JP2014212331A - Vertical heat treatment device - Google Patents

Vertical heat treatment device Download PDF

Info

Publication number
JP2014212331A
JP2014212331A JP2014122723A JP2014122723A JP2014212331A JP 2014212331 A JP2014212331 A JP 2014212331A JP 2014122723 A JP2014122723 A JP 2014122723A JP 2014122723 A JP2014122723 A JP 2014122723A JP 2014212331 A JP2014212331 A JP 2014212331A
Authority
JP
Japan
Prior art keywords
holding plate
substrate
wafer
reaction tube
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014122723A
Other languages
Japanese (ja)
Other versions
JP5895974B2 (en
JP2014212331A5 (en
Inventor
両角 友一朗
Yuichiro Morozumi
友一朗 両角
泉 佐藤
Izumi Sato
泉 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2014122723A priority Critical patent/JP5895974B2/en
Publication of JP2014212331A publication Critical patent/JP2014212331A/en
Publication of JP2014212331A5 publication Critical patent/JP2014212331A5/ja
Application granted granted Critical
Publication of JP5895974B2 publication Critical patent/JP5895974B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Abstract

PROBLEM TO BE SOLVED: To realize reduction in a device cost, as well as an effective utilization of a treatment gas when performing a heat treatment in a reaction tube by supplying the treatment gas from the lateral side to each of a plurality of substrates placed on a wafer boat in a shelf form.SOLUTION: A plurality of substrate placing regions 33 are arranged in the circumferential direction on each upper surface side of holding plates 31. These holding plates 31 are held by poles 32 from the peripheral edge side in the circumferential direction at a plurality of positions. Each pole 32 is arranged at a position inward the outer peripheral of the holding plate 31 in such a manner that a gap size t between the outer peripheral of the holding plate 31 and the inner wall of an inner cylinder 12b becomes smaller than a gap size k between the upper surface of a wafer W held on the holding plate 31 and the lower surface of the holding plate 31 opposing from above to the wafer W. Then the treatment gas is supplied to each wafer W from gas discharge ports 52 arranged at each lateral side of the wafer W.

Description

本発明は、基板保持具に棚状に積載された複数枚の基板に対して処理ガスを供給して熱処理を行う縦型熱処理装置に関する。   The present invention relates to a vertical heat treatment apparatus that performs a heat treatment by supplying a processing gas to a plurality of substrates stacked in a shelf on a substrate holder.

半導体ウエハなどの基板(以下「ウエハ」と言う)に対して成膜処理などの熱処理を行う熱処理装置として、基板保持具であるウエハボートに100枚〜150枚程度のウエハを棚状に積載すると共に、このウエハボートを反応管内に気密に収納して、真空雰囲気において当該反応管内に成膜ガスを供給して薄膜を成膜するバッチ式の縦型熱処理装置が知られている。このウエハボートは、円板状の天板及び底板と、これら天板及び底板間を外周側から周方向に亘って複数箇所において接続する支柱とを備えている。これら支柱の側面には、スリット状の溝がウエハの収納領域を向くように上下方向に亘って複数箇所に形成されており、各々のウエハは端部がこれら支柱の溝に支持されるように収納される。従って、ウエハボートに支持されるウエハの外周部と反応管の内壁との間には、支柱が配置される領域に対応するように、周方向に亘って隙間領域が形成されている。   As a heat treatment apparatus for performing a heat treatment such as a film forming process on a substrate such as a semiconductor wafer (hereinafter referred to as “wafer”), about 100 to 150 wafers are stacked on a wafer boat as a substrate holder. At the same time, there is known a batch type vertical heat treatment apparatus in which the wafer boat is stored in a reaction tube in an airtight manner and a film forming gas is supplied into the reaction tube in a vacuum atmosphere to form a thin film. The wafer boat includes a disk-shaped top plate and bottom plate, and support columns that connect the top plate and the bottom plate at a plurality of locations from the outer peripheral side to the circumferential direction. On the side surfaces of these columns, slit-shaped grooves are formed at a plurality of positions in the vertical direction so as to face the storage area of the wafer, and the end portions of each wafer are supported by the grooves of these columns. Stored. Therefore, a gap region is formed in the circumferential direction between the outer peripheral portion of the wafer supported by the wafer boat and the inner wall of the reaction tube so as to correspond to the region where the support column is disposed.

この反応管内に成膜ガスを供給する方法としては、特許文献1のように、各々のウエハにおいて水平方向にガス流が形成されるように、クロスフロー方式が採られる場合がある。具体的には、例えば反応管を内管及び外管からなる二重管構造にして、上下方向に伸びるスリット状の排気口を内管に形成すると共に、排気口に対向するように鉛直方向に伸びるガスインジェクターをウエハボートの側方に配置する。そして、各々のウエハの高さ位置に対応するようにガスインジェクターの側壁にガス吐出口を複数箇所に形成し、各々のウエハにおいてガス吐出口から排気口に向かうガス流を形成する。   As a method of supplying a film forming gas into the reaction tube, there is a case where a cross flow method is adopted so that a gas flow is formed in the horizontal direction in each wafer as in Patent Document 1. Specifically, for example, the reaction tube has a double tube structure including an inner tube and an outer tube, and a slit-like exhaust port extending in the vertical direction is formed in the inner tube, and in a vertical direction so as to face the exhaust port. An extending gas injector is placed on the side of the wafer boat. Then, a plurality of gas discharge ports are formed on the side wall of the gas injector so as to correspond to the height position of each wafer, and a gas flow from the gas discharge port toward the exhaust port is formed in each wafer.

この時、ウエハボートに支持されるウエハの外周部と反応管(内管)との間には、既述のように周方向に亘って隙間領域が形成されているので、ガスインジェクターから吐出される成膜ガスは、ウエハ間の狭い領域よりもこの隙間領域を通流しようとする。そのため、各々のウエハに供給されるガス量が設定値よりも少なくなり、生産性(成膜レート)及び面内における膜厚の均一性や被覆性(カバレッジ性)が悪くなってしまう場合がある。また、成膜に寄与せずに成膜ガスが排出されると、当該成膜ガスの使用量が多くなり、コストアップに繋がってしまう。   At this time, a gap region is formed in the circumferential direction between the outer peripheral portion of the wafer supported by the wafer boat and the reaction tube (inner tube) as described above, so that the gas is discharged from the gas injector. The film forming gas tends to flow through this gap region rather than a narrow region between the wafers. For this reason, the amount of gas supplied to each wafer becomes smaller than the set value, and the productivity (film formation rate), the uniformity of the film thickness in the surface and the coverage (coverage) may be deteriorated. . Further, if the deposition gas is discharged without contributing to the deposition, the amount of the deposition gas used increases, leading to an increase in cost.

ところで、近年において、通常の12インチ(300mm)サイズのウエハに代えて、直径寸法が例えば4インチ(100mm)程度の炭化珪素(SiC)基板や太陽電池用のシリコン(Si)基板に対して、例えばアルミナ(Al2O3)膜を成膜するプロセスが検討されている。また、ウエハWとして例えば外径寸法が100mmのサファイヤ基板を用いて、このウエハWに対してMO−CVD(Metal Organic Chemical Vapor Deposition)によりGaN(窒化ガリウム)膜を成膜してLED(Light Emitting Diode)デバイスを作製するプロセスも検討されている。しかし、既述のようにウエハボートにこれら基板を棚状に積載してこのプロセスを行おうとすると、12インチサイズのウエハに比べて基板サイズが小さいので、装置のコストが相対的に高くなってしまう。また、ウエハボート(縦型熱処理装置)の高さ寸法が例えばクリーンルームの天井面などによって制限されるので、装置のコストを下げるためにウエハボートに積載する基板の数量(スロットの数量)を増やすことは困難である。
特許文献2、3には、ウエハディスク23bやサセプタ16にウエハWを周方向に並べる技術が記載されており、また特許文献4には、ウエハを上下に積層して処理を行う装置が記載されているが、既述の課題については記載されていない。
By the way, in recent years, instead of a normal 12 inch (300 mm) size wafer, for example, a silicon carbide (SiC) substrate having a diameter of about 4 inches (100 mm) or a silicon (Si) substrate for solar cells, For example, a process for forming an alumina (Al2O3) film has been studied. For example, a sapphire substrate having an outer diameter of 100 mm is used as the wafer W, a GaN (gallium nitride) film is formed on the wafer W by MO-CVD (Metal Organic Chemical Vapor Deposition), and an LED (Light Emitting) is formed. Diode) devices are also being studied. However, as described above, if these substrates are loaded on a wafer boat in a shelf shape and this process is performed, the substrate size is smaller than that of a 12-inch wafer, and the cost of the apparatus is relatively high. End up. Further, since the height dimension of the wafer boat (vertical heat treatment apparatus) is limited by, for example, the ceiling surface of the clean room, the number of substrates loaded on the wafer boat (the number of slots) is increased in order to reduce the cost of the apparatus. It is difficult.
Patent Documents 2 and 3 describe a technique for arranging wafers W in the circumferential direction on the wafer disk 23b and the susceptor 16, and Patent Document 4 describes an apparatus that performs processing by stacking wafers vertically. However, the above-mentioned problems are not described.

特開2009−206489号公報JP 2009-206489 A 特開2010−73823号公報JP 2010-73823 A 特開昭61−136676号公報Japanese Patent Laid-Open No. 61-136676 特開2000−208425号公報JP 2000-208425 A

本発明はこのような事情に鑑みてなされたものであり、その目的は、基板保持具に棚状に積載された複数の基板の各々に対して側方側から処理ガスを供給して反応管内において熱処理を行うにあたり、処理ガスの使用効率を向上させることのできる縦型熱処理装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to supply a processing gas from the side to each of a plurality of substrates stacked in a shelf shape on a substrate holder so as to be within a reaction tube. It is an object of the present invention to provide a vertical heat treatment apparatus capable of improving the use efficiency of a processing gas when performing heat treatment.

本発明の縦型熱処理装置は、
複数の基板を棚状に保持した基板保持具を、その周囲に加熱部が配置された縦型の反応管内に搬入して、基板に対して熱処理を行う縦型熱処理装置において、
前記反応管の長さ方向に沿って設けられ、前記基板保持具に保持される各基板に処理ガスを供給するために、各基板に対応する高さ位置にガス吐出口が形成された処理ガス供給部と、
前記反応管の中心に対して前記ガス吐出口とは反対側位置に形成された排気口と、を備え、
前記基板保持具は、各々複数の基板載置領域が形成され、互に積層された複数の円形状の保持板と、保持板の周縁部を貫通させて各保持板を支持し、周方向に沿って複数設けられた支柱と、を備え、反応管の径方向で見た時の前記支柱の外側部位は、保持板の外縁と同じ位置であるかまたは内側寄りであることを特徴とする。
前記縦型熱処理装置の具体的構成としては、以下のようにしても良い。
前記保持板の外縁と前記反応管の内壁との間の離間寸法は、前記保持板上に支持される基板の上面と当該基板の上方側に対向する保持板の下面との間の間隔寸法よりも短く設定されている構成。
前記支柱の外側部位は、保持板の外縁と同じ位置であるかまたは内側寄りであることに代えて、保持板の外縁から外側に3mm飛び出した位置よりも内側寄りである構成。
前記保持板の外縁と前記反応管の内壁との間の離間寸法は、8mm以下である構成。
反応管の径方向で見た時の前記基板保持具上の基板の外縁と前記支柱の外周面とは、前記保持板の輪郭線上において揃っている構成。
前記反応管は、気密に開閉自在に設けられた第1の反応管と、当該第1の反応管の内部に設けられ、前記基板保持具を収納する第2の反応管と、を備え、
前記処理ガス供給部は、前記基板保持具の長さ方向に沿うように第2の反応管内に配置されたガスインジェクターであり、
前記排気口は、このガスインジェクターに対向するように、当該ガスインジェクターの長さ方向に沿って前記第2の反応管の側面にスリット状に形成され、
これら第1の反応管と第2の反応管との間の領域に連通するように、当該領域の雰囲気を排気するための排気ポートが配置されている構成。
前記基板保持具を鉛直軸周りに回転させる回転機構を備えている構成。
前記処理ガス供給部は、基板に第1の処理ガスを供給する第1のガス供給部と、この第1の処理ガスと反応する第2の処理ガスを基板に供給する第2のガス供給部と、基板にパージガスを供給する第3のガス供給部と、を備え、
第1の処理ガスと第2の処理ガスとを交互に基板に供給すると共に、これら処理ガスを切り替える時にはパージガスを基板に供給してガスの置換を行うように制御信号を出力する制御部を備えている構成。
また、本発明の縦型熱処理装置は、
複数の基板を棚状に保持した基板保持具を、その周囲に加熱部が配置された縦型の反応管内に搬入して、基板に対して熱処理を行う縦型熱処理装置において、
前記反応管の長さ方向に沿って設けられ、前記基板保持具に保持される各基板に処理ガスを供給するために、各基板に対応する高さ位置にガス吐出口が形成された処理ガス供給部と、
前記反応管の中心に対して前記ガス吐出口とは反対側位置に形成された排気口と、を備え、
前記基板保持具は、基板載置領域が形成され、互に積層された複数の円形状の保持板と、保持板の周縁部を貫通させて各保持板を支持し、周方向に沿って複数設けられた支柱と、を備え、反応管の径方向で見た時の前記支柱の外側部位は、保持板の外縁と同じ位置であるかまたは内側寄りであり、
前記保持板の外縁と前記反応管の内壁との間の離間寸法は、前記保持板上に支持される基板の上面と当該基板の上方側に対向する保持板の下面との間の間隔寸法よりも短く設定されていることを特徴とする。
The vertical heat treatment apparatus of the present invention is
In a vertical heat treatment apparatus for carrying a heat treatment on a substrate by carrying a substrate holder holding a plurality of substrates in a shelf shape into a vertical reaction tube in which a heating unit is arranged around the substrate holder,
A process gas provided along a length direction of the reaction tube and having a gas discharge port formed at a height corresponding to each substrate in order to supply a process gas to each substrate held by the substrate holder A supply section;
An exhaust port formed at a position opposite to the gas discharge port with respect to the center of the reaction tube,
Each of the substrate holders includes a plurality of substrate placement regions, a plurality of circular holding plates stacked on each other, and supports each holding plate through the peripheral edge of the holding plate in the circumferential direction. And a plurality of support columns provided along the outer periphery of the support plate when viewed in the radial direction of the reaction tube.
The specific configuration of the vertical heat treatment apparatus may be as follows.
The distance between the outer edge of the holding plate and the inner wall of the reaction tube is larger than the distance between the upper surface of the substrate supported on the holding plate and the lower surface of the holding plate facing the upper side of the substrate. The configuration is also short.
The outer part of the support column is located at the same position as the outer edge of the holding plate or at the inner side, and is located closer to the inner side than the position protruding 3 mm outward from the outer edge of the holding plate.
The separation dimension between the outer edge of the holding plate and the inner wall of the reaction tube is 8 mm or less.
A configuration in which the outer edge of the substrate on the substrate holder and the outer peripheral surface of the support are aligned on the contour line of the holding plate when viewed in the radial direction of the reaction tube.
The reaction tube includes a first reaction tube that is airtightly opened and closed, and a second reaction tube that is provided inside the first reaction tube and houses the substrate holder,
The processing gas supply unit is a gas injector disposed in the second reaction tube along the length direction of the substrate holder,
The exhaust port is formed in a slit shape on the side surface of the second reaction tube along the length direction of the gas injector so as to face the gas injector,
A configuration in which an exhaust port for exhausting the atmosphere in the region is disposed so as to communicate with the region between the first reaction tube and the second reaction tube.
A configuration comprising a rotation mechanism for rotating the substrate holder around a vertical axis.
The process gas supply unit includes a first gas supply unit that supplies a first process gas to the substrate, and a second gas supply unit that supplies a second process gas that reacts with the first process gas to the substrate. And a third gas supply unit for supplying a purge gas to the substrate,
A control unit is provided that alternately supplies the first processing gas and the second processing gas to the substrate, and outputs a control signal so as to supply the purge gas to the substrate and perform gas replacement when switching between the processing gases. Configuration.
The vertical heat treatment apparatus of the present invention is
In a vertical heat treatment apparatus for carrying a heat treatment on a substrate by carrying a substrate holder holding a plurality of substrates in a shelf shape into a vertical reaction tube in which a heating unit is arranged around the substrate holder,
A process gas provided along a length direction of the reaction tube and having a gas discharge port formed at a height corresponding to each substrate in order to supply a process gas to each substrate held by the substrate holder A supply section;
An exhaust port formed at a position opposite to the gas discharge port with respect to the center of the reaction tube,
The substrate holder includes a plurality of circular holding plates formed in a substrate mounting region and stacked on each other, and supports each holding plate through the peripheral edge of the holding plate. An outer portion of the support column when viewed in the radial direction of the reaction tube, or at the same position as the outer edge of the holding plate, or closer to the inside,
The distance between the outer edge of the holding plate and the inner wall of the reaction tube is larger than the distance between the upper surface of the substrate supported on the holding plate and the lower surface of the holding plate facing the upper side of the substrate. Is also set short.

本発明は、基板保持具に保持される各基板に、各基板に対応する高さ位置に形成されたガス吐出口から処理ガスを吐出して熱処理を行う縦型熱処理装置において、複数の円形状の保持板を積層すると共に各保持板に複数の基板を保持し、これら複数の保持板の周縁部を支持する支柱を保持板の外縁から飛び出さないように構成している。従って、保持板と反応管との間の隙間を狭くできることから、保持板の外方を通過する、処理に寄与しない処理ガスの量が抑えられる。このため処理ガスの有効利用を図ること、言い換えれば処理ガスの使用効率を向上させることができる。また、各々の保持板に複数枚の基板を配置しているので、保持板に一枚の基板を配置する場合よりも、一枚の基板に要する装置のフットプリントを抑えることができるため装置のコストを低減できる。   The present invention relates to a vertical heat treatment apparatus for performing heat treatment by discharging a processing gas from a gas discharge port formed at a height position corresponding to each substrate to each substrate held by a substrate holder. The holding plates are stacked, a plurality of substrates are held on each holding plate, and the support columns that support the peripheral portions of the plurality of holding plates are configured not to jump out from the outer edge of the holding plate. Therefore, since the gap between the holding plate and the reaction tube can be narrowed, the amount of the processing gas that does not contribute to the processing and passes outside the holding plate can be suppressed. Therefore, it is possible to effectively use the processing gas, in other words, to improve the usage efficiency of the processing gas. In addition, since a plurality of substrates are arranged on each holding plate, the footprint of the device required for one substrate can be suppressed as compared with the case where one substrate is arranged on the holding plate. Cost can be reduced.

本発明の縦型熱処理装置の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the vertical heat processing apparatus of this invention. 前記縦型熱処理装置を示す横断平面図である。It is a cross-sectional top view which shows the said vertical heat processing apparatus. 前記縦型熱処理装置の一部を拡大して示す斜視図である。It is a perspective view which expands and shows a part of said vertical heat processing apparatus. 前記縦型熱処理装置における作用を示す横断平面図である。It is a cross-sectional top view which shows the effect | action in the said vertical heat processing apparatus. 前記縦型熱処理装置の作用を示す一部拡大側面図である。It is a partially expanded side view which shows the effect | action of the said vertical heat processing apparatus. 前記縦型熱処理装置における作用を示す横断平面図である。It is a cross-sectional top view which shows the effect | action in the said vertical heat processing apparatus. 前記縦型熱処理装置における作用を示す横断平面図である。It is a cross-sectional top view which shows the effect | action in the said vertical heat processing apparatus. 前記縦型熱処理装置における作用を示す横断平面図である。It is a cross-sectional top view which shows the effect | action in the said vertical heat processing apparatus. 前記縦型熱処理装置の他の例を示す一部拡大横断平面図である。It is a partially expanded transverse plan view which shows the other example of the said vertical heat processing apparatus. 前記縦型熱処理装置の他の例を示す平面図である。It is a top view which shows the other example of the said vertical heat processing apparatus. 前記縦型熱処理装置の他の例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other example of the said vertical heat processing apparatus. 前記縦型熱処理装置の他の例を示す反応管の斜視図である。It is a perspective view of the reaction tube which shows the other example of the said vertical heat processing apparatus. 前記縦型熱処理装置の他の例を示す平面図である。It is a top view which shows the other example of the said vertical heat processing apparatus.

本発明の縦型熱処理装置の実施の形態の一例について、図1〜図3を参照して説明する。この縦型熱処理装置は、ウエハWを棚状に積載するための例えば石英からなる基板保持具であるウエハボート11と、このウエハボート11を内部に収納して各々のウエハWに対して成膜処理を行うための例えば石英からなる反応管12と、を備えている。この例では、ウエハWはSi(シリコン)から構成され、直径寸法及び厚み寸法が夫々例えば4インチ(100mm)及び0.75mmとなっている。反応管12の外側には、内壁面に周方向に亘って加熱部であるヒータ13の配置された加熱炉本体14が設けられており、反応管12及び加熱炉本体14は、水平方向に伸びる支持部15によって下端部が周方向に亘って支持されている。   An example of an embodiment of the vertical heat treatment apparatus of the present invention will be described with reference to FIGS. This vertical heat treatment apparatus includes a wafer boat 11 that is a substrate holder made of, for example, quartz for loading wafers W in a shelf shape, and the wafer boat 11 is housed inside to form a film on each wafer W. And a reaction tube 12 made of, for example, quartz for processing. In this example, the wafer W is made of Si (silicon) and has a diameter dimension and a thickness dimension of, for example, 4 inches (100 mm) and 0.75 mm, respectively. A heating furnace main body 14 in which a heater 13 as a heating unit is arranged on the inner wall surface in the circumferential direction is provided outside the reaction tube 12, and the reaction tube 12 and the heating furnace main body 14 extend in the horizontal direction. The lower end portion is supported by the support portion 15 in the circumferential direction.

反応管12は、この例では第1の反応管である外管12aと、当該外管12aの内部に収納された第2の反応管である内管12bとの二重管構造となっており、これら外管12a及び内管12bの各々は、下面側が開口するように形成されている。内管12bの天井面は水平に形成され、外管12aの天井面は外側に膨らむように概略円筒形状に形成されている。この内管12bは、側面の一端側が当該内管12bの長さ方向に沿って外側に膨らむように形成されており、この外側に膨らんだ部分に後述のガス供給部をなすガスインジェクター51が収納されるように構成されている。また、内管12bの側面における前記ガスインジェクター51の収納される領域に対向する面には、図2にも示すように、当該内管12bの長さ方向に沿うようにスリット状の排気口16が形成されている。即ち、排気口16は、反応管12の中心に対してガスインジェクター51(ガス吐出口52)とは反対側位置に形成されている。このガスインジェクター51から内管12bに供給される処理ガスは、この排気口16を介して内管12bと外管12aとの間の領域に排気される。そして、これら外管12a及び内管12bは、下端面がフランジ状に形成されると共に上下面が開口する概略円筒形状のフランジ部17により、下方側から各々気密に支持されている。即ち、フランジ部17の上端面により外管12aが気密に支持され、フランジ部17の内壁面から内側に向かって水平に突出する突出部17aにより内管12bが気密に支持されている。この内管12bの内径寸法は、例えば330mmとなっている。   In this example, the reaction tube 12 has a double tube structure of an outer tube 12a that is a first reaction tube and an inner tube 12b that is a second reaction tube housed in the outer tube 12a. Each of the outer tube 12a and the inner tube 12b is formed so that the lower surface side is opened. The ceiling surface of the inner tube 12b is formed horizontally, and the ceiling surface of the outer tube 12a is formed in a substantially cylindrical shape so as to bulge outward. The inner tube 12b is formed such that one end side of the side surface swells outward along the length direction of the inner tube 12b, and a gas injector 51 that forms a gas supply unit described later is accommodated in the swelled outside. It is configured to be. In addition, on the surface of the side surface of the inner tube 12b facing the region where the gas injector 51 is accommodated, as shown in FIG. 2, the slit-shaped exhaust port 16 is provided along the length direction of the inner tube 12b. Is formed. That is, the exhaust port 16 is formed at a position opposite to the gas injector 51 (gas discharge port 52) with respect to the center of the reaction tube 12. The processing gas supplied from the gas injector 51 to the inner pipe 12b is exhausted to a region between the inner pipe 12b and the outer pipe 12a through the exhaust port 16. The outer tube 12a and the inner tube 12b are airtightly supported from below by a substantially cylindrical flange portion 17 having a lower end surface formed in a flange shape and an upper and lower surface opened. That is, the outer tube 12 a is airtightly supported by the upper end surface of the flange portion 17, and the inner tube 12 b is airtightly supported by the projecting portion 17 a that protrudes inward from the inner wall surface of the flange portion 17. The inner diameter of the inner tube 12b is, for example, 330 mm.

フランジ部17の側壁には、内管12bと外管12aとの間の領域に連通するように排気口21が形成されており、この排気口21から伸びる排気路22には、バタフライバルブなどの圧力調整部23を介して真空ポンプ24が接続されている。フランジ部17の下方側には、当該フランジ部17の下端部であるフランジ面に外縁部が周方向に亘って気密に接触するように概略円板状に形成された蓋体25が設けられており、この蓋体25は、図示しないボートエレベータなどの昇降機構により、ウエハボート11と共に昇降自在に構成されている。図1中26はウエハボート11と蓋体25との間に円筒状に形成された断熱体、27はウエハボート11及び断熱体26を鉛直軸周りに回転させるためのモータなどの回転機構である。また、図1中28は、蓋体25を気密に貫通してモータ27とウエハボート11及び断熱体26とを接続する回転軸であり、21aは排気ポートである。   An exhaust port 21 is formed on the side wall of the flange portion 17 so as to communicate with a region between the inner tube 12b and the outer tube 12a. An exhaust passage 22 extending from the exhaust port 21 has a butterfly valve or the like. A vacuum pump 24 is connected via the pressure adjusting unit 23. On the lower side of the flange portion 17, there is provided a lid 25 formed in a substantially disc shape so that the outer edge portion is in airtight contact with the flange surface which is the lower end portion of the flange portion 17 in the circumferential direction. The lid 25 is configured to be movable up and down together with the wafer boat 11 by a lifting mechanism such as a boat elevator (not shown). In FIG. 1, reference numeral 26 denotes a heat insulating body formed in a cylindrical shape between the wafer boat 11 and the lid body 25, and 27 denotes a rotating mechanism such as a motor for rotating the wafer boat 11 and the heat insulating body 26 around the vertical axis. . In FIG. 1, reference numeral 28 denotes a rotating shaft that airtightly penetrates the lid 25 and connects the motor 27, the wafer boat 11, and the heat insulator 26, and 21a is an exhaust port.

続いて、ウエハボート11について詳述する。このウエハボート11は、図2及び図3に示すように、複数枚例えば5枚のウエハWを周方向に各々水平に載置するために、直径寸法が例えば300mmに設定された円形状の保持板31と、複数この例では150枚の保持板31を棚状に積層するために、外周側から複数箇所においてこれら保持板31を支持する鉛直方向に伸びる支柱32と、を備えている。このウエハボート11において、互いに隣接する保持板31、31間の離間寸法(一の保持板31の上面と当該一の保持板31の上方側に対向する保持板31の下面との間の距離)kは、例えば8mmとなっている。   Next, the wafer boat 11 will be described in detail. As shown in FIGS. 2 and 3, the wafer boat 11 has a circular shape with a diameter dimension set to, for example, 300 mm in order to place a plurality of, for example, five wafers W horizontally in the circumferential direction. A plurality of plates 31 and, in this example, 150 holding plates 31 are stacked in a shelf shape, and are provided with support columns 32 extending in the vertical direction that support the holding plates 31 at a plurality of locations from the outer peripheral side. In this wafer boat 11, the distance between the holding plates 31 and 31 adjacent to each other (distance between the upper surface of one holding plate 31 and the lower surface of the holding plate 31 facing the upper side of the one holding plate 31). For example, k is 8 mm.

この例では、5本の支柱32が等間隔に配置されており、各々の支柱32は、図2に示すように、保持板31の外縁よりも外側(内管12b側)に飛び出さないように配置されている。具体的には、各々の保持板31の外周部には、支柱32が収納されるように当該保持板31の中心部側に向かって窪む凹部35が複数箇所例えば5箇所に形成されており、各々の支柱32は、高さ方向に亘って各々の保持板31の凹部35に収納された状態で保持板31に溶着されている。即ち、各々の支柱32は、これら保持板31の周縁部を貫通して当該保持板31を支持している。そして、各々の保持板31の外縁と内管12bの内壁との間の離間寸法tは、図2に示すように、既述の保持板31、31の間隔寸法kよりも狭くなっており、例えば5mmとなっている。図2及び図3中36は、各々の保持板31の中央部を貫通するようにこれら保持板31を支持する柱部である。また、ウエハボート11の上端部及び下端部には、図1に示すように夫々円板状の天板37及び底板38が設けられているが、図3ではこれら天板37及び底板38を省略してウエハボート11の一部を拡大して描画している。   In this example, five struts 32 are arranged at equal intervals, and each strut 32 does not jump out of the outer edge of the holding plate 31 (on the inner tube 12b side) as shown in FIG. Is arranged. Specifically, the outer peripheral portion of each holding plate 31 is formed with a plurality of, for example, five concave portions 35 that are recessed toward the center of the holding plate 31 so that the support columns 32 are accommodated. Each support column 32 is welded to the holding plate 31 in a state where it is accommodated in the recess 35 of each holding plate 31 over the height direction. That is, each support column 32 supports the holding plate 31 by penetrating the periphery of the holding plate 31. Then, the separation dimension t between the outer edge of each holding plate 31 and the inner wall of the inner tube 12b is narrower than the interval dimension k of the holding plates 31 and 31 described above, as shown in FIG. For example, it is 5 mm. 2 and 3, reference numeral 36 denotes a column portion that supports the holding plates 31 so as to penetrate the central portion of each holding plate 31. Further, as shown in FIG. 1, disc-shaped top plate 37 and bottom plate 38 are provided at the upper end and lower end of wafer boat 11, respectively, but these top plate 37 and bottom plate 38 are omitted in FIG. 3. Then, a part of the wafer boat 11 is enlarged and drawn.

各々の保持板31においてウエハWを載置する基板載置領域33は、保持板31の外縁側におけるウエハWの外周部が当該保持板31の外縁上に位置するように各々配置されている。従って、反応管12の径方向で見た時のウエハWの外縁と既述の支柱32の外周面とは、保持板31の輪郭線上において揃っている。また、各々の基板載置領域33は、当該基板載置領域33に載置されるウエハWの表面の高さ位置が保持板31の表面と同じ高さ位置となるように、即ちウエハWの上面と保持板31の上面とが面一となるように形成されている。具体的には、この基板載置領域33に収納されるウエハWの厚み寸法(例えば0.5mm〜2mm)に応じて、基板載置領域33の表面と当該表面に対向する保持板31の下面との間の寸法は、例えば8〜10mmに設定されている。各々の保持板31には、図3に模式的に示す外部の搬送アーム60との間においてウエハWの受け渡しを行うために、各々の基板載置領域33の中央部及びこの中央部よりも保持板31の外周側の領域が切り欠かれた切り欠き部34が形成されている。従って、各々の基板載置領域33において、ウエハWは周縁部が下方側から支持される。尚、図1ではウエハWの位置を模式的に示している。また、図2では、切り欠き部34を描画するために、一つのウエハWの輪郭を破線で示している。   The substrate placement regions 33 on which the wafers W are placed on the respective holding plates 31 are arranged such that the outer peripheral portion of the wafer W on the outer edge side of the holding plate 31 is positioned on the outer edge of the holding plate 31. Therefore, the outer edge of the wafer W when viewed in the radial direction of the reaction tube 12 and the outer peripheral surface of the support column 32 are aligned on the outline of the holding plate 31. Each substrate placement region 33 is arranged such that the height position of the surface of the wafer W placed on the substrate placement region 33 is the same height position as the surface of the holding plate 31, that is, The upper surface and the upper surface of the holding plate 31 are formed to be flush with each other. Specifically, according to the thickness dimension (for example, 0.5 mm to 2 mm) of the wafer W accommodated in the substrate placement region 33, the surface of the substrate placement region 33 and the lower surface of the holding plate 31 facing the surface. The dimension between is set to 8 to 10 mm, for example. In order to transfer the wafer W between each holding plate 31 and the external transfer arm 60 schematically shown in FIG. 3, the holding plate 31 holds more than the central portion of each substrate placement region 33 and the central portion. A cutout portion 34 is formed by cutting out a region on the outer peripheral side of the plate 31. Accordingly, in each substrate placement region 33, the periphery of the wafer W is supported from below. In FIG. 1, the position of the wafer W is schematically shown. In FIG. 2, the outline of one wafer W is indicated by a broken line in order to draw the notch 34.

そして、ウエハボート11にウエハWを載置する時には、反応管12の下方位置にウエハボート11を下降させた状態で、ウエハWを支持した搬送アーム60が基板載置領域33の上方側から切り欠き部34を介して下方側に通過するように下降すると、ウエハWが基板載置領域33に載置される。また、別の基板載置領域33が搬送アーム60側を向くようにウエハボート11を鉛直軸周りに回転させ、同様にして基板載置領域33にウエハWを載置する。こうしてウエハボート11を間欠的に回転させて5枚のウエハWを保持板31に載置した後、搬送アーム60を例えば下降させて、前記保持板31の下方における保持板31に対して同様に5枚のウエハWが載置される。ウエハボート11からウエハWを取り出す時は、ウエハボート11にウエハWを載置する時とは逆の順番でこれらウエハボート11及び搬送アーム60が駆動する。尚、搬送アーム60を多段に積層し、複数枚のウエハWを一括してウエハボート11に対して受け渡しても良い。   When the wafer W is placed on the wafer boat 11, the transfer arm 60 that supports the wafer W is cut from the upper side of the substrate placement region 33 while the wafer boat 11 is lowered below the reaction tube 12. When the wafer W is lowered so as to pass downward through the notch 34, the wafer W is placed on the substrate placement region 33. Further, the wafer boat 11 is rotated around the vertical axis so that another substrate placement area 33 faces the transfer arm 60 side, and the wafer W is placed on the substrate placement area 33 in the same manner. After the wafer boat 11 is intermittently rotated in this manner to place the five wafers W on the holding plate 31, the transfer arm 60 is lowered, for example, in the same manner with respect to the holding plate 31 below the holding plate 31. Five wafers W are placed. When the wafer W is taken out from the wafer boat 11, the wafer boat 11 and the transfer arm 60 are driven in the reverse order to the case where the wafer W is placed on the wafer boat 11. Note that the transfer arm 60 may be stacked in multiple stages, and a plurality of wafers W may be collectively delivered to the wafer boat 11.

既述のガスインジェクター51は、例えば石英から構成されており、ウエハボート11の長さ方向に沿って配置されている。このガスインジェクター51の側壁には、ウエハボート11側に臨むように、ガス吐出口52が上下方向に亘って複数箇所に形成されている。これらガス吐出口52は、ウエハボート11に収納されるウエハWの各々の高さ位置に対応するように配置されており、即ち一の保持板31と、この一の保持板31の上方に対向する他の保持板31との間に各々配置されている。ガスインジェクター51は、一端側が既述のフランジ部17の側壁から内管12bに挿入されており、他端側がバルブ53及び流量調整部54を介して処理ガスの貯留されたガス貯留源55に接続されている。このガスインジェクター51は、図2に示すように横並びに複数本例えば4本設けられており、これら4本のガスインジェクター51について夫々「51a」、「51b」、「51c」及び「51d」の符号を付すと、これらガスインジェクター51a〜51dには、第1の処理ガスであるTMA(トリメチルアルミニウム)ガス、第2の処理ガスであるO3(オゾン)ガス、第3の処理ガスであるTEMAHf(テトラキスエチルメチルアミノハフニウム)及びパージガスであるN2(窒素)ガスの貯留源54a〜54dが夫々接続されている。各ガスインジェクター51のガス吐出口52は、排気口16を向いているが、支柱32が膜厚の均一性に影響を及ぼすおそれのある場合は、排気口16を向かないように、具体的には排気口16から僅かに水平方向に離間した位置を向くようにしても良い。   The gas injector 51 described above is made of, for example, quartz, and is disposed along the length direction of the wafer boat 11. On the side wall of the gas injector 51, gas discharge ports 52 are formed at a plurality of locations in the vertical direction so as to face the wafer boat 11 side. These gas discharge ports 52 are arranged so as to correspond to the respective height positions of the wafers W accommodated in the wafer boat 11, that is, one holding plate 31 is opposed to the upper side of the one holding plate 31. It arrange | positions between each other holding | maintenance board 31 to do. One end of the gas injector 51 is inserted into the inner pipe 12 b from the side wall of the flange portion 17 described above, and the other end is connected to a gas storage source 55 in which processing gas is stored via a valve 53 and a flow rate adjustment unit 54. Has been. As shown in FIG. 2, a plurality of gas injectors 51, for example, four are provided side by side as shown in FIG. 2, and reference numerals “51a”, “51b”, “51c”, and “51d” are assigned to these four gas injectors 51, respectively. Are attached to these gas injectors 51a to 51d, TMA (trimethylaluminum) gas as the first processing gas, O3 (ozone) gas as the second processing gas, and TEMAHf (tetrakis) as the third processing gas. Ethylmethylaminohafnium) and N2 (nitrogen) gas storage sources 54a to 54d, which are purge gases, are connected to each other. The gas discharge port 52 of each gas injector 51 faces the exhaust port 16, but when the support column 32 may affect the uniformity of the film thickness, specifically, do not face the exhaust port 16. May face a position slightly separated from the exhaust port 16 in the horizontal direction.

この縦型熱処理装置には、装置全体の動作のコントロールを行うためのコンピュータからなる図示しない制御部が設けられており、この制御部のメモリ内には後述の成膜処理を行うためのプログラムが格納されている。このプログラムは、ハードディスク、コンパクトディスク、光磁気ディスク、メモリカード、フレキシブルディスクなどの記憶媒体である記憶部から制御部内にインストールされる。   This vertical heat treatment apparatus is provided with a control unit (not shown) composed of a computer for controlling the operation of the entire apparatus, and a program for performing a film forming process to be described later is stored in the memory of the control unit. Stored. This program is installed in the control unit from a storage unit which is a storage medium such as a hard disk, a compact disk, a magneto-optical disk, a memory card, and a flexible disk.

次に、上述実施の形態の作用について説明する。先ず、反応管12の下方側にウエハボート11を下降させ、既述のようにウエハボート11を間欠的に回転させながら、搬送アーム60によって各々の保持板31上に5枚のウエハWを載置する。そして、例えば750(5×150)枚のウエハWを載置したウエハボート11を反応管12内に挿入すると共に、フランジ部17の下面と蓋体25の上面とを気密に接触させる。次いで、真空ポンプ24により反応管12内の雰囲気を真空排気すると共に、ウエハボート11を鉛直軸周りに回転させながら、ヒータ13によりこのウエハボート11上のウエハWが例えば300℃程度となるように加熱する。続いて、圧力調整部23により反応管12内の圧力を処理圧力に調整しながら、当該反応管12内にガスインジェクター51aからTMAガスを供給する。   Next, the operation of the above embodiment will be described. First, the wafer boat 11 is lowered to the lower side of the reaction tube 12, and the five wafers W are loaded on the respective holding plates 31 by the transfer arm 60 while rotating the wafer boat 11 intermittently as described above. Put. Then, for example, the wafer boat 11 on which 750 (5 × 150) wafers W are placed is inserted into the reaction tube 12, and the lower surface of the flange portion 17 and the upper surface of the lid body 25 are brought into airtight contact. Next, the atmosphere in the reaction tube 12 is evacuated by the vacuum pump 24, and the wafer W on the wafer boat 11 is adjusted to, for example, about 300 ° C. by the heater 13 while rotating the wafer boat 11 around the vertical axis. Heat. Subsequently, TMA gas is supplied from the gas injector 51 a into the reaction tube 12 while adjusting the pressure in the reaction tube 12 to the processing pressure by the pressure adjusting unit 23.

この時、各々のウエハWの側方側にガス吐出口52が位置しており、またウエハボート11の保持板31の外縁と内管12bの内壁との間の領域よりも、保持板31、31間の領域の方が広くなっている。そのため、反応管12内に供給されたTMAガスは、図4に示すように、ウエハボート11の保持板31の外縁と内管12bの内壁との間の狭い領域よりも広い領域である保持板31、31間の領域を通流しようとする。即ち、各々のガス吐出口52から吐出するTMAガスは、図5に示すように、保持板31、31によって上方側及び下方側への拡散が規制されていると言える。従って、TMAガスは、層流の状態でウエハWの上方側を通流して排気口16に向かって行く。こうしてウエハWにTMAガスが接触すると、ウエハWの表面にTMAガスの原子層あるいは分子層が吸着する。そして、ウエハWに吸着しなかったTMAガスは、排気口16、21を介して反応管12の外部に排出される。   At this time, the gas discharge port 52 is located on the side of each wafer W, and the holding plate 31, rather than the region between the outer edge of the holding plate 31 of the wafer boat 11 and the inner wall of the inner tube 12 b, The region between 31 is wider. Therefore, as shown in FIG. 4, the TMA gas supplied into the reaction tube 12 is a holding plate that is wider than the narrow region between the outer edge of the holding plate 31 of the wafer boat 11 and the inner wall of the inner tube 12b. Try to flow through the region between 31 and 31. That is, it can be said that the TMA gas discharged from each gas discharge port 52 is regulated to be diffused upward and downward by the holding plates 31 and 31 as shown in FIG. Therefore, the TMA gas flows toward the exhaust port 16 through the upper side of the wafer W in a laminar state. When the TMA gas comes into contact with the wafer W in this way, the atomic layer or molecular layer of the TMA gas is adsorbed on the surface of the wafer W. Then, the TMA gas that has not been adsorbed on the wafer W is discharged to the outside of the reaction tube 12 through the exhaust ports 16 and 21.

次いで、TMAガスの供給を停止すると共に、図6に示すように、反応管12内にN2ガスを供給して、当該反応管12内の雰囲気を置換する。続いて、N2ガスの供給を停止して、図7に示すように、反応管12内にO3ガスを供給する。このO3ガスは、同様にガス吐出口52の各々からウエハWに向かって層流の状態で通流し、各々のウエハWに吸着したTMAガスの成分を酸化してアルミナ(Al2O3)からなる反応生成物を生成する。そして、O3ガスの供給を停止した後、N2ガスにより反応管12の雰囲気を置換する。こうしてTMAガス、N2ガス、O3ガス及びN2ガスをこの順番で供給する供給サイクルを複数回行って、前記反応生成物の層を積層する。   Next, the supply of TMA gas is stopped, and as shown in FIG. 6, N 2 gas is supplied into the reaction tube 12 to replace the atmosphere in the reaction tube 12. Subsequently, the supply of N2 gas is stopped, and O3 gas is supplied into the reaction tube 12 as shown in FIG. Similarly, this O3 gas flows in a laminar state from each of the gas discharge ports 52 toward the wafer W, oxidizes the components of the TMA gas adsorbed on each wafer W, and produces a reaction made of alumina (Al2O3). Produce things. After the supply of O3 gas is stopped, the atmosphere in the reaction tube 12 is replaced with N2 gas. In this way, a supply cycle for supplying TMA gas, N 2 gas, O 3 gas and N 2 gas in this order is performed a plurality of times, thereby laminating the reaction product layers.

その後、図8に示すように、同様にして反応管12内に層流の状態でTEMAHfガスを供給して、ウエハWの表面にこのガスを吸着させる。しかる後、N2ガス及びO3ガスをこの順番で供給して、ウエハWの表面に酸化ハフニウム(HfO2)からなる反応生成物を形成する。そして、これらガスを順番に供給する供給サイクルを複数回行って、酸化ハフニウムの反応生成物を積層して薄膜を形成する。その後、反応管12内を大気雰囲気に戻した後、ウエハボート11を下降させ、搬送アーム60によりウエハWを取り出す。   Thereafter, as shown in FIG. 8, the TEMAHf gas is supplied in a laminar flow into the reaction tube 12 in the same manner, and this gas is adsorbed on the surface of the wafer W. Thereafter, N2 gas and O3 gas are supplied in this order to form a reaction product made of hafnium oxide (HfO2) on the surface of the wafer W. And the supply cycle which supplies these gas in order is performed in multiple times, the reaction product of hafnium oxide is laminated | stacked, and a thin film is formed. Thereafter, the inside of the reaction tube 12 is returned to the air atmosphere, and then the wafer boat 11 is lowered and the wafer W is taken out by the transfer arm 60.

上述の実施の形態によれば、ウエハボート11に保持される各ウエハWに、各ウエハWに対応する高さ位置に形成されたガス吐出口52から処理ガスを吐出して熱処理を行う縦型熱処理装置において、複数の円形状の保持板31を積層すると共に各保持板31に複数のウエハWを保持し、これら複数の保持板31の周縁部を支持する支柱32を保持板31の外縁から飛び出さないように構成している。従って、保持板31と反応管12との間の隙間を狭くできることから、保持板31の外方を通過する、処理に寄与しない処理ガスの量が抑えられる。このため処理ガスの有効利用を図ること、言い換えれば処理ガスを効率的にウエハWの表面に供給できる。また、処理ガスの有効利用を図ることによって薄膜を速やかに形成できるので、生産性を向上させることができる。更に、各々のウエハWに十分な量の処理ガスが供給されることから、ウエハWの面内において均一な膜厚の薄膜を得ることができるし、ウエハWの表面に溝やホールなどの凹部が形成されていたとしても、当該凹部内に処理ガスが行き渡るので、大量の処理ガスを供給しなくても、カバレッジ性(被覆性)の高い薄膜を得ることができる。また、この保持板31はウエハW周辺を支持するものであり、板状の保持板と異なりウエハWの裏面への成膜が可能となるので、ウエハWが板厚方向(上下方向)に反ったりすることを抑えることができる。   According to the above-described embodiment, the vertical type in which the processing gas is discharged from the gas discharge port 52 formed at the height corresponding to each wafer W to each wafer W held on the wafer boat 11 to perform the heat treatment. In the heat treatment apparatus, a plurality of circular holding plates 31 are stacked, a plurality of wafers W are held on each holding plate 31, and a column 32 that supports the peripheral portions of the plurality of holding plates 31 is formed from the outer edge of the holding plate 31. It is configured not to jump out. Therefore, since the gap between the holding plate 31 and the reaction tube 12 can be narrowed, the amount of the processing gas that does not contribute to the processing and passes outside the holding plate 31 can be suppressed. For this reason, the processing gas can be effectively used, in other words, the processing gas can be efficiently supplied to the surface of the wafer W. Further, since the thin film can be formed quickly by effectively using the processing gas, productivity can be improved. Furthermore, since a sufficient amount of processing gas is supplied to each wafer W, a thin film having a uniform film thickness can be obtained within the surface of the wafer W, and recesses such as grooves and holes can be formed on the surface of the wafer W. Even if formed, since the processing gas is distributed in the recess, a thin film with high coverage (coverability) can be obtained without supplying a large amount of processing gas. Further, the holding plate 31 supports the periphery of the wafer W, and unlike the plate-like holding plate, the film can be formed on the back surface of the wafer W, so that the wafer W warps in the plate thickness direction (vertical direction). Can be suppressed.

各々の保持板31に複数枚のウエハWを配置しているので、保持板31に一枚のウエハWを配置する場合よりも、一枚のウエハWに要する装置のフットプリントを抑えることができるため装置のコストを低減できる。即ち、各々の保持板31に積載するウエハWの枚数を5枚にすると、一枚のウエハWを収納したスロットを棚状に積載する従来の装置と比べて、装置の処理能力が5倍になるが、装置のフットプリント(反応管12の外径寸法)は3倍程度で済む。そのため、例えばクリーンルームの天井面により縦型熱処理装置(ウエハボート11)の高さ寸法が制限されていても、当該縦型熱処理装置にて処理できるウエハWの枚数を増やすことができるので、一枚のウエハWを処理するために必要な装置のコストを低減できる。言い換えると、本発明は、一度に処理できるウエハWの枚数を従来の装置よりも数倍程度にまで増やすことができる。また、この例では直径寸法が100mmサイズの5枚のウエハWを各々保持板31に周方向に並べているので、一般的な300mmサイズウエハ用の装置(反応管12や加熱炉本体14)を流用でき、かつ300mmサイズのウエハWで確立されたプロセス条件、装置運転条件がそのまま利用可能である。   Since a plurality of wafers W are arranged on each holding plate 31, the footprint of the apparatus required for one wafer W can be suppressed as compared with the case where one wafer W is arranged on the holding plate 31. Therefore, the cost of the apparatus can be reduced. In other words, when the number of wafers W loaded on each holding plate 31 is five, the processing capacity of the apparatus is five times that of a conventional apparatus in which slots containing a single wafer W are stacked in a shelf shape. However, the footprint of the apparatus (the outer diameter of the reaction tube 12) can be about three times. Therefore, for example, even if the height of the vertical heat treatment apparatus (wafer boat 11) is limited by the ceiling surface of the clean room, the number of wafers W that can be processed by the vertical heat treatment apparatus can be increased. The cost of the apparatus required for processing the wafer W can be reduced. In other words, the present invention can increase the number of wafers W that can be processed at one time to several times that of the conventional apparatus. In this example, since five wafers W each having a diameter of 100 mm are arranged in the circumferential direction on the holding plate 31, a general apparatus for 300 mm wafers (reaction tube 12 and heating furnace body 14) is used. The process conditions and apparatus operating conditions established for the 300 mm size wafer W can be used as they are.

このように処理ガスの有効利用を図るにあたって、ウエハボート11の保持板31の外縁と内管12bの内壁との間の離間寸法tは、内管12b内においてウエハボート11を回転させることのできる程度の狭い寸法、具体的には3〜8mm好ましくは5〜8mmである。従って、反応管12の径方向で見た時の支柱32の外側部位は、保持板31の外縁よりも内側寄りに位置していても良いし、あるいは支柱32が保持板31の外縁よりも飛び出していてもその寸法がわずかであり、本発明の効果が得られる範囲であれば、特許請求の範囲に含まれる。具体的には、支柱32は、保持板31の外縁から外側に3mm飛び出した位置よりも内側寄りであれば良い。   In this way, in order to effectively use the processing gas, the separation dimension t between the outer edge of the holding plate 31 of the wafer boat 11 and the inner wall of the inner tube 12b can rotate the wafer boat 11 in the inner tube 12b. The dimension is as narrow as possible, specifically 3 to 8 mm, preferably 5 to 8 mm. Therefore, the outer part of the support column 32 when viewed in the radial direction of the reaction tube 12 may be located closer to the inner side than the outer edge of the holding plate 31, or the support column 32 protrudes from the outer edge of the holding plate 31. However, the dimensions are very small and are within the scope of the claims as long as the effects of the present invention can be obtained. Specifically, the support column 32 may be closer to the inner side than the position protruding 3 mm outward from the outer edge of the holding plate 31.

以上の例では、各々の保持板31に5枚のウエハWを載置したが、図9に示すように3枚のウエハWを載置しても良い。この場合には、1枚のウエハWを収納したスロットを棚状に積層する従来の装置と比べて、装置の処理能力が3倍になるが、装置のフットプリントは2.2倍程度で済むので、既述の例と同様に装置のコストを低減できる。また、保持板31に載置するウエハWの枚数としては、2枚以上であっても良い。保持板31に2枚のウエハWを載置する場合であっても、既述の例と同様に処理ガスの有効利用を図ることができる。   In the above example, five wafers W are placed on each holding plate 31, but three wafers W may be placed as shown in FIG. In this case, the processing capacity of the apparatus is three times that of a conventional apparatus in which slots containing a single wafer W are stacked in a shelf shape, but the footprint of the apparatus is only about 2.2 times. Therefore, the cost of the apparatus can be reduced as in the above example. Further, the number of wafers W placed on the holding plate 31 may be two or more. Even when two wafers W are placed on the holding plate 31, the processing gas can be effectively used in the same manner as in the above-described example.

更に、ウエハWとしては、既述のように100mmサイズ以外にも、外径寸法が通常の300mmのウエハWを用いても良い。更にまた、例えば太陽電池用の多結晶シリコンからなる角型のウエハWであっても、当該ウエハWの外形に対応する基板載置領域33を保持板31に形成することにより、保持板31、31間において層流状態のガス流を形成できるので、ウエハWの外形に寄らずに均一な処理を行うことができ、また処理ガスの有効利用を図ると共に装置のコストを低減できる。図10は、このような角型のウエハWを保持板31に複数枚例えば3枚載置した一例を示している。   Further, as described above, a wafer W having a normal outer diameter of 300 mm may be used in addition to the 100 mm size as described above. Furthermore, for example, even in the case of a rectangular wafer W made of polycrystalline silicon for solar cells, by forming a substrate placement region 33 corresponding to the outer shape of the wafer W on the holding plate 31, Since a laminar gas flow can be formed between 31, uniform processing can be performed without depending on the outer shape of the wafer W, the processing gas can be used effectively, and the cost of the apparatus can be reduced. FIG. 10 shows an example in which a plurality of, for example, three such rectangular wafers W are mounted on the holding plate 31.

また、既述の例では、原子層あるいは分子層の処理ガスをウエハWの表面に吸着させ、次いでこの処理ガスを酸化して反応生成物を形成するALD(Atomic Layer Deposition)法を用いて薄膜を形成したが、CVD(Chemical Vapor Deposition)法により薄膜を形成しても良い。この場合には、例えば既述のTMAガスとO3とが同時に反応管12内に供給される。   In the example described above, a thin film is formed by using an ALD (Atomic Layer Deposition) method in which an atomic layer or molecular layer processing gas is adsorbed on the surface of the wafer W, and then this processing gas is oxidized to form a reaction product. However, a thin film may be formed by a CVD (Chemical Vapor Deposition) method. In this case, for example, the aforementioned TMA gas and O3 are supplied into the reaction tube 12 at the same time.

更に、ウエハWの表面に薄膜を形成する成膜方法に本発明の縦型熱処理装置を適用したが、処理ガスとして例えばO2ガス、H2Oガスを供給し、ウエハWの表面のSi(シリコン)の熱酸化処理を行う場合に本発明を適用しても良い。
また、既述のガス吐出口52としては、ウエハボート11の長さ方向に沿うようにスリット状に形成しても良い。また、反応管12を二重管構造としたが、ウエハボート11の長さ方向に夫々伸びるダクト状のガス供給部及び排気部を反応管12の外側に夫々気密に配置すると共に、これらガス供給部及び排気部と夫々連通するように反応管12の側面にガス吐出口52及び排気口16を上下方向に亘って複数箇所に形成しても良い。図11及び図12は、このような構成例の要部を示している。図11及び図12において80は排気ダクト、81はガス供給部である。尚、図12では排気ダクト80について一部を切り欠いて内部の排気口16を示している。
Further, the vertical heat treatment apparatus of the present invention is applied to a film forming method for forming a thin film on the surface of the wafer W. For example, O2 gas or H2O gas is supplied as a processing gas, and Si (silicon) on the surface of the wafer W is supplied. The present invention may be applied when performing a thermal oxidation treatment.
Further, the gas discharge port 52 described above may be formed in a slit shape along the length direction of the wafer boat 11. In addition, although the reaction tube 12 has a double tube structure, a duct-like gas supply unit and an exhaust unit that extend in the length direction of the wafer boat 11 are arranged on the outside of the reaction tube 12 in an airtight manner. The gas discharge ports 52 and the exhaust ports 16 may be formed at a plurality of locations on the side surface of the reaction tube 12 in the vertical direction so as to communicate with the respective portions and the exhaust portion. 11 and 12 show the main part of such a configuration example. 11 and 12, 80 is an exhaust duct, and 81 is a gas supply unit. In FIG. 12, the exhaust duct 80 is partially cut away to show the internal exhaust port 16.

更にまた、ウエハボート11に対してウエハWの受け渡しを行うにあたって、保持板31に切り欠き部34を各々形成したが、基板載置領域33毎に例えば3箇所に貫通孔を形成し、昇降自在に構成された3本のピンを備えた図示しない受け渡し機構をウエハボート11の下方側に設けても良い。この場合には、例えば反応管12の下方位置にウエハボート11を位置させて、搬送アーム60により基板載置領域33の上方側にウエハWが搬送されると、当該ウエハボート11の下方側から3本のピンが複数の保持板31の貫通孔を貫通して上昇し、搬送アーム60からウエハWを受け取る。そして、搬送アーム60を後退させると共にピンを下降させると、基板載置領域33にウエハWが載置される。その後、下方側の保持板31に対してウエハWが順次載置される。ウエハボート11からウエハWを取り出す時は、ウエハボート11の下方側のウエハWから順次搬送アーム60に受け渡される。   Furthermore, when the wafer W is transferred to the wafer boat 11, the notches 34 are respectively formed in the holding plate 31, but through holes are formed in, for example, three places for each substrate placement region 33, and the elevator can be raised and lowered. A transfer mechanism (not shown) having three pins configured as described above may be provided on the lower side of the wafer boat 11. In this case, for example, when the wafer boat 11 is positioned below the reaction tube 12 and the wafer W is transferred to the upper side of the substrate placement region 33 by the transfer arm 60, the wafer boat 11 is moved from the lower side of the wafer boat 11. Three pins rise through the through holes of the plurality of holding plates 31 and receive the wafer W from the transfer arm 60. Then, when the transfer arm 60 is retracted and the pins are lowered, the wafer W is placed on the substrate placement region 33. Thereafter, the wafers W are sequentially placed on the lower holding plate 31. When taking out the wafers W from the wafer boat 11, the wafers W on the lower side of the wafer boat 11 are sequentially transferred to the transfer arm 60.

既述の例において、ウエハWの表面にアルミナからなる反応生成物と酸化ハフニウムからなる反応生成物を積層した後、必要に応じて、更にこれら反応生成物を積層し、ラミネート構造の薄膜を形成しても良い。また、ウエハWとして例えば外径寸法が100mmのサファイヤ基板を用いて、このウエハWに対してMO−CVD(Metal Organic Chemical Vapor Deposition)によりGaN(窒化ガリウム)膜を成膜してLED(Light Emitting Diode)デバイスを作製するプロセスに本発明を適用しても良い。   In the example described above, after laminating a reaction product made of alumina and a reaction product made of hafnium oxide on the surface of the wafer W, if necessary, these reaction products are laminated to form a thin film having a laminated structure. You may do it. For example, a sapphire substrate having an outer diameter of 100 mm is used as the wafer W, a GaN (gallium nitride) film is formed on the wafer W by MO-CVD (Metal Organic Chemical Vapor Deposition), and an LED (Light Emitting) is formed. The present invention may be applied to a process for manufacturing a diode device.

更に、既述の各例では保持板31に複数枚のウエハWを載置したが、図13に示すように、保持板31に1枚のウエハWを載置するようにしても良い。具体的には、保持板31の基板載置領域33がウエハWと同心円状となるように形成されると共に、当該保持板31の外縁部がウエハWの外周部よりも内管12b側に伸び出して、保持板31の外縁と内管12bの内壁との間の離間寸法tが既述の例と同様に、互いに隣接する保持板31、31間の離間寸法kよりも短くなるように設定される。各々の支柱32は、この保持板31に対してウエハWの搬入出ができるように配置される。この場合においても、処理ガスが保持板31と内管12bとの間の隙間領域よりも保持板31、31間の領域を通流しようとするので、処理ガスの有効利用が図られる。尚、図13において、外管12aについては記載を省略している。   Further, in each of the examples described above, a plurality of wafers W are placed on the holding plate 31, but as shown in FIG. 13, one wafer W may be placed on the holding plate 31. Specifically, the substrate placement region 33 of the holding plate 31 is formed to be concentric with the wafer W, and the outer edge portion of the holding plate 31 extends to the inner tube 12b side from the outer peripheral portion of the wafer W. The separation dimension t between the outer edge of the holding plate 31 and the inner wall of the inner tube 12b is set to be shorter than the separation dimension k between the holding plates 31 and 31 adjacent to each other, as in the example described above. Is done. Each column 32 is arranged so that the wafer W can be carried in and out of the holding plate 31. Even in this case, since the processing gas tends to flow through the region between the holding plates 31 and 31 rather than the gap region between the holding plate 31 and the inner tube 12b, the processing gas can be effectively used. In FIG. 13, the outer tube 12a is not shown.

W ウエハ
11 ウエハボート
12 反応管
12a 外管
12b 内管
21 排気口
31 保持板
32 支柱
33 載置領域
52 ガス吐出口
W Wafer 11 Wafer boat 12 Reaction tube 12a Outer tube 12b Inner tube 21 Exhaust port 31 Holding plate 32 Support column 33 Placement area 52 Gas discharge port

Claims (2)

複数の基板を棚状に保持した基板保持具を、その周囲に加熱部が配置された縦型の反応管内に搬入して、基板に対して熱処理を行う縦型熱処理装置において、
前記反応管の長さ方向に沿って設けられ、前記基板保持具に保持される各基板に処理ガスを供給するために、各基板に対応する高さ位置にガス吐出口が形成された処理ガス供給部と、
前記反応管の中心に対して前記ガス吐出口とは反対側位置に形成された排気口と、を備え、
前記基板保持具は、平面で見たときに前記反応管の周方向に沿って各々複数の基板載置領域が形成され、互に積層された複数の円形状の保持板と、保持板の周縁部を貫通させて各保持板を支持する支持部と、を備え、反応管の径方向で見た時の前記支柱の外側部位は、保持板の外縁と同じ位置であるかまたは内側寄りであり、
前記保持板の外縁と前記反応管の内壁との間の離間寸法は、前記保持板上に支持される基板の上面と当該基板の上方側に対向する保持板の下面との間の間隔寸法よりも短く設定され、
各基板載置領域は、前記反応管の径方向で見た時の前記基板保持具上の基板の外縁と前記保持板の輪郭線とが互いに揃うように形成され、
各保持板における各々の基板載置領域に載置される基板の中央部に裏面側から対向する部位と、当該部位から見て前記保持板の外周側の部位とには、各基板載置領域に対して前記基板の受け渡しを行う搬送機構が通り抜けるための切り欠き部が形成されていることを特徴とする縦型熱処理装置。
In a vertical heat treatment apparatus for carrying a heat treatment on a substrate by carrying a substrate holder holding a plurality of substrates in a shelf shape into a vertical reaction tube in which a heating unit is arranged around the substrate holder,
A process gas provided along a length direction of the reaction tube and having a gas discharge port formed at a height corresponding to each substrate in order to supply a process gas to each substrate held by the substrate holder A supply section;
An exhaust port formed at a position opposite to the gas discharge port with respect to the center of the reaction tube,
The substrate holder includes a plurality of circular holding plates each formed with a plurality of substrate placement regions along the circumferential direction of the reaction tube when viewed in a plane, and a peripheral edge of the holding plate A support portion that penetrates the portion and supports each holding plate, and the outer portion of the column when viewed in the radial direction of the reaction tube is at the same position as the outer edge of the holding plate or closer to the inside ,
The distance between the outer edge of the holding plate and the inner wall of the reaction tube is larger than the distance between the upper surface of the substrate supported on the holding plate and the lower surface of the holding plate facing the upper side of the substrate. Is also set short,
Each substrate placement region is formed so that the outer edge of the substrate on the substrate holder and the outline of the holding plate are aligned with each other when viewed in the radial direction of the reaction tube,
Each substrate placement region includes a portion facing the center portion of the substrate placed on each substrate placement region of each holding plate from the back side and a portion on the outer peripheral side of the holding plate as viewed from the portion. A vertical heat treatment apparatus is characterized in that a notch is formed through which a transfer mechanism for transferring the substrate passes.
前記支柱の外側部位は、保持板の外縁と同じ位置であるかまたは内側寄りであることに代えて、保持板の外縁から外側に3mm飛び出した位置よりも内側寄りであることを特徴とする請求項1に記載の縦型熱処理装置。   The outer portion of the support column is located at the same position as the outer edge of the holding plate or at the inner side, and is closer to the inner side than the position protruding 3 mm from the outer edge of the holding plate. Item 2. The vertical heat treatment apparatus according to Item 1.
JP2014122723A 2014-06-13 2014-06-13 Vertical heat treatment equipment Expired - Fee Related JP5895974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014122723A JP5895974B2 (en) 2014-06-13 2014-06-13 Vertical heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014122723A JP5895974B2 (en) 2014-06-13 2014-06-13 Vertical heat treatment equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010219726A Division JP5565242B2 (en) 2010-09-29 2010-09-29 Vertical heat treatment equipment

Publications (3)

Publication Number Publication Date
JP2014212331A true JP2014212331A (en) 2014-11-13
JP2014212331A5 JP2014212331A5 (en) 2014-12-25
JP5895974B2 JP5895974B2 (en) 2016-03-30

Family

ID=51931821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014122723A Expired - Fee Related JP5895974B2 (en) 2014-06-13 2014-06-13 Vertical heat treatment equipment

Country Status (1)

Country Link
JP (1) JP5895974B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449219A (en) * 1987-08-20 1989-02-23 Fujitsu Ltd Manufacture of semiconductor
JPH0294631A (en) * 1988-09-30 1990-04-05 Mitsubishi Electric Corp Formation of thin film and apparatus therefor
JPH05251391A (en) * 1992-03-04 1993-09-28 Tokyo Electron Tohoku Kk Plasma processing device for semiconductor wafer
JP2005056908A (en) * 2003-08-05 2005-03-03 Hitachi Kokusai Electric Inc Substrate treatment system
US20100068893A1 (en) * 2008-09-17 2010-03-18 Tokyo Electron Limited Film deposition apparatus, film deposition method, and computer readable storage medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449219A (en) * 1987-08-20 1989-02-23 Fujitsu Ltd Manufacture of semiconductor
JPH0294631A (en) * 1988-09-30 1990-04-05 Mitsubishi Electric Corp Formation of thin film and apparatus therefor
JPH05251391A (en) * 1992-03-04 1993-09-28 Tokyo Electron Tohoku Kk Plasma processing device for semiconductor wafer
JP2005056908A (en) * 2003-08-05 2005-03-03 Hitachi Kokusai Electric Inc Substrate treatment system
US20100068893A1 (en) * 2008-09-17 2010-03-18 Tokyo Electron Limited Film deposition apparatus, film deposition method, and computer readable storage medium
JP2010073823A (en) * 2008-09-17 2010-04-02 Tokyo Electron Ltd Film deposition apparatus, film deposition method and computer-readable storage medium

Also Published As

Publication number Publication date
JP5895974B2 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
JP5565242B2 (en) Vertical heat treatment equipment
JP5589878B2 (en) Deposition equipment
US20180076021A1 (en) Substrate processing apparatus
KR101177192B1 (en) Film forming apparatus, film forming method and storage medium
US10961625B2 (en) Substrate processing apparatus, reaction tube and method of manufacturing semiconductor device
JP6123688B2 (en) Deposition equipment
KR101745075B1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and storage medium
JP2014201804A (en) Rotary semi-batch ald apparatus and process
JP2010084230A (en) Film deposition apparatus, substrate process apparatus, and turntable
KR20120063484A (en) Plasma processing apparatus and gas supply mechanism for plasma processing apparatus
JP2010087476A (en) Film forming device, substrate processing device, method for forming film and storage media
JP2010062371A (en) Film deposition apparatus, substrate process apparatus, film deposition method, and storage medium
JP2012054508A (en) Film deposition apparatus
JP5093078B2 (en) Deposition equipment
US20110309562A1 (en) Support structure and processing apparatus
JP2013084898A (en) Manufacturing method of semiconductor device and substrate processing apparatus
JP2012084598A (en) Film deposition device, film deposition method, and storage medium
US20180182652A1 (en) Substrate processing apparatus, substrate processing method, and substrate processing system
JP2011029441A (en) Device and method for treating substrate
TW201442114A (en) Substrate processing apparatus and method of supplying and exhausting gas
JP2018085392A (en) Substrate processing device
WO2012153591A1 (en) Film-forming apparatus
JP5895974B2 (en) Vertical heat treatment equipment
JPWO2019038974A1 (en) Substrate processing apparatus, reaction tube, substrate processing method, and semiconductor device manufacturing method
JP6084070B2 (en) Semiconductor device manufacturing method, program, and substrate processing apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160215

R150 Certificate of patent or registration of utility model

Ref document number: 5895974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees