JP2014211650A - Manufacturing method for light diffusion sheet - Google Patents

Manufacturing method for light diffusion sheet Download PDF

Info

Publication number
JP2014211650A
JP2014211650A JP2014151700A JP2014151700A JP2014211650A JP 2014211650 A JP2014211650 A JP 2014211650A JP 2014151700 A JP2014151700 A JP 2014151700A JP 2014151700 A JP2014151700 A JP 2014151700A JP 2014211650 A JP2014211650 A JP 2014211650A
Authority
JP
Japan
Prior art keywords
sheet
light
crests
resin
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014151700A
Other languages
Japanese (ja)
Other versions
JP5854094B2 (en
Inventor
敏雄 長沢
Toshio Nagasawa
敏雄 長沢
俊樹 岡安
Toshiki Okayasu
俊樹 岡安
江梨子 遠藤
Eriko Endo
江梨子 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp filed Critical Oji Holdings Corp
Priority to JP2014151700A priority Critical patent/JP5854094B2/en
Publication of JP2014211650A publication Critical patent/JP2014211650A/en
Application granted granted Critical
Publication of JP5854094B2 publication Critical patent/JP5854094B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Landscapes

  • Physics & Mathematics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

PROBLEM TO BE SOLVED: To further improve the anisotropic diffusion capability of a light diffusion sheet of synthetic resin having an approximately wavy or approximately cylindrical rough pattern, in which crests are formed in series in one direction and a crest and a trough are repeated in a direction orthogonal to this direction.SOLUTION: A sheet having a series of crests in one direction and in which a crest and a trough are repeated in a direction orthogonal to the series of crests is used as an original fabric sheet. Fine particles are attached to the crest parts or trough parts of the original fabric sheet. In this condition, the entire surface of the original fabric sheet is subjected to a conducting process such a metal deposition. This is then electrically plated, thereby forming a mold of a surface shape in which a waving pattern and fine roughness are combined. By molding a resin sheet by this mold, a light diffusion sheet is obtained such that crests are formed in series in one direction, a crest and a trough are repeated in a direction orthogonal to this direction, and fine roughness is imparted to at least part of the surface. Thus, a manufacturing method for a light diffusion sheet is provided.

Description

本発明は、ディスプレイ、照明器具などに使用され、表面に凹凸模様を有する光拡散シートに関する。具体的には、一方向に山が連続しており、それに直交する方向に山と谷が繰り返される、略波形あるいは略半円柱形の凹凸模様を有する光拡散シートに関する。 The present invention relates to a light diffusing sheet that is used in displays, lighting fixtures, and the like and has a concavo-convex pattern on the surface. Specifically, the present invention relates to a light diffusing sheet having a substantially corrugated or substantially semi-cylindrical concavo-convex pattern in which peaks are continuous in one direction and peaks and valleys are repeated in a direction perpendicular thereto.

波状の凹凸パターンが表面に形成された凹凸模様形成シートは、従来から光拡散体や反射防止体などとして、利用されている。
例えば、特許文献1には、凹凸模様が形成された光拡散体として、光透過性基材の少なくとも片面に突起体が複数形成され、突起体の高さが2〜20μm、突起体の頂点の間隔が1〜10μm、突起体のアスペクト比が1以上のものが開示されている。また、突起体を形成する方法として、光透過性基材の表面を、KrFエキシマレーザー等のエネルギービームの照射により加工する方法が開示されている。
A concavo-convex pattern-forming sheet having a wavy concavo-convex pattern formed on the surface thereof has been conventionally used as a light diffuser, an antireflective body or the like.
For example, in Patent Document 1, a plurality of protrusions are formed on at least one surface of a light-transmitting substrate as a light diffusing body having a concavo-convex pattern, the height of the protrusion is 2 to 20 μm, and the apex of the protrusion is A material having an interval of 1 to 10 μm and an aspect ratio of protrusions of 1 or more is disclosed. Further, as a method for forming a protrusion, a method is disclosed in which the surface of a light-transmitting substrate is processed by irradiation with an energy beam such as a KrF excimer laser.

特許文献2には、波状の凹凸からなる異方性拡散パターンが片面に形成された光拡散体が開示されている。異方性拡散パターンを形成する方法として、感光性樹脂のフィルムにレーザー光を照射して露光し、現像して、片面に凹凸が形成されたマスターホログラムを形成し、そのマスターホログラムを金型に転写し、その金型を用いて樹脂を成形する方法が開示されている。 Patent Document 2 discloses a light diffuser in which an anisotropic diffusion pattern made of wavy irregularities is formed on one side. As a method of forming an anisotropic diffusion pattern, a photosensitive resin film is irradiated with a laser beam, exposed, developed, and a master hologram having irregularities formed on one side is formed, and the master hologram is formed into a mold. A method of transferring and molding a resin using the mold is disclosed.

特許文献3、4には、熱収縮性フィルムの表面に薄膜を形成し、熱収縮することにより、表面に畝状(波状)の凹凸を形成する技術が開示されている。これらの技術も、波の山は一方向に伸びており、該方向と、それに直交する方向とでは、光の拡散の度合いが異なり、異方性拡散パターンが形成されている。
特許文献5には、金型による成形などにより、不規則な波形を形成した異方性拡散シートが開示されている。
Patent Documents 3 and 4 disclose a technique for forming a ridge-like (wave-like) unevenness on the surface by forming a thin film on the surface of the heat-shrinkable film and thermally shrinking. In these techniques, the wave peaks extend in one direction, and the degree of light diffusion differs between the direction and the direction perpendicular to the direction, and an anisotropic diffusion pattern is formed.
Patent Document 5 discloses an anisotropic diffusion sheet in which an irregular waveform is formed by molding with a mold or the like.

特開平10−123307号公報JP-A-10-123307 特開2006−261064号公報Japanese Patent Application Laid-Open No. 2006-261064 特開2008−299072号公報JP 2008-299072 A 特開2008−302591号公報JP 2008-302591 A 特開2009−25438号公報JP 2009-25438 A

ディスプレイ輝度向上用のプリズムシートの場合には、光拡散シートと異なり、山の頂部と頂部の間隔(ピッチ)が概略10μmを超えており、頂部の形状は、角ばった形状のものも多く提案されている。また、太陽電池や発光ダイオードのような分野では、光拡散、光閉じ込め、光取り出し効率などの種々の目的で、シリコーン等の半導体や電極の表面にピラミッド状や円錐状の凹凸が形成されることがある。
一方、前記特許文献2〜5のような、合成樹脂性フィルムで形成され、凹凸が1〜10μm程度である光拡散シートの場合、合成樹脂の成形という手段を取るため、表面が角ばった鋭利な形状にはならない。そのため、異方性拡散の効果は制限されている。即ち、図1において、波形の斜面にあたるdのような光は屈折したり反射したりしてX軸方向に拡散されるが、波形のなだらかな頂部においては、a〜cように、拡散しない光が多く存在する。
In the case of a prism sheet for improving display brightness, unlike the light diffusion sheet, the interval (pitch) between the tops of the peaks exceeds approximately 10 μm, and many tops with angular shapes have been proposed. ing. Also, in fields such as solar cells and light-emitting diodes, pyramidal or conical irregularities are formed on the surface of semiconductors such as silicone and electrodes for various purposes such as light diffusion, light confinement, and light extraction efficiency. There is.
On the other hand, in the case of a light diffusing sheet formed of a synthetic resin film as in Patent Documents 2 to 5 and having an unevenness of about 1 to 10 μm, the surface of the light diffusion sheet is sharp because it takes a means of molding the synthetic resin. It does not become a shape. Therefore, the effect of anisotropic diffusion is limited. That is, in FIG. 1, light such as d that hits the corrugated slope is refracted and reflected and diffused in the X-axis direction, but light that does not diffuse as a to c at the gentle top of the corrugation. There are many.

そこで本発明は、一方向に山が連続しており、それに直交する方向に山と谷が繰り返される、略波形または略半円柱形の凹凸模様を有する合成樹脂性の光拡散シートにおいて、異方性拡散の能力を更に高めることを課題とする。 Accordingly, the present invention provides a synthetic resinous light diffusion sheet having a substantially corrugated or substantially semi-cylindrical concavo-convex pattern in which peaks are continuous in one direction and peaks and valleys are repeated in a direction perpendicular thereto. The task is to further enhance the ability of sex diffusion.

上記課題を解決するため本発明は、以下の第1〜第3の発明、即ち、[1]〜[3]の発明の構成を採用する。
[1]一方向に山が連続しており、それに直交する方向に山と谷が繰り返される、略波形の凹凸模様を有するシートを原反シートとし、該原反シートの山部または谷部に微細粒子を付着させ、その状態で、該原反シート表面全体を金属蒸着などの導電化処理を行い、それに電気メッキを行うことにより、波形模様と微細凹凸が複合した表面形状の鋳型を製造し、該鋳型により樹脂シートを成形することによって、一方向に山が連続しており、該方向に直交する方向に、山と谷が繰り返され、表面の少なくとも一部に微細凹凸を形成した光拡散シートを得る光拡散シートの製造方法。
[2]前記原反シートの山部または谷部に微細粒子を付着させる方法が、前記原反シートに、微細粒子を分散した水分散液を塗工し、乾燥することによって、粒子を付着させるものである[1]に記載の光拡散シートの製造方法。
[3]前記原反シートに、微細粒子を分散した水分散液を塗工する前に、前記原反シートの表面の一部を撥水性にしておく[1]または[2]に記載の光拡散シートの製造方法。
In order to solve the above-mentioned problems, the present invention employs the following first to third inventions, that is, the configurations of the inventions [1] to [3].
[1] A sheet having a substantially corrugated pattern in which peaks and valleys are repeated in one direction and peaks and valleys are repeated in a direction perpendicular thereto is used as a raw sheet, and a peak or a valley of the raw sheet is formed. In this state, the entire surface of the original sheet is subjected to a conductive treatment such as metal vapor deposition, and electroplating is performed to produce a mold having a surface shape in which corrugated patterns and fine irregularities are combined. , By forming a resin sheet with the mold, the ridges are continuous in one direction, the ridges and valleys are repeated in the direction orthogonal to the direction, and light diffusion that forms fine irregularities on at least a part of the surface A method for producing a light diffusion sheet to obtain a sheet.
[2] In the method of attaching fine particles to the crests or troughs of the raw sheet, the particles are attached by applying an aqueous dispersion in which fine particles are dispersed to the original sheet and drying. The manufacturing method of the light-diffusion sheet | seat as described in [1].
[3] The light according to [1] or [2], wherein a part of the surface of the original sheet is made water-repellent before applying an aqueous dispersion in which fine particles are dispersed to the original sheet. A method for manufacturing a diffusion sheet.

本発明により、一方向に山が連続しており、それに直交する方向に山と谷が繰り返される、略波形あるいは略半円柱形の凹凸模様を有する合成樹脂性の光拡散シートにおいて、光が直進する領域が少なくなり、異方性拡散の能力が更に高まる。 According to the present invention, in a synthetic resinous light diffusing sheet having a substantially corrugated or substantially semi-cylindrical concavo-convex pattern in which peaks are continuous in one direction and peaks and valleys are repeated in a direction perpendicular thereto, light travels straight. The area to be reduced is reduced, and the ability of anisotropic diffusion is further enhanced.

光の拡散効果を示す概念図Conceptual diagram showing the light diffusion effect 断面形状が略半円柱状形の凹凸を有する原反シートの模式図Schematic diagram of an original fabric sheet having irregularities with a substantially semi-cylindrical cross section 断面形状が略波形の凹凸を有する原反シートの模式図Schematic diagram of an original sheet having irregularities with a substantially wavy cross-sectional shape 図3のY方向に直角な面で切断した断面模式図Cross-sectional schematic diagram cut along a plane perpendicular to the Y direction in FIG. 微細凹凸を形成した本発明の光拡散シートの模式図Schematic diagram of the light diffusion sheet of the present invention having fine irregularities formed

本発明は異方性拡散シートに関するものであるが、本明細書においては、光を拡散させる一方向を拡散方向と表現し、それに対して直角な方向を非拡散方向と表現する。図2において、X軸方向が拡散方向、Y軸が非拡散方向である。
本発明において、「一方向に山が連続している」とは、典型的には図2のような形状を指すが、図3のようなものも含んでいる。即ち、図3において、全体として山がY軸方向に向かって連なっているという意味であり、ある部分で山の頂部がX軸に向かってうねっている状態があっても良い。
本明細書で略波形とは、図3のように、断面が概略三角形の山であるが、頂部が丸みを帯びているものを示す。断面がサインカーブのような形状もこれに該当する。
また、略半円柱形とは、図2のように、山の断面形状が大体半円形状であるものを意味し、半円よりも深い円に近いもの、あるいは半円よりも浅い形状であっても良い。また、前記特許文献5の図1あるいは図2のように、不規則な形状のものも含む。
Although the present invention relates to an anisotropic diffusion sheet, in this specification, one direction in which light is diffused is expressed as a diffusion direction, and a direction perpendicular to the direction is expressed as a non-diffusion direction. In FIG. 2, the X-axis direction is the diffusion direction and the Y-axis is the non-diffusion direction.
In the present invention, “a mountain is continuous in one direction” typically refers to a shape as shown in FIG. 2, but also includes a shape as shown in FIG. That is, in FIG. 3, it means that the mountains are continuous in the Y-axis direction as a whole, and there may be a state in which the top of the mountain undulates in the X-axis direction at a certain part.
In the present specification, the substantially waveform indicates a mountain having a substantially triangular cross section as shown in FIG. 3, but having a round top. This also applies to shapes whose cross section is a sine curve.
In addition, the substantially semi-cylindrical shape means that the cross-sectional shape of the mountain is almost a semicircular shape as shown in FIG. 2, and is a shape that is close to a half circle or shallower than a semicircle. May be. In addition, as shown in FIG. 1 or FIG.

図4は図3の凹凸形状をY軸方向に直角な面で切った断面図であるが、本発明において山のピッチとは、図4に示した長さLを意味する。X軸方向、Y軸方向にランダムに20箇所のLを測定し、平均化したものがピッチの平均値である。
本発明において、山の高さは、谷と谷に挟まれる山の谷からの平均的な高さのことであり、図4におけるb1とb2の平均値からB2を引いた値を多数求めて20箇所の平均値を取った値である。
本発明では、光を拡散するという目的から、ピッチの平均値は0.4〜10μmの範囲であり、高さは任意で良いが、好ましくは、0.2〜20μmの範囲である。高さは、ピッチの0.5〜2倍程度が好ましい。
4 is a cross-sectional view of the concavo-convex shape of FIG. 3 cut along a plane perpendicular to the Y-axis direction. In the present invention, the peak pitch means the length L shown in FIG. An average value of pitches is obtained by measuring 20 points at random in the X-axis direction and the Y-axis direction and averaging them.
In the present invention, the height of the mountain is an average height from the valley between the valleys between the valleys, and many values obtained by subtracting B2 from the average value of b1 and b2 in FIG. The average value of 20 locations.
In the present invention, for the purpose of diffusing light, the average value of the pitch is in the range of 0.4 to 10 μm, and the height may be arbitrary, but it is preferably in the range of 0.2 to 20 μm. The height is preferably about 0.5 to 2 times the pitch.

本発明で光拡散シートを構成する合成樹脂は特に制限なく、一般的に光学シートに使用されている樹脂が使用できる。ここで言う合成樹脂とは、熱可塑性樹脂、熱硬化性あるいは放射線硬化性などの硬化性樹脂、合成ゴムなどであり、天然物であるセルロースを原料とした半合成品も含まれる。
熱可塑性樹脂としては、ポリオレフィン系、ポリエステル系、ポリアミド系、ポリイミド系、ポリアクリル酸エステル系、ポリウレタン系など各種の汎用樹脂あるいはシリコーン樹脂、フッ素樹脂などが使用できる。拡散のみならず、輝度向上を兼ねる場合には透明樹脂が好ましく、透明樹脂としては、例えば、ポリメチルメタクリレート、ポリカーボネート、シクロオレフィンポリマー、ポリエチレンテレフタレート、ポリプロピレン、ポリスチレン、メチルメタクリレートとスチレンの共重合体などが挙げられる。
In the present invention, the synthetic resin constituting the light diffusion sheet is not particularly limited, and resins generally used for optical sheets can be used. The synthetic resin referred to here is a thermoplastic resin, a curable resin such as thermosetting or radiation curable, synthetic rubber, and the like, and includes a semi-synthetic product made from natural cellulose.
As the thermoplastic resin, various general-purpose resins such as polyolefin-based, polyester-based, polyamide-based, polyimide-based, polyacrylate ester-based, polyurethane-based resins, silicone resins, fluororesins, and the like can be used. Transparent resin is preferable when not only diffusion but also brightness improvement. Examples of the transparent resin include polymethyl methacrylate, polycarbonate, cycloolefin polymer, polyethylene terephthalate, polypropylene, polystyrene, and a copolymer of methyl methacrylate and styrene. Is mentioned.

硬化性樹脂としては、エポキシ樹脂、エポキシ・アクリル樹脂、ウレタン樹脂、ウレタン・アクリル樹脂、メラミン樹脂、フェノール樹脂、不飽和ポリエステル樹脂などが使用できる。
セルロースを原料とした半合成体としては、セルロースアセテート、レーヨンなどが挙げられる。
光拡散シートの厚さとしては、30μm〜3mm程度である。
As the curable resin, epoxy resin, epoxy / acrylic resin, urethane resin, urethane / acrylic resin, melamine resin, phenol resin, unsaturated polyester resin, and the like can be used.
Examples of the semi-synthetic material using cellulose as a raw material include cellulose acetate and rayon.
The thickness of the light diffusion sheet is about 30 μm to 3 mm.

微細凹凸の大きさは、シートの平面上から見た顕微鏡写真で、見たときの、最も大きい方向の径で判定する。凹凸が球形の場合は直径を意味する。
微細凹凸の大きさは、全体の光透過率の均一性を損なわないように、可視光線の半波長未満であることが好ましく、球状である場合は直径が200nm以下であることが好ましい。繊維状のように細長い場合では、長さが200nm以下であることが好ましい。また、微細凹凸は幾つかの粒子が凝集して存在していることが光の拡散性の観点から好ましく、特に、凝集物が間隔をおいて飛び飛びに存在することが好ましい。
微細凹凸の量は、シートを上面から電子顕微鏡で撮影し、撮影部分の面積に対して、微細凹凸部の面積が閉める割合を面積占有率とした時に、面積占有率が0.1〜10%であることが好ましい。なお、面積占有率は、任意に10箇所を測定し、平均値を取るものとし、1箇所の撮影は、10μm角の視野を1万倍で撮影する。
面積占有率で0.1%より少ないと、異方性拡散を向上する効果に乏しく、10%を超えると、大きな凹凸が不均一に発生する危険性が出てくる。同様の理由で、面積占有率は、0.5〜5%が最も好ましい。
The size of the fine irregularities is determined by the diameter in the largest direction when viewed from a micrograph viewed from the plane of the sheet. If the irregularities are spherical, it means the diameter.
The size of the fine irregularities is preferably less than a half wavelength of visible light so as not to impair the uniformity of the entire light transmittance, and in the case of a spherical shape, the diameter is preferably 200 nm or less. In the case of being elongated like a fiber, the length is preferably 200 nm or less. In addition, it is preferable that the fine irregularities are present by agglomerating some particles from the viewpoint of light diffusibility, and it is particularly preferable that the aggregates are present at intervals.
The amount of fine irregularities is 0.1 to 10% when the sheet is photographed from above with an electron microscope, and the ratio of the fine irregularities to the area of the photographed portion is defined as the area occupation ratio. It is preferable. As for the area occupancy rate, arbitrarily measure 10 points and take an average value, and shooting at one place takes a 10 μm square field of view at 10,000 times.
If the area occupancy is less than 0.1%, the effect of improving anisotropic diffusion is poor, and if it exceeds 10%, there is a risk that large unevenness will occur unevenly. For the same reason, the area occupation ratio is most preferably 0.5 to 5%.

次に、製造方法について、表面形状が略波形の場合を例として説明する。
本発明の光拡散シートは、まず、「一方向に山が連続しており、それに直交する方向に山と谷が繰り返される、略波形の凹凸模様を有する合成樹脂性のシート」を原反シートとして製造する。続いて、該原反シートの山部または谷部に微細粒子を付着させ、その状態で、該原反シート表面全体を金属蒸着などの導電化処理を行い、それに電気メッキを行うことにより、波形模様と微細凹凸が複合した表面形状の鋳型を製造する。この鋳型により樹脂シートを成形することによって、本発明の光拡散シートが完成する。
Next, the manufacturing method will be described by taking as an example the case where the surface shape is substantially corrugated.
The light diffusing sheet of the present invention is an original sheet of “a synthetic resin sheet having a substantially corrugated concavo-convex pattern in which a mountain is continuous in one direction and a mountain and a valley are repeated in a direction orthogonal thereto” Manufactured as. Subsequently, the fine particles are attached to the peaks or valleys of the original sheet, and in this state, the entire surface of the original sheet is subjected to a conductive treatment such as metal vapor deposition, and electroplating is performed thereon, thereby forming a waveform. A mold with a surface shape that combines a pattern and fine irregularities is manufactured. The light diffusion sheet of the present invention is completed by molding a resin sheet using this mold.

まず、原反シートの製造について説明する。
原反シートは本出願人による前記特許文献4に記載の方法により製造できる。
一軸方向に熱収縮性を有するフィルム基材の片面に、表面が平滑で厚さが0.05〜5μm程度の硬質層を設けて積層シートを形成し、積層シートを熱収縮させることにより硬質層が折り畳まれるように変形し、表面に波形の凹凸が発生する。
フィルム基材はポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂などの汎用樹脂を用いて、T−ダイ法またはインフレーション法により一軸方向の熱収縮率が大きくなるように延伸して製造する。
フィルム基材の厚さは0.3〜500μmが好ましい。フィルム基材の厚みが0.3μm以上であれば、凹凸パターン形成シートが破れにくくなり、500μmあれば、強度的には十分であり、これ以下であれば取り扱いも容易である。
First, manufacture of a raw fabric sheet is demonstrated.
The original fabric sheet can be manufactured by the method described in Patent Document 4 by the present applicant.
A hard layer with a smooth surface and a thickness of about 0.05 to 5 μm is formed on one side of a uniaxially heat-shrinkable film base material to form a laminated sheet. The hard layer is folded by heat shrinking the laminated sheet. As a result, the corrugated irregularities are generated on the surface.
The film base is manufactured by using a general-purpose resin such as polyethylene resin, polypropylene resin, polyester resin, polyamide resin, etc., and stretched so that the thermal shrinkage rate in the uniaxial direction is increased by the T-die method or the inflation method. To do.
The thickness of the film substrate is preferably 0.3 to 500 μm. If the thickness of the film substrate is 0.3 μm or more, the concavo-convex pattern forming sheet is hardly broken, and if it is 500 μm, the strength is sufficient, and if it is less than this, handling is easy.

硬質層を形成する物質が樹脂である場合、その樹脂は、フィルム基材を構成する樹脂よりもガラス転移温度が10℃以上高いことが好ましい。また、硬質層としては金属あるいは金属酸化物の蒸着層であっても良い。硬質層を形成する樹脂としては、ポリビニルアルコール、ポリスチレン、アクリル樹脂、スチレン−アクリル共重合体、スチレン−アクリロニトリル共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリエーテルスルホン、フッ素樹脂などが挙げられる。
硬質層の厚さは、0.05μmを超え5.0μm以下、好ましくは0.1〜1.0μmである。硬質層厚さを前記範囲にすることにより、凹凸パターンの最頻ピッチを、0.4〜10μmに制御できる。
When the substance forming the hard layer is a resin, the resin preferably has a glass transition temperature higher by 10 ° C. or more than the resin constituting the film substrate. The hard layer may be a metal or metal oxide vapor deposition layer. As the resin forming the hard layer, polyvinyl alcohol, polystyrene, acrylic resin, styrene-acrylic copolymer, styrene-acrylonitrile copolymer, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyethersulfone, fluorine resin Etc.
The thickness of the hard layer is more than 0.05 μm and 5.0 μm or less, preferably 0.1 to 1.0 μm. By setting the hard layer thickness within the above range, the most frequent pitch of the concavo-convex pattern can be controlled to 0.4 to 10 μm.

以下に、前記原反シートに微細凹凸を形成する方法を具体的に説明する。ここでは、原反に微細粒子を付着する方法を説明するが、原反から鋳型としての金属板を作成した後に、該金属板に対して、レーザー光線やエッチングなどの加工を施すとい別の方法も可能である。
<実施例1>
作成した原反シートに、微細粒子を分散した水分散液を塗工し、乾燥することによって、波形凹凸の谷部に粒子を付着させる。水分散液中の粒子濃度と液塗工量を調整することで、谷部のみに、適当な間隔をおいて、微細粒子を付着できる。
なお、この際に、微細粒子が、凹凸の頂部や山の斜面に付着しないよう、頂部近傍の表面は撥水性にしておくことが必要である。
微細粒子の大きさは前記した微細凹凸のサイズと同程度のものが好ましいが、非常に小さい粒子であれば、ある程度凝集して塗布されても、凝集粒子の大きさを微細凹凸のサイズにすることが可能である。
Below, the method of forming fine unevenness | corrugation in the said original fabric sheet is demonstrated concretely. Here, a method for adhering fine particles to the original fabric will be described. However, after a metal plate as a mold is prepared from the original fabric, another method may be used in which processing such as laser beam or etching is performed on the metal plate. Is possible.
<Example 1>
The prepared raw fabric sheet is coated with an aqueous dispersion in which fine particles are dispersed, and dried to adhere the particles to the corrugated valleys. By adjusting the particle concentration and the amount of liquid coating in the aqueous dispersion, fine particles can be attached only at the valleys with an appropriate interval.
At this time, it is necessary to make the surface in the vicinity of the top water-repellent so that the fine particles do not adhere to the top of the unevenness or the slope of the mountain.
The size of the fine particles is preferably about the same as the size of the fine irregularities described above. However, if the particles are very small, the size of the aggregated particles is reduced to the size of the fine irregularities even if they are coated to some extent. It is possible.

粒子の材質としては、Al、Au、Ti、Pt、Ag、Cu、Cr、Fe、Ni、Siなどの金属、SiO2、Al2O3、TiO2、MgO2、CaO2などの金属酸化物、ポリスチレン、ポリメチルメタクリレートなどの有機高分子などの他、半導体材料、無機高分子などのうち1種以上を採用できる。
具体的には、例えば、アニオン性コロイダルシリカゾル、カチオン性アルミナゾルなどが使用できる。コロイダルシリカとして、例えば日産化学工業株式会社製のスノーテックスシリーズST-XS(平均粒経4〜6nm)、ST-20(平均粒経10〜20nm)、ST-20L(平均粒経40〜50nm)、ST-YL(平均粒経50〜80nm)、ST-ZL(平均粒経70〜100nm)などを挙げることができる。アルミナゾルとしては、日産化学工業株式会社製アルミナゾル520(平均的粒子の大きさ10〜20nm)、アルミナゾル100(平均的粒子の大きさ10×100nm)などが挙げられる。
また、微細粒子としては、微細繊維であっても良い。
Particle materials include metals such as Al, Au, Ti, Pt, Ag, Cu, Cr, Fe, Ni, Si, metal oxides such as SiO2, Al2O3, TiO2, MgO2, and CaO2, polystyrene, polymethyl methacrylate, etc. In addition to these organic polymers, one or more of semiconductor materials, inorganic polymers, and the like can be employed.
Specifically, for example, anionic colloidal silica sol and cationic alumina sol can be used. As colloidal silica, for example, Snowtex series ST-XS (average particle size 4-6 nm), ST-20 (average particle size 10-20 nm), ST-20L (average particle size 40-50 nm) manufactured by Nissan Chemical Industries, Ltd. ST-YL (average particle size 50-80 nm), ST-ZL (average particle size 70-100 nm), and the like. Examples of the alumina sol include alumina sol 520 (average particle size of 10 to 20 nm) and alumina sol 100 (average particle size of 10 × 100 nm) manufactured by Nissan Chemical Industries, Ltd.
The fine particles may be fine fibers.

微細粒子を塗工し乾燥した後に、
微細粒子を付着させた状態で、該原反シートの凹凸表面全体を金属蒸着などの導電化処理を行い、それに電気メッキを行うことにより、波形模様と微細凹凸が複合した表面形状の鋳型を製造する。
導電処理は、該表面に金属を真空蒸着するかスパッターリング蒸着する。あるいはCVD法を用いても良い。蒸着金属は銅、亜鉛、アルミニウム等の通常の電極膜に使用するもので良く、膜厚さは20〜100nm程度で十分である。
After applying fine particles and drying,
With the fine particles attached, the entire uneven surface of the raw sheet is subjected to a conductive treatment such as metal vapor deposition, and electroplating is performed to produce a mold with a surface shape that combines corrugated patterns and fine unevenness. To do.
In the conductive treatment, a metal is vacuum-deposited or sputtered on the surface. Alternatively, the CVD method may be used. The vapor deposition metal may be used for a normal electrode film such as copper, zinc, and aluminum, and a film thickness of about 20 to 100 nm is sufficient.

次に、電気メッキ法により、前記導電加工された表面に金属メッキを行う。メッキの厚さは、メッキされた部分が金属板として変形しない程度で、その後の成形加工に耐えられる厚さであれば良く、0.1〜1mm程度のシートでも良い。しかし、単独でスタンパーとして使用する場合には、メッキ層の厚さは1mm以上必要で、2〜5mm程度が好ましい。メッキを行う金属としては、特に制限はなく、銅、銀、鉄、鉛、亜鉛、錫、ニッケル、クロム、モリブデンあるいはこれらの適宜の合金が使用できる。
その後、原反シートとメッキ法で製造された前記金属板を分離し、必要に応じて蒸着金属の洗浄除去等を行い、鋳型が完成する。
上記手順において用いた微細粒子は球形であったが、蒸着、メッキの工程で、微細粒子の球形と谷部の接点付近は埋まって行き、結果的に、微細粒子による突起は略半球形になる。
Next, metal plating is performed on the conductively processed surface by electroplating. The thickness of the plating may be a thickness that does not deform the plated portion as a metal plate and can withstand the subsequent forming process, and may be a sheet of about 0.1 to 1 mm. However, when used alone as a stamper, the thickness of the plating layer needs to be 1 mm or more, preferably about 2 to 5 mm. The metal to be plated is not particularly limited, and copper, silver, iron, lead, zinc, tin, nickel, chromium, molybdenum, or an appropriate alloy thereof can be used.
Thereafter, the original sheet and the metal plate manufactured by the plating method are separated, and the deposited metal is washed and removed as necessary to complete the mold.
The fine particles used in the above procedure were spherical, but in the process of vapor deposition and plating, the spheres of the fine particles and the vicinity of the contact points of the valleys were buried, and as a result, the protrusions due to the fine particles became substantially hemispherical. .

<実施例2>
上記の鋳型に樹脂を流し込んで成形した場合は、出来上がった成形樹脂は、山の頂部に微細な凹部が存在する形となる。逆に成形樹脂の凹凸の山の頂部に微細な凸部を設けたい場合には、別の製造方法が必要であり、ここではその方法の一例を以下に示す。
まず、プレートに微細粒子の粒子層を塗工法により形成し、原反シートの凹凸の山の頂部に接着剤を微量塗布し、該粒子層から、粒子を山の頂部に転写する方法が可能である。
<Example 2>
When molding is performed by pouring a resin into the above mold, the finished molding resin has a shape in which a fine concave portion exists at the top of the mountain. On the other hand, when it is desired to provide fine convex portions on the tops of the ridges of the molded resin, another manufacturing method is required. Here, an example of the method is shown below.
First, a fine particle particle layer is formed on the plate by a coating method, and a small amount of adhesive is applied to the top of the uneven crest of the original fabric sheet, and the particle can be transferred from the particle layer to the top of the mountain. is there.

接着剤の微量塗布は、以下のような転写法により作成することが好ましい。
まず、ストライプ状や水玉模様状に厚さ10〜50nm程度の粘着剤を塗布したシートを作成し、該シートから粘着剤層を原反シートの山の頂部に転写する。別途、微細粒子を塗布したシートを用意し、前記粘着剤層が転写された原反シートを押し当て、粘着剤層に微細粒子を転写する。
この方法により、凝集した微細粒子を間欠的に凹凸の山の頂部に配置することができる。前記ストライプの間隔や水玉模様を製品識別に用いることもできる。この方法による場合も、鋳型の製造は実施例1と同様に、メッキ法により行う。
ここでも、用いた微細粒子は球形であったが、接着、蒸着、メッキの工程で、微細粒子の球形と山部の接点付近は埋まって行き、結果的に、微細粒子による突起は略半球形になる。
It is preferable that a small amount of adhesive be applied by the following transfer method.
First, a sheet in which an adhesive having a thickness of about 10 to 50 nm is applied in a stripe shape or a polka dot pattern is prepared, and the adhesive layer is transferred from the sheet to the top of the original sheet. Separately, a sheet coated with fine particles is prepared, and the original sheet on which the pressure-sensitive adhesive layer is transferred is pressed to transfer the fine particles to the pressure-sensitive adhesive layer.
By this method, the agglomerated fine particles can be intermittently disposed on the tops of the uneven peaks. The stripe interval or polka dot pattern can also be used for product identification. Also in this method, the mold is manufactured by the plating method as in the first embodiment.
Again, the fine particles used were spherical, but in the bonding, vapor deposition, and plating processes, the spherical shape of the fine particles and the vicinity of the contact point of the ridges were buried, and as a result, the projections due to the fine particles were approximately hemispherical. become.

<実施例3>
上記鋳型を用いて本発明の光拡散シートを製造する具体的な方法としては、例えば、下記(a)〜(d)の方法が挙げられる。
(a)鋳型の凹凸パターンが形成された面に、未硬化の電離放射線硬化性樹脂を塗工する工程と、紫外線や電子線などの電離放射線を照射して前記硬化性樹脂を硬化させた後、硬化した塗膜を鋳型から剥離する工程とを有する方法。
(b)鋳型の凹凸パターンが形成された面に、未硬化の液状熱硬化性樹脂を塗工する工程と、加熱して前記液状熱硬化性樹脂を硬化させた後、硬化した塗膜を鋳型から剥離する工程とを有する方法。
(c)鋳型の凹凸パターンが形成された面に、シート状の熱可塑性樹脂を接触させる工程と、該シート状の熱可塑性樹脂を鋳型に押圧しながら加熱して軟化させた後、冷却する工程と、その冷却したシート状の熱可塑性樹脂を鋳型から剥離する工程とを有する方法。
(d)鋳型の凹凸パターンが形成された面に、溶融状の熱可塑性樹脂を流して冷却固化する方法。
<Example 3>
Specific examples of the method for producing the light diffusion sheet of the present invention using the mold include the following methods (a) to (d).
(A) After applying the uncured ionizing radiation curable resin to the surface on which the concave / convex pattern of the mold is formed, and irradiating ionizing radiation such as ultraviolet rays and electron beams to cure the curable resin And a step of peeling the cured coating film from the mold.
(B) a step of applying an uncured liquid thermosetting resin to the surface of the mold having the concavo-convex pattern formed thereon; and heating and curing the liquid thermosetting resin; And a step of peeling from the substrate.
(C) A step of bringing a sheet-like thermoplastic resin into contact with the surface of the mold on which the concavo-convex pattern is formed, and a step of cooling the sheet-like thermoplastic resin while heating it against the mold and then cooling it And a step of peeling the cooled sheet-like thermoplastic resin from the mold.
(D) A method in which a molten thermoplastic resin is poured onto the surface of the mold on which the concavo-convex pattern is formed to cool and solidify.

<比較例1>
原反シートの作成:
一軸方向に熱収縮する厚さ50μmのポリエチレンテレフタレート製加熱収縮性フィルム(三菱樹脂株式会社製ヒシペットLX−60S、ガラス転移温度70℃)の片面に、トルエンに希釈したポリメチルメタクリレート(ポリマーソース株式会社製P4831−MMA、ガラス転移温度100℃)を厚さが1μmになるようにバーコーターにより塗工し、機能層を形成して積層シートを得た。次いで、その積層シートを80℃で50秒間加熱することにより、加熱前の長さの60%に熱収縮させ(すなわち、変形率40%で変形させ)、機能層形成面に、収縮方向に対して直交方向に沿って波状の凹凸パターンを有する原反シートを得た。この原反シートを用いて、以下のようにして光学素子を得た。
<Comparative Example 1>
Create the original sheet:
Polymethylmethacrylate (Polymer Source Co., Ltd.) diluted with toluene on one side of a polyethylene terephthalate heat-shrinkable film (Mitsubishi Resin HXIPET LX-60S, glass transition temperature 70 ° C.) having a thickness of 50 μm that thermally shrinks in a uniaxial direction (P4831-MMA manufactured by Glass Manufacturing Co., Ltd., glass transition temperature 100 ° C.) was applied by a bar coater so as to have a thickness of 1 μm, and a functional layer was formed to obtain a laminated sheet. Next, the laminated sheet is heated at 80 ° C. for 50 seconds to cause heat shrinkage to 60% of the length before heating (ie, deformation at a deformation rate of 40%), and on the functional layer forming surface in the shrinking direction. Thus, an original sheet having a wavy uneven pattern along the orthogonal direction was obtained. By using this raw sheet, an optical element was obtained as follows.

原反シートからの転写:
すなわち、原反シートの凹凸パターンが形成された面に、ニッケルめっきを施し、そのニッケルめっきを剥離することにより、厚さ200μmの鋳型を得た。該鋳型の凹凸パターンが形成された面にエポキシアクリレート系プレポリマー、2−エチルヘキシルアクリレートおよびベンゾフェノン系光重合開始剤を含む未硬化の紫外線硬化性樹脂組成物を塗工した。
次いで、未硬化の紫外線硬化性樹脂組成物の塗膜の原反シートと接していない面に厚さ50μmのトリアセチルセルロースフィルムを重ね合わせ、押圧した。
次いで、トリアセチルセルロースフィルムの上から紫外線を照射し未硬化の紫外線硬化性樹脂組成物を硬化させ、その硬化物を鋳型から剥離することにより、異方性拡散シートを得た。
得られた異方性拡散シートの、光拡散体としての性能を次のように評価した。すなわち、GENESIA GonioFar Field Profiler(ジェネシア社製)を用いて、拡散角度を測定した。その結果、収縮方向の拡散角度すなわち拡散角度の最大値は27度であった。
Transfer from the original sheet:
That is, the surface of the original sheet on which the concave / convex pattern was formed was subjected to nickel plating, and the nickel plating was peeled off to obtain a mold having a thickness of 200 μm. An uncured ultraviolet curable resin composition containing an epoxy acrylate prepolymer, 2-ethylhexyl acrylate and a benzophenone photopolymerization initiator was applied to the surface of the mold on which the concavo-convex pattern was formed.
Next, a 50 μm thick triacetyl cellulose film was superimposed on the surface of the uncured ultraviolet curable resin composition coating film not in contact with the original sheet, and pressed.
Subsequently, an anisotropic diffusion sheet was obtained by irradiating ultraviolet rays from above the triacetylcellulose film to cure the uncured ultraviolet curable resin composition and peeling the cured product from the mold.
The performance of the obtained anisotropic diffusion sheet as a light diffuser was evaluated as follows. That is, the diffusion angle was measured using GENESISA GonioFar Field Profiler (manufactured by Genesia). As a result, the diffusion angle in the contraction direction, that is, the maximum value of the diffusion angle was 27 degrees.

なお、ここで拡散角度とは、異方性拡散シートの凹凸パターンが形成されていない側の面から、シート面の法線方向に沿って測定光を入射させ、凹凸パターンが形成された面から出射させ、その照度を測定する際、シート面の法線方向(この方向を出光角度0度とする)における相対照度を1とした場合に相対照度が0.5以上となる±(プラスマイナス)の角度範囲である。例えば、出光角度が±15度の範囲で相対照度が0.5以上である場合、拡散角度は30度となる。また、拡散角度の最大値とは、シート面内の全方向で拡散角度を測定した場合の、最大拡散角度である。 Here, the diffusion angle means that the measurement light is incident along the normal direction of the sheet surface from the surface where the uneven pattern of the anisotropic diffusion sheet is not formed, and from the surface where the uneven pattern is formed. When emitting and measuring the illuminance, the ± (plus or minus) angle that makes the relative illuminance 0.5 or more when the relative illuminance is 1 in the normal direction of the sheet surface (this direction is the light emission angle 0 degree) It is a range. For example, when the light emission angle is in the range of ± 15 degrees and the relative illuminance is 0.5 or more, the diffusion angle is 30 degrees. The maximum value of the diffusion angle is the maximum diffusion angle when the diffusion angle is measured in all directions within the sheet surface.

<実施例4>
ポリプロピレンフィルムに、幅1mm、間隔1mmでアクリル粘着剤のストライプ膜を、厚さ約50nmで形成し、このストライプ模様を、前記比較例1の原反シートの凹凸面に転写した。次いで、実施例2の方法により、平均粒子径約100nmのコロイダルシリカを塗布し乾燥して得られた粒子層を、前記転写されたストライプ膜に転写し、図5と同様の形状の微細粒子付き原反シートを作製した。次いで、以後は、比較例1と同様の方法で異方性拡散シートを作製した。この異方性拡散シートについて、比較例1と同様にして最大拡散角度を測定した結果、32度であり、比較例1と比べて18%の向上であった。
<Example 4>
An acrylic adhesive stripe film having a thickness of about 50 nm was formed on a polypropylene film with a width of 1 mm and a spacing of 1 mm, and this stripe pattern was transferred to the uneven surface of the original fabric sheet of Comparative Example 1. Next, the particle layer obtained by applying and drying colloidal silica having an average particle diameter of about 100 nm by the method of Example 2 is transferred to the transferred stripe film, and with fine particles having the same shape as in FIG. A raw sheet was prepared. Subsequently, thereafter, an anisotropic diffusion sheet was produced in the same manner as in Comparative Example 1. With respect to this anisotropic diffusion sheet, the maximum diffusion angle was measured in the same manner as in Comparative Example 1. As a result, it was 32 degrees, an improvement of 18% compared with Comparative Example 1.

ディスプレイあるいは照明器具などにおいて、蛍光灯、発光ダイオード、有機ELなどから発する光を望みの方向に拡散させ、光源の形状を隠す異方性光拡散シートとして使用できる。 It can be used as an anisotropic light diffusing sheet that diffuses light emitted from fluorescent lamps, light emitting diodes, organic EL, etc. in a desired direction and hides the shape of the light source in a display or a lighting fixture.

Claims (3)

一方向に山が連続しており、それに直交する方向に山と谷が繰り返される、略波形の凹凸模様を有するシートを原反シートとし、該原反シートの山部または谷部に微細粒子を付着させ、その状態で、該原反シート表面全体を金属蒸着などの導電化処理を行い、それに電気メッキを行うことにより、波形模様と微細凹凸が複合した表面形状の鋳型を製造し、該鋳型により樹脂シートを成形することによって、一方向に山が連続しており、該方向に直交する方向に、山と谷が繰り返され、表面の少なくとも一部に微細凹凸を形成した光拡散シートを得る光拡散シートの製造方法。 Crests are continuous in one direction, and crests and troughs are repeated in a direction perpendicular thereto, and a sheet having a substantially wavy uneven pattern is used as a raw sheet, and fine particles are formed on the crests or troughs of the raw sheet. In this state, the entire surface of the raw sheet is subjected to a conductive treatment such as metal vapor deposition, and electroplating is performed to produce a mold having a surface shape in which a corrugated pattern and fine irregularities are combined. By molding the resin sheet, a light diffusion sheet is obtained in which peaks are continuous in one direction, and peaks and valleys are repeated in a direction perpendicular to the direction, and fine irregularities are formed on at least a part of the surface. A method for producing a light diffusion sheet. 前記原反シートの山部または谷部に微細粒子を付着させる方法が、前記原反シートに、微細粒子を分散した水分散液を塗工し、乾燥することによって、粒子を付着させるものである請求項1に記載の光拡散シートの製造方法。 The method of attaching fine particles to the crests or valleys of the original fabric sheet is to apply particles to the original fabric sheet by applying an aqueous dispersion in which fine particles are dispersed and drying. The manufacturing method of the light-diffusion sheet of Claim 1. 前記原反シートに、微細粒子を分散した水分散液を塗工する前に、前記原反シートの表面の一部を撥水性にしておく請求項2に記載の光拡散シートの製造方法。 The method for producing a light diffusing sheet according to claim 2, wherein a part of the surface of the original fabric sheet is made water-repellent before an aqueous dispersion in which fine particles are dispersed is applied to the original fabric sheet.
JP2014151700A 2014-07-25 2014-07-25 Manufacturing method of light diffusion sheet Expired - Fee Related JP5854094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014151700A JP5854094B2 (en) 2014-07-25 2014-07-25 Manufacturing method of light diffusion sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014151700A JP5854094B2 (en) 2014-07-25 2014-07-25 Manufacturing method of light diffusion sheet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010210346A Division JP2012068276A (en) 2010-09-21 2010-09-21 Light diffusion sheet

Publications (2)

Publication Number Publication Date
JP2014211650A true JP2014211650A (en) 2014-11-13
JP5854094B2 JP5854094B2 (en) 2016-02-09

Family

ID=51931403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014151700A Expired - Fee Related JP5854094B2 (en) 2014-07-25 2014-07-25 Manufacturing method of light diffusion sheet

Country Status (1)

Country Link
JP (1) JP5854094B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220432A (en) * 2000-02-10 2001-08-14 Teijin Ltd Polyester film for light-diffusing plate
JP2001315148A (en) * 2000-05-11 2001-11-13 Keiwa Inc Molding die for light diffusion sheet and producing method for the same
JP2004054041A (en) * 2002-07-22 2004-02-19 Alps Electric Co Ltd Reflector and reflection liquid crystal display device, and method for manufacturing reflector
JP2004138671A (en) * 2002-10-15 2004-05-13 Komatsu Process:Kk Method for manufacturing retroreflective article and retroreflective article
JP2008276198A (en) * 2007-03-31 2008-11-13 Konica Minolta Opto Inc Anti-glare film, method for manufacturing the same, polarizing plate using anti-glare film, and display device
JP2008302591A (en) * 2007-06-07 2008-12-18 Oji Paper Co Ltd Irregularly patterned sheet, method of manufacturing irregularly pattered sheet, optical diffuser, original sheet plate for manufacture of optical diffuser and method of manufacturing optical diffuser
JP2009226947A (en) * 2008-02-29 2009-10-08 Sumitomo Chemical Co Ltd Manufacturing method of laminate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220432A (en) * 2000-02-10 2001-08-14 Teijin Ltd Polyester film for light-diffusing plate
JP2001315148A (en) * 2000-05-11 2001-11-13 Keiwa Inc Molding die for light diffusion sheet and producing method for the same
JP2004054041A (en) * 2002-07-22 2004-02-19 Alps Electric Co Ltd Reflector and reflection liquid crystal display device, and method for manufacturing reflector
JP2004138671A (en) * 2002-10-15 2004-05-13 Komatsu Process:Kk Method for manufacturing retroreflective article and retroreflective article
JP2008276198A (en) * 2007-03-31 2008-11-13 Konica Minolta Opto Inc Anti-glare film, method for manufacturing the same, polarizing plate using anti-glare film, and display device
JP2008302591A (en) * 2007-06-07 2008-12-18 Oji Paper Co Ltd Irregularly patterned sheet, method of manufacturing irregularly pattered sheet, optical diffuser, original sheet plate for manufacture of optical diffuser and method of manufacturing optical diffuser
JP2009226947A (en) * 2008-02-29 2009-10-08 Sumitomo Chemical Co Ltd Manufacturing method of laminate

Also Published As

Publication number Publication date
JP5854094B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
TWI536047B (en) Diffusion light guide body and backlight unit
JP5182658B2 (en) Method for producing uneven pattern forming sheet and method for producing optical element
US8641212B2 (en) Anti-reflection film and display device including the same, and manufacturing method of anti-reflection film and master film therefor
JP5098450B2 (en) Method for producing uneven pattern forming sheet and uneven pattern forming sheet
TWI485452B (en) Composite light guide plate manufacturing method
TWI651552B (en) Surface micro structure
TWI662866B (en) Method of forming an electrically conductive pattern on a substrate and article and touch screen sensor comprising the substrate
JP5637074B2 (en) Method for producing uneven pattern forming sheet, method for producing stamper for transfer molding, and method for producing light diffuser
JP2012068276A (en) Light diffusion sheet
TW201305496A (en) Optical plate and illuminating member using the same
JP5854094B2 (en) Manufacturing method of light diffusion sheet
JP6274102B2 (en) Light diffusing sheet
JP5974451B2 (en) Lighting device
JP2012022292A (en) Convex and concave pattern formation sheet, process sheet original plate for manufacturing optical diffuser, and method for manufacturing optical diffuser
JP2009282279A (en) Reflecting sheet and backlight unit
JP2013008520A (en) Lighting system, and detector using the same
JP2016139107A (en) Non-planar fine rugged-surface structure
JP5636907B2 (en) Convex / concave pattern forming sheet and method for producing the same, concave / convex pattern forming sheet duplicating process sheet master, optical element, secondary process molding, duplicating sheet
JP6255676B2 (en) Method for manufacturing light diffusion sheet and method for manufacturing light diffuser
JP5858113B2 (en) Convex / concave pattern forming sheet, light diffuser, master plate for light diffuser production stamper, light diffuser production stamper
JP2007072459A (en) Optical element and method of manufacturing the same
JP2013250413A (en) Optical sheet and production method of the same, el element using optical sheet, and illumination device having the el element
JP2014026736A (en) Illumination device
JP6079603B2 (en) Anisotropic light diffusion sheet and light diffusion method
JP2013164594A (en) Method for manufacturing fine rugged sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151123

R150 Certificate of patent or registration of utility model

Ref document number: 5854094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees