JP2014211008A - Retaining wall and method for constructing the same - Google Patents

Retaining wall and method for constructing the same Download PDF

Info

Publication number
JP2014211008A
JP2014211008A JP2013086206A JP2013086206A JP2014211008A JP 2014211008 A JP2014211008 A JP 2014211008A JP 2013086206 A JP2013086206 A JP 2013086206A JP 2013086206 A JP2013086206 A JP 2013086206A JP 2014211008 A JP2014211008 A JP 2014211008A
Authority
JP
Japan
Prior art keywords
retaining wall
surface plate
block
plate
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013086206A
Other languages
Japanese (ja)
Other versions
JP5931001B2 (en
Inventor
糸井 元保
Motoyasu Itoi
元保 糸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAKOGATA YOHEKI KENKYUSHO KK
Original Assignee
HAKOGATA YOHEKI KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAKOGATA YOHEKI KENKYUSHO KK filed Critical HAKOGATA YOHEKI KENKYUSHO KK
Priority to JP2013086206A priority Critical patent/JP5931001B2/en
Publication of JP2014211008A publication Critical patent/JP2014211008A/en
Application granted granted Critical
Publication of JP5931001B2 publication Critical patent/JP5931001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/02Retaining or protecting walls

Landscapes

  • Engineering & Computer Science (AREA)
  • Retaining Walls (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)

Abstract

PROBLEM TO BE SOLVED: To construct a retaining wall having higher earthquake resistance than that of a retaining wall singly using retaining wall blocks by using both of retaining wall blocks and solid geocells and organically combining them and crushed stones with each other.SOLUTION: Retaining wall blocks 1 each having a faceplate 2, a counterfort plate 3 standing lower than the faceplate, and a tie plate; solid geocells 10 each having a plurality of cell dead spaces 13; and single-grain-sized crushed stones 17 are used in a retaining wall. The retaining wall block is installed at the front position of the slope face 20. The solid geocell is disposed above the upper end level of the counterfort plate and below the upper end level of the faceplate so as to overlap a block dead space 6 and a rear dead space 24. Only the single-grain-sized crushed stones 17 are backfilled in an entire region of the faceplate and the slope face, thereby constructing one stage. A next stage is similarly constructed on the stage. Third and subsequent stages are constructed by repeating the above-described method.

Description

本発明は、道路周辺、公園、運動場、宅地、崖、堤防等の各種法面における土砂の崩落を防止する擁壁に関し、詳しくは、ブロックを法面に沿って順次後退させながら積み上げて構築する擁壁に関する。   The present invention relates to a retaining wall for preventing the collapse of earth and sand on various slopes such as a road periphery, a park, a playground, a residential land, a cliff, and a dike, and more specifically, it is constructed by stacking blocks while sequentially retreating along a slope. Regarding retaining walls.

本出願人は、擁壁用ブロックとそれを用いた擁壁の研究開発をしている(特許文献1,2)。箱型の擁壁用ブロックの空所に砕石、栗石等の中詰材を充填するとともに、擁壁用ブロックと法面との間に土砂、砕石、栗石等の裏込材を充填して一つの段を構成し、この段を下から上へ複数段にかつ階段状に積み上げて構築した擁壁は、全国各地で数千件施工されている。   The present applicant conducts research and development of a retaining wall block and a retaining wall using the same (Patent Documents 1 and 2). Fill the empty space in the box-type retaining wall block with filling materials such as crushed stones and chestnuts, and backfill materials such as earth and sand, crushed stones and chestnuts between the retaining wall block and the slope. Thousands of retaining walls have been constructed in various parts of the country.

この擁壁は、相対的に下段の中詰材と上段の中詰材とが互いに噛み合ってせん断力を伝達することにより擁壁用ブロックの移動を防止し、擁壁用ブロックどうしは接合されないため、荷重の分散が図られ、多少の変状や沈下に対しても安定性を保ち、高い耐震性を備える。   This retaining wall prevents the retaining wall block from moving by relatively meshing the lower filling material with the upper filling material and transmitting shearing force to each other, and the retaining wall blocks are not joined together. The load is distributed, and it is stable against slight deformation and subsidence, and has high earthquake resistance.

また、法面保護のみならず、擁壁にも用いられるジオテキスタイルの一種として、立体ジオセルが知られている(特許文献3,4,5)。立体ジオセルのセル空所にコンクリート、土砂、砂利、砕石等を充填して一つの段を構成し、この段を下から上へ複数段にかつ階段状に積み上げることにより擁壁を構築することができる。   A solid geocell is known as a kind of geotextile used not only for slope protection but also for a retaining wall (Patent Documents 3, 4, and 5). It is possible to construct a retaining wall by filling a cell space of a three-dimensional geocell with concrete, earth and sand, gravel, crushed stone, etc. to form one step, and stacking this step in multiple steps and from top to bottom. it can.

この立体ジオセルは、軽量で運搬しやすく、柔軟性があるので現場の形状に合わせた施工ができ、また安価であるという利点を備えている。しかし、立体ジオセルを用いた擁壁は、ブロックを用いた擁壁のような強度は得られないので、高く構築することが難しく、高さ2〜3m以内の場合が多い。   This three-dimensional geocell has the advantages that it is lightweight, easy to transport and flexible, so that it can be constructed according to the shape of the site and is inexpensive. However, since the retaining wall using the solid geocell cannot obtain the strength as the retaining wall using the block, it is difficult to build it high, and the height is often within 2 to 3 m.

そして、本出願人は、擁壁用ブロックと立体ジオセルとを併用して構築した二種の擁壁も提案している(特許文献6)。   The applicant has also proposed two types of retaining walls constructed by using a retaining wall block and a solid geocell in combination (Patent Document 6).

その一種目は、擁壁用ブロックと法面との間に立体ジオセルを敷設して1段を形成し、これを複数段にした擁壁である(特許文献6の図2)。立体ジオセルには現場の土砂、栗石等を充填するので、擁壁全体を安価に構築することができる。   The first type is a retaining wall in which a three-dimensional geocell is laid between a retaining wall block and a slope to form one step, and this is a plurality of steps (FIG. 2 of Patent Document 6). Since the solid geocell is filled with earth and sand, chestnuts, etc., the entire retaining wall can be constructed at low cost.

その二種目は、複数段の擁壁用ブロックを用いた下部擁壁と、複数段の立体ジオセルを用いた上部擁壁とからなる擁壁である(特許文献6の図3)。この立体ジオセルにも現場の土砂、栗石等を充填するので、また、上部擁壁が安価な立体ジオセルで構成されるので、擁壁全体を安価に構築することができる。   The second type is a retaining wall composed of a lower retaining wall using a plurality of stages of retaining wall blocks and an upper retaining wall using a plurality of stages of solid geocells (FIG. 3 of Patent Document 6). Since this solid geocell is filled with earth and sand, chestnut stone, etc. in the field, and the upper retaining wall is composed of an inexpensive solid geocell, the entire retaining wall can be constructed at low cost.

しかし、これらの擁壁の強度や耐震性は、擁壁用ブロックを単独使用した擁壁とさほど変わるものではなかった。一種目の擁壁は、擁壁用ブロックに充填した砕石、栗石等と、立体ジオセルに充填した現場の土砂、栗石等とが、控板で分離されていて作用し合わないからである。また、二種目の擁壁は、擁壁用ブロックに充填した砕石、栗石等と、立体ジオセルに充填した現場の土砂、栗石等とが、噛み合うようには考えられておらず、仮にたまたま噛み合う部分があるとしても、下部擁壁の最上段の砕石、栗石等と、上部擁壁の最下段の土砂、栗石等の中の一部の栗石とが噛み合うにすぎなかったからである。   However, the strength and seismic resistance of these retaining walls were not much different from those of retaining walls using retaining wall blocks alone. The first type of retaining wall is because the crushed stones, chestnuts and the like filled in the retaining wall blocks and the earth and sand, chestnuts and the like filled in the solid geocell are separated by a retaining plate and do not act. In addition, the second type of retaining wall is not considered to mesh with crushed stones, chestnuts, etc. filled in the retaining wall block, and the earth and sand, chestnuts, etc. filled in the solid geocell, but it happens to be partly engaged This is because the top crushed stones and chestnuts of the lower retaining wall only meshed with some of the chestnuts and stones in the bottom retaining wall of the upper retaining wall.

実用新案第2510846号公報Utility Model No. 2510846 特許第2858079号公報Japanese Patent No. 2858079 特開平2−229303号公報JP-A-2-229303 実開平6−67545号公報Japanese Utility Model Publication No. 6-67545 特開2005−9146号公報JP 2005-9146 A 特開2010−275815号公報JP 2010-275815 A

日本は、平成7年1月17日に起きた兵庫県南部地震(阪神淡路大震災)、平成23年3月11日に起きた東北地方太平洋沖地震(東日本大震災)のような最大震度階級(震度7)の地震にみまわれ、今後も東海地震、東南海地震、南海地震等の大規模地震の周期的到来が予測されているため、より高い耐震性を備えた擁壁が求められている。   Japan has the largest seismic intensity class (seismic intensity), such as the Hyogoken-Nanbu Earthquake that occurred on January 17, 1995 (the Great Hanshin-Awaji Earthquake) and the Tohoku Region Pacific Ocean Earthquake that occurred on March 11, 2011 (the Great East Japan Earthquake). 7) The earthquake is expected to occur periodically in the future, and large-scale earthquakes such as Tokai, Tonankai, and Nankai earthquakes are expected. Therefore, a retaining wall with higher earthquake resistance is required.

そこで、本発明の目的は、擁壁用ブロックと立体ジオセルとを併用し、これらと砕石又は割栗石とを有機的に組み合わせることにより、擁壁用ブロックを単独使用した擁壁よりも高い耐震性を備えた擁壁を構築することにある。   Therefore, the object of the present invention is to use a retaining wall block and a solid geocell in combination, and organically combine these with crushed stone or crushed stone, thereby providing higher earthquake resistance than a retaining wall using a retaining wall block alone. Is to build a retaining wall with

本発明者は、次のように考えて本発明に至った。
擁壁用ブロックを単独使用した擁壁において、擁壁用ブロックの空所とその上下に砕石を充填することについては、その砕石どうしが噛み合うことによりブロック移動を防止するので、その意義がよく理解されている。
The present inventor has reached the present invention by thinking as follows.
In the retaining wall that uses the retaining wall block alone, filling the vacant space of the retaining wall block and the crushed stone above and below it prevents the block movement by meshing with each other, so its significance is well understood Has been.

しかし、擁壁用ブロックから遠く離れた法面付近にまで砕石を充填することについては、その砕石がブロック移動の防止に結びつくとは考えにくいので、その意義が理解されない。また、砕石は高価である。そのため、擁壁用ブロックの後方近傍(控板の後面から後方へ例えば150mm程度まで)には砕石を入れるが、それよりさらに後方には現場の土砂等を充填しているのが標準的である。   However, the significance of filling crushed stone near the slope far from the retaining wall block is unlikely to lead to prevention of block movement, and its significance is not understood. Also, crushed stone is expensive. Therefore, crushed stone is put in the vicinity of the rear of the retaining wall block (from the rear face of the holding plate to the rear, for example, about 150 mm), but it is standard that the earth and sand etc. are filled further behind it. .

しかるに、擁壁用ブロックと立体ジオセルとを併用するとともに、立体ジオセルにも砕石を充填することにすると、立体ジオセルに充填した砕石を、擁壁用ブロックに充填した砕石と、擁壁用ブロックの後方に充填した砕石とに、それぞれ噛み合わせることができる。よって、立体ジオセルを法面に向けて延ばせば、擁壁用ブロックから遠く離れた所にまで砕石を充填したときに、その砕石が立体ジオセルの砕石と噛み合うので、ブロック移動を防止する意義が理解される。   However, when the retaining wall block and the three-dimensional geocel are used in combination, and the solid geocel is filled with crushed stone, the crushed stone filled in the three-dimensional geocel is replaced with the crushed stone filled in the retaining wall block and the retaining wall block. Each can be meshed with the crushed stone filled in the rear. Therefore, if the three-dimensional geocell is extended toward the slope, when the crushed stone is filled far away from the retaining wall block, the crushed stone meshes with the crushed stone of the three-dimensional geocell, so the significance of preventing block movement is understood. Is done.

(1)そこで、本発明の擁壁は、
起立した表面板と、表面板より後方へ離間した位置で表面板より低く起立した控板と、表面板の左右方向中間部と控板の左右方向中間部とを連結した繋ぎ板とを含み、表面板と控板との間に上下方向に貫通したブロック空所を有する擁壁用ブロックと、
上下方向に貫通した複数のセル空所を有する立体ジオセルと、
砕石又は割栗石とが用いられ、
擁壁用ブロックが、法面の前方位置に左右に並べて据付けられて、控板と法面との間に後方空所が形成され、
立体ジオセルが、その前部がブロック空所の上方に重なり、その後部が後方空所の上方に重なるように、控板の上端レベル以上かつ表面板の上端レベル以下の上下範囲に配され、
砕石又は割栗石のみが、ブロック空所と後方空所とセル空所とを含む表面板と法面との間の全域に、表面板の下端レベルから表面板の上端レベルまで充填されていることによって、一つの段が構成され、
前記段の上に、擁壁用ブロックが前記段の擁壁用ブロックに対して階段状に後退して据え付けられる以外は、前記段の構成と同様に次の段が構成され、これが繰り返されて三段以上に構築されたことを特徴とする。
(1) Therefore, the retaining wall of the present invention is
Including a standing surface plate, a holding plate standing lower than the surface plate at a position spaced rearward from the surface plate, and a connecting plate connecting the left-right direction intermediate portion of the surface plate and the left-right direction intermediate portion of the holding plate, A retaining wall block having a block space penetrating in a vertical direction between the surface plate and the holding plate;
A solid geocell having a plurality of cell cavities penetrating vertically;
Crushed stone or cracked stone is used,
Retaining wall blocks are installed side by side at the front position of the slope, and a rear space is formed between the holding plate and the slope,
The three-dimensional geocell is arranged in an upper and lower range above the upper end level of the holding plate and below the upper end level of the surface plate so that the front part overlaps the block void and the rear part overlaps the rear void.
Only crushed stones or cracked stones are filled from the lower surface level of the surface plate to the upper surface level of the surface plate in the entire area between the surface plate and the slope, including the block space, the rear space, and the cell space. To form a single stage,
The next stage is configured in the same manner as the above-described stage except that the retaining wall block is installed in a stepped manner with respect to the retaining wall block on the stage, and this step is repeated. It is constructed in three or more stages.

(2)また、本発明の擁壁の構築方法は、
起立した表面板と、表面板より後方へ離間した位置で表面板より低く起立した控板と、表面板の左右方向中間部と控板の左右方向中間部とを連結した繋ぎ板とを含み、表面板と控板との間に上下方向に貫通したブロック空所を有する擁壁用ブロックと、
上下方向に貫通した複数のセル空所を有する立体ジオセルと、
砕石又は割栗石とを用い、
擁壁用ブロックを、法面の前方位置に左右に並べて据付けて、控板と法面との間に後方空所を形成し、
砕石又は割栗石のみを、ブロック空所と後方空所とを含む表面板と法面との間に、表面板の下端レベルから控板の上端レベル以上かつ表面板の上端レベル未満まで充填し、
立体ジオセルを、その前部がブロック空所の上方に重なり、その後部が後方空所の上方に重なるように、控板の上端レベル以上かつ表面板の上端レベル以下の上下範囲に配し、
砕石又は割栗石のみを、セル空所を含む表面板と法面との間に、表面板の上端レベルまで充填することによって、一つの段を構成し、
前記段の上に、擁壁用ブロックを前記段の擁壁用ブロックに対して階段状に後退して据え付ける以外は、前記段の構成と同様に次の段を構成し、これを繰り返して三段以上に構築することを特徴とする。
(2) The retaining wall construction method of the present invention includes:
Including a standing surface plate, a holding plate standing lower than the surface plate at a position spaced rearward from the surface plate, and a connecting plate connecting the left-right direction intermediate portion of the surface plate and the left-right direction intermediate portion of the holding plate, A retaining wall block having a block space penetrating in a vertical direction between the surface plate and the holding plate;
A solid geocell having a plurality of cell cavities penetrating vertically;
Using crushed stone or cracked stone,
The retaining wall blocks are installed side by side at the front position of the slope, and a rear space is formed between the holding plate and the slope,
Fill only the crushed stone or cracked stone between the surface plate including the block space and the back space and the slope from the lower end level of the surface plate to the upper end level of the retaining plate and less than the upper end level of the surface plate,
The three-dimensional geocell is arranged in a vertical range above the upper end level of the holding plate and below the upper end level of the surface plate so that its front part overlaps above the block space and its rear part overlaps above the rear space,
By filling only the crushed stone or cracked stone between the surface plate including the cell void and the slope, up to the upper end level of the surface plate, constitute one step,
The next stage is configured in the same manner as the above-described stage except that the retaining wall block is installed in a stepped manner with respect to the retaining wall block on the stage. It is characterized by being constructed in more than stages.

これらの手段によれば、擁壁用ブロックを単独使用した場合のブロック移動の防止作用(相対的に下段の砕石又は割栗石と上段の砕石又は割栗石とが互いに噛み合う)に加え、次の作用が奏される。
各段において、セル空所に充填されて拘束された砕石又は割栗石が、ブロック空所に充填された砕石又は割栗石と、後方空間に充填された砕石又は割栗石とにそれぞれ上下に噛み合うので、立体ジオセルの前方への引き抜きに対する抵抗性がきわめて高い。
別の見方をすると、各段において、セル空所に充填されて拘束された砕石又は割栗石が、一方でブロック空所に充填された砕石又は割栗石と上下に噛み合い、他方で後方空間に充填された砕石又は割栗石と上下に噛み合うので、立体ジオセルは同段及び上段の擁壁用ブロックの移動を強力に防止する。セル空所とブロック空所とが上下に多少離れていてその間に砕石又は割栗石がある場合でも、その砕石又は割栗石を介して、セル空所の砕石又は割栗石とブロック空所の砕石又は割栗石とが噛み合い作用を発揮する。
According to these means, in addition to the action of preventing the movement of the block when the retaining wall block is used alone (relatively the lower crushed stone or crushed stone and the upper crushed stone or crushed stone engage each other), the following action Is played.
At each stage, the crushed stone or cracked stone filled and restrained in the cell space meshes with the crushed stone or cracked stone filled in the block space and the crushed stone or cracked stone filled in the rear space, respectively. The resistance to pulling out of the three-dimensional geocell is extremely high.
From another point of view, in each stage, the crushed stones or cracked stones filled and restrained in the cell voids mesh with the crushed stones or cracked stones filled in the block voids on the one hand and the back space on the other. The three-dimensional geocell strongly prevents the movement of the retaining wall blocks at the same stage and the upper stage because it meshes with the crushed stone or cracked stone made up and down. Even if the cell space and the block space are slightly apart from each other and there are crushed stones or cracked stones between them, the crushed stones or cracked stones of the cell space and the crushed stones of the block space or Engage with cracked stones.

よって、立体ジオセルの後部は、法面に向かって長く延びているほど、砕石又は割栗石の噛み合い量が増えて引き抜きに対する抵抗性が高くなるので好ましく、法面まで延びていることが最も好ましい。ここで、立体ジオセルの長さはセル単位で切断して変えるので、立体ジオセルの後部が「法面まで延びている」とは、法面に丁度到達するように延びている態様に限定されず、法面から1〜2セル分程度の手前まで延びている態様も含まれる。   Therefore, the longer the rear part of the three-dimensional geocell extends toward the slope, the more the meshed amount of crushed stone or cracked stone increases, and the resistance to pulling becomes higher, and the rear part is most preferably extended to the slope. Here, since the length of the solid geocell is changed by cutting in units of cells, the fact that the rear part of the solid geocell “extends to the slope” is not limited to the mode in which it extends just to reach the slope. The aspect extended from the slope to the front of about 1 to 2 cells is also included.

また、擁壁用ブロックどうしは、非結束(金具やコンクリートで緊結しない)であることが好ましい。非結束であることにより擁壁用ブロックが僅かに移動することを許容するので、荷重の分散が図られ、多少の変状や沈下に対しても安定性を保ち、高い耐震性を備える。   Moreover, it is preferable that the blocks for retaining walls are non-bundled (not tightly coupled with metal fittings or concrete). Since the retaining wall block is allowed to move slightly due to being non-bundled, the load is dispersed, and stability is maintained even with some deformation and subsidence, and high earthquake resistance is provided.

擁壁用ブロックと立体ジオセルとは、非結束(金具等で緊結しない)であることが好ましい。非結束であることにより擁壁用ブロックが僅かに移動したときにの立体ジオセルの破損を防止できる。   The retaining wall block and the three-dimensional geocell are preferably non-bundled (not tightly coupled with a metal fitting or the like). By being non-bundled, the solid geocell can be prevented from being damaged when the retaining wall block is slightly moved.

本発明の擁壁によれば、擁壁用ブロックと立体ジオセルとを併用し、これらと砕石又は割栗石とを有機的に組み合わせることにより、擁壁用ブロックを単独使用した擁壁よりも高い耐震性を備えた擁壁を構築することができる。   According to the retaining wall of the present invention, the retaining wall block and the three-dimensional geocel are used in combination, and these are combined with crushed stone or cracked stone organically, thereby providing a higher earthquake resistance than the retaining wall using the retaining wall block alone. It is possible to build a retaining wall with the characteristics.

本発明の実施例1に係る擁壁の(途中段の単粒度砕石を省略して示す)断面図である。It is sectional drawing (abbreviate | omitting and showing the single-grain crushed stone of the middle step) of the retaining wall which concerns on Example 1 of this invention. 同擁壁の一つの段の(a)は(単粒度砕石の一部を省略して示す)平面図、(b)は断面図である。(A) of one step of the retaining wall is a plan view (omitted from a part of the single-grain crushed stone), and (b) is a sectional view. 立体ジオセルの左右幅を変えた使用例の平面図である。It is a top view of the example of use which changed the right-and-left width of a solid geocell. 立体ジオセルのシート方向を変えた使用例の平面図である。It is a top view of the usage example which changed the sheet | seat direction of the solid geocell. 同擁壁に使用した擁壁用ブロックの(a)は正面側から見た斜視図、(b)は背面側から見た斜視図である。(A) of the block for retaining walls used for the retaining wall is the perspective view seen from the front side, (b) is the perspective view seen from the back side. 同擁壁に使用した立体ジオセルの(a)は図2(a)の使用例の斜視図、(b)は図3の使用例の斜視図である。(A) of the solid geocell used for the retaining wall is a perspective view of the usage example of FIG. 2 (a), and (b) is a perspective view of the usage example of FIG. 同立体ジオセルの図4の使用例の斜視図である。It is a perspective view of the usage example of FIG. 4 of the three-dimensional geocell. 本発明の実施例2に係る擁壁の(途中段の単粒度砕石を省略して示す)断面図である。It is sectional drawing (abbreviate | omitting and showing the single-grain crushed stone of the middle step) of the retaining wall which concerns on Example 2 of this invention. 本発明の実施例3に係る擁壁の(途中段の単粒度砕石を省略して示す)断面図である。It is sectional drawing (abbreviate | omitting and showing the single-grain crushed stone of the middle step) of the retaining wall which concerns on Example 3 of this invention.

起立した表面板と、表面板より後方へ離間した位置で表面板より低く起立した控板と、表面板の左右方向中間部と控板の左右方向中間部とを連結した繋ぎ板とを含み、表面板と控板との間に上下方向に貫通したブロック空所を有する擁壁用ブロックと、
上下方向に貫通した複数のセル空所を有する立体ジオセルと、
砕石又は割栗石とが用いられ、
擁壁用ブロックが、法面の前方位置に左右に並べて据付けられて、控板と法面との間に後方空所が形成され、
立体ジオセルが、その前部がブロック空所の上方に重なり、その後部が後方空所の上方に重なるように、控板の上端レベル以上かつ表面板の上端レベル以下の上下範囲に配され、
砕石又は割栗石のみが、ブロック空所と後方空所とセル空所とを含む表面板と法面との間の全域に、表面板の下端レベルから表面板の上端レベルまで充填されていることによって、一つの段が構成され、
前記段の上に、擁壁用ブロックが前記段の擁壁用ブロックに対して階段状に後退して据え付けられる以外は、前記段の構成と同様に次の段が構成され、これが繰り返されて三段以上に構築された擁壁である。
各構成要素の態様を、以下に例示する。
Including a standing surface plate, a holding plate standing lower than the surface plate at a position spaced rearward from the surface plate, and a connecting plate connecting the left-right direction intermediate portion of the surface plate and the left-right direction intermediate portion of the holding plate, A retaining wall block having a block space penetrating in a vertical direction between the surface plate and the holding plate;
A solid geocell having a plurality of cell cavities penetrating vertically;
Crushed stone or cracked stone is used,
Retaining wall blocks are installed side by side at the front position of the slope, and a rear space is formed between the holding plate and the slope,
The three-dimensional geocell is arranged in an upper and lower range above the upper end level of the holding plate and below the upper end level of the surface plate so that the front part overlaps the block void and the rear part overlaps the rear void.
Only crushed stones or cracked stones are filled from the lower surface level of the surface plate to the upper surface level of the surface plate in the entire area between the surface plate and the slope, including the block space, the rear space, and the cell space. To form a single stage,
The next stage is configured in the same manner as the above-described stage except that the retaining wall block is installed in a stepped manner with respect to the retaining wall block on the stage, and this step is repeated. Retaining wall constructed in three or more stages.
The aspect of each component is illustrated below.

(1)擁壁用ブロック
擁壁用ブロックは、左右に間をおいた一対の繋ぎ板を含む箱型の擁壁用ブロックが好ましい。この箱型の擁壁用ブロックにおける表面板と控板との間のブロック空所は、表面板と控板と一対の繋ぎ板とで囲まれた平面四角形の中央空所と、各繋ぎ板の外側方の平面コ字形の側部凹所とからなる。箱型であることにより、特に中央空所に充填された砕石又は割栗石が四方の板に囲まれて拘束されるため、この砕石又は割栗石が上下の砕石又は割栗石と噛み合うことにより、擁壁用ブロックの移動が強力に防止される。
(1) Retaining wall block The retaining wall block is preferably a box-shaped retaining wall block including a pair of connecting plates spaced on the left and right. In this box-type retaining wall block, the block space between the surface plate and the retaining plate is a central space of a rectangular plane surrounded by the surface plate, the retaining plate and a pair of connecting plates, and each connecting plate It consists of a lateral U-shaped side recess. Since the crushed stone or cracked stone filled in the central space is restrained by being surrounded by four sides of the plate, the crushed stone or cracked stone engages with the upper and lower crushed stones or cracked stone. The movement of the wall block is strongly prevented.

左右に並んだ擁壁用ブロックどうしは、結束してもよいし、非結束でもよいが、前述のとおり非結束が好ましい。相対的に下段の擁壁用ブロックと上段の擁壁用ブロックとは、同様に非結束が好ましい。   The retaining wall blocks arranged side by side may be bound or unbound, but as described above, non-binding is preferable. Similarly, the lower retaining wall block and the upper retaining wall block are preferably unbound.

(2)立体ジオセル
立体ジオセルは、ポリオレフィン(高密度ポリエチレン等)等の樹脂よりなる帯状のシートを複数枚重ね、隣接するシートごとに千鳥状にずれた部分で、高周波溶着等により接合してなり、展開すると立体的な(帯分の高さがある)平面視格子構造(例えばハニカム格子構造)になるものである。立体ジオセルの市販品としては、株式会社日本ランテックの商品名「テラセル(登録商標)」を例示できる。
(2) Three-dimensional geocell A three-dimensional geocell is made up of a plurality of strip-shaped sheets made of resin such as polyolefin (high-density polyethylene, etc.), and is joined in a zigzag manner at each adjacent sheet by high-frequency welding or the like. When developed, it becomes a three-dimensional (having a height of a band) planar view lattice structure (for example, a honeycomb lattice structure). An example of a commercial product of a three-dimensional geocell is “Terracel (registered trademark)” of Nippon Lantec Co., Ltd.

一般に擁壁の幅は立体ジオセルの左右幅よりずっと大きい場合が多いから、立体ジオセルは複数枚を左右方向に並べて使用することになる。この場合、立体ジオセルと立体ジオセルとは、接して並べてもよいし、間を空けて並べてもよい。また、並べた立体ジオセルどうしは、繋いでもよいし、繋がなくてもよいが、フレキシブルな構造になり手間もかからない後者が好ましい。   In general, since the width of the retaining wall is often much larger than the left and right width of the solid geocell, a plurality of solid geocells are used in the horizontal direction. In this case, the three-dimensional geocell and the three-dimensional geocell may be arranged in contact with each other, or may be arranged with a gap therebetween. The arranged solid geocells may be connected or not connected, but the latter is preferable because it has a flexible structure and does not require much labor.

立体ジオセルの展開した1セルの大きさ(セル空所の平面視面積)としては、特に限定されないが、25000〜150000mm2 の範囲を例示できる。立体ジオセルの高さ(セル空所の高さも同じ)としては、特に限定されないが、50〜300mmの範囲を例示できる。 Although it does not specifically limit as a magnitude | size (planar view area of a cell space) of 1 cell which the three-dimensional geocell expand | deployed, The range of 25000-150000mm < 2 > can be illustrated. Although it does not specifically limit as a height of a solid geocell (the height of a cell space is the same), The range of 50-300 mm can be illustrated.

立体ジオセルの左右幅は、擁壁用ブロックの左右幅に対して、小さいもの、同じもの又は大きいもののいずれを用いてもよいが、取り扱いの容易さの点から小さいもの又は同じものが好ましく、セル数でいうと2〜5セルが左右に並んだものが好ましい。立体ジオセルの前後長は、擁壁用ブロックと法面との距離に応じて適宜決めることができる。   The right and left width of the three-dimensional geocell may be smaller, the same or larger than the left and right width of the retaining wall block, but is preferably smaller or the same from the viewpoint of ease of handling. In terms of numbers, those in which 2 to 5 cells are arranged side by side are preferred. The longitudinal length of the three-dimensional geocell can be appropriately determined according to the distance between the retaining wall block and the slope.

(3)砕石又は割栗石
砕石は、砕石同士の噛み合いの均一性の点から単粒度砕石が好ましく、S−30(4号),S−40(3号)又はS−60(2号)の単粒度砕石が特に好ましい。割栗石は、粒径50〜150mmの割栗石が好ましい。なお、砕石又は割栗石以外の成分が、上記の砕石又は割栗石の噛み合いに影響しない程度の微量だけ混じる場合も「砕石又は割栗石のみ」に含まれる。
(3) Crushed stone or cracked stone The crushed stone is preferably a single-grain crushed stone from the viewpoint of the uniformity of meshing between the crushed stones, and S-30 (4), S-40 (3) or S-60 (2) Single grain crushed stone is particularly preferred. The split stone is preferably a split stone having a particle size of 50 to 150 mm. It should be noted that a case where components other than crushed stones or cracked stones are mixed in only a trace amount that does not affect the engagement of the crushed stones or cracked stones are also included in “only crushed stones or cracked stones”.

図1〜図4は本発明を具体化した実施例1の擁壁を示している。図5はその擁壁に使用した擁壁用ブロック、図6及び図7は立体ジオセルをそれぞれ示している。   1 to 4 show a retaining wall of a first embodiment embodying the present invention. FIG. 5 shows a retaining wall block used for the retaining wall, and FIGS. 6 and 7 each show a three-dimensional geocell.

擁壁用ブロック1は、図5に示すように、垂直に起立した表面板2と、表面板2より後方へ離間した位置で表面板2より低く垂直に(又は上側が後傾するように傾斜して)起立した控板3と、表面板2の左右方向中間部と控板3の左右方向中間部とを連結した一対の繋ぎ板4、4とが、コンクリートで一体的にプレキャストされてなるものである。なお、本実施例において以下に挙げる各部の寸法は例示であり、適宜変更できる。   As shown in FIG. 5, the retaining wall block 1 is inclined so that the surface plate 2 stands vertically and is vertically lower than the surface plate 2 at a position spaced rearward from the surface plate 2 (or the upper side is inclined backward). The standing holding plate 3 and a pair of connecting plates 4 and 4 connecting the left and right intermediate portions of the surface plate 2 and the left and right intermediate portions of the holding plate 3 are integrally precast with concrete. Is. In addition, the dimension of each part mentioned below in a present Example is an illustration, and can be changed suitably.

表面板2は、左右幅約2000mm、高さ約1000mm、厚さ約120mmの長方形板であり、その表面には例えば石垣模様、溝模様等の模様が設けられ、左右の側端面の上部及び下部には、水抜きスリット形成用の浅い凹部5が形成されている。控板3は、幅約1860mm、垂直高さ約500mm、厚さ約120mmの長方形板である。控板3の前面と表面板2の後面との間隔は約1010mmである。一対の繋ぎ板4,4はそれぞれ、前後長さが約1010mm、後半部分の高さが約500mm、表面板2に結合する前半部分(補強部4a,4aとなっている)の高さが約900mm、厚さが約100mmの板である。   The surface plate 2 is a rectangular plate having a lateral width of about 2000 mm, a height of about 1000 mm, and a thickness of about 120 mm. The surface is provided with patterns such as a stone wall pattern and a groove pattern, and upper and lower portions of the left and right side end faces. A shallow recess 5 for forming a drain slit is formed. The holding plate 3 is a rectangular plate having a width of about 1860 mm, a vertical height of about 500 mm, and a thickness of about 120 mm. The distance between the front surface of the holding plate 3 and the rear surface of the surface plate 2 is about 1010 mm. Each of the pair of connecting plates 4 and 4 has a front and rear length of about 1010 mm, a height of the rear half portion of about 500 mm, and a front half portion (reinforcing portions 4 a and 4 a) connected to the surface plate 2 is about a height. It is a plate having a thickness of 900 mm and a thickness of about 100 mm.

控板3及び繋ぎ板4,4の各下端面は、表面板2の下端面と同じレベルに合わせられているので、控板3及び繋ぎ板4,4の後半部分の各上端面は表面板2の上端面に対して略1/2の高さレベルにある。また、両繋ぎ板4,4は左右に約1000mmの相互間隔をおいて平行に対峙しており、その中央位置と表面板2の左右方向中央位置と控板3の左右方向中央位置とは前後に合わせられている。従って、各繋ぎ板4,4の外側面に対し、表面板2は近い方の側端面までが約400mm突出しており(突出部2a)、控板3は近い方の側端面までが約330mm突出している(突出部3a)。   Since the lower end surfaces of the holding plate 3 and the connecting plates 4 and 4 are adjusted to the same level as the lower end surface of the surface plate 2, the upper end surfaces of the latter half of the holding plate 3 and the connecting plates 4 and 4 are surface plates. 2 is at a height level of about ½ with respect to the upper end surface. Further, the connecting plates 4 and 4 are opposed to each other in parallel at an interval of about 1000 mm on the left and right, and the center position, the center position in the left and right direction of the surface plate 2 and the center position in the left and right direction of the holding plate 3 are It is adapted to. Therefore, with respect to the outer surface of each connecting plate 4, 4, the surface plate 2 protrudes by about 400 mm to the closer side end surface (protruding portion 2 a), and the holding plate 3 protrudes by about 330 mm to the closer side end surface. (Protruding part 3a).

表面板2と控板3との間のブロック空所6は、表面板2と控板3と一対の繋ぎ板4、4とで囲まれた平面四角形(本例では略正方形)の中央空所7と、各繋ぎ板4,4の外側方において表面板2の突出部2aと控板3の突出部3aと各繋ぎ板4,4とで囲まれた平面コ字形の側部凹所8とからなる。なお、擁壁用ブロック1の重さは約1300kgである。   The block space 6 between the surface plate 2 and the holding plate 3 is a central space of a plane quadrangle (substantially square in this example) surrounded by the surface plate 2, the holding plate 3, and the pair of connecting plates 4, 4. 7 and a lateral U-shaped recess 8 surrounded by the protruding portion 2a of the surface plate 2, the protruding portion 3a of the retaining plate 3, and the connecting plates 4 and 4 on the outer side of the connecting plates 4 and 4. Consists of. The retaining wall block 1 weighs about 1300 kg.

立体ジオセル10は、図6及び図7に示すように、上下方向に貫通した複数のセル空所を有するものである。本実施例では、立体ジオセル10として株式会社日本ランテックの商品名「テラセル(登録商標)T−200LP」を使用した。このT−200LPは、2〜3重量%のカーボン粒子を練りこんだ高密度ポリエチレンからなる、幅(高さ)200mm、長さ3350mm、厚さ1.25mmのシート11を60枚重ねて、隣接するシート11どうしを約66cm間隔で設けられた熱融着線12で相互に熱融着して形成されたものである。熱融着線12を隣接するシート11ごとに千鳥状に交互にずらすことで、展張した際に上下方向に貫通した複数のセル空所13が平面視ハニカム状に配列するように形成されるものである。展開した際の1セルの大きさは展開時の引張り具合にもよるが標準では幅L1=512mm、L2=475mmであり、1セルのセル空所13の平面視面積は約120000mm2 である。また、シート11には、熱融着線12付近を除き、直径8mmの円形の貫通孔14が多数設けられている。 As shown in FIGS. 6 and 7, the three-dimensional geocell 10 has a plurality of cell voids penetrating in the vertical direction. In this example, the trade name “Terracel (registered trademark) T-200LP” of Nippon Lantec Co., Ltd. was used as the three-dimensional geocell 10. This T-200LP is made of high-density polyethylene kneaded with 2-3% by weight of carbon particles, 60 sheets 11 each having a width (height) of 200 mm, a length of 3350 mm, and a thickness of 1.25 mm stacked. The sheets 11 to be formed are formed by heat fusion with each other by heat fusion wires 12 provided at intervals of about 66 cm. A plurality of cell cavities 13 penetrating in the vertical direction when stretched are arranged so as to be arranged in a honeycomb in plan view by alternately shifting the heat-sealing wires 12 in a staggered manner for each adjacent sheet 11 It is. The size of one cell when deployed depends on the tension at the time of deployment, but the width L1 = 512 mm and L2 = 475 mm as standard, and the planar view area of the cell cavity 13 of one cell is about 120,000 mm 2 . The sheet 11 is provided with a large number of circular through-holes 14 having a diameter of 8 mm except for the vicinity of the heat-sealing wire 12.

本実施例では、上記T−200LPを、次の(1)の態様で使用したが、例えば次の(2)又は(3)の態様で使用することもできる。   In the present Example, although said T-200LP was used in the following aspect (1), it can also be used, for example in the following (2) or (3) aspect.

(1)図2(a)及び図6(a)に示すように、シート長方向Lに3セルが並んだ左右幅(標準で1536mm)に切断し、シート重ね方向Mを法面に向かって延ばす態様。
(2)図3及び図6(b)に示すように、シート長方向Lに2セルが並んだ左右幅(標準で1024mm)に切断し、シート重ね方向Mを法面に向かって延ばす態様。
(3)図4及び図7に示すように、シート重ね方向Mに3セルが並んだ左右幅(標準で1371mm)に切断し、シート長さ方向Lを法面に向かって延ばす態様。
(1) As shown in FIGS. 2 (a) and 6 (a), the sheet is cut into a left-right width (1536 mm as a standard) in which three cells are arranged in the sheet length direction L, and the sheet stacking direction M is directed toward the slope. A mode to extend.
(2) A mode in which, as shown in FIGS. 3 and 6B, the sheet is cut into a left-right width (1024 mm as a standard) in which two cells are arranged in the sheet length direction L, and the sheet stacking direction M is extended toward the slope.
(3) A mode in which, as shown in FIGS. 4 and 7, the sheet is cut into a left-right width (standard 1371 mm) in which three cells are arranged in the sheet overlapping direction M, and the sheet length direction L is extended toward the slope.

さて、本実施例の擁壁は次のように構築されている。まず、背面土21で構成される法面20の直ぐ前方における現場地盤22には、基礎部23が形成されている。この基礎部23は、特に限定されず、例えば単粒度砕石又は割栗石を入れただけのもの、単粒度砕石又は割栗石をジオテキスタイルで巻き囲んだもの、立体ジオセルを敷設してそのセル空所に単粒度砕石又は割栗石を充填したものを複数重ねたもの、等を例示することができる。   Now, the retaining wall of a present Example is constructed as follows. First, a foundation portion 23 is formed on the site ground 22 immediately in front of the slope 20 constituted by the back soil 21. The base portion 23 is not particularly limited. For example, a single-grained crushed stone or a crushed stone, a single-grained crushed stone or a crushed stone surrounded by a geotextile, a three-dimensional geocell laid in the cell space. The thing etc. which piled up what filled a single-grain crushed stone or cracked stone, etc. can be illustrated.

この基礎部23の上には、最下段(1段目)を構成する複数の擁壁用ブロック1が左右に並べて据付けられて、控板3と法面20との間に後方空所24が形成されている。隣り合う擁壁用ブロック1の浅い凹部5の同士間にはスリットが形成され、擁壁の内部に過剰に貯まる水を正面側へ抜くことができる。   A plurality of retaining wall blocks 1 constituting the lowermost stage (first stage) are installed side by side on the foundation 23, and a rear space 24 is provided between the retaining plate 3 and the slope 20. Is formed. A slit is formed between the shallow concave portions 5 of the adjacent retaining wall blocks 1 so that excessive water stored in the retaining wall can be drawn to the front side.

立体ジオセル10が、その前部がブロック空所6の上方に重なり、その後部が後方空所24の上方に重なり法面20まで延びるように、控板3の上端レベル以上かつ表面板2の上端レベル以下の上下範囲のうちの下限高さに配されている。すなわち、立体ジオセル10が控板3の上端に載せられ、立体ジオセル10の上端は表面板2の上端レベルに達しない。立体ジオセル10と擁壁用ブロック1とは非結束である。また、1つの擁壁用ブロック1について1つの立体ジオセル10が配されており、その前部がブロック空所6の特に中央空所7の上方に重なるように配されている。従って、平面的には立体ジオセル10と立体ジオセル10との間がいくらか空くことになり、立体ジオセル10どうしは非結束である。   The three-dimensional geocell 10 has a front portion overlying the block void 6 and a rear portion overlying the rear void 24 and extending to the slope 20 and is at or above the upper end level of the retaining plate 3 and the upper end of the surface plate 2. It is arranged at the lower limit of the upper and lower range below the level. That is, the solid geocell 10 is placed on the upper end of the retaining plate 3, and the upper end of the solid geocell 10 does not reach the upper end level of the surface plate 2. The solid geocell 10 and the retaining wall block 1 are not bound. Further, one solid geocell 10 is arranged for one retaining wall block 1, and the front portion thereof is arranged so as to overlap the block space 6, particularly above the central space 7. Accordingly, in plan view, there is some space between the three-dimensional geocell 10 and the three-dimensional geocell 10, and the three-dimensional geocells 10 are not bound.

単粒度砕石17(又は割栗石)のみが、ブロック空所6と後方空所24とセル空所13とを含む表面板2と法面20との間の全域に、表面板2の下端レベルから表面板2の上端レベルまで充填されており、以上によって擁壁の1段目が構成されている。本実施例ではS−40の単粒度砕石を使用した。   Only the single-grain crushed stone 17 (or cracked stone) is applied from the lower end level of the surface plate 2 to the entire area between the surface plate 2 and the slope 20 including the block space 6, the rear space 24, and the cell space 13. The top plate 2 is filled up to the upper end level, and the first stage of the retaining wall is configured as described above. In this example, S-40 single-grain crushed stone was used.

この1段目は次の(1)〜(4)の方法により形成することができる。 This first stage can be formed by the following methods (1) to (4).

(1)擁壁用ブロック1を、法面20の前方位置に左右に並べて据付けて、控板3と法面20との間に後方空所24を形成する。
(2)次に、単粒度砕石17を、ブロック空所6と後方空所24とを含む表面板2と法面20との間に、表面板2の下端レベルから控板3の上端レベルまで充填する。
(3)次に、立体ジオセル10を、その前部がブロック空所6の上方に重なり、その後部が後方空所24の上方に重なるように、控板3の上端に載せて配する。
(4)次に、単粒度砕石17を、セル空所13を含む表面板2と法面20との間に、表面板2の上端レベルまで充填する。
(1) The retaining wall blocks 1 are installed side by side at the front position of the slope 20 so as to form a rear space 24 between the holding plate 3 and the slope 20.
(2) Next, the single-grain crushed stone 17 is placed between the surface plate 2 including the block space 6 and the back space 24 and the slope 20 from the lower end level of the surface plate 2 to the upper end level of the retaining plate 3. Fill.
(3) Next, the three-dimensional geocell 10 is placed on the upper end of the retaining plate 3 so that the front portion thereof overlaps the block space 6 and the rear portion thereof overlaps the rear space 24.
(4) Next, the single-grain crushed stone 17 is filled up to the upper end level of the surface plate 2 between the surface plate 2 including the cell void 13 and the slope 20.

セル空所13の単粒度砕石17とブロック空所6の単粒度砕石17とは、直接噛み合う。また、セル空所13と次に述べる2段目のブロック空所とは上下に多少(本例では300mm)離れていてその間に単粒度砕石17があるが、その単粒度砕石17を介してセル空所13の単粒度砕石17と2段目のブロック空所の単粒度砕石とは噛み合い作用を発揮する。   The single-grain crushed stone 17 in the cell cavity 13 and the single-grain crushed stone 17 in the block cavity 6 are directly meshed with each other. In addition, the cell space 13 and the second block space described below are slightly apart from each other (300 mm in this example), and there is a single-grain crushed stone 17 between them. The single-grain crushed stone 17 in the void 13 and the single-grain crushed stone in the second-stage block void exhibit a meshing action.

次に、前記1段目の単粒度砕石17の上に、次の段の擁壁用ブロック1が前記段の擁壁用ブロックに対して階段状に後退して左右に並べて据付けられる以外は、前記1段目の構成と同様に擁壁の2段目が構成されている。すなわち、立体ジオセル10が同様に配され、単粒度砕石17が同様に表面板2の上端レベルまで充填されている。   Next, on the single-stage crushed stone 17 of the first stage, except that the next-stage retaining wall block 1 is installed step by step with respect to the retaining wall block of the next stage and arranged side by side. Similar to the first stage configuration, the second stage of the retaining wall is configured. That is, the solid geocell 10 is similarly arranged, and the single-grain crushed stone 17 is similarly filled to the upper end level of the surface plate 2.

そして、前記2段目の上に順次3段目以降が2段目と同様に構成されるとともに積み上げられて、複数段(例えば4段〜30段、図示例は13段)よりなる本実施例の擁壁が構築されている。図示例の擁壁用ブロック1による擁壁の勾配は3分であるが、法面20の勾配は5.74分である。よって、後方空所24は上の段ほど長くなり、立体ジオセル10は法面20まで延びるために上の段ほど長くなる。また、擁壁用ブロック1は、相対的に下段に対して上段が約300mm後退して据付けられる。   In this embodiment, the third and subsequent stages are sequentially constructed and stacked on the second stage in the same manner as the second stage, and are composed of a plurality of stages (for example, 4 to 30 stages, 13 stages in the illustrated example). Retaining walls have been built. The slope of the retaining wall by the retaining wall block 1 in the illustrated example is 3 minutes, while the slope of the slope 20 is 5.74 minutes. Therefore, the rear space 24 becomes longer at the upper stage, and the three-dimensional geocell 10 becomes longer at the upper stage because it extends to the slope 20. In addition, the retaining wall block 1 is installed with the upper stage retracted by about 300 mm relative to the lower stage.

以上のように構成された本実施例の擁壁によれば、次の作用効果(1)〜(8)が得られる。   According to the retaining wall of the present embodiment configured as described above, the following effects (1) to (8) are obtained.

(1)擁壁用ブロック1のブロック空所6に単粒度砕石17を充填するだけでなく、後方空所24にも単粒度砕石17を充填し、さらに1段ごと(高さ1mごと)にブロック空所6の上方に重なり且つ法面20まで延びる立体ジオセル10を敷設し、そのセル空所13にも単粒度砕石17を充填し、もって擁壁の全体に単粒度砕石17を詰めるため、擁壁用ブロック1と立体ジオセル10と単粒度砕石17のすべてを一体型構造とした擁壁となる。 (1) Not only filling the block void 6 of the retaining wall block 1 with the single-grain crushed stone 17 but also filling the rear void 24 with the single-grain crushed stone 17 and further, every step (every 1 m in height) In order to lay the solid geocell 10 that extends above the block void 6 and extends to the slope 20, fill the cell void 13 with the single-grained crushed stone 17, and thus fill the entire retaining wall with the single-sized crushed stone 17; The retaining wall block 1, the three-dimensional geocel 10, and the single-grain crushed stone 17 are all integrated into a retaining wall.

(2)立体ジオセル10の上部及び下部、さらに左右にも単粒度砕石17が密実に充填され、立体ジオセル10を中心にして砕石のせん断抵抗線が上下左右に互いに交錯して砕石同士が噛み合って層を形成し、全体が一体となり応力に抵抗する構造となる。 (2) The single-grain crushed stones 17 are densely filled in the upper and lower portions of the three-dimensional geocell 10 and the left and right sides, and the shear resistance lines of the crushed stone cross each other vertically and horizontally around the three-dimensional geocell 10 so that the crushed stones mesh with each other A layer is formed, and the whole is united and resists stress.

(3)擁壁用ブロック1はブロック空所6に充填された単粒度砕石17の噛み合いと摩擦により強く拘束されて、擁壁としての形態を維持している。砕石の噛み合いは、時に大きい地震加速度に対して微動したり移動したりすることで地震加速度を緩和し、地震エネルギーを弱める効果がある。その際、砕石同士が噛み合う元の位置に戻ろうとするバネの力も同時に働き、表面を擁壁用ブロック1に包まれた構造物はそのために大きな変状が起きにくい。 (3) The retaining wall block 1 is strongly restrained by the meshing and friction of the single-grain crushed stone 17 filled in the block space 6 and maintains the shape as a retaining wall. The engagement of crushed stones has the effect of mitigating earthquake acceleration and weakening earthquake energy by moving or moving to a large earthquake acceleration. At this time, the force of the spring that tries to return to the original position where the crushed stones engage with each other also acts simultaneously, and the structure whose surface is surrounded by the retaining wall block 1 is less likely to be greatly deformed.

(4)擁壁用ブロック1と立体ジオセル10を組み合わせることにより、山間部での擁壁構築に欠かせない条件として用地を少なく排水性に大きな特性を発揮できる。特に山間部では、異常気象による豪雨などにより山腹全体が出水にお覆われ、時に激しい出水は人命や家屋などの喪失や構造物の破壊など、災害の大きな起因になっている。一般的な擁壁は山腹を流れる様な激しい出水に対して処理する機能を持つことがなく、そのため擁壁崩壊は雨水によることが圧倒的に多い。本発明の擁壁構造は、擁壁用ブロック1のフレキシブルな耐震性と排水性能と立体ジオセル10の抜群の排水性能の高さ、さらに層を中心にした重層全体の砕石の噛み合わせによる耐震性の構造は多くの雨災害や地震災害にも対応できる機能を保持している。 (4) By combining the retaining wall block 1 and the three-dimensional geocell 10, it is possible to exhibit large characteristics in terms of drainage with less land as a condition indispensable for the construction of retaining walls in mountainous areas. Especially in mountainous areas, the entire mountainside is covered with flooding due to heavy rain due to abnormal weather, and sometimes severe flooding is a major cause of disasters such as the loss of lives and houses, and the destruction of structures. A general retaining wall does not have a function to deal with intense flooding that flows on the mountainside, so the retaining wall collapse is overwhelmingly due to rainwater. The retaining wall structure of the present invention has the flexible earthquake resistance and drainage performance of the retaining wall block 1 and the outstanding drainage performance of the three-dimensional geocell 10, and also the earthquake resistance by meshing of the crushed stones of the entire multilayered structure centering on the layer. The structure has the function to cope with many rain disasters and earthquake disasters.

(5)立体ジオセル10の砕石中での引張強度は、全てのジオテキスタイルのせん断引き抜き抵抗力に対しても群を抜いて摩擦強度が高く、材質も化学的に安定したポリオレフィンを使用している。重層の立体ジオセル10は全体で板状の強度を有し、破壊的な地震加速度を受けると、立体ジオセル10を中心として上下に同じ質量の砕石は互いに噛み合い、時に緩和し合いながら応力に対して抵抗する。エネルギーの衝撃を受けた基礎部分や背面土部分から全体に衝撃が波及するなかで、衝撃エネルギーは立体ジオセル10と同層の間に充填された立体ジオセル10で拘束されていない砕石部分が緩和地帯となり、応力やエネルギーを消化する。 (5) The tensile strength in the crushed stone of the three-dimensional geocell 10 is a polyolefin that has a high friction strength and a chemically stable material with respect to the shear pull-out resistance of all geotextiles. The multi-layered solid geocell 10 has a plate-like strength as a whole, and when subjected to destructive earthquake acceleration, crushed stones of the same mass above and below the three-dimensional geocell 10 are engaged with each other and sometimes relaxed against stress. resist. While the impact spreads from the foundation part and the back soil part subjected to the impact of the energy, the impact energy is a mitigation zone in the crushed stone part that is not restrained by the solid geocell 10 filled between the solid geocell 10 and the same layer. And digests stress and energy.

(6)擁壁用ブロック1は横も上下もブロック同士を金具等で接続しないフリーな構造である。そのため擁壁用ブロック1と立体ジオセル10は金具等で繋げないで、立体ジオセル10を擁壁用ブロック1に乗せて擁壁用ブロック1と立体ジオセル10の砕石同士の噛み合わせを接続とした構造形式である。破壊的な地震加速度を受けた場合、擁壁用ブロック1と立体ジオセル10、単粒度砕石17はそれぞれ質量の違いにより揺れ方が異なり、特に単体重量が大きい擁壁用ブロック1は大きく動くことが推測される。そのため、擁壁用ブロック1のブロック空所6の砕石(中詰め材)、後方空所24の砕石(裏込め材)が抵抗したり緩和したりしながら砕石の噛み合わせ効果を発揮しながら、擁壁用ブロック1の変状を抑制しながら全体を構成する。砕石の噛み合わせ効果は、噛み合った擁壁内でしなやかに、時には剛体の様な強さを発揮し、また、地震エネルギーを微動、時には移動により大きな応力を緩和し消化までしてしまう。組み合わせのすべてを金具等で繋げない非結束構造は、激しい出水等のエネルギーに対しても地震加速度と同じ効果(微動や小さな移動によって大きな応力を消化させる)が得られる。 (6) The retaining wall block 1 has a free structure in which the blocks are not connected to each other by metal fittings in the horizontal and vertical directions. Therefore, the retaining wall block 1 and the three-dimensional geocell 10 are not connected by a metal fitting or the like, and the three-dimensional geocell 10 is placed on the retaining wall block 1 to connect the crushed stones of the retaining wall block 1 and the three-dimensional geocell 10 to each other. Format. When subjected to destructive earthquake acceleration, the retaining wall block 1, the three-dimensional geocell 10, and the single-grain crushed stone 17 have different ways of shaking due to differences in mass, and the retaining wall block 1 having a large unit weight can move greatly. Guessed. Therefore, while the crushed stone (filling material) in the block space 6 of the retaining wall block 1 and the crushed stone (backfill material) in the rear space 24 resist or relax, while exerting the meshing effect of the crushed stone, The entire structure is configured while suppressing deformation of the retaining wall block 1. The meshing effect of the crushed stone is supple, sometimes exerting the strength of a rigid body within the meshing retaining walls, and the trembling of the seismic energy, sometimes mitigating large stress due to movement, and even digestion. A non-bundled structure that does not connect all the combinations with metal fittings, etc., can achieve the same effect as earthquake acceleration (energy can be digested by tremors and small movements) even for energetic flooding and other energies.

(7)擁壁用ブロック1は単粒度砕石17を箱型形状のブロック空所6で拘束し、拘束された砕石はフレキシブルなせん断抵抗力(インターロッキング効果)を発揮して擁壁を形成している。擁壁用ブロック1で拘束形成されている擁壁中に立体ジオセル10を挟み、背面側へ立体ジオセル10を延伸することで、さらに立体ジオセル10の上下左右に摩擦抵抗による引き抜きせん断抵抗が発生するため、重層になった立体ジオセル10と擁壁用ブロック1を形成している擁壁ライン内において互いに応力に対して一体型として強く抵抗する非結束構成構造物である。 (7) The retaining wall block 1 constrains the single-grain crushed stone 17 in the box-shaped block space 6 and the constrained crushed stone exhibits a flexible shear resistance (interlocking effect) to form a retaining wall. ing. By holding the solid geocell 10 in the retaining wall constrained by the retaining wall block 1 and extending the solid geocell 10 to the back side, pulling shear resistance due to frictional resistance is generated on the top, bottom, left and right of the solid geocell 10. Therefore, the solid geocell 10 and the retaining wall block forming the retaining wall block 1 that are stacked are non-bundling structural structures that strongly resist each other as a single unit against stress.

(8)擁壁用ブロック1、単粒度砕石17、立体ジオセル10のそれぞれが互いを金具やコンクリートで緊結しない非結束でありながらフレキシブルな構造体として成立している抗土圧構造物である。 (8) Each of the retaining wall block 1, the single-grain crushed stone 17 and the solid geocell 10 is an anti-earth pressure structure that is formed as a flexible structure while not being bound to each other by metal fittings or concrete.

図8に示す実施例2の擁壁は、次の点(a)(b)においてのみ実施例1と相違し、その他は実施例1と共通である。本実施例によっても実施例1と同様の作用効果が得られる。   The retaining wall of the second embodiment shown in FIG. 8 is different from the first embodiment only in the following points (a) and (b), and the rest is common to the first embodiment. Also according to this embodiment, the same effects as those of the first embodiment can be obtained.

(a)立体ジオセル10が、控板3の上端レベル以上かつ表面板2の上端レベル以下の上下範囲のうちの中間高さに配されている。よって、セル空所と同段のブロック空所及び上段のブロック空所とはそれぞれ上下に多少(本例では150mm)離れていてその間に単粒度砕石17があるが、その単粒度砕石17を介してセル空所の単粒度砕石とブロック空所の単粒度砕石とは噛み合い作用を発揮する。 (A) The three-dimensional geocell 10 is arranged at an intermediate height in the upper and lower ranges above the upper end level of the retaining plate 3 and below the upper end level of the surface plate 2. Therefore, the cell vacant space and the upper block vacant space are slightly separated from each other in the vertical direction (150 mm in this example), and there is a single-grain crushed stone 17 between them. The single-grain crushed stone in the cell cavity and the single-grain crushed stone in the block cavity exert an engaging action.

(b)図示例の擁壁用ブロック1による擁壁の勾配は3分であり、法面20の勾配は3.82分である。 (B) The slope of the retaining wall by the retaining wall block 1 in the illustrated example is 3 minutes, and the slope of the slope 20 is 3.82 minutes.

図9に示す実施例3の擁壁は、次の点(a)(b)においてのみ実施例1と相違し、その他は実施例1と共通である。本実施例によっても実施例1と同様の作用効果が得られる。   The retaining wall of the third embodiment shown in FIG. 9 is different from the first embodiment only in the following points (a) and (b), and the rest is common to the first embodiment. Also according to this embodiment, the same effects as those of the first embodiment can be obtained.

(a)立体ジオセル10が、控板3の上端レベル以上かつ表面板2の上端レベル以下の上下範囲のうちの上限高さに配されている。よって、セル空所の単粒度砕石17と上段のブロック空所の単粒度砕石17とは、直接噛み合う。また、セル空所と同段のブロック空所とは上下に多少(本例では300mm)離れていてその間に単粒度砕石17があるが、その単粒度砕石17を介してセル空所の単粒度砕石とブロック空所の単粒度砕石とは噛み合い作用を発揮する。 (A) The three-dimensional geocell 10 is disposed at the upper limit height in the upper and lower ranges above the upper end level of the retaining plate 3 and below the upper end level of the surface plate 2. Therefore, the single-grain crushed stone 17 in the cell space and the single-grain crushed stone 17 in the upper block space directly mesh with each other. In addition, the cell space and the block space of the same level are slightly apart from each other (300 mm in this example), and there is a single-grain crushed stone 17 between them. The crushed stone and the single-grained crushed stone in the block space exert a meshing action.

(b)図示例の擁壁用ブロック1による擁壁の勾配は2分であり、法面20の勾配は3.82分である。 (B) The slope of the retaining wall by the retaining wall block 1 in the illustrated example is 2 minutes, and the slope of the slope 20 is 3.82 minutes.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜に変更して具体化することもできる。   In addition, this invention is not limited to the said Example, In the range which does not deviate from the meaning of this invention, it can change suitably and can be embodied.

1 擁壁用ブロック
2 表面板
3 控板
4 繋ぎ板
6 ブロック空所
7 中央空所
8 側部凹所
10 立体ジオセル
13 セル空所
17 単粒度砕石
20 法面
24 後方空所
DESCRIPTION OF SYMBOLS 1 Retaining wall block 2 Surface plate 3 Grading plate 4 Connecting plate 6 Block space 7 Central space 8 Side recess 10 Solid geocell 13 Cell space 17 Single grain crushed stone 20 Slope 24 Back space

Claims (6)

起立した表面板と、表面板より後方へ離間した位置で表面板より低く起立した控板と、表面板の左右方向中間部と控板の左右方向中間部とを連結した繋ぎ板とを含み、表面板と控板との間に上下方向に貫通したブロック空所を有する擁壁用ブロックと、
上下方向に貫通した複数のセル空所を有する立体ジオセルと、
砕石又は割栗石とが用いられ、
擁壁用ブロックが、法面の前方位置に左右に並べて据付けられて、控板と法面との間に後方空所が形成され、
立体ジオセルが、その前部がブロック空所の上方に重なり、その後部が後方空所の上方に重なるように、控板の上端レベル以上かつ表面板の上端レベル以下の上下範囲に配され、
砕石又は割栗石のみが、ブロック空所と後方空所とセル空所とを含む表面板と法面との間の全域に、表面板の下端レベルから表面板の上端レベルまで充填されていることによって、一つの段が構成され、
前記段の上に、擁壁用ブロックが前記段の擁壁用ブロックに対して階段状に後退して据え付けられる以外は、前記段の構成と同様に次の段が構成され、これが繰り返されて三段以上に構築された擁壁。
Including a standing surface plate, a holding plate standing lower than the surface plate at a position spaced rearward from the surface plate, and a connecting plate connecting the left-right direction intermediate portion of the surface plate and the left-right direction intermediate portion of the holding plate, A retaining wall block having a block space penetrating in a vertical direction between the surface plate and the holding plate;
A solid geocell having a plurality of cell cavities penetrating vertically;
Crushed stone or cracked stone is used,
Retaining wall blocks are installed side by side at the front position of the slope, and a rear space is formed between the holding plate and the slope,
The three-dimensional geocell is arranged in an upper and lower range above the upper end level of the holding plate and below the upper end level of the surface plate so that the front part overlaps the block void and the rear part overlaps the rear void.
Only crushed stones or cracked stones are filled from the lower surface level of the surface plate to the upper surface level of the surface plate in the entire area between the surface plate and the slope, including the block space, the rear space, and the cell space. To form a single stage,
The next stage is configured in the same manner as the above-described stage except that the retaining wall block is installed in a stepped manner with respect to the retaining wall block on the stage, and this step is repeated. Retaining wall constructed in three or more stages.
立体ジオセルの後部は、法面まで延びている請求項1記載の擁壁。   The retaining wall according to claim 1, wherein a rear portion of the three-dimensional geocell extends to a slope. 擁壁用ブロックどうしは、非結束である請求項1又は2記載の擁壁。   The retaining wall according to claim 1 or 2, wherein the retaining wall blocks are non-bundled. 擁壁用ブロックと立体ジオセルとは、非結束である請求項1、2又は3記載の擁壁。   The retaining wall according to claim 1, 2, or 3, wherein the retaining wall block and the three-dimensional geocell are not bound. 砕石が、単粒度砕石である請求項1、2、3又は4記載の擁壁。   The retaining wall according to claim 1, 2, 3, or 4, wherein the crushed stone is a single-grain crushed stone. 起立した表面板と、表面板より後方へ離間した位置で表面板より低く起立した控板と、表面板の左右方向中間部と控板の左右方向中間部とを連結した繋ぎ板とを含み、表面板と控板との間に上下方向に貫通したブロック空所を有する擁壁用ブロックと、
上下方向に貫通した複数のセル空所を有する立体ジオセルと、
砕石又は割栗石とを用い、
擁壁用ブロックを、法面の前方位置に左右に並べて据付けて、控板と法面との間に後方空所を形成し、
砕石又は割栗石のみを、ブロック空所と後方空所とを含む表面板と法面との間に、表面板の下端レベルから控板の上端レベル以上かつ表面板の上端レベル未満まで充填し、
立体ジオセルを、その前部がブロック空所の上方に重なり、その後部が後方空所の上方に重なるように、控板の上端レベル以上かつ表面板の上端レベル以下の上下範囲に配し、
砕石又は割栗石のみを、セル空所を含む表面板と法面との間に、表面板の上端レベルまで充填することによって、一つの段を構成し、
前記段の上に、擁壁用ブロックを前記段の擁壁用ブロックに対して階段状に後退して据え付ける以外は、前記段の構成と同様に次の段を構成し、これを繰り返して三段以上に構築する擁壁の構築方法。
Including a standing surface plate, a holding plate standing lower than the surface plate at a position spaced rearward from the surface plate, and a connecting plate connecting the left-right direction intermediate portion of the surface plate and the left-right direction intermediate portion of the holding plate, A retaining wall block having a block space penetrating in a vertical direction between the surface plate and the holding plate;
A solid geocell having a plurality of cell cavities penetrating vertically;
Using crushed stone or cracked stone,
The retaining wall blocks are installed side by side at the front position of the slope, and a rear space is formed between the holding plate and the slope,
Fill only the crushed stone or cracked stone between the surface plate including the block space and the back space and the slope from the lower end level of the surface plate to the upper end level of the retaining plate and less than the upper end level of the surface plate,
The three-dimensional geocell is arranged in a vertical range above the upper end level of the holding plate and below the upper end level of the surface plate so that its front part overlaps above the block space and its rear part overlaps above the rear space,
By filling only the crushed stone or cracked stone between the surface plate including the cell void and the slope, up to the upper end level of the surface plate, constitute one step,
The next stage is configured in the same manner as the above-described stage except that the retaining wall block is installed in a stepped manner with respect to the retaining wall block on the stage. Retaining wall construction method to build more than steps.
JP2013086206A 2013-04-17 2013-04-17 Retaining wall and its construction method Active JP5931001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013086206A JP5931001B2 (en) 2013-04-17 2013-04-17 Retaining wall and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013086206A JP5931001B2 (en) 2013-04-17 2013-04-17 Retaining wall and its construction method

Publications (2)

Publication Number Publication Date
JP2014211008A true JP2014211008A (en) 2014-11-13
JP5931001B2 JP5931001B2 (en) 2016-06-08

Family

ID=51930950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013086206A Active JP5931001B2 (en) 2013-04-17 2013-04-17 Retaining wall and its construction method

Country Status (1)

Country Link
JP (1) JP5931001B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115341558A (en) * 2022-08-17 2022-11-15 招商局重庆交通科研设计院有限公司 Rock slope ecological protection system
KR102608223B1 (en) * 2023-07-13 2023-11-30 (주)삼화케익블럭 Retaining wall structure using anchor block

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076344A (en) * 2002-08-13 2004-03-11 Paritei Zipangu:Kk Retaining wall block, retaining wall, and its construction method
JP2005179917A (en) * 2003-12-16 2005-07-07 Paritei Zipangu:Kk Retaining wall
JP2010275815A (en) * 2009-05-29 2010-12-09 Aizawa Koatsu Concrete Kk Construction method for retaining wall and the retaining wall
JP2011032815A (en) * 2009-08-05 2011-02-17 Tokyo Printing Ink Mfg Co Ltd Retaining wall and method of constructing the same
JP2012184551A (en) * 2011-03-03 2012-09-27 Aizawa Koatsu Concrete Kk Retaining wall block

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076344A (en) * 2002-08-13 2004-03-11 Paritei Zipangu:Kk Retaining wall block, retaining wall, and its construction method
JP2005179917A (en) * 2003-12-16 2005-07-07 Paritei Zipangu:Kk Retaining wall
JP2010275815A (en) * 2009-05-29 2010-12-09 Aizawa Koatsu Concrete Kk Construction method for retaining wall and the retaining wall
JP2011032815A (en) * 2009-08-05 2011-02-17 Tokyo Printing Ink Mfg Co Ltd Retaining wall and method of constructing the same
JP2012184551A (en) * 2011-03-03 2012-09-27 Aizawa Koatsu Concrete Kk Retaining wall block

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115341558A (en) * 2022-08-17 2022-11-15 招商局重庆交通科研设计院有限公司 Rock slope ecological protection system
KR102608223B1 (en) * 2023-07-13 2023-11-30 (주)삼화케익블럭 Retaining wall structure using anchor block

Also Published As

Publication number Publication date
JP5931001B2 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
JP2010275815A (en) Construction method for retaining wall and the retaining wall
JP6298250B2 (en) Retaining wall connection structure
JP2013167144A (en) Foundation structure and construction method for foundation
JP5500903B2 (en) Retaining wall and how to construct a retaining wall
JP6192763B1 (en) Geogrid / Honeycomb Retaining Wall
JP5931001B2 (en) Retaining wall and its construction method
JP2011069132A (en) Method for construction of slope
KR101633853B1 (en) An eco-friendly gabibolck for retaining wall with modular retaining wall
JP6444151B2 (en) Retaining wall structure with enhanced mating
JP6418712B2 (en) Honeycomb structure and honeycomb retaining wall
JP2015161122A (en) Construction method of retaining wall and retaining wall
JP5508608B1 (en) Slope formation block and slope structure
KR102153322B1 (en) Compound block and construction method thereof
CN111511992A (en) Thin and stable segmented wall block and soil stabilization system and method
WO2015190417A1 (en) Retaining wall structure
JP2004353430A (en) Reinforcement/construction method for earth structure using mats made by mat manufacturing method utilizing used tires
JP2012184551A (en) Retaining wall block
JP6397684B2 (en) Construction method of fallen object protection structure and fallen object protection structure
JP2000080637A (en) Ground reinforcing structure and ground reinforcing construction
JP2012046908A (en) Bank protection retaining wall structure
JP7142304B1 (en) Gabions and slope protection methods
KR101988968B1 (en) Reinforcement Grid for Retaining Wall and Constructing Method the Same
JP6555776B2 (en) Rainwater storage facility
WO2020044641A1 (en) Retaining wall structure with blocks comprising long axes and short axes and equiaxed blocks
JP2020125589A (en) Construction method of reinforcement banking body and temporary hold-down member of reinforcement banking

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160426

R150 Certificate of patent or registration of utility model

Ref document number: 5931001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250