneration unit 22a. The second absorption liquid A2 ′ immediately before being introduced into the first absorption liquid and the first absorption liquid A1 ′ immediately before being introduced into the second regeneration unit 22b are sequentially heat-exchanged.

詳細には、再生塔20から回収ガスCを排出する排気管38a上には、回収装置1〜3と同様に、再生塔20と直接連通するように設けられる圧縮器40と、再生塔20底部の第2吸収液A2の一部を分流して再生塔外との間を循環させる循環路50と、圧縮器40によって圧縮された回収ガスCと前記循環路50の第2吸収液A2との間で熱交換を行うように設置される熱交換器41とが設けられ、回収ガスCから凝縮する凝縮水を分離するための気液分離器43も有する。更に、この実施形態では、排気管38aには、熱交換器41と気液分離器43との間に熱交換器41c及び熱交換器41dが設けられ、熱交換器41cは、排気管38aの回収ガスCと第2供給路17の第2吸収液A2’との熱交換を行い、熱交換器41cは、排気管38aの回収ガスCと第1供給路15の第1吸収液A1’との熱交換を行う。再生塔20の第2吸収液A2は、熱交換器41による熱交換後に再生塔20の底部に還流され、第2供給路17の第2吸収液A2’は、熱交換器41cによる熱交換後に第1再生部22aの上部へ投入され、第1供給路15の第1吸収液A1’は熱交換器41dによる熱交換後に第2再生部22bの上部へ投入される。圧縮された回収ガスCから回収される熱は、循環路50の第2吸収液A2、第2供給路17の第2吸収液A2’、及び、第1供給路15の第1吸収液A1’に順次伝達され、これらを介して再生塔20に供給される。熱交換器41,41c、41dでの熱交換において、回収ガスCの温度は段階的に低下し、回収ガスCに含まれる水蒸気が冷却凝縮して凝縮熱を放出するので、これらの熱交換器において圧縮熱と共に水の凝縮熱も回収される。   Specifically, on the exhaust pipe 38a for discharging the recovered gas C from the regeneration tower 20, a compressor 40 provided so as to be in direct communication with the regeneration tower 20 and the bottom of the regeneration tower 20 as in the recovery devices 1 to 3. A part of the second absorption liquid A2 is circulated and circulated between the outside of the regeneration tower, the recovered gas C compressed by the compressor 40, and the second absorption liquid A2 of the circulation path 50. A heat exchanger 41 installed so as to exchange heat between them, and a gas-liquid separator 43 for separating condensed water condensed from the recovered gas C. Further, in this embodiment, the exhaust pipe 38a is provided with a heat exchanger 41c and a heat exchanger 41d between the heat exchanger 41 and the gas-liquid separator 43, and the heat exchanger 41c is connected to the exhaust pipe 38a. Heat exchange is performed between the recovered gas C and the second absorbent A2 ′ in the second supply path 17, and the heat exchanger 41c is connected to the recovered gas C in the exhaust pipe 38a and the first absorbent A1 ′ in the first supply path 15. Heat exchange. The second absorption liquid A2 in the regeneration tower 20 is refluxed to the bottom of the regeneration tower 20 after heat exchange by the heat exchanger 41, and the second absorption liquid A2 ′ in the second supply path 17 is subjected to heat exchange by the heat exchanger 41c. The first absorption liquid A1 ′ in the first supply path 15 is charged into the upper part of the first regeneration unit 22a, and is then introduced into the upper part of the second regeneration unit 22b after heat exchange by the heat exchanger 41d. The heat recovered from the compressed recovery gas C is the second absorption liquid A2 in the circulation path 50, the second absorption liquid A2 ′ in the second supply path 17, and the first absorption liquid A1 ′ in the first supply path 15. Are sequentially transmitted to the regeneration tower 20 via these. In the heat exchange in the heat exchangers 41, 41c, 41d, the temperature of the recovered gas C decreases stepwise, and the water vapor contained in the recovered gas C cools and condenses to release condensation heat, so these heat exchangers In addition to the heat of compression, the heat of condensation of water is also recovered.

この構成では、第2吸収液A2’の第2熱交換器34の出口温度は、90〜125℃程度であり、第1再生部22aへの導入温度T2は、熱交換器41cによって95〜130℃程度とすることができる。第1再生部22aから第2再生部22bへ放出されるガスの温度t1は、90〜120℃程度となり、又、第1再生部22aから放出されるガスによって第2再生部22bで加熱された第1吸収液A1の温度T3は、85〜120℃程度となる。第1熱交換器33における熱交換によって第1吸収液A1’の温度は80〜110℃となり、第2再生部22bに導入される第1吸収液A1’の温度T4は、熱交換器41dによって85〜115℃程度とすることができる。   In this configuration, the outlet temperature of the second heat exchanger 34 of the second absorbing liquid A2 ′ is about 90 to 125 ° C., and the introduction temperature T2 to the first regeneration unit 22a is 95 to 130 by the heat exchanger 41c. It can be set to about ° C. The temperature t1 of the gas released from the first regeneration unit 22a to the second regeneration unit 22b is about 90 to 120 ° C., and is heated by the second regeneration unit 22b by the gas released from the first regeneration unit 22a. The temperature T3 of the first absorbent A1 is about 85 to 120 ° C. Due to heat exchange in the first heat exchanger 33, the temperature of the first absorption liquid A1 ′ becomes 80 to 110 ° C., and the temperature T4 of the first absorption liquid A1 ′ introduced into the second regeneration unit 22b is changed by the heat exchanger 41d. It can be about 85-115 degreeC.

図4において、熱回収システムによる熱回収を経た排気管38aの回収ガスCは、冷却水を用いた冷却器42によって充分に冷却されて、水蒸気を可能な限り凝縮した後、気液分離器43によって凝縮水を除去した後に回収される。気液分離器43は、水供給路45によって第2還流路29の冷却器36下流側と接続され、気液分離器43で分離された凝縮水は、圧力を開放する減圧弁44によって適切な圧力に減圧調整されて、水供給路45から第2還流路29の冷却器36下流側の第2吸収液A2に添加され、吸収塔10の第2吸収部12b上部に還流される。   In FIG. 4, the recovered gas C in the exhaust pipe 38a that has undergone heat recovery by the heat recovery system is sufficiently cooled by the cooler 42 using cooling water to condense water vapor as much as possible, and then the gas-liquid separator 43. The water is recovered after removing the condensed water. The gas-liquid separator 43 is connected to the downstream side of the cooler 36 of the second reflux path 29 by a water supply path 45, and the condensed water separated by the gas-liquid separator 43 is appropriately controlled by a pressure reducing valve 44 that releases the pressure. The pressure is adjusted to a reduced pressure, added from the water supply path 45 to the second absorbent A2 on the downstream side of the cooler 36 of the second reflux path 29, and refluxed to the upper part of the second absorption section 12b of the absorption tower 10.

図4の実施形態においても、図1〜図3の実施形態において可能な応用・変更を同様に施すことが可能である。又、熱交換器41,41c、41dの何れか1つを省略して2つの熱交換器のみで熱回収を行うように変更しても良い。図4の実施形態から2つの熱交換器を省略すると、図1〜図3の実施形態と同様になる。   Also in the embodiment of FIG. 4, it is possible to similarly apply and change possible in the embodiment of FIGS. 1 to 3. Further, any one of the heat exchangers 41, 41c, and 41d may be omitted, and the heat recovery may be performed using only two heat exchangers. If the two heat exchangers are omitted from the embodiment of FIG. 4, the embodiment is the same as the embodiment of FIGS. 1 to 3.

上述のように、第1〜第4の実施形態において、第1及び第2吸収液A1,A2は、互いに独立して吸収塔10と再生塔20との間で循環し、第1再生部22aより低い温度で再生を行う第2再生部22bを用いて2段階の再生工程を行うことによって、再生塔における熱エネルギーの利用効率が向上する。また、第1及び第2吸収液A1,A2のうち、第1吸収液A1を補助吸収液として、第2吸収液A2を主吸収液として捉えることができる。つまり、第1吸収液A1の役割には、再生塔における熱エネルギーの回収再利用と共に、二酸化炭素濃度が高いガスが第2吸収液A2に与える吸収負荷の低減が含まれる。換言すれば、図1〜図4の装置構成は、回収装置の処理適応性を高める上でも有効である。   As described above, in the first to fourth embodiments, the first and second absorption liquids A1 and A2 circulate between the absorption tower 10 and the regeneration tower 20 independently of each other, and the first regeneration section 22a. By performing the two-stage regeneration process using the second regeneration unit 22b that performs regeneration at a lower temperature, the utilization efficiency of heat energy in the regeneration tower is improved. Of the first and second absorption liquids A1 and A2, the first absorption liquid A1 can be regarded as an auxiliary absorption liquid, and the second absorption liquid A2 can be regarded as a main absorption liquid. That is, the role of the first absorption liquid A1 includes the reduction of the absorption load given to the second absorption liquid A2 by the gas having a high carbon dioxide concentration, as well as the recovery and reuse of thermal energy in the regeneration tower. In other words, the apparatus configuration shown in FIGS. 1 to 4 is also effective in improving the process adaptability of the recovery apparatus.

第1〜第4の実施形態において、吸収塔10における第1吸収部12aの充填材11aの充填容積α1と第2吸収部12bの充填材11bの充填容積α2との比α1/α2は、再生塔20における第2再生部22bの充填材21bの充填容積β2と第1再生部22aの充填材21aの充填容積β1の比β2/β1に実質的に等しくなるように設計し、更に、第1吸収液の循環量γ1と第2吸収液の循環量γ2との比γ1/γ2を、上述の比α1/α2及びβ2/β1と実質的に等しくなるようにするとよい。前述したように、第1吸収液A1は補助吸収液として見なすことができ、上記の比α1/α2及びγ1/γ2は、1/10〜9/10程度、好ましくは4/10〜8/10程度になるように設定すると、熱エネルギーを効率的に利用するのに都合がよい。   In the first to fourth embodiments, the ratio α1 / α2 between the filling volume α1 of the filler 11a of the first absorber 12a and the filler volume α2 of the filler 11b of the second absorber 12b in the absorption tower 10 is regenerated. The tower 20 is designed to be substantially equal to the ratio β2 / β1 of the filling volume β2 of the packing material 21b of the second regeneration unit 22b and the packing volume β1 of the packing material 21a of the first regeneration unit 22a. The ratio γ1 / γ2 between the circulating amount γ1 of the absorbing liquid and the circulating amount γ2 of the second absorbing liquid may be substantially equal to the above-described ratios α1 / α2 and β2 / β1. As described above, the first absorption liquid A1 can be regarded as an auxiliary absorption liquid, and the ratios α1 / α2 and γ1 / γ2 are about 1/10 to 9/10, preferably 4/10 to 8/10. Setting it to a degree is convenient for efficiently using heat energy.

図4の実施形態における3つの熱交換器41,41c,41dの熱回収による影響を調べるために、3つの熱交換器41,41c、41dのうちの0〜3個を使用して回収ガスCから熱を回収する場合の再生エネルギー(二酸化炭素の回収に要するエネルギー量)を、プロセスシミュレータを用いた計算によって調べて、基本構造(単式の吸収塔及び再生塔による処理)での再生エネルギー(約2.8GJ/t-CO)に対する割合を求めた。これを百分率で表すと、下記の表1のようになる。尚、この計算においては、第1及び第2熱交換器33,34,及び、熱交換器41,41c,41dの熱交換性能(熱供給流体の入口温度と熱受領流体の出口温度との温度差)ΔTを10°[K]とし、前述の比α1/α2を5/10として、二酸化炭素含有ガスから90%の回収率で二酸化炭素を回収するように処理することを前提とする。 In order to investigate the effect of heat recovery of the three heat exchangers 41, 41c, 41d in the embodiment of FIG. 4, 0 to 3 of the three heat exchangers 41, 41c, 41d are used to collect the recovered gas C. Regeneration energy (energy required for carbon dioxide recovery) when recovering heat from wastewater is examined by calculation using a process simulator, and the regenerative energy in the basic structure (processing by a single absorption tower and regeneration tower) (about The ratio to 2.8 GJ / t-CO 2 ) was determined. This is expressed as a percentage as shown in Table 1 below. In this calculation, the heat exchange performance of the first and second heat exchangers 33, 34 and the heat exchangers 41, 41c, 41d (the temperature between the inlet temperature of the heat supply fluid and the outlet temperature of the heat receiving fluid) Difference) It is assumed that ΔT is set to 10 ° [K], the above-mentioned ratio α1 / α2 is set to 5/10, and processing is performed so as to recover carbon dioxide from the carbon dioxide-containing gas at a recovery rate of 90%.

(表1)
使用熱交換器の符号 再生エネルギーの割合
− 84.6%
41 72.0%
41c 76.8%
41d 80.4%
41+41c 70.5%
41+41d 64.1%
41c+41d 72.1%
41+41c+41d 63.2%
基本構造 100%
(Table 1)
Sign of heat exchanger used Percentage of regenerative energy- 84.6%
41 72.0%
41c 76.8%
41d 80.4%
41 + 41c 70.5%
41 + 41d 64.1%
41c + 41d 72.1%
41 + 41c + 41d 63.2%
Basic structure 100%

表1から解るように、熱回収に使用する熱交換器を増加して熱の回収及び供給を繰り返すことによって再生エネルギーの低減効果が高まる。3つの熱交換器41,41c、41dの比較においては、熱交換器41を使用して再生塔20底部の第2吸収液A2に回収熱を供給するのが、再生エネルギーの低減に最も有効である。つまり、温度が高い部分へ回収熱を供給する方が有利である。   As can be seen from Table 1, the effect of reducing the regenerative energy is increased by increasing the number of heat exchangers used for heat recovery and repeating heat recovery and supply. In the comparison of the three heat exchangers 41, 41c, 41d, it is most effective to reduce the regeneration energy by supplying the recovered heat to the second absorbent A2 at the bottom of the regeneration tower 20 using the heat exchanger 41. is there. In other words, it is more advantageous to supply the recovered heat to the part where the temperature is high.

但し、2つの熱交換器を使用する場合において、熱交換器41,41dを用いる形態の方が、熱交換器41,41cを使用する形態よりも再生エネルギーが少ない。この理由の1つとして、熱交換器41cにおける回収ガスCの入口温度と第2吸収液A2’の入口温度との差が小さいために熱交換性能が満足に発揮されないことが考えられる。熱交換器41dを使用した場合には、回収ガスCと第1吸収液A1’との入口温度の差において、熱交換性能が好適に発揮されるので、排気管38aへ放出される水蒸気量及び潜熱が増加しても熱は再度回収され、結果的に熱交換器41cを使用する場合より効率が良くなる。この優劣関係は、熱交換性能がより高い熱交換器の使用によって変化する。或いは、排気管38a上において熱交換器41の下流側に追加の圧縮器を設けても変わり、追加の圧縮器による圧縮熱によって熱交換器41cでも熱交換性能が充分に発揮されて第1再生部22aへ供給される回収熱が増加し、再生エネルギーが減少する。上述から、図4の構成において、熱交換器41と熱交換器41cとの間、及び、熱交換器41cと熱交換器41dとの間に各々追加の圧縮器を設けて回収ガスCの温度を上昇させるように変更することによって、熱交換器41c及び熱交換器41dでの熱回収効率が高まり、再生エネルギーを最も低減可能な形態となる。   However, when two heat exchangers are used, the form using the heat exchangers 41 and 41d has less regeneration energy than the form using the heat exchangers 41 and 41c. One reason for this is that the heat exchange performance cannot be satisfactorily exhibited because the difference between the inlet temperature of the recovered gas C and the inlet temperature of the second absorbent A2 'in the heat exchanger 41c is small. When the heat exchanger 41d is used, the heat exchange performance is suitably exhibited in the difference in inlet temperature between the recovered gas C and the first absorption liquid A1 ′, so that the amount of water vapor released to the exhaust pipe 38a and Even if the latent heat increases, the heat is recovered again, and as a result, the efficiency becomes better than when the heat exchanger 41c is used. This superiority or inferiority relationship changes depending on the use of a heat exchanger with higher heat exchange performance. Alternatively, even if an additional compressor is provided on the exhaust pipe 38a on the downstream side of the heat exchanger 41, the heat regeneration performance is sufficiently exhibited in the heat exchanger 41c by the compression heat of the additional compressor, and the first regeneration is performed. The recovered heat supplied to the section 22a increases and the regeneration energy decreases. From the above, in the configuration of FIG. 4, additional compressors are provided between the heat exchanger 41 and the heat exchanger 41c, and between the heat exchanger 41c and the heat exchanger 41d, respectively, and the temperature of the recovered gas C. By changing so as to increase the heat recovery efficiency of the heat exchanger 41c and the heat exchanger 41d, the regeneration energy can be reduced most.

回収ガスCから分離回収される凝縮水は、変動する吸収液の組成を補整するために使用することができ、必要に応じて、気液分離器43の凝縮水の一部を分岐させて第2吸収液に添加するように変更しても良い。このような変更は、再生塔20内の吸収液の組成変動の程度や回収凝縮水の量及び液温を考慮して適宜選択すればよい。吸収剤の消耗・漏洩等によって吸収剤の追加が必要な場合には、吸収塔へ導入する前の吸収液に凝縮水と共に添加して組成を調整することができる。   The condensed water separated and recovered from the recovered gas C can be used to correct the composition of the fluctuating absorption liquid. If necessary, a part of the condensed water in the gas-liquid separator 43 may be branched to change the condensed water. You may change so that it may add to 2 absorption liquid. Such a change may be appropriately selected in consideration of the degree of composition variation of the absorbing liquid in the regeneration tower 20, the amount of recovered condensed water, and the liquid temperature. When addition of an absorbent is necessary due to consumption or leakage of the absorbent, the composition can be adjusted by adding it to the absorbent before introduction into the absorption tower together with condensed water.

本発明は、火力発電所や製鉄所、ボイラーなどの設備から排出される二酸化炭素含有ガスの処理等に利用して、その二酸化炭素放出量や、環境に与える影響などの軽減に有用である。二酸化炭素の回収処理に要する熱エネルギーの低減が可能であり、操業費用の削減、省エネルギー及び環境保護に貢献可能な二酸化炭素の回収装置を提供できる。   INDUSTRIAL APPLICABILITY The present invention is useful for reducing the amount of carbon dioxide released and its influence on the environment by using it for the treatment of carbon dioxide-containing gas discharged from facilities such as thermal power plants, ironworks, and boilers. It is possible to reduce the thermal energy required for the carbon dioxide recovery process, and to provide a carbon dioxide recovery device that can contribute to a reduction in operating costs, energy saving, and environmental protection.

1,2,3,4 回収装置、 10 吸収塔、 20 再生塔、
11,11a,11b,21,21a,21b,21c 充填材、
12a 第1吸収部、 12b 第2吸収部、 13,23 区画部材、
14,16,26,28,32 ポンプ、
15 第1供給路、 17 第2供給路、 18 冷却凝縮部、
22a 第1再生部、 22b 第2再生部、
24 スチームヒーター、 25,50,51,52 循環路、
27 第1還流路、 29 第2還流路、
31,35,36,42 冷却器、
33 第1熱交換器、 34 第2熱交換器、
37 凝縮部、 38,38a 排気管、
40 圧縮器、 40M モーター、
41,41a,41b,41c,41d 熱交換器、
43 気液分離器、 44 減圧弁、
45 水供給路、 46 圧力計、
G,G’ ガス、 C 回収ガス、
A1,A1’ 第1吸収液、 A2,A2’ 第2吸収液。
1, 2, 3, 4 recovery device, 10 absorption tower, 20 regeneration tower,
11, 11a, 11b, 21, 21a, 21b, 21c filler,
12a 1st absorption part, 12b 2nd absorption part, 13, 23 Partition member,
14, 16, 26, 28, 32 pumps,
15 1st supply path, 17 2nd supply path, 18 cooling condensation part,
22a first reproduction unit, 22b second reproduction unit,
24 steam heater, 25, 50, 51, 52 circuit,
27 1st reflux path, 29 2nd reflux path,
31, 35, 36, 42 cooler,
33 1st heat exchanger, 34 2nd heat exchanger,
37 Condensing section, 38, 38a Exhaust pipe,
40 compressor, 40M motor,
41, 41a, 41b, 41c, 41d heat exchangers,
43 gas-liquid separator, 44 pressure reducing valve,
45 water supply path, 46 pressure gauge,
G, G 'gas, C recovered gas,
A1, A1 ′ first absorbing solution, A2, A2 ′ second absorbing solution.

Claims (20)

ガスを吸収液に接触させて前記ガスに含まれる二酸化炭素を前記吸収液に吸収させる吸収塔であって、第1吸収部及び第2吸収部を有し、前記ガスは前記第1吸収部を経て前記第2吸収部に供給されるように配設される前記吸収塔と、
前記吸収塔で二酸化炭素を吸収した前記吸収液を加熱し二酸化炭素を放出させて前記吸収液を再生する再生塔であって、第1再生部及び第2再生部を有し、前記第1再生部は外部加熱手段を有し、前記第2再生部は前記第1再生部から放出されるガスの熱によって加熱されるように配設される前記再生塔と、
前記第1吸収部と前記第2再生部との間で前記吸収液を循環させる第1循環系と、前記第2吸収部と前記第1再生部との間で前記吸収液を循環させる第2循環系とを有する循環システムと、
前記再生塔から排出される水蒸気及び二酸化炭素を含んだ回収ガスをそのまま圧縮する圧縮器と、
前記圧縮器によって圧縮された前記回収ガスの熱を回収して前記再生塔へ供給する熱回収システムと
を有する二酸化炭素の回収装置。
An absorption tower in which a gas is brought into contact with an absorption liquid and carbon dioxide contained in the gas is absorbed by the absorption liquid, the absorption tower having a first absorption section and a second absorption section, and the gas includes the first absorption section. The absorption tower disposed so as to be supplied to the second absorption part via,
A regeneration tower that regenerates the absorption liquid by heating the absorption liquid that has absorbed carbon dioxide in the absorption tower to release carbon dioxide, the first regeneration section having a first regeneration section and a second regeneration section. Part has an external heating means, and the second regeneration unit is arranged to be heated by the heat of the gas released from the first regeneration unit, and
A first circulation system for circulating the absorption liquid between the first absorption section and the second regeneration section; and a second circulation system for circulating the absorption liquid between the second absorption section and the first regeneration section. A circulation system having a circulation system;
A compressor that directly compresses the recovered gas containing water vapor and carbon dioxide discharged from the regeneration tower;
And a heat recovery system that recovers heat of the recovered gas compressed by the compressor and supplies the recovered gas to the regeneration tower.
更に、前記熱回収システムによって熱を回収した回収ガスから凝縮する水を分離する気液分離器と、
前記第2循環系において前記第1再生部から前記第2吸収部へ還流する吸収液に、前記気液分離器において分離した水を供給する水供給路とを有し、
前記第1循環系及び前記第2循環系は、互いに独立して個別に前記吸収液を循環させ、前記第2再生部は外部加熱手段を有しない請求項1に記載の二酸化炭素の回収装置。
Furthermore, a gas-liquid separator that separates water condensed from the recovered gas from which heat has been recovered by the heat recovery system;
A water supply path for supplying water separated in the gas-liquid separator to an absorption liquid that is refluxed from the first regeneration section to the second absorption section in the second circulation system;
2. The carbon dioxide recovery apparatus according to claim 1, wherein the first circulation system and the second circulation system circulate the absorption liquid independently of each other, and the second regeneration unit does not have an external heating unit.
前記循環システムは、第1熱交換器及び第2熱交換器を有し、前記第1熱交換器は、前記第1循環系において、前記第1吸収部から前記第2再生部へ供給される吸収液と、前記第2再生部から前記第1吸収部へ還流される吸収液との間で熱交換を行い、前記第2熱交換器は、前記第2循環系において、前記第2吸収部から前記第1再生部へ供給される吸収液と、前記第1再生部から前記第2吸収部へ還流される吸収液との間で熱交換を行うように各々付設される請求項1又は2に記載の二酸化炭素の回収装置。   The circulation system includes a first heat exchanger and a second heat exchanger, and the first heat exchanger is supplied from the first absorption unit to the second regeneration unit in the first circulation system. Heat exchange is performed between the absorption liquid and the absorption liquid recirculated from the second regeneration section to the first absorption section, and the second heat exchanger is configured such that in the second circulation system, the second absorption section A heat exchanger exchanges the absorption liquid supplied to the first regeneration section with the absorption liquid refluxed from the first regeneration section to the second absorption section, respectively. The carbon dioxide recovery device described in 1. 前記熱回収システムは、
前記第2循環系における前記第2熱交換器と前記第1再生部との間の吸収液と、前記圧縮器によって圧縮した回収ガスとの熱交換を行う熱交換器を有し、これにより、回収ガスの熱が前記第2循環系の吸収液を介して前記第1再生部へ供給される請求項3に記載の二酸化炭素の回収装置。
The heat recovery system includes:
A heat exchanger that performs heat exchange between the absorption liquid between the second heat exchanger and the first regeneration unit in the second circulation system and the recovered gas compressed by the compressor, The carbon dioxide recovery apparatus according to claim 3, wherein heat of the recovery gas is supplied to the first regeneration unit via the absorption liquid of the second circulation system.
前記熱回収システムは、
前記第1循環系における前記第1熱交換器と前記第2再生部との間の吸収液と、前記圧縮器によって圧縮した回収ガスとの熱交換を行う熱交換器を有し、これにより、回収ガスの熱が前記第1循環系の吸収液を介して前記第2再生部へ供給される請求項3又は4に記載の二酸化炭素の回収装置。
The heat recovery system includes:
A heat exchanger that performs heat exchange between the absorption liquid between the first heat exchanger and the second regeneration unit in the first circulation system and the recovered gas compressed by the compressor, The carbon dioxide recovery apparatus according to claim 3 or 4, wherein heat of the recovery gas is supplied to the second regeneration unit via the absorption liquid of the first circulation system.
前記熱回収システムは、
前記第1再生部の吸収液を再生塔外との間で循環させる循環路と、
前記循環路の吸収液と、前記圧縮器によって圧縮した回収ガスとの熱交換を行う熱交換器とを有し、これにより、回収ガスの熱が前記循環路の吸収液を介して前記第1再生部へ供給される請求項1〜5の何れか1項に記載の二酸化炭素の回収装置。
The heat recovery system includes:
A circulation path for circulating the absorption liquid of the first regeneration section between the outside of the regeneration tower;
A heat exchanger for exchanging heat between the absorption liquid in the circulation path and the recovered gas compressed by the compressor, whereby heat of the recovery gas flows through the absorption liquid in the circulation path to the first The carbon dioxide recovery apparatus according to any one of claims 1 to 5, which is supplied to the regeneration unit.
前記第1循環系の循環において前記第2再生部へ供給される吸収液の温度は、前記第2循環系の循環において前記第1再生部へ供給される吸収液の温度より低く構成される請求項1〜6の何れかに記載の二酸化炭素の回収装置。   The temperature of the absorption liquid supplied to the second regeneration unit in the circulation of the first circulation system is configured to be lower than the temperature of the absorption liquid supplied to the first regeneration unit in the circulation of the second circulation system. Item 7. The carbon dioxide recovery device according to any one of Items 1 to 6. 前記第1循環系及び前記第2循環系は、各々、互いに組成が異なる第1吸収液及び第2吸収液を循環させる請求項1〜7の何れか1項に記載の二酸化炭素の回収装置。   The carbon dioxide recovery apparatus according to any one of claims 1 to 7, wherein the first circulation system and the second circulation system circulate a first absorbent and a second absorbent having different compositions from each other. 前記第1循環系を循環する前記第1吸収液は、前記第2循環系を循環する前記第2吸収液より吸収剤濃度が高い請求項8に記載の二酸化炭素の回収装置。   The carbon dioxide recovery apparatus according to claim 8, wherein the first absorbent that circulates in the first circulation system has a higher absorbent concentration than the second absorbent that circulates in the second circulation system. 前記第1循環系を循環する前記第1吸収液は、前記第2循環系を循環する前記第2吸収液が含有する吸収剤より再生性が高い吸収剤を含有し、前記第2吸収液は、前記第1吸収液が含有する吸収剤より二酸化炭素の吸収能が高い吸収剤を含有する請求項8又は9に記載の二酸化炭素の回収装置。   The first absorbent that circulates in the first circulation system contains an absorbent that is more regenerative than the absorbent that the second absorbent that circulates in the second circulation system, and the second absorbent is The carbon dioxide recovery device according to claim 8 or 9, further comprising an absorbent having higher carbon dioxide absorption capacity than the absorbent contained in the first absorbent. ガスを吸収液に接触させて前記ガスに含まれる二酸化炭素を前記吸収液に吸収させる吸収処理であって、第1吸収工程及び第2吸収工程を有し、ガスは前記第1吸収工程を経て前記第2吸収工程に供給される前記吸収処理と、
前記吸収処理で二酸化炭素を吸収した前記吸収液を加熱し二酸化炭素を放出させて前記吸収液を再生する再生処理であって、第1再生工程及び第2再生工程を有し、前記第1再生工程では外部加熱手段を利用して加熱し、前記第2再生工程では前記第1再生工程において放出されるガスの熱によって加熱する前記再生処理と、
前記第1吸収工程と前記第2再生工程との間で前記吸収液を循環させる第1循環工程と、
前記第2吸収工程と前記第1再生工程との間で前記吸収液を循環させる第2循環工程と、
前記再生処理から排出される水蒸気及び二酸化炭素を含んだ回収ガスをそのまま圧縮する圧縮工程と、
前記圧縮工程によって圧縮された回収ガスの熱を回収して前記再生処理へ供給する熱回収工程と
を有する二酸化炭素の回収方法。
An absorption process in which a gas is brought into contact with an absorption liquid and carbon dioxide contained in the gas is absorbed by the absorption liquid, the first absorption process and the second absorption process, and the gas passes through the first absorption process. The absorption treatment supplied to the second absorption step;
A regeneration process for heating the absorption liquid that has absorbed carbon dioxide in the absorption process to release carbon dioxide to regenerate the absorption liquid, and includes a first regeneration process and a second regeneration process, and the first regeneration process. In the process, heating is performed using an external heating means, and in the second regeneration process, the regeneration process is performed by heat of the gas released in the first regeneration process;
A first circulation step for circulating the absorbent between the first absorption step and the second regeneration step;
A second circulation step for circulating the absorbent between the second absorption step and the first regeneration step;
A compression step of directly compressing the recovered gas containing water vapor and carbon dioxide discharged from the regeneration process;
And a heat recovery step of recovering heat of the recovered gas compressed in the compression step and supplying the recovered gas to the regeneration process.
更に、前記熱回収工程の後の回収ガスから凝縮する水を分離する分離工程と、
前記第2循環工程において前記第1再生工程から前記第2吸収工程へ循環する吸収液に、前記分離工程において分離した水を供給する水供給工程とを有し、
前記第1循環工程及び前記第2循環工程は、互いに独立して個別に吸収液を循環させる請求項11に記載の二酸化炭素の回収方法。
A separation step of separating water condensed from the recovered gas after the heat recovery step;
A water supply step of supplying water separated in the separation step to an absorption liquid circulated from the first regeneration step to the second absorption step in the second circulation step;
The carbon dioxide recovery method according to claim 11, wherein the first circulation step and the second circulation step circulate the absorbing solution independently of each other.
前記第1循環工程は、前記第1吸収工程から前記第2再生工程へ供給される吸収液と前記第2再生工程から前記第1吸収工程へ還流される吸収液との間で熱交換を行う第1熱交換工程を有し、前記第2循環工程は、前記第2吸収工程から前記第1再生工程へ供給される吸収液と前記第1再生工程から前記第2吸収工程へ還流される吸収液との間で熱交換を行う第2熱交換工程を有する請求項11又は12に記載の二酸化炭素の回収方法。   In the first circulation step, heat exchange is performed between the absorption liquid supplied from the first absorption process to the second regeneration process and the absorption liquid refluxed from the second regeneration process to the first absorption process. An absorption liquid supplied from the second absorption process to the first regeneration process and an absorption refluxed from the first regeneration process to the second absorption process; The method for recovering carbon dioxide according to claim 11 or 12, further comprising a second heat exchange step for exchanging heat with the liquid. 前記熱回収工程は、
前記第2循環工程において前記第2熱交換工程を経て前記第1再生工程へ供給される前の吸収液と、前記圧縮工程によって圧縮した回収ガスとの熱交換を行う熱交換処理を有し、これにより、回収ガスの熱が前記第2循環工程の吸収液を介して前記第1再生工程へ供給される請求項13に記載の二酸化炭素の回収方法。
The heat recovery step includes
In the second circulation step, there is a heat exchange process for performing heat exchange between the absorption liquid before being supplied to the first regeneration step through the second heat exchange step and the recovered gas compressed in the compression step, Accordingly, the carbon dioxide recovery method according to claim 13, wherein the heat of the recovered gas is supplied to the first regeneration step via the absorption liquid of the second circulation step.
前記熱回収工程は、
前記第1循環工程において前記第1熱交換工程を経て前記第2再生工程へ供給される前の吸収液と、前記圧縮工程によって圧縮した回収ガスとの熱交換を行う熱交換処理を有し、これにより、回収ガスの熱が前記第1循環工程の吸収液を介して前記第2再生工程へ供給される請求項13又は14に記載の二酸化炭素の回収方法。
The heat recovery step includes
A heat exchange process for performing heat exchange between the absorption liquid before being supplied to the second regeneration step through the first heat exchange step in the first circulation step and the recovered gas compressed by the compression step; Accordingly, the method for recovering carbon dioxide according to claim 13 or 14, wherein the heat of the recovered gas is supplied to the second regeneration step via the absorbing liquid in the first circulation step.
前記熱回収工程は、
前記第1再生工程における吸収液と、前記圧縮工程によって圧縮した回収ガスとの熱交換を行う熱交換処理を有し、これにより、回収ガスの熱が前記第1再生工程へ供給される請求項11〜15の何れか1項に記載の二酸化炭素の回収方法。
The heat recovery step includes
A heat exchange process for performing heat exchange between the absorbing liquid in the first regeneration step and the recovered gas compressed in the compression step, whereby heat of the recovered gas is supplied to the first regeneration step. The method for recovering carbon dioxide according to any one of 11 to 15.
前記第1循環工程の循環において前記第2再生工程へ供給される吸収液の温度は、前記第2循環工程の循環において前記第1再生工程へ供給される吸収液の温度より低い請求項11〜16の何れか1項に記載の二酸化炭素の回収方法。   The temperature of the absorption liquid supplied to the second regeneration process in the circulation of the first circulation process is lower than the temperature of the absorption liquid supplied to the first regeneration process in the circulation of the second circulation process. The carbon dioxide recovery method according to any one of 16. 前記第1循環工程及び前記第2循環工程において、各々、互いに組成が異なる第1吸収液及び第2吸収液を循環させる請求項11〜17の何れか1項に記載の二酸化炭素の回収方法。   The method for recovering carbon dioxide according to any one of claims 11 to 17, wherein in the first circulation step and the second circulation step, a first absorbent and a second absorbent having different compositions are circulated. 前記第1循環工程において循環する前記第1吸収液は、前記第2循環工程において循環する前記第2吸収液より吸収剤濃度が高い請求項18に記載の二酸化炭素の回収方法。   The method for recovering carbon dioxide according to claim 18, wherein the first absorbent that circulates in the first circulation step has a higher absorbent concentration than the second absorbent that circulates in the second circulation step. 前記第1循環工程において循環する前記第1吸収液は、前記第2循環工程において循環する前記第2吸収液が含有する吸収剤より再生性が高い吸収剤を含有し、前記第2吸収液は、前記第1吸収液が含有する吸収剤より二酸化炭素の吸収能が高い吸収剤を含有する請求項18又は19に記載の二酸化炭素の回収方法。   The first absorbent that circulates in the first circulation step contains an absorbent that is more regenerative than the absorbent contained in the second absorbent that circulates in the second circulation step, and the second absorbent is The method for recovering carbon dioxide according to claim 18 or 19, comprising an absorbent having higher carbon dioxide absorption capacity than the absorbent contained in the first absorbent.
JP2013093386A 2013-04-26 2013-04-26 Carbon dioxide recovery method and recovery apparatus Active JP6064770B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013093386A JP6064770B2 (en) 2013-04-26 2013-04-26 Carbon dioxide recovery method and recovery apparatus
PCT/JP2014/061441 WO2014175337A1 (en) 2013-04-26 2014-04-23 Device for recovering and method for recovering carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013093386A JP6064770B2 (en) 2013-04-26 2013-04-26 Carbon dioxide recovery method and recovery apparatus

Publications (2)

Publication Number Publication Date
JP2014213275A true JP2014213275A (en) 2014-11-17
JP6064770B2 JP6064770B2 (en) 2017-01-25

Family

ID=51791906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013093386A Active JP6064770B2 (en) 2013-04-26 2013-04-26 Carbon dioxide recovery method and recovery apparatus

Country Status (2)

Country Link
JP (1) JP6064770B2 (en)
WO (1) WO2014175337A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016209049A1 (en) * 2015-06-24 2016-12-29 고려대학교 산학협력단 Carbon dioxide conversion reactor, serial reactor for carbon dioxide conversion and capture comprising same, and carbon dioxide conversion and capture process using same
ITUB20154126A1 (en) * 2015-10-06 2017-04-06 Giammarco Vetrocoke S R L PROCESS OF PERFECTED REMOVAL OF GASES FROM GASOUS MIXTURES THAT CONTAIN THEM THROUGH THE USE OF WASHING SOLUTIONS WORKING WITH A CHEMICAL-PHYSICAL ABSORPTION AND REGENERATION CYCLE AND PLANT TO IMPLEMENT THE PROCEDURE
JP2018134604A (en) * 2017-02-23 2018-08-30 川崎重工業株式会社 Carbon dioxide separation recovery system
CN108786380A (en) * 2017-05-01 2018-11-13 株式会社神户制钢所 Gas processing method and gas treatment equipment
KR20190030035A (en) * 2017-09-13 2019-03-21 한국전력기술 주식회사 Apparatus for capturing carbon dioxide using heat of compression
JP2021124074A (en) * 2020-02-06 2021-08-30 株式会社東芝 Power generation method and power generation system
EP3897924A4 (en) * 2018-12-20 2023-01-04 Entegris, Inc. Active wet scrubbing filtration system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106881010A (en) * 2017-04-18 2017-06-23 长沙紫宸科技开发有限公司 A kind of double-tower type circularly trapping device for being adapted to continuous collecting carbon dioxide from fuel gas
EP3932522B1 (en) 2020-06-29 2023-10-11 L'air Liquide, Société Anonyme Pour L'Étude Et L'exploitation Des Procédés Georges Claude Process and plant for removing interfering components from crude synthesis gas
EP3932521B1 (en) * 2020-06-29 2023-09-27 L'air Liquide, Société Anonyme Pour L'Étude Et L'exploitation Des Procédés Georges Claude Process for purifying a crude gas stream containing sulphur components and hydrocarbons

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123479A (en) * 1974-05-28 1976-02-25 Jianmaruko Jiuzetsupe
JP2011213494A (en) * 2010-03-31 2011-10-27 Nippon Steel Engineering Co Ltd Carbon dioxide gas recovery apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123479A (en) * 1974-05-28 1976-02-25 Jianmaruko Jiuzetsupe
JP2011213494A (en) * 2010-03-31 2011-10-27 Nippon Steel Engineering Co Ltd Carbon dioxide gas recovery apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016209049A1 (en) * 2015-06-24 2016-12-29 고려대학교 산학협력단 Carbon dioxide conversion reactor, serial reactor for carbon dioxide conversion and capture comprising same, and carbon dioxide conversion and capture process using same
US10981111B2 (en) 2015-06-24 2021-04-20 Korea University Research And Business Foundation Carbon dioxide conversion reactor, series reactor for converting and capturing carbon dioxide including the same, and process of converting and capturing carbon dioxide using the same
ITUB20154126A1 (en) * 2015-10-06 2017-04-06 Giammarco Vetrocoke S R L PROCESS OF PERFECTED REMOVAL OF GASES FROM GASOUS MIXTURES THAT CONTAIN THEM THROUGH THE USE OF WASHING SOLUTIONS WORKING WITH A CHEMICAL-PHYSICAL ABSORPTION AND REGENERATION CYCLE AND PLANT TO IMPLEMENT THE PROCEDURE
WO2017060796A1 (en) * 2015-10-06 2017-04-13 Giammarco-Vetrocoke S.R.L. Hybrid process and plant for the selective absorption of gases from a gas mixture
RU2717533C2 (en) * 2015-10-06 2020-03-23 Гиаммарко-Ветрококе С.Р.Л. Hybrid method and apparatus for selectively absorbing gases from gas mixture
JP2018134604A (en) * 2017-02-23 2018-08-30 川崎重工業株式会社 Carbon dioxide separation recovery system
CN108786380A (en) * 2017-05-01 2018-11-13 株式会社神户制钢所 Gas processing method and gas treatment equipment
KR20190030035A (en) * 2017-09-13 2019-03-21 한국전력기술 주식회사 Apparatus for capturing carbon dioxide using heat of compression
KR101961436B1 (en) * 2017-09-13 2019-03-22 한국전력기술 주식회사 Apparatus for capturing carbon dioxide using heat of compression
EP3897924A4 (en) * 2018-12-20 2023-01-04 Entegris, Inc. Active wet scrubbing filtration system
JP2021124074A (en) * 2020-02-06 2021-08-30 株式会社東芝 Power generation method and power generation system

Also Published As

Publication number Publication date
WO2014175337A1 (en) 2014-10-30
JP6064770B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP6064770B2 (en) Carbon dioxide recovery method and recovery apparatus
JP6064771B2 (en) Carbon dioxide recovery method and recovery apparatus
JP5655593B2 (en) Carbon dioxide recovery method and recovery apparatus
JP5966565B2 (en) Carbon dioxide recovery method and recovery apparatus
JP5402842B2 (en) Carbon dioxide recovery method and recovery apparatus
JP5821531B2 (en) Carbon dioxide recovery method and recovery apparatus
AU2013201091B2 (en) Carbon dioxide recovery apparatus and carbon dioxide recovery method
JP5741690B2 (en) Carbon dioxide recovery method and recovery apparatus
JP2012000539A (en) Method and apparatus for recovering carbon dioxide
JP5707894B2 (en) Carbon dioxide recovery method and recovery apparatus
KR101146557B1 (en) Co? collecting apparatus
WO2012073553A1 (en) Co2 recovery system
JP6225572B2 (en) Carbon dioxide recovery method and recovery apparatus
JP5720463B2 (en) Carbon dioxide recovery method and recovery apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161205

R151 Written notification of patent or utility model registration

Ref document number: 6064770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250