JP2014209474A - Inclination sample holder for fib-sem composite device, fib-sem composite device and processing observation method of solid sample using composite device - Google Patents

Inclination sample holder for fib-sem composite device, fib-sem composite device and processing observation method of solid sample using composite device Download PDF

Info

Publication number
JP2014209474A
JP2014209474A JP2014064857A JP2014064857A JP2014209474A JP 2014209474 A JP2014209474 A JP 2014209474A JP 2014064857 A JP2014064857 A JP 2014064857A JP 2014064857 A JP2014064857 A JP 2014064857A JP 2014209474 A JP2014209474 A JP 2014209474A
Authority
JP
Japan
Prior art keywords
sample
fib
sem
beam axis
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014064857A
Other languages
Japanese (ja)
Inventor
束穂 矢矧
Tsukaho Yahagi
束穂 矢矧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Original Assignee
Kanagawa Academy of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology filed Critical Kanagawa Academy of Science and Technology
Priority to JP2014064857A priority Critical patent/JP2014209474A/en
Publication of JP2014209474A publication Critical patent/JP2014209474A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/31Electron-beam or ion-beam tubes for localised treatment of objects for cutting or drilling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide technical means which allows for the end face processing of a solid sample by a FIB device, and observation from a direction perpendicular to the end face by a SEM device, without taking out the solid sample from a sample chamber.SOLUTION: A FIB-SEM composite device has a bottom surface 1a in contact with the mounting surface of a sample stage 2, and an inclination surface 1b inclining for the bottom surface 1a and holding a solid sample 30 along the inclination. The inclination surface 1b is inclining for the bottom surface 1a at an angle capable of perpendicular to a focus ion beam axis Aof a FIB device 3, and parallel with an electron beam axis Aof a SEM device 4, by rotating the sample stage 2 appropriately, while attaching an inclination sample holder 1 to the mounting surface of the sample stage 2.

Description

本発明は、FIB−SEM複合装置の試料ステージに取り付けて使用される試料ホルダーと、それを用いたFIB−SEM複合装置および固体試料の加工観察方法に関するものである。   The present invention relates to a sample holder that is used by being attached to a sample stage of a FIB-SEM composite apparatus, an FIB-SEM composite apparatus using the same, and a solid sample processing observation method.

集束イオンビーム(FIB)装置により試料をエッチング加工ないしCVD加工することが行われている。FIB装置自体にも試料の加工状態を観察する機能は備わっているが、より高分解能で高精細な観察を行うために、走査型電子顕微鏡(SEM)が併用されている。FIB鏡筒とSEM鏡筒を備えたFIB-SEM複合装置として、例えば特許文献1に示すような構成のものが提案されている。   A sample is etched or CVD processed by a focused ion beam (FIB) apparatus. Although the FIB apparatus itself has a function of observing the processing state of the sample, a scanning electron microscope (SEM) is also used in order to perform high-resolution and high-definition observation. As a FIB-SEM composite apparatus including an FIB column and an SEM column, for example, a configuration as shown in Patent Document 1 has been proposed.

図17は、従来のFIB−SEM複合装置とそれに使用される試料ホルダーを概略的に示す側面図である。FIB−SEM複合装置101は、試料ステージ2と、鏡筒3aを有するFIB装置3と、鏡筒4aを有するSEM装置4とを備えている。   FIG. 17 is a side view schematically showing a conventional FIB-SEM composite apparatus and a sample holder used therefor. The FIB-SEM composite apparatus 101 includes a sample stage 2, an FIB apparatus 3 having a lens barrel 3a, and an SEM apparatus 4 having a lens barrel 4a.

試料ステージ2は、真空に排気可能な図示しない試料室内に設置される。この試料ステージ2には、固体試料30を平行に保持し、試料ステージ2に着脱可能な試料ホルダー100が取り付けられる。   The sample stage 2 is installed in a sample chamber (not shown) that can be evacuated to vacuum. A sample holder 100 that holds the solid sample 30 in parallel and is detachable from the sample stage 2 is attached to the sample stage 2.

試料ホルダー100は、水平に配置された試料ステージ2に接する平坦な底面100aと、この底面100aと平行な平坦面100bを有し、側断面が長方形状となっている。   The sample holder 100 has a flat bottom surface 100a in contact with the horizontally arranged sample stage 2, a flat surface 100b parallel to the bottom surface 100a, and has a rectangular side cross section.

FIB装置3の鏡筒3aは、水平に配置された試料ステージ2に取り付けられた試料ホルダー100に保持された固体試料30に対し、その集束イオンビーム軸AFIBが鉛直方向となるように設けられている。 The lens barrel 3a of the FIB apparatus 3 is provided so that the focused ion beam axis A FIB is in the vertical direction with respect to the solid sample 30 held by the sample holder 100 attached to the horizontally arranged sample stage 2. ing.

SEM装置4の鏡筒4aは、その電子線軸ASEMとFIB装置3の集束イオンビーム軸AFIBとが角度θをなすように傾斜して配置されている。 The lens barrel 4a of the SEM device 4 is disposed so that the electron beam axis A SEM and the focused ion beam axis A FIB of the FIB device 3 form an angle θ.

このFIB−SEM複合装置101により固体試料30の端面30aの加工と観察を行う際には、固体試料30を保持した試料ホルダー100を、FIB−SEM複合装置101の水平な試料ステージ2に取り付けて、FIB−SEM複合装置101の試料室内に導入する。   When processing and observing the end surface 30a of the solid sample 30 by the FIB-SEM composite apparatus 101, the sample holder 100 holding the solid sample 30 is attached to the horizontal sample stage 2 of the FIB-SEM composite apparatus 101. The FIB-SEM composite apparatus 101 is introduced into the sample chamber.

次に図17に示すように、試料ステージ2が水平になり、FIB装置3の集束イオンビーム軸AFIBに対して端面30aが平行になるように配置した状態で、FIB装置3からの集束イオンビームを固体試料30の端面30aに入射し、端面30aを、この端面30aと平行な方向から加工する。 Next, as shown in FIG. 17, the focused ion from the FIB device 3 is placed in a state where the sample stage 2 is horizontal and the end surface 30a is parallel to the focused ion beam axis A FIB of the FIB device 3. The beam is incident on the end face 30a of the solid sample 30, and the end face 30a is processed from a direction parallel to the end face 30a.

次に、SEM装置4によって加工した固体試料30の端面30aを観察する際には、端面30aと垂直な方向からの観察像を得るためには、端面30aが位置する集束イオンビーム軸AFIBと電子線軸ASEMとの交点pまたはその近傍を中心として試料ステージ2を回転することによって、角度を調整する必要がある。 Next, when observing the end face 30a of the solid sample 30 processed by the SEM device 4, in order to obtain an observation image from a direction perpendicular to the end face 30a, the focused ion beam axis A FIB where the end face 30a is located It is necessary to adjust the angle by rotating the sample stage 2 around the intersection point p with the electron beam axis A SEM or the vicinity thereof.

ここで図18に示すように、試料ステージ2は、FIB装置3側には物理的な制限がないため回転によって大きく傾斜させることが可能であるが、SEM装置4側には大きく傾斜することができない。すなわち、固体試料30の端面30aをSEM装置4により電子線軸ASEMと垂直な方向から観察する位置まで試料ステージ2をSEM装置4側に回転することは、物理的に困難である。 Here, as shown in FIG. 18, the sample stage 2 can be largely inclined by rotation because there is no physical limitation on the FIB apparatus 3 side, but it can be inclined greatly on the SEM apparatus 4 side. Can not. That is, it is physically difficult to rotate the sample stage 2 toward the SEM device 4 to the position where the end surface 30a of the solid sample 30 is observed from the direction perpendicular to the electron beam axis A SEM by the SEM device 4.

そのため、このような構成のFIB−SEM複合装置101では、加工した固体試料30の端面30aを電子線軸ASEMと垂直な方向から観察することができなかった。 Therefore, in the FIB-SEM composite apparatus 101 having such a configuration, the end surface 30a of the processed solid sample 30 cannot be observed from a direction perpendicular to the electron beam axis A SEM .

そして、FIB装置3による加工後、図17に示すように断面長方形の試料ホルダー100を用いて、水平な固体試料30に対して垂直な端面30aを、水平方向から電子線軸ASEMが傾斜した位置からSEM装置4で観察すると、端面30aに対して電子線軸ASEMが垂直ではないため傾斜に起因する歪みが観察像に生じ、正確な像を得るためには傾斜に応じた補正をする必要があった。 Then, after processing by the FIB apparatus 3, using the sample holder 100 having a rectangular cross section as shown in FIG. 17, the end face 30a perpendicular to the horizontal solid sample 30 is positioned where the electron beam axis A SEM is inclined from the horizontal direction. When observed with the SEM apparatus 4, the electron beam axis A SEM is not perpendicular to the end face 30a, so that distortion due to the tilt occurs in the observed image, and in order to obtain an accurate image, it is necessary to correct according to the tilt. there were.

図19は、別の従来のFIB−SEM複合装置とそれに使用される試料ホルダーを概略的に示す側面図である。このFIB−SEM複合装置201は、SEM装置4の鏡筒4aが、水平に配置された試料ステージ2に取り付けられた試料ホルダー100に保持された固体試料30に対し、その電子線軸ASEMが鉛直方向となるように設けられ、FIB装置3の鏡筒3aは、その集束イオンビーム軸AFIBとSEM装置4の電子線軸ASEMとが角度θをなすように傾斜して配置されている。 FIG. 19 is a side view schematically showing another conventional FIB-SEM composite apparatus and a sample holder used therein. In the FIB-SEM composite apparatus 201, the electron beam axis A SEM is perpendicular to the solid sample 30 held by the sample holder 100 attached to the sample stage 2 in which the lens barrel 4a of the SEM apparatus 4 is horizontally arranged. The lens barrel 3a of the FIB apparatus 3 is disposed so as to be in the direction, and is inclined so that the focused ion beam axis A FIB and the electron beam axis A SEM of the SEM apparatus 4 form an angle θ.

このFIB−SEM複合装置201により固体試料30の端面30aの加工を行う際には、固体試料30を保持した試料ホルダー100を、FIB−SEM複合装置201の試料ステージ2に取り付けてFIB−SEM複合装置201の試料室内に導入した後、端面30aが位置する集束イオンビーム軸AFIBと電子線軸ASEMとの交点pまたはその近傍を中心として試料ステージ2を回転することによって角度を調整し、図20に示すように、FIB装置3の集束イオンビーム軸AFIBに対して端面30aが平行になるように配置した状態で、FIB装置3からの集束イオンビームを固体試料30の端面30aに入射し、端面30aを、この端面30aと平行な方向から加工する。 When the end surface 30a of the solid sample 30 is processed by the FIB-SEM composite apparatus 201, the sample holder 100 holding the solid sample 30 is attached to the sample stage 2 of the FIB-SEM composite apparatus 201 to perform the FIB-SEM composite. After being introduced into the sample chamber of the apparatus 201, the angle is adjusted by rotating the sample stage 2 around or near the intersection p between the focused ion beam axis A FIB where the end face 30a is located and the electron beam axis A SEM . As shown in FIG. 20, the focused ion beam from the FIB device 3 is incident on the end surface 30a of the solid sample 30 in a state where the end surface 30a is parallel to the focused ion beam axis A FIB of the FIB device 3. The end face 30a is processed from a direction parallel to the end face 30a.

次に、SEM装置4によって加工した固体試料30の端面30aを観察する際には、端面30aと垂直な方向からの観察像を得るためには、図20に示す状態から、端面30aが位置する集束イオンビーム軸AFIBと電子線軸ASEMとの交点pまたはその近傍を中心として試料ステージ2を回転することによって、角度を調整する必要がある。 Next, when observing the end surface 30a of the solid sample 30 processed by the SEM device 4, in order to obtain an observation image from a direction perpendicular to the end surface 30a, the end surface 30a is positioned from the state shown in FIG. It is necessary to adjust the angle by rotating the sample stage 2 around the intersection point p between the focused ion beam axis A FIB and the electron beam axis A SEM or the vicinity thereof.

ここで図20に示すように、試料ステージ2は、SEM装置4側には回転によって水平状態から大きく傾斜させることが可能であるものの、端面30aに対して電子線軸ASEMが垂直となるまでSEM装置4側に傾斜させることは、物理的に困難である。 Here, as shown in FIG. 20, the sample stage 2 can be largely inclined from the horizontal state by rotation on the SEM apparatus 4 side, but the SEM until the electron beam axis A SEM is perpendicular to the end face 30 a. It is physically difficult to incline toward the device 4 side.

そのため、このような構成のFIB−SEM複合装置201でも、加工した固体試料30の端面30aを電子線軸ASEMと垂直な方向から観察することができなかった。そして、FIB装置3による加工後、図20に示すような配置で、端面30aに対して電子線軸ASEMが傾斜した位置からSEM装置4で観察すると、端面30aに対して電子線軸ASEMが垂直ではないため傾斜に起因する歪みが観察像に生じ、正確な像を得るためには傾斜に応じた補正をする必要があった。 Therefore, even with the FIB-SEM composite apparatus 201 having such a configuration, the end surface 30a of the processed solid sample 30 cannot be observed from the direction perpendicular to the electron beam axis A SEM . Then, after processing by the FIB apparatus 3, in the arrangement shown in FIG. 20, when the electron beam axis A SEM observation in SEM device 4 from a position inclined with respect to the end face 30a, the electron beam axis A SEM to the end faces 30a perpendicular Therefore, distortion due to the tilt is generated in the observed image, and in order to obtain an accurate image, it is necessary to correct according to the tilt.

このような問題点を解決する手段としては、図17に示すようにFIB装置3による加工を行った後、一旦、固体試料30と試料ホルダー100を真空の試料室から大気中に取り出して、図21(a)に示すように、固体試料30の取り付け方向を変えて、平坦面100bを垂直に立てて、縦にして試料ステージ2に取り付けて試料室に導入し、その後、試料ステージ2をFIB装置3側に回転し、図21(b)に示すように、固体試料30の端面30aに対して電子線軸ASEMが垂直方向となるように配置することが考えられる。この方法によれば、SEM装置4による観察を端面30aに対して電子線軸ASEMが垂直となる方向から行うことができる。 As a means for solving such a problem, after processing by the FIB apparatus 3 as shown in FIG. 17, the solid sample 30 and the sample holder 100 are once taken out from the vacuum sample chamber to the atmosphere, and FIG. As shown in FIG. 21 (a), the mounting direction of the solid sample 30 is changed, the flat surface 100b is set up vertically, mounted vertically on the sample stage 2 and introduced into the sample chamber, and then the sample stage 2 is attached to the FIB. As shown in FIG. 21 (b), it can be considered that the electron beam axis A SEM is arranged in the vertical direction with respect to the end face 30 a of the solid sample 30. According to this method, the observation by the SEM device 4 can be performed from the direction in which the electron beam axis A SEM is perpendicular to the end face 30a.

特開2005−243275号公報JP 2005-243275 A

しかしながら、図21(b)に示すようにSEM装置4による観察を端面30aに対して電子線軸ASEMが垂直となる方向から行うためには、図17の状態でFIB装置3による加工を行った後、一旦、固体試料30と試料ホルダー100を真空の試料室から大気中に取り出す必要があった。 However, as shown in FIG. 21B, in order to perform observation with the SEM device 4 from the direction in which the electron beam axis A SEM is perpendicular to the end face 30a, processing with the FIB device 3 was performed in the state of FIG. Thereafter, the solid sample 30 and the sample holder 100 had to be taken out from the vacuum sample chamber to the atmosphere.

そのため、固体試料30の加工した端面30aの大気暴露を伴い、加工した端面30aが大気中で急速に反応し、加工した端面30aの性状が変化してしまうという問題点があった。   For this reason, the processed end surface 30a of the solid sample 30 is exposed to the atmosphere, and the processed end surface 30a reacts rapidly in the air, and the properties of the processed end surface 30a change.

また、SEM装置4によって固体試料30の加工した端面30aを観察した後、再度FIB装置3によって固体試料30の端面30aを追加工する操作が煩雑になるという問題点があった。   Moreover, after observing the processed end surface 30a of the solid sample 30 with the SEM device 4, there is a problem that the operation of reworking the end surface 30a of the solid sample 30 with the FIB device 3 again becomes complicated.

本発明は、以上の通りの事情に鑑みてなされたものであり、FIB装置による固体試料の端面加工とSEM装置による端面と垂直な方向からの観察を、固体試料を試料室から取り出すことなく行うことができる技術手段を提供することを課題としている。   The present invention has been made in view of the circumstances as described above, and performs end surface processing of a solid sample by an FIB apparatus and observation from a direction perpendicular to the end surface by an SEM apparatus without removing the solid sample from the sample chamber. It is an object to provide technical means that can be used.

上記の課題を解決するために、本発明の傾斜試料ホルダーは、固体試料を加工して端面を形成するFIB装置と、該FIB装置の集束イオンビーム軸と略平行に形成される前記端面を観察するSEM装置と、前記固体試料を保持し、前記FIB装置の集束イオンビーム軸と前記SEM装置の電子線軸とがなす面に垂直な軸を中心に回転可能な試料ステージとを備えるFIB−SEM複合装置において、
前記端面を前記FIB装置の集束イオンビーム軸と前記SEM装置の電子線軸との交点またはその近傍に位置させた状態で、前記試料ステージを回転させて前記SEM装置によって前記固体試料の端面の観察を行うときに、前記FIB−SEM複合装置の試料ステージの載置面に着脱可能または固定的に取り付けて使用される傾斜試料ホルダーであって、以下のことを特徴としている。
[1]前記試料ステージの載置面に接する底面と、該底面に対して傾斜し、該傾斜に沿って前記固体試料を保持する傾斜面とを有し、
該傾斜面は、前記傾斜試料ホルダーを前記試料ステージの載置面に取り付けた状態で、適宜に該試料ステージを回転させることによって、前記FIB装置の集束イオンビーム軸と垂直になり得、かつ前記SEM装置の電子線軸と平行になり得る角度で底面に対して傾斜している。
[2]前記試料ステージの載置面に接する底面と、該底面に対して所定の角度傾斜し、該傾斜に沿って前記固体試料を保持する傾斜面とを有し、該所定の角度が、次の(1)の角度と(2)の角度とで挟まれた数値の範囲内(両端の数値を含む)にある:
(1) 前記FIB装置の集束イオンビーム軸に垂直な面を第1の基準面としたときに、前記FIB装置の集束イオンビーム軸と前記SEM装置の電子線軸とがなす角の角度θと、前記試料ステージの載置面が前記SEM装置の鏡筒側に前記第1の基準面を越えて回転可能な限界位置において、前記第1の基準面と該試料ステージの載置面とがなす角の角度αとを直角から減じた角度(90−θ−α)
(2) 前記SEM装置の電子線軸に垂直な面を第2の基準面としたときに、前記角度θと、前記試料ステージの載置面が前記FIB装置の鏡筒側に前記第2の基準面を越えて回転可能な限界位置において、前記第2の基準面と前記試料ステージの載置面とがなす角の角度βとを加えた角度(θ+β)。
[3]前記所定の角度が、次の(a)の角度と(b)の角度とで挟まれた数値の範囲内(両端の数値を含む)にある:
(a) 前記FIB装置の集束イオンビーム軸と前記SEM装置の電子線軸とがなす角の角度θを直角から減じた角度(90−θ)
(b) 前記角度θ。
[4]基底を直角三角形とする略三角柱の形状をなし、該基底の内角の一つが前記FIB装置の集束イオンビーム軸と前記SEM装置の電子線軸とがなす角の角度θである。
In order to solve the above-described problems, the tilted sample holder of the present invention observes the FIB apparatus that forms an end face by processing a solid sample, and the end face that is formed substantially parallel to the focused ion beam axis of the FIB apparatus. FIB-SEM composite comprising: an SEM apparatus that holds the solid sample; and a sample stage that is rotatable about an axis perpendicular to a plane formed by a focused ion beam axis of the FIB apparatus and an electron beam axis of the SEM apparatus In the device
With the end face positioned at or near the intersection of the focused ion beam axis of the FIB apparatus and the electron beam axis of the SEM apparatus, the sample stage is rotated and the end face of the solid sample is observed by the SEM apparatus. An inclined sample holder that is used detachably or fixedly attached to the mounting surface of the sample stage of the FIB-SEM composite apparatus when performing, and is characterized by the following.
[1] having a bottom surface in contact with the mounting surface of the sample stage, and an inclined surface that is inclined with respect to the bottom surface and holds the solid sample along the inclination;
The inclined surface can be perpendicular to the focused ion beam axis of the FIB apparatus by appropriately rotating the sample stage with the inclined sample holder attached to the mounting surface of the sample stage, and It is inclined with respect to the bottom surface at an angle that can be parallel to the electron beam axis of the SEM apparatus.
[2] A bottom surface that is in contact with the mounting surface of the sample stage, and an inclined surface that is inclined at a predetermined angle with respect to the bottom surface and holds the solid sample along the inclination, wherein the predetermined angle is It is within the range of numerical values (including numerical values at both ends) between the following angles (1) and (2):
(1) An angle θ formed by the focused ion beam axis of the FIB apparatus and the electron beam axis of the SEM apparatus when a plane perpendicular to the focused ion beam axis of the FIB apparatus is a first reference plane; An angle formed by the first reference surface and the mounting surface of the sample stage at a limit position where the mounting surface of the sample stage can rotate beyond the first reference surface toward the lens barrel side of the SEM apparatus. The angle obtained by subtracting the angle α from the right angle (90−θ−α)
(2) When the surface perpendicular to the electron beam axis of the SEM device is used as a second reference surface, the angle θ and the mounting surface of the sample stage are located on the lens barrel side of the FIB device. An angle (θ + β) obtained by adding an angle β formed by the second reference surface and the mounting surface of the sample stage at a limit position where the surface can be rotated beyond the surface.
[3] The predetermined angle is within a range of numerical values (including numerical values at both ends) sandwiched between the following angles (a) and (b):
(A) Angle (90−θ) obtained by subtracting the angle θ formed by the focused ion beam axis of the FIB apparatus and the electron beam axis of the SEM apparatus from a right angle.
(B) The angle θ.
[4] The base has a substantially triangular prism shape having a right triangle, and one of the inner angles of the base is an angle θ formed by the focused ion beam axis of the FIB apparatus and the electron beam axis of the SEM apparatus.

また本発明の固体試料の加工観察方法は、
[5]前記固体試料を前記のいずれかの傾斜試料ホルダーの傾斜面に沿って保持し、該傾斜試料ホルダーを前記試料ステージの載置面に取り付けた状態で、適宜に該試料ステージを回転させることによって、該傾斜試料ホルダーの傾斜面が前記FIB装置の集束イオンビーム軸と垂直になるように配置する工程と、
この配置で前記FIB装置によって前記固体試料を加工して、前記FIB装置の集束イオンビーム軸と略平行に前記固体試料の端面を形成する工程と、
該端面が形成された前記固体試料を、前記FIB−SEM複合装置の試料室内から取り出さずに、適宜に前記試料ステージを回転させることによって、前記SEM装置の電子線軸に対して前記固体試料の端面が垂直になるように前記固体試料を配置する工程と、
この配置で前記SEM装置によって前記固体試料の端面に正対して観察する工程とを含む。
[6]この固体試料の加工観察方法における好ましい態様では、前記SEM装置によって前記固体試料の端面に正対して観察する工程の後、
前記固体試料を前記試料室内から取り出さずに、適宜に前記試料ステージを回転させることによって、該傾斜試料ホルダーの傾斜面が前記FIB装置の集束イオンビーム軸と垂直になるように配置する工程と、
この配置で前記FIB装置によって前記固体試料の端面の近傍を追加工する工程とを含む。
In addition, the processing observation method of the solid sample of the present invention,
[5] The solid sample is held along the inclined surface of any of the inclined sample holders, and the sample stage is appropriately rotated in a state where the inclined sample holder is attached to the mounting surface of the sample stage. Arranging the inclined sample holder so that the inclined surface of the inclined sample holder is perpendicular to the focused ion beam axis of the FIB apparatus;
Processing the solid sample with the FIB device in this arrangement to form an end face of the solid sample substantially parallel to the focused ion beam axis of the FIB device;
The end surface of the solid sample is rotated with respect to the electron beam axis of the SEM device by appropriately rotating the sample stage without taking out the solid sample with the end surface from the sample chamber of the FIB-SEM composite device. Placing the solid sample so that is vertical;
Observing the SEM device with the arrangement facing the end face of the solid sample.
[6] In a preferred embodiment of the processing and observation method of the solid sample, after the step of observing the end face of the solid sample directly with the SEM apparatus,
Arranging the inclined sample holder so that the inclined surface of the inclined sample holder is perpendicular to the focused ion beam axis of the FIB apparatus by appropriately rotating the sample stage without taking the solid sample from the sample chamber;
And a step of additionally processing the vicinity of the end face of the solid sample by the FIB apparatus in this arrangement.

そして、さらに本発明においては、以下のことを特徴とする傾斜試料ホルダーと固体試料の加工観察方法も提供する。
[7]固体試料を加工して端面を形成するFIB装置と、該FIB装置の集束イオンビーム軸と略平行に形成される前記端面を観察するSEM装置と、前記固体試料を保持し、前記FIB装置の集束イオンビーム軸と前記SEM装置の電子線軸とがなす面に垂直な軸を中心に回転可能な試料ステージとを備えるFIB−SEM複合装置において、
前記端面を前記FIB装置の集束イオンビーム軸と前記SEM装置の電子線軸との交点またはその近傍に位置させた状態で、前記試料ステージを回転させて前記SEM装置によって前記固体試料の端面の観察を行うときに、前記FIB−SEM複合装置の試料ステージの載置面に着脱可能または固定的に取り付けて使用される傾斜試料ホルダーであって、
前記試料ステージの載置面に接する底面と、該底面に対して傾斜し、該傾斜に沿って前記固体試料を保持する傾斜面とを有し、
該傾斜面は、前記傾斜試料ホルダーを前記試料ステージの載置面に取り付けた状態で、適宜に該試料ステージを回転させることによって、前記FIB装置の集束イオンビーム軸と平行になり得、かつ前記SEM装置の電子線軸と垂直になり得る角度で底面に対して傾斜していることを特徴とする傾斜試料ホルダー。
[8]固体試料を加工して端面を形成するFIB装置と、該FIB装置の集束イオンビーム軸と略平行に形成される前記端面を観察するSEM装置と、前記固体試料を保持し、前記FIB装置の集束イオンビーム軸と前記SEM装置の電子線軸とがなす面に垂直な軸を中心に回転可能な試料ステージとを備えるFIB−SEM複合装置において、
前記端面を前記FIB装置の集束イオンビーム軸と前記SEM装置の電子線軸との交点またはその近傍に位置させた状態で、前記試料ステージを回転させて前記SEM装置によって前記固体試料の端面の観察を行うときに、前記FIB−SEM複合装置の試料ステージの載置面に着脱可能または固定的に取り付けて使用される傾斜試料ホルダーであって、
前記試料ステージの載置面に接する底面と、該底面に対して所定の角度傾斜し、該傾斜に沿って前記固体試料を保持する傾斜面とを有し、該所定の角度が、次の(1)の角度と(2)の角度とで挟まれた数値の範囲内(両端の数値を含む)にあることを特徴とする傾斜試料ホルダー:
(1) 前記FIB装置の集束イオンビーム軸に垂直な面を第1の基準面としたときに、前記FIB装置の集束イオンビーム軸と前記SEM装置の電子線軸とがなす角の角度θと、前記試料ステージの載置面が前記SEM装置の鏡筒側に前記第1の基準面を越えて回転可能な限界位置において、前記第1の基準面と該試料ステージの載置面とがなす角の角度αとを加えた角度(θ+α)
(2) 前記SEM装置の電子線軸に垂直な面を第2の基準面としたときに、前記角度θと、前記試料ステージの載置面が前記FIB装置の鏡筒側に前記第2の基準面を越えて回転可能な限界位置において、前記第2の基準面と前記試料ステージの載置面とがなす角の角度βとを直角から減じた角度(90−θ−β)。
[9]前記固体試料を[7]または[8]のいずれかの傾斜試料ホルダーの傾斜面に沿って保持し、該傾斜試料ホルダーを前記試料ステージの載置面に取り付けた状態で、適宜に該試料ステージを回転させることによって、該傾斜試料ホルダーの傾斜面が前記FIB装置の集束イオンビーム軸と平行になるように配置する工程と、
この配置で前記FIB装置によって前記固体試料を加工して、前記FIB装置の集束イオンビーム軸と略平行に前記固体試料の端面を形成する工程と、
該端面が形成された前記固体試料を、前記FIB−SEM複合装置の試料室内から取り出さずに、適宜に前記試料ステージを回転させることによって、前記SEM装置の電子線軸に対して前記固体試料の端面が垂直になるように前記固体試料を配置する工程と、
この配置で前記SEM装置によって前記固体試料の端面に正対して観察する工程とを含む固体試料の加工観察方法。
[10]前記SEM装置によって前記固体試料の端面に正対して観察する工程の後、
前記固体試料を前記試料室内から取り出さずに、適宜に前記試料ステージを回転させることによって、該傾斜試料ホルダーの傾斜面が前記FIB装置の集束イオンビーム軸と平行になるように配置する工程と、
この配置で前記FIB装置によって前記固体試料の端面の近傍を追加工する工程とを含む固体試料の加工観察方法。
Further, the present invention also provides an inclined sample holder and a solid sample processing observation method characterized by the following.
[7] An FIB apparatus for processing a solid sample to form an end face, an SEM apparatus for observing the end face formed substantially parallel to the focused ion beam axis of the FIB apparatus, the solid sample being held, and the FIB In a FIB-SEM composite apparatus comprising a sample stage rotatable around an axis perpendicular to a plane formed by a focused ion beam axis of the apparatus and an electron beam axis of the SEM apparatus,
With the end face positioned at or near the intersection of the focused ion beam axis of the FIB apparatus and the electron beam axis of the SEM apparatus, the sample stage is rotated and the end face of the solid sample is observed by the SEM apparatus. A tilted sample holder that is used when detachably or fixedly attached to a mounting surface of a sample stage of the FIB-SEM composite apparatus when performing,
A bottom surface in contact with the mounting surface of the sample stage, and an inclined surface that is inclined with respect to the bottom surface and holds the solid sample along the inclination,
The inclined surface can be parallel to the focused ion beam axis of the FIB apparatus by appropriately rotating the sample stage with the inclined sample holder attached to the mounting surface of the sample stage, and A tilted sample holder, wherein the tilted sample holder is tilted with respect to the bottom surface at an angle that can be perpendicular to the electron beam axis of the SEM apparatus.
[8] An FIB apparatus that processes a solid sample to form an end face, an SEM apparatus that observes the end face formed substantially parallel to the focused ion beam axis of the FIB apparatus, the solid sample is held, and the FIB In a FIB-SEM composite apparatus comprising a sample stage rotatable around an axis perpendicular to a plane formed by a focused ion beam axis of the apparatus and an electron beam axis of the SEM apparatus,
With the end face positioned at or near the intersection of the focused ion beam axis of the FIB apparatus and the electron beam axis of the SEM apparatus, the sample stage is rotated and the end face of the solid sample is observed by the SEM apparatus. A tilted sample holder that is used when detachably or fixedly attached to a mounting surface of a sample stage of the FIB-SEM composite apparatus when performing,
A bottom surface that is in contact with the mounting surface of the sample stage; and an inclined surface that is inclined at a predetermined angle relative to the bottom surface and holds the solid sample along the inclination. Inclined specimen holder characterized in that it is within the range of numerical values (including numerical values at both ends) sandwiched between the angle of 1) and the angle of (2):
(1) An angle θ formed by the focused ion beam axis of the FIB apparatus and the electron beam axis of the SEM apparatus when a plane perpendicular to the focused ion beam axis of the FIB apparatus is a first reference plane; An angle formed by the first reference surface and the mounting surface of the sample stage at a limit position where the mounting surface of the sample stage can rotate beyond the first reference surface toward the lens barrel side of the SEM apparatus. Angle (θ + α)
(2) When the surface perpendicular to the electron beam axis of the SEM device is used as a second reference surface, the angle θ and the mounting surface of the sample stage are located on the lens barrel side of the FIB device. An angle (90−θ−β) obtained by subtracting an angle β formed by the second reference surface and the mounting surface of the sample stage from a right angle at a limit position where the surface can be rotated beyond the surface.
[9] The solid sample is held along the inclined surface of the inclined sample holder of [7] or [8], and the inclined sample holder is attached to the mounting surface of the sample stage as appropriate. Arranging the inclined sample holder so that the inclined surface of the inclined sample holder is parallel to the focused ion beam axis of the FIB apparatus by rotating the sample stage;
Processing the solid sample with the FIB device in this arrangement to form an end face of the solid sample substantially parallel to the focused ion beam axis of the FIB device;
The end surface of the solid sample is rotated with respect to the electron beam axis of the SEM device by appropriately rotating the sample stage without taking out the solid sample with the end surface from the sample chamber of the FIB-SEM composite device. Placing the solid sample so that is vertical;
A solid sample processing observation method including the step of observing the SEM device with the arrangement facing the end face of the solid sample.
[10] After the step of directly observing the end face of the solid sample with the SEM device,
Arranging the inclined sample holder so that the inclined surface of the inclined sample holder is parallel to the focused ion beam axis of the FIB apparatus by appropriately rotating the sample stage without removing the solid sample from the sample chamber;
A solid sample processing observation method including a step of additionally processing the vicinity of the end surface of the solid sample with the FIB apparatus in this arrangement.

本発明によれば、FIB装置による固体試料の端面加工とSEM装置による端面から垂直な方向からの観察を、固体試料を試料室から取り出すことなく行うことができる。   According to the present invention, the end face processing of a solid sample by the FIB apparatus and the observation from the direction perpendicular to the end face by the SEM apparatus can be performed without removing the solid sample from the sample chamber.

本発明の傾斜試料ホルダーとFIB−SEM複合装置の実施形態を概略的に示す側面図であり、SEM装置の電子線軸に対して固体試料の端面が垂直になるように固体試料を配置した状態を示す。It is a side view which shows roughly the embodiment of the inclination sample holder of this invention, and FIB-SEM compound apparatus, and shows the state which has arranged the solid sample so that the end face of a solid sample may become perpendicular to the electron beam axis of a SEM device Show. 本発明の傾斜試料ホルダーとFIB−SEM複合装置の実施形態を概略的に示す側面図であり、傾斜試料ホルダーの傾斜面がFIB装置の集束イオンビーム軸と垂直になるように配置した状態を示す。1 is a side view schematically showing an embodiment of a tilted sample holder and FIB-SEM combined apparatus of the present invention, showing a state in which the tilted surface of the tilted sample holder is arranged so as to be perpendicular to the focused ion beam axis of the FIB apparatus. . 傾斜試料ホルダーの底面に対する傾斜面の角度の範囲を説明する図1および図2と同様の側面図である。It is a side view similar to FIG. 1 and FIG. 2 explaining the range of the angle of the inclined surface with respect to the bottom surface of the inclined sample holder. 傾斜試料ホルダーの底面に対する傾斜面の角度の範囲を説明する図1および図2と同様の側面図である。It is a side view similar to FIG. 1 and FIG. 2 explaining the range of the angle of the inclined surface with respect to the bottom surface of the inclined sample holder. (a)は、図2の状態で固体試料の端面を加工後、10分経過した固体試料(Nd系の材料)を、試料室から取り出さずに図1の状態として端面をSEM装置で観察した写真、(b)は、従来法によって図17の状態で固体試料の端面を加工後、そのままの状態で端面をSEM装置で観察した写真、(c)は、従来法によって図17の状態で固体試料の端面を加工後、固体試料を保持した試料ホルダーを試料室から取り出し、大気曝露した状態で10分経過した後、再び試料室に導入し図21(b)の状態として端面をSEM装置で観察した写真である。FIG. 2A shows an end surface of a solid sample (Nd-based material) that has passed 10 minutes after processing the end surface of the solid sample in the state of FIG. A photograph, (b) is a photograph of the end face of a solid sample processed in the state shown in FIG. 17 by a conventional method, and the end face is observed with an SEM apparatus as it is, and (c) is a solid state shown in FIG. 17 by a conventional method. After processing the end surface of the sample, the sample holder holding the solid sample is taken out from the sample chamber, and after 10 minutes have passed after being exposed to the atmosphere, it is again introduced into the sample chamber and the end surface is placed in the SEM apparatus as shown in FIG. It is an observed photograph. 本発明の傾斜試料ホルダーとFIB−SEM複合装置の別の実施形態を概略的に示す側面図であり、傾斜試料ホルダーの傾斜面がFIB装置の集束イオンビーム軸と垂直になるように配置した状態を示す。FIG. 6 is a side view schematically showing another embodiment of the tilted sample holder and the FIB-SEM combined apparatus of the present invention, in which the tilted surface of the tilted sample holder is arranged so as to be perpendicular to the focused ion beam axis of the FIB apparatus. Indicates. 本発明の傾斜試料ホルダーとFIB−SEM複合装置の別の実施形態を概略的に示す側面図であり、SEM装置の電子線軸に対して固体試料の端面が垂直になるように固体試料を配置した状態を示す。FIG. 6 is a side view schematically showing another embodiment of the tilted sample holder and the FIB-SEM combined device of the present invention, in which the solid sample is arranged so that the end surface of the solid sample is perpendicular to the electron beam axis of the SEM device. Indicates the state. 傾斜試料ホルダーの底面に対する傾斜面の角度の範囲を説明する図6および図7と同様の側面図である。It is a side view similar to FIG. 6 and FIG. 7 explaining the range of the angle of the inclined surface with respect to the bottom surface of the inclined sample holder. 傾斜試料ホルダーの底面に対する傾斜面の角度の範囲を説明する図6および図7と同様の側面図である。It is a side view similar to FIG. 6 and FIG. 7 explaining the range of the angle of the inclined surface with respect to the bottom surface of the inclined sample holder. さらに別の実施形態を示した概略側面図であり、FIB装置の集束イオンビーム軸に対して傾斜試料ホルダーの傾斜面が平行になるように固体試料を配置した状態を示す。It is the schematic side view which showed another embodiment, and shows the state which has arrange | positioned the solid sample so that the inclined surface of an inclined sample holder may become parallel with respect to the focused ion beam axis | shaft of a FIB apparatus. 図10に対応して、固体試料の端面がSEM装置の電子線軸と垂直になるように配置した状態を示す概略側面図である。FIG. 11 is a schematic side view showing a state in which the end surface of the solid sample is arranged so as to be perpendicular to the electron beam axis of the SEM apparatus corresponding to FIG. 10. 図10と同様の配置状態にある別の実施形態を示した概略側面図である。It is the schematic side view which showed another embodiment in the arrangement | positioning state similar to FIG. 図11と同様の配置状態にある図12に対応した概略側面図である。FIG. 13 is a schematic side view corresponding to FIG. 12 in an arrangement state similar to FIG. 11. 傾斜試料ホルダーの底面に対する傾斜面の角度の範囲を説明する図10および図11と同様の側面図である。It is a side view similar to FIG. 10 and FIG. 11 explaining the range of the angle of the inclined surface with respect to the bottom surface of the inclined sample holder. 傾斜試料ホルダーの底面に対する傾斜面の角度の範囲を説明する図12および図13と同様の側面図である。It is a side view similar to FIG. 12 and FIG. 13 explaining the range of the angle of the inclined surface with respect to the bottom surface of the inclined sample holder. 同様に傾斜面の角度の範囲を説明する図12および図13と同様の側面図である。FIG. 14 is a side view similar to FIG. 12 and FIG. 13 illustrating the range of the angle of the inclined surface. 従来の試料ホルダーとFIB−SEM複合装置を概略的に示す側面図である。It is a side view which shows the conventional sample holder and FIB-SEM composite apparatus roughly. 試料ステージをFIB装置側に回転させた状態を示す図17と同様の側面図である。FIG. 18 is a side view similar to FIG. 17 showing a state in which the sample stage is rotated to the FIB apparatus side. 従来の試料ホルダーとFIB−SEM複合装置を概略的に示す側面図である。It is a side view which shows the conventional sample holder and FIB-SEM composite apparatus roughly. 試料ステージをSEM装置側に回転させた状態を示す図19と同様の側面図である。FIG. 20 is a side view similar to FIG. 19 illustrating a state in which the sample stage is rotated to the SEM apparatus side. 図17の試料ホルダーを試料ステージへ縦に取り付けたFIB−SEM複合装置を用いた、固体試料の端面の観察方法を説明する図である。It is a figure explaining the observation method of the end surface of a solid sample using the FIB-SEM compound apparatus which attached the sample holder of FIG. 17 to the sample stage vertically.

以下に、図面を参照しながら本発明の実施形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1および図2は、本発明の傾斜試料ホルダーとFIB−SEM複合装置の実施形態を概略的に示す側面図であり、図1はSEM装置の電子線軸に対して固体試料の端面が垂直になるように固体試料を配置した状態、図2は傾斜試料ホルダーの傾斜面がFIB装置の集束イオンビーム軸と垂直になるように配置した状態を示す。   FIG. 1 and FIG. 2 are side views schematically showing an embodiment of the tilted sample holder and FIB-SEM combined apparatus of the present invention. FIG. 1 shows the end face of the solid sample perpendicular to the electron beam axis of the SEM apparatus. 2 shows a state in which the solid sample is arranged, and FIG. 2 shows a state in which the inclined surface of the inclined sample holder is arranged so as to be perpendicular to the focused ion beam axis of the FIB apparatus.

図1に示すように、本実施形態の傾斜試料ホルダー1は、試料ステージ2の載置面に接する底面1aと、この底面1aに対して傾斜し、該傾斜に沿って固体試料30を平行に保持する傾斜面1bとを有している。   As shown in FIG. 1, the tilted sample holder 1 of the present embodiment is tilted with respect to the bottom surface 1a in contact with the mounting surface of the sample stage 2 and the bottom surface 1a, and the solid sample 30 is paralleled along the tilt. And an inclined surface 1b to be held.

具体的には、傾斜試料ホルダー1は、平坦な底面1aおよび平坦な傾斜面1bを有し、基底を直角三角形とする略三角柱の形状をなしている。図1および図2の例では、傾斜面1bは、所定の角度d、すなわちFIB装置3の集束イオンビーム軸AFIBとSEM装置4の電子線軸ASEMとがなす角度θを直角から減じた角度(90−θ)で底面1aに対して傾斜している。 Specifically, the inclined sample holder 1 has a flat bottom surface 1a and a flat inclined surface 1b, and has a substantially triangular prism shape with a base of a right triangle. In the example of FIGS. 1 and 2, the inclined surface 1b has a predetermined angle d, that is, an angle obtained by subtracting an angle θ formed by the focused ion beam axis A FIB of the FIB apparatus 3 and the electron beam axis A SEM of the SEM apparatus 4 from a right angle. It is inclined with respect to the bottom surface 1a at (90-θ).

傾斜試料ホルダー1の材料には、例えばアルミニウムなどを用いることができるが、これに限定されない。   The material of the tilted sample holder 1 can be aluminum, for example, but is not limited to this.

固体試料30は、傾斜面1bに沿って傾斜試料ホルダー1に平行に保持されている。この保持の方法は、特に限定されないが、例えば、固体試料30を直接に傾斜面1bへ固定する方法や、板状ホルダー(サブホルダー)上に固体試料30を貼着等により取り付け、この板状ホルダーの底面を傾斜試料ホルダー1の傾斜面1bにネジ等により取り付ける方法等が挙げられる。   The solid sample 30 is held in parallel with the inclined sample holder 1 along the inclined surface 1b. The holding method is not particularly limited. For example, the solid sample 30 is directly fixed to the inclined surface 1b, or the solid sample 30 is attached to a plate-like holder (sub-holder) by sticking or the like. For example, a method of attaching the bottom surface of the holder to the inclined surface 1b of the inclined sample holder 1 with a screw or the like.

固体試料30は、表裏面とその側部に端面30aを有するものであれば、剛性の材料や可撓性の材料など、特に限定されず各種のものを用いることができる。端面30aは、固体試料30の側部であれば、例えば、直線状の辺から一部だけ奥に入り込んだ凹部等であっても、FIB装置3による加工とSEM装置4による観察が可能であれば特に限定されない。   The solid sample 30 is not particularly limited as long as the solid sample 30 has the front and back surfaces and the end surfaces 30a on the sides thereof, and various kinds of materials such as a rigid material and a flexible material can be used. If the end surface 30a is a side portion of the solid sample 30, for example, even if it is a concave portion or the like that enters only a part from a straight side, processing by the FIB apparatus 3 and observation by the SEM apparatus 4 are possible. If it does not specifically limit.

この傾斜試料ホルダー1は、FIB−SEM複合装置10の試料ステージ2の載置面に着脱可能または固定的に取り付けて使用される。   The tilted sample holder 1 is used detachably or fixedly attached to the mounting surface of the sample stage 2 of the FIB-SEM composite apparatus 10.

FIB−SEM複合装置10は、FIB装置3と、SEM装置4と、試料ステージ2とを備えている。   The FIB-SEM composite apparatus 10 includes an FIB apparatus 3, an SEM apparatus 4, and a sample stage 2.

FIB装置3は、試料ステージ2に取り付けられた傾斜試料ホルダー1の傾斜面1bに保持した固体試料30の端面30aを、この端面30aと平行な方向から集束イオンビームによって加工可能であり、固体試料30を加工して端面30aを形成する。符号3aは鏡筒、符号AFIBは集束イオンビーム軸を示す。 The FIB apparatus 3 can process the end surface 30a of the solid sample 30 held on the inclined surface 1b of the inclined sample holder 1 attached to the sample stage 2 with a focused ion beam from a direction parallel to the end surface 30a. 30 is processed to form the end face 30a. Reference numeral 3a represents a lens barrel, and reference numeral A FIB represents a focused ion beam axis.

SEM装置4は、試料ステージ2に取り付けられた傾斜試料ホルダー1の傾斜面1bに保持した固体試料30の端面30aを、この端面30aと垂直な方向から観察可能であり、FIB装置3の集束イオンビーム軸AFIBと略平行に形成される端面30aを観察する。符号4aは鏡筒、符号ASEMは電子線軸を示す。 The SEM device 4 can observe the end surface 30a of the solid sample 30 held on the inclined surface 1b of the inclined sample holder 1 attached to the sample stage 2 from a direction perpendicular to the end surface 30a, and the focused ion of the FIB device 3 can be observed. An end face 30a formed substantially parallel to the beam axis A FIB is observed. Reference numeral 4a indicates a lens barrel, and reference numeral A SEM indicates an electron beam axis.

試料ステージ2は、真空に排気可能な図示しない試料室内に設置される。試料ステージ2は、ユーセントリック機構を有するステージを用いることができるが、これに限定されない。   The sample stage 2 is installed in a sample chamber (not shown) that can be evacuated to vacuum. The sample stage 2 can be a stage having a eucentric mechanism, but is not limited thereto.

試料ステージ2は、傾斜試料ホルダー1の底面1aと試料ステージ2の載置面とが接する形で傾斜試料ホルダー1が取り付けられ、これにより固体試料30を保持しながら所望の位置まで移動させる。試料ステージ2は、図示しない駆動機構により、図1のxz方向および紙面に垂直な方向(y方向)への直線移動と、xz面(FIB装置3の集束イオンビーム軸AFIBとSEM装置の電子線軸ASEMとがなす面)に垂直な軸を中心とする回転が可能である。 The tilted sample holder 1 is attached to the sample stage 2 so that the bottom surface 1a of the tilted sample holder 1 and the mounting surface of the sample stage 2 are in contact with each other, thereby moving the solid sample 30 to a desired position. The sample stage 2 is moved linearly in the xz direction in FIG. 1 and in a direction perpendicular to the paper surface (y direction) by the drive mechanism (not shown), and the xz plane (the focused ion beam axis A FIB of the FIB apparatus 3 and the electrons of the SEM apparatus). Rotation about an axis perpendicular to the surface formed by the line axis A SEM is possible.

固体試料30は、試料ステージ2を移動させることによって、固体試料30の端面30aが集束イオンビーム軸AFIBと電子線軸ASEMとの交点pまたはその近傍に位置される。そして、この集束イオンビーム軸AFIBと電子線軸ASEMとの交点pまたはその近傍を中心として試料ステージ2を回転することによって、固体試料30の端面30aと、集束イオンビーム軸AFIBおよび電子線軸ASEMとの角度が調整される。 By moving the sample stage 2, the end surface 30a of the solid sample 30 is positioned at or near the intersection point p between the focused ion beam axis A FIB and the electron beam axis A SEM . Then, by rotating the sample stage 2 around the intersection p of the focused ion beam axis A FIB and the electron beam axis A SEM or the vicinity thereof, the end face 30a of the solid sample 30, the focused ion beam axis A FIB and the electron beam axis The angle with A SEM is adjusted.

本実施形態では、FIB装置3の鏡筒3aが鉛直方向(図1のz方向)に配置され、SEM装置4の鏡筒4aが鉛直方向から傾斜して配置されている。FIB装置3の集束イオンビーム軸AFIBは水平方向(図1のx方向)と直角な鉛直方向を向き、SEM装置4の電子線軸ASEMと角度θをなしている。 In the present embodiment, the lens barrel 3a of the FIB apparatus 3 is arranged in the vertical direction (z direction in FIG. 1), and the lens barrel 4a of the SEM apparatus 4 is arranged inclined from the vertical direction. The focused ion beam axis A FIB of the FIB apparatus 3 is oriented in the vertical direction perpendicular to the horizontal direction (x direction in FIG. 1), and forms an angle θ with the electron beam axis A SEM of the SEM apparatus 4.

この傾斜試料ホルダー1を試料ステージ2に取り付けたFIB−SEM複合装置10を用いた固体試料30の端面30aの加工および観察の方法を、図1および図2を参照しながら以下に説明する。   A method of processing and observing the end surface 30a of the solid sample 30 using the FIB-SEM composite apparatus 10 in which the inclined sample holder 1 is attached to the sample stage 2 will be described below with reference to FIGS.

固体試料30を保持した傾斜試料ホルダー1を、FIB−SEM複合装置10の水平な試料ステージ2に取り付けて、FIB−SEM複合装置10の試料室内に導入する。   The tilted sample holder 1 holding the solid sample 30 is attached to the horizontal sample stage 2 of the FIB-SEM composite apparatus 10 and introduced into the sample chamber of the FIB-SEM composite apparatus 10.

固体試料30は、試料ステージ2を移動させることによって、固体試料30の端面30aが集束イオンビーム軸AFIBと電子線軸ASEMとの交点pまたはその近傍に位置される。 By moving the sample stage 2, the end surface 30a of the solid sample 30 is positioned at or near the intersection point p between the focused ion beam axis A FIB and the electron beam axis A SEM .

次に、集束イオンビーム軸AFIBと電子線軸ASEMとの交点pまたはその近傍を中心として試料ステージ2を回転することによって、図2に示すように、FIB装置3の集束イオンビーム軸AFIBに対して固体試料30の端面30aが平行になるように固体試料30を配置する。例えば、図1の状態から試料ステージ2を角度90−θだけFIB装置3の方向へ回転することにより、固体試料30が水平になり、端面30aがFIB装置3の集束イオンビーム軸AFIBと平行になる。 Next, the sample stage 2 is rotated around the intersection point p between the focused ion beam axis A FIB and the electron beam axis A SEM or the vicinity thereof, so that the focused ion beam axis A FIB of the FIB apparatus 3 is shown in FIG. The solid sample 30 is arranged so that the end surface 30a of the solid sample 30 is parallel to the surface. For example, by rotating the sample stage 2 from the state of FIG. 1 by an angle 90-θ in the direction of the FIB apparatus 3, the solid sample 30 becomes horizontal and the end surface 30 a is parallel to the focused ion beam axis A FIB of the FIB apparatus 3. become.

この配置で、FIB装置3からの集束イオンビームを固体試料30の端面30aに入射し、端面30aを、この端面30aと平行な方向から加工する。   With this arrangement, the focused ion beam from the FIB apparatus 3 is incident on the end face 30a of the solid sample 30, and the end face 30a is processed from a direction parallel to the end face 30a.

FIB装置3による端面30aの加工が終了した後、図2の状態から、端面30aを加工した固体試料30を試料室内から取り出さずに、試料ステージ2を角度90−θだけSEM装置4の方向へ回転することにより、図1に示すように試料ステージ2が水平になり、SEM装置4の電子線軸4aに対して端面30aが垂直になる。   After the processing of the end surface 30a by the FIB apparatus 3 is completed, the sample stage 2 is moved toward the SEM apparatus 4 by an angle of 90-θ without taking out the solid sample 30 processed from the end surface 30a from the sample chamber from the state of FIG. By rotating, the sample stage 2 becomes horizontal as shown in FIG. 1, and the end face 30 a becomes perpendicular to the electron beam axis 4 a of the SEM device 4.

この配置で、SEM装置4によって固体試料30の加工した端面30aを観察する。   With this arrangement, the processed end face 30 a of the solid sample 30 is observed by the SEM device 4.

なお、SEM装置4によって固体試料30の加工した端面30aを観察した後、固体試料30を試料室内から取り出さずに、試料ステージ2を回転させることによって、再度図2に示すようにFIB装置3の集束イオンビーム軸AFIBに対して端面30aが平行になるように固体試料30を配置し、この配置でFIB装置3によって固体試料30の端面30aを追加工することもできる。 In addition, after observing the processed end surface 30a of the solid sample 30 with the SEM device 4, the sample stage 2 is rotated without taking the solid sample 30 out of the sample chamber, and as shown in FIG. The solid sample 30 can be arranged so that the end face 30a is parallel to the focused ion beam axis A FIB , and the end face 30a of the solid sample 30 can be additionally processed by the FIB apparatus 3 in this arrangement.

図5(a)は、図2の状態で固体試料30(Nd系の材料)の端面30aを加工後、10分経過した固体試料30を、試料室から取り出さずに図1の状態として端面30aをSEM装置4で観察した写真である。比較例として図5(b)は、従来法によって図17の状態で固体試料30の端面30aを加工後、そのままの状態で端面30aをSEM装置4で観察した写真、図5(c)は、従来法によって図17の状態で固体試料30の端面30aを加工後、固体試料30を保持した試料ホルダー100を試料室から取り出し、大気曝露した状態で10分経過した後、試料ホルダー100を縦にして再び試料室に導入し図21(b)の状態として端面30aをSEM装置4で観察した写真である。   FIG. 5A shows the state of the end surface 30a in the state of FIG. 1 without removing the solid sample 30 after 10 minutes from the sample chamber after processing the end surface 30a of the solid sample 30 (Nd-based material) in the state of FIG. Is a photograph observed with the SEM device 4. As a comparative example, FIG. 5B is a photograph in which the end surface 30a of the solid sample 30 is processed in the state shown in FIG. 17 by the conventional method, and the end surface 30a is observed as it is with the SEM device 4, and FIG. After processing the end face 30a of the solid sample 30 in the state shown in FIG. 17 by the conventional method, the sample holder 100 holding the solid sample 30 is taken out from the sample chamber, and after 10 minutes have been exposed to the atmosphere, the sample holder 100 is placed vertically. FIG. 22 is a photograph in which the sample is introduced again into the sample chamber and the end face 30a is observed with the SEM device 4 in the state of FIG.

図5(a)と図5(b)との対比から、断面長方形の試料ホルダー100を用いて、水平な固体試料30に対して垂直な端面30aを、水平方向から角度90−θだけ電子線軸ASEMが傾斜した位置からSEM装置4で観察した図5(b)では傾斜に起因する歪みがあり、正確な像を得るためには補正が必要であるのに対し、SEM装置4の電子線軸4aに対して端面30aが垂直になるようにSEM装置4で観察した図5(a)では、傾斜に起因する歪みのない補正が不要な像が得られていることが分かる。 5 (a) and FIG. 5 (b), by using the sample holder 100 having a rectangular cross section, the end surface 30a perpendicular to the horizontal solid sample 30 is placed on the electron beam axis at an angle 90-θ from the horizontal direction. In FIG. 5B observed by the SEM apparatus 4 from the position where the A SEM is inclined, there is distortion due to the inclination, and correction is necessary to obtain an accurate image, whereas the electron beam axis of the SEM apparatus 4 In FIG. 5A observed with the SEM apparatus 4 so that the end face 30a is perpendicular to 4a, it can be seen that an image that does not require correction without distortion due to inclination is obtained.

図5(c)の大気曝露した固体試料30については、加工した端面30aが大気中で急速に反応していることがわかる。これに対して本実施形態により固体試料30を試料室から取り出さずにFIB装置3による加工とSEM装置4による観察を行った図5(a)では、反応による変化はほとんど見られないことが分かる。   With respect to the solid sample 30 exposed to the atmosphere in FIG. 5C, it can be seen that the processed end face 30a reacts rapidly in the atmosphere. In contrast, in this embodiment, the solid sample 30 is not taken out of the sample chamber, and the processing by the FIB apparatus 3 and the observation by the SEM apparatus 4 are performed. .

以上のように、本実施形態によれば、傾斜試料ホルダー1の傾斜面1bは、傾斜試料ホルダー1を試料ステージ2の載置面に取り付けた状態で、適宜に試料ステージ2を回転させることによって、FIB装置3の集束イオンビーム軸AFIBと垂直になり得、かつSEM装置4の電子線軸ASEMと平行になり得る角度dで底面1aに対して傾斜している。 As described above, according to this embodiment, the inclined surface 1b of the inclined sample holder 1 is obtained by appropriately rotating the sample stage 2 with the inclined sample holder 1 attached to the mounting surface of the sample stage 2. The FIB device 3 is inclined with respect to the bottom surface 1a at an angle d that can be perpendicular to the focused ion beam axis A FIB of the FIB device 3 and parallel to the electron beam axis A SEM of the SEM device 4.

したがって、FIB装置3によって固体試料30の端面30aを加工し、かつ、試料室から取り出さずにSEM装置4によって加工した端面30aを電子線軸ASEMと垂直な方向から観察可能である。このような条件を満足するためには、傾斜試料ホルダー1の所定の角度dが、次の(1)の角度と(2)の角度とで挟まれた数値の範囲内(両端の数値を含む)にあることが好ましい。このことを図3および図4の例を参照しながら説明する。
(1) 図3に示すように、FIB装置3の集束イオンビーム軸AFIBに垂直な面を第1の基準面P1としたときに、FIB装置3の集束イオンビーム軸AFIBとSEM装置4の電子線軸ASEMとがなす角度θと、試料ステージ2の載置面がSEM装置4の鏡筒4a側に第1の基準面P1を越えて回転可能な限界位置において、第1の基準面P1と試料ステージ2の載置面とがなす角度αとを直角から減じた角度(90−θ−α)。すなわち、図3では傾斜試料ホルダー1の傾斜角dが90−θの例を示しているが、この場合、試料ステージ2の載置面が第1の基準面P1と平行な図示の位置からSEM装置4の鏡筒4a側に角度αだけ回転が許容されることになる。よって傾斜試料ホルダー1の傾斜角dは90−θよりもαだけ小さくすることができる。
(2) 図4に示すように、SEM装置4の電子線軸ASEMに垂直な面を第2の基準面P2としたときに、角度θと、試料ステージ2の載置面がFIB装置3の鏡筒3a側に第2の基準面P2を越えて回転可能な限界位置において、第2の基準面P2と試料ステージ2の載置面とがなす角度βとを加えた角度(θ+β)。すなわち、図4では傾斜試料ホルダー1の傾斜角dがθの例を示しているが、試料ステージ2の載置面が第1の基準面P2と平行な図示の位置からFIB装置3の鏡筒3a側に角度βだけ回転が許容されることになる。よって傾斜試料ホルダー1の傾斜角dはθよりもβだけ大きくすることができる。
Therefore, the end surface 30a of the solid sample 30 is processed by the FIB apparatus 3, and the end surface 30a processed by the SEM apparatus 4 without being taken out from the sample chamber can be observed from a direction perpendicular to the electron beam axis A SEM . In order to satisfy such conditions, the predetermined angle d of the tilted sample holder 1 is within a range of values sandwiched between the following angles (1) and (2) (including numerical values at both ends). ). This will be described with reference to the examples of FIGS.
(1) As shown in FIG. 3, when the plane perpendicular to the focused ion beam axis A FIB of the FIB apparatus 3 is the first reference plane P1, the focused ion beam axis A FIB of the FIB apparatus 3 and the SEM apparatus 4 The first reference plane at an angle θ formed by the electron beam axis A SEM and the limit position where the mounting surface of the sample stage 2 can rotate beyond the first reference plane P1 on the lens barrel 4a side of the SEM device 4 An angle (90−θ−α) obtained by subtracting an angle α formed by P1 and the mounting surface of the sample stage 2 from a right angle. That is, FIG. 3 shows an example in which the tilt angle d of the tilted sample holder 1 is 90-θ. In this case, the SEM is shown from the illustrated position where the mounting surface of the sample stage 2 is parallel to the first reference plane P1. The device 4 is allowed to rotate by an angle α on the side of the lens barrel 4a. Therefore, the tilt angle d of the tilted sample holder 1 can be made smaller by α than 90−θ.
(2) As shown in FIG. 4, when the surface perpendicular to the electron beam axis A SEM of the SEM device 4 is the second reference surface P2, the angle θ and the mounting surface of the sample stage 2 are the same as those of the FIB device 3. An angle (θ + β) obtained by adding an angle β formed by the second reference plane P2 and the mounting surface of the sample stage 2 at a limit position where the lens barrel 3a can be rotated beyond the second reference plane P2. That is, FIG. 4 shows an example in which the tilt angle d of the tilted sample holder 1 is θ, but the lens barrel of the FIB apparatus 3 is shown from the illustrated position where the mounting surface of the sample stage 2 is parallel to the first reference plane P2. The rotation by the angle β is allowed on the 3a side. Therefore, the inclination angle d of the inclined sample holder 1 can be made larger than θ by β.

特に、前記所定の角度dが、次の(a)の角度と(b)の角度とで挟まれた数値の範囲内(両端の数値を含む)にあることが好ましい。
(a) FIB装置3の集束イオンビーム軸AFIBとSEM装置4の電子線軸ASEMとがなす角の角度θを直角から減じた角度(90−θ)
(b) 前記角度θ
中でも、傾斜試料ホルダー1が図1〜図4に示すような基底を直角三角形とする略三角柱の形状をなし、該基底の内角の一つがFIB装置3の集束イオンビーム軸AFIBとSEM装置4の電子線軸ASEMとがなす角度θであることが好ましい。
In particular, the predetermined angle d is preferably within a range of numerical values (including numerical values at both ends) sandwiched between the following angles (a) and (b).
(A) Angle (90−θ) obtained by subtracting the angle θ formed by the focused ion beam axis A FIB of the FIB apparatus 3 and the electron beam axis A SEM of the SEM apparatus 4 from a right angle.
(B) The angle θ
Among them, the inclined sample holder 1 has a substantially triangular prism shape with the base as a right triangle as shown in FIGS. 1 to 4, and one of the inner angles of the base is the focused ion beam axis A FIB and the SEM apparatus 4 of the FIB apparatus 3. The angle θ formed by the electron beam axis A SEM is preferable.

このように傾斜試料ホルダー1が基底を直角三角形とする略三角柱の形状をなし、該基底の内角の一つが角度θであると、傾斜試料ホルダー1の設計がFIB−SEM複合装置の機械的構成との関係から行いやすくなる。   In this way, when the tilted sample holder 1 has a substantially triangular prism shape whose base is a right triangle, and one of the inner angles of the base is the angle θ, the design of the tilted sample holder 1 is the mechanical configuration of the FIB-SEM composite apparatus. It becomes easier to do from the relationship.

傾斜試料ホルダー1の傾斜角dは、実際の装置構成などに応じて適宜のものとされ、特に限定されるものではないが、一例としては、20〜70゜の範囲内、あるいは30〜60゜の範囲内である。   The tilt angle d of the tilted sample holder 1 is appropriately determined according to the actual apparatus configuration and the like, and is not particularly limited, but as an example, it is within a range of 20 to 70 °, or 30 to 60 °. Is within the range.

以上のような条件を満足することによって、前記したような固体試料30の加工観察方法が可能となる。すなわち、固体試料30を傾斜試料ホルダー1の傾斜面1bに沿って保持し、傾斜試料ホルダー1を試料ステージ2の載置面に取り付けた状態で、適宜に試料ステージ2を回転させることによって、傾斜試料ホルダー1の傾斜面1bがFIB装置3の集束イオンビーム軸AFIBと垂直になるように配置する。この配置でFIB装置3によって固体試料30を加工して、FIB装置3の集束イオンビーム軸AFIBと略平行に固体試料30の端面30aを形成する。端面30aが形成された固体試料30を、FIB−SEM複合装置10の試料室内から取り出さずに、適宜に試料ステージ2を回転させることによって、SEM装置4の電子線軸ASEMに対して固体試料30の端面30aが垂直になるように固体試料30を配置する。この配置でSEM装置4によって固体試料30の端面30aに正対して観察する。 By satisfying the above conditions, the processing observation method for the solid sample 30 as described above can be performed. That is, the solid sample 30 is held along the inclined surface 1 b of the inclined sample holder 1, and the sample stage 2 is appropriately rotated while the inclined sample holder 1 is attached to the mounting surface of the sample stage 2. The inclined surface 1 b of the sample holder 1 is arranged so as to be perpendicular to the focused ion beam axis A FIB of the FIB apparatus 3. In this arrangement, the solid sample 30 is processed by the FIB apparatus 3 to form the end surface 30 a of the solid sample 30 substantially parallel to the focused ion beam axis A FIB of the FIB apparatus 3. The solid sample 30 on which the end face 30a is formed is not taken out from the sample chamber of the FIB-SEM composite apparatus 10, and the sample stage 2 is appropriately rotated to thereby rotate the solid sample 30 with respect to the electron beam axis A SEM of the SEM apparatus 4. The solid sample 30 is arranged so that the end face 30a of the first electrode 30a is vertical. With this arrangement, the SEM device 4 observes the end surface 30a of the solid sample 30 directly facing.

さらに、SEM装置4によって固体試料30の端面30aに正対して観察した後、固体試料30を試料室内から取り出さずに、適宜に試料ステージ2を回転させることによって、傾斜試料ホルダー1の傾斜面1bがFIB装置3の集束イオンビーム軸AFIBと垂直になるように配置し、この配置でFIB装置3によって固体試料30の端面30aの近傍を追加工することもできる。 Furthermore, after observing the end surface 30a of the solid sample 30 directly with the SEM device 4, the sample stage 2 is appropriately rotated without taking the solid sample 30 out of the sample chamber, whereby the inclined surface 1b of the inclined sample holder 1 is obtained. Are arranged so as to be perpendicular to the focused ion beam axis A FIB of the FIB apparatus 3, and in this arrangement, the vicinity of the end face 30 a of the solid sample 30 can be additionally processed by the FIB apparatus 3.

以上のような本実施形態の構成によれば、SEM装置4による観察においては固体試料30に対するSEM装置4の電子線軸ASEMの傾斜に起因する歪みのない端面30aの像を得ることができ、さらに、FIB−SEM複合装置10の型式に依存せず汎用性が高くなり、簡便な利用が可能となる。 According to the configuration of the present embodiment as described above, an image of the end face 30a without distortion caused by the inclination of the electron beam axis A SEM of the SEM device 4 with respect to the solid sample 30 can be obtained in the observation by the SEM device 4. Furthermore, versatility is increased without depending on the type of the FIB-SEM composite apparatus 10, and simple use becomes possible.

また、試料室から取り出さずに、FIB装置3による加工と、加工した端面30aのSEM装置4による観察が可能であるため、大気中で急速に反応する材料を、反応の進行を抑制した状態でSEM装置4により観察することができる。   Moreover, since the processing by the FIB apparatus 3 and the observation by the SEM apparatus 4 of the processed end face 30a are possible without taking out from the sample chamber, the material that reacts rapidly in the atmosphere is suppressed in the progress of the reaction. It can be observed with the SEM device 4.

また、FIB装置3による加工とSEM装置4による観察を行った固体試料30について、さらに試料室から取り出さずにFIB装置3による追加工を行うこともできる。そのため、煩雑な操作を要せずとも追加工が可能になる。   In addition, the solid sample 30 that has been processed by the FIB apparatus 3 and observed by the SEM apparatus 4 can be additionally processed by the FIB apparatus 3 without being taken out of the sample chamber. Therefore, additional machining can be performed without requiring a complicated operation.

図6および図7は、本発明の傾斜試料ホルダーとFIB−SEM複合装置の別の実施形態を概略的に示す側面図であり、図6は傾斜試料ホルダーの傾斜面がFIB装置の集束イオンビーム軸と垂直になるように配置した状態、図7はSEM装置の電子線軸に対して固体試料の端面が垂直になるように固体試料を配置した状態を示す。   6 and 7 are side views schematically showing another embodiment of the tilted sample holder and FIB-SEM combined apparatus of the present invention, and FIG. 6 shows the tilted surface of the tilted sample holder with the focused ion beam of the FIB apparatus. FIG. 7 shows a state in which the solid sample is arranged so that the end face of the solid sample is perpendicular to the electron beam axis of the SEM apparatus.

図6に示すように、本実施形態の傾斜試料ホルダー1は、試料ステージ2の載置面に接する底面1aと、この底面1aに対して傾斜し、該傾斜に沿って固体試料30を平行に保持する傾斜面1bとを有している。   As shown in FIG. 6, the tilted sample holder 1 of the present embodiment is tilted with respect to the bottom surface 1a contacting the mounting surface of the sample stage 2 and the bottom surface 1a, and the solid sample 30 is paralleled along the tilt. And an inclined surface 1b to be held.

具体的には、傾斜試料ホルダー1は、平坦な底面1aおよび平坦な傾斜面1bを有し、基底を直角三角形とする略三角柱の形状をなしている。図6および図7の例では、傾斜面1bは、所定の角度d、すなわちFIB装置3の集束イオンビーム軸AFIBとSEM装置4の電子線軸ASEMとがなす角度θで底面1aに対して傾斜している。 Specifically, the inclined sample holder 1 has a flat bottom surface 1a and a flat inclined surface 1b, and has a substantially triangular prism shape with a base of a right triangle. 6 and 7, the inclined surface 1b has a predetermined angle d, that is, an angle θ formed by the focused ion beam axis A FIB of the FIB device 3 and the electron beam axis A SEM of the SEM device 4, with respect to the bottom surface 1a. Inclined.

この傾斜試料ホルダー1は、FIB−SEM複合装置20の試料ステージ2の載置面に着脱可能または固定的に取り付けて使用される。   The tilted sample holder 1 is used detachably or fixedly attached to the mounting surface of the sample stage 2 of the FIB-SEM composite apparatus 20.

FIB−SEM複合装置20は、前述した実施形態と同様のFIB装置3と、SEM装置4と、試料ステージ2とを備えている。   The FIB-SEM composite apparatus 20 includes the same FIB apparatus 3, SEM apparatus 4, and sample stage 2 as those in the above-described embodiment.

本実施形態では、前述した実施形態とは逆に、SEM装置4の鏡筒4aが鉛直方向(図6のz方向)に配置され、FIB装置3の鏡筒3aが鉛直方向から傾斜して配置されている。SEM装置4の電子線軸ASEMは水平方向(図6のx方向)と直角な鉛直方向を向き、FIB装置3の集束イオンビーム軸AFIBと角度θをなしている。 In this embodiment, contrary to the above-described embodiment, the lens barrel 4a of the SEM device 4 is arranged in the vertical direction (z direction in FIG. 6), and the lens barrel 3a of the FIB device 3 is arranged inclined from the vertical direction. Has been. The electron beam axis A SEM of the SEM device 4 is oriented in the vertical direction perpendicular to the horizontal direction (x direction in FIG. 6), and forms an angle θ with the focused ion beam axis A FIB of the FIB device 3.

この傾斜試料ホルダー1を試料ステージ2に取り付けたFIB−SEM複合装置20を用いた固体試料30の端面30aの加工および観察の方法を、図6および図7を参照しながら以下に説明する。   A method of processing and observing the end surface 30a of the solid sample 30 using the FIB-SEM composite apparatus 20 in which the inclined sample holder 1 is attached to the sample stage 2 will be described below with reference to FIGS.

固体試料30を保持した傾斜試料ホルダー1を、FIB−SEM複合装置20の水平な試料ステージ2に取り付けて、FIB−SEM複合装置20の試料室内に導入する。   The inclined sample holder 1 holding the solid sample 30 is attached to the horizontal sample stage 2 of the FIB-SEM composite apparatus 20 and introduced into the sample chamber of the FIB-SEM composite apparatus 20.

固体試料30は、試料ステージ2を移動させることによって、固体試料30の端面30aが集束イオンビーム軸AFIBと電子線軸ASEMとの交点pまたはその近傍に位置される。 By moving the sample stage 2, the end surface 30a of the solid sample 30 is positioned at or near the intersection point p between the focused ion beam axis A FIB and the electron beam axis A SEM .

次に、集束イオンビーム軸AFIBと電子線軸ASEMとの交点pまたはその近傍を中心として試料ステージ2を適宜に回転することによって、図6に示すように、FIB装置3の集束イオンビーム軸AFIBに対して固体試料30の端面30aが平行になるように固体試料30を配置する。この配置で、FIB装置3からの集束イオンビームを固体試料30の端面30aに入射し、端面30aを、この端面30aと平行な方向から加工する。 Next, the sample stage 2 is appropriately rotated around the intersection p between the focused ion beam axis A FIB and the electron beam axis A SEM or the vicinity thereof, as shown in FIG. The solid sample 30 is arranged so that the end face 30a of the solid sample 30 is parallel to the A FIB . With this arrangement, the focused ion beam from the FIB apparatus 3 is incident on the end face 30a of the solid sample 30, and the end face 30a is processed from a direction parallel to the end face 30a.

FIB装置3による端面30aの加工が終了した後、図7に示すように、端面30aを加工した固体試料30を試料室内から取り出さずに、試料ステージ2を角度90−θだけSEM装置4側に回転させることによって、SEM装置4の電子線軸4aに対して端面30aが垂直になる。   After the processing of the end face 30a by the FIB apparatus 3 is finished, as shown in FIG. 7, the sample stage 2 is moved to the SEM apparatus 4 side by an angle 90-θ without taking out the solid sample 30 processed from the end face 30a from the sample chamber. By rotating, the end face 30a becomes perpendicular to the electron beam axis 4a of the SEM device 4.

この配置で、SEM装置4によって固体試料30の加工した端面30aを観察する。   With this arrangement, the processed end face 30 a of the solid sample 30 is observed by the SEM device 4.

なお、SEM装置4によって固体試料30の加工した端面30aを観察した後、固体試料30を試料室内から取り出さずに、試料ステージ2をFIB側に回転させることによって、再度図6に示すようにFIB装置3の集束イオンビーム軸AFIBに対して端面30aが平行になるように固体試料30を配置し、この配置でFIB装置3によって固体試料30の端面30aを追加工することもできる。 In addition, after observing the processed end surface 30a of the solid sample 30 with the SEM device 4, the sample stage 2 is rotated to the FIB side without taking the solid sample 30 out of the sample chamber, so that the FIB again as shown in FIG. It is also possible to arrange the solid sample 30 so that the end surface 30a is parallel to the focused ion beam axis A FIB of the apparatus 3 and to add the end surface 30a of the solid sample 30 by the FIB apparatus 3 in this arrangement.

以上のように、本実施形態によれば、傾斜試料ホルダー1の傾斜面1bは、傾斜試料ホルダー1を試料ステージ2の載置面に取り付けた状態で、適宜に試料ステージ2を回転させることによって、FIB装置3の集束イオンビーム軸AFIBと垂直になり得、かつSEM装置4の電子線軸ASEMと平行になり得る角度dで底面1aに対して傾斜している。 As described above, according to this embodiment, the inclined surface 1b of the inclined sample holder 1 is obtained by appropriately rotating the sample stage 2 with the inclined sample holder 1 attached to the mounting surface of the sample stage 2. The FIB device 3 is inclined with respect to the bottom surface 1a at an angle d that can be perpendicular to the focused ion beam axis A FIB of the FIB device 3 and parallel to the electron beam axis A SEM of the SEM device 4.

したがって、FIB装置3によって固体試料30の端面30aを加工し、かつ、試料室から取り出さずにSEM装置4によって加工した端面30aを電子線軸ASEMと垂直な方向から観察可能である。このような条件を満足するためには、前述の実施形態の図3および図4と同様に、傾斜試料ホルダー1の所定の角度dが、次の(1)の角度と(2)の角度とで挟まれた数値の範囲内(両端の数値を含む)にあることが好ましい。このことを図8および図9の例を参照しながら説明する。
(1) 図8に示すように、SEM装置4の電子線軸ASEMに垂直な面を第1の基準面P1としたときに、SEM装置4の電子線軸ASEMとFIB装置3の集束イオンビーム軸AFIBとがなす角度θと、試料ステージ2の載置面がFIB装置3の鏡筒3a側に第1の基準面P1を越えて回転可能な限界位置において、第1の基準面P1と試料ステージ2の載置面とがなす角度αとを直角から減じた角度(90−θ−α)。すなわち、図8では傾斜試料ホルダー1の傾斜角dが90−θの例を示しているが、この場合、試料ステージ2の載置面が第1の基準面P1と平行な図示の位置からFIB装置3の鏡筒3a側に角度αだけ回転が許容されることになる。よって傾斜試料ホルダー1の傾斜角dは90−θよりもαだけ小さくすることができる。
(2) 図9に示すように、FIB装置3の集束イオンビーム軸AFIBに垂直な面を第2の基準面P2としたときに、角度θと、試料ステージ2の載置面がSEM装置4の鏡筒4a側に第2の基準面P2を越えて回転可能な限界位置において、第2の基準面P2と試料ステージ2の載置面とがなす角度βとを加えた角度(θ+β)。すなわち、図9では傾斜試料ホルダー1の傾斜角dがθの例を示しているが、試料ステージ2の載置面が第2の基準面P2と平行な図示の位置からSEM装置4の鏡筒4a側に角度βだけ回転が許容されることになる。よって傾斜試料ホルダー1の傾斜角dはθよりもβだけ大きくすることができる。
Therefore, the end surface 30a of the solid sample 30 is processed by the FIB apparatus 3, and the end surface 30a processed by the SEM apparatus 4 without being taken out from the sample chamber can be observed from a direction perpendicular to the electron beam axis A SEM . In order to satisfy such conditions, the predetermined angle d of the tilted sample holder 1 is set to the following (1) angle and (2) angle as in FIGS. 3 and 4 of the above-described embodiment. It is preferable to be within the range of numerical values sandwiched between (including numerical values at both ends). This will be described with reference to the examples of FIGS.
(1) As shown in FIG. 8, when the surface perpendicular to the electron beam axis A SEM of the SEM device 4 is the first reference plane P1, the electron beam axis A SEM of the SEM device 4 and the focused ion beam of the FIB device 3 are used. The angle θ formed by the axis A FIB and the first reference plane P1 at the limit position where the mounting surface of the sample stage 2 can rotate beyond the first reference plane P1 on the lens barrel 3a side of the FIB apparatus 3 An angle (90−θ−α) obtained by subtracting an angle α formed by the mounting surface of the sample stage 2 from a right angle. That is, FIG. 8 shows an example in which the tilt angle d of the tilted sample holder 1 is 90-θ. In this case, the FIB is positioned from the illustrated position where the mounting surface of the sample stage 2 is parallel to the first reference plane P1. The device 3 is allowed to rotate by an angle α on the lens barrel 3a side. Therefore, the tilt angle d of the tilted sample holder 1 can be made smaller by α than 90−θ.
(2) As shown in FIG. 9, when the surface perpendicular to the focused ion beam axis A FIB of the FIB apparatus 3 is the second reference plane P2, the angle θ and the mounting surface of the sample stage 2 are the SEM apparatus. 4 is an angle (θ + β) obtained by adding an angle β formed by the second reference plane P2 and the mounting surface of the sample stage 2 at a limit position where the lens barrel 4a can be rotated beyond the second reference plane P2. . That is, FIG. 9 shows an example in which the tilt angle d of the tilted sample holder 1 is θ, but the column of the SEM apparatus 4 is shown from the illustrated position where the mounting surface of the sample stage 2 is parallel to the second reference plane P2. The rotation by the angle β is allowed on the 4a side. Therefore, the inclination angle d of the inclined sample holder 1 can be made larger than θ by β.

特に、前記所定の角度dが、次の(a)の角度と(b)の角度とで挟まれた数値の範囲内(両端の数値を含む)にあることが好ましい。
(a) FIB装置3の集束イオンビーム軸AFIBとSEM装置4の電子線軸ASEMとがなす角の角度θを直角から減じた角度(90−θ)
(b) 前記角度θ
中でも、傾斜試料ホルダー1が図6〜図9に示すような基底を直角三角形とする略三角柱の形状をなし、該基底の内角の一つがFIB装置3の集束イオンビーム軸AFIBとSEM装置4の電子線軸ASEMとがなす角度θであることが好ましい。
In particular, the predetermined angle d is preferably within a range of numerical values (including numerical values at both ends) sandwiched between the following angles (a) and (b).
(A) Angle (90−θ) obtained by subtracting the angle θ formed by the focused ion beam axis A FIB of the FIB apparatus 3 and the electron beam axis A SEM of the SEM apparatus 4 from a right angle.
(B) The angle θ
Among them, the tilted sample holder 1 has a substantially triangular prism shape whose base is a right triangle as shown in FIGS. 6 to 9, and one of the inner angles of the base is the focused ion beam axis A FIB of the FIB apparatus 3 and the SEM apparatus 4. The angle θ formed by the electron beam axis A SEM is preferable.

このように傾斜試料ホルダー1が基底を直角三角形とする略三角柱の形状をなし、該基底の内角の一つが角度θであると、傾斜試料ホルダー1の設計がFIB−SEM複合装置の機械的構成との関係から行いやすくなる。   In this way, when the tilted sample holder 1 has a substantially triangular prism shape whose base is a right triangle, and one of the inner angles of the base is the angle θ, the design of the tilted sample holder 1 is the mechanical configuration of the FIB-SEM composite apparatus. It becomes easier to do from the relationship.

以上のような条件を満足することによって、前記したような固体試料30の加工観察方法が可能となる。   By satisfying the above conditions, the processing observation method for the solid sample 30 as described above can be performed.

以上のような本実施形態の構成によれば、SEM装置4による観察においては固体試料30に対するSEM装置4の電子線軸ASEMの傾斜に起因する歪みのない端面30aの像を得ることができ、FIB−SEM複合装置20の型式に依存せず汎用性が高くなり、簡便な利用が可能となる。 According to the configuration of the present embodiment as described above, an image of the end face 30a without distortion caused by the inclination of the electron beam axis A SEM of the SEM device 4 with respect to the solid sample 30 can be obtained in the observation by the SEM device 4. The versatility is high without depending on the type of the FIB-SEM composite apparatus 20, and simple use is possible.

また、試料室から取り出さずに、FIB装置3による加工と、加工した端面30aのSEM装置4による観察が可能であるため、大気中で急速に反応する材料を、反応の進行を抑制した状態でSEM装置4により観察することができる。   Moreover, since the processing by the FIB apparatus 3 and the observation by the SEM apparatus 4 of the processed end face 30a are possible without taking out from the sample chamber, the material that reacts rapidly in the atmosphere is suppressed in the progress of the reaction. It can be observed with the SEM device 4.

また、FIB装置3による加工とSEM装置4による観察を行った固体試料30について、さらに試料室から取り出さずにFIB装置3による追加工を行うこともできる。そのため、煩雑な操作を要せずとも追加工が可能になる。   In addition, the solid sample 30 that has been processed by the FIB apparatus 3 and observed by the SEM apparatus 4 can be additionally processed by the FIB apparatus 3 without being taken out of the sample chamber. Therefore, additional machining can be performed without requiring a complicated operation.

図10、図11は、さらに本発明の傾斜試料ホルダーについて別の実施形態を例示したものである。   10 and 11 further illustrate another embodiment of the tilted sample holder of the present invention.

図10および図11のように、傾斜試料ホルダーは、
固体試料30を加工して端面30aを形成するFIB装置3と、該FIB装置3の集束イオンビーム軸AFIBと略平行に形成される前記端面30aを観察するSEM装置4と、前記固体試料30を保持し、前記FIB装置の集束イオンビーム軸AFIBと前記SEM装置の電子線軸ASEMとがなす面に垂直な軸を中心に回転可能な試料ステージ2とを備えるFIB−SEM複合装置において、前記端面30aを前記FIB装置の集束イオンビーム軸AFIBと前記SEM装置の電子線軸ASEMとの交点またはその近傍に位置させた状態で、前記試料ステージ2を回転させて前記SEM装置4によって前記固体試料の端面30aの観察を行うときに、前記FIB−SEM複合装置の試料ステージ2の載置面に着脱可能または固定的に取り付けて使用される傾斜試料ホルダー1である。
As shown in FIGS. 10 and 11, the inclined sample holder is
An FIB apparatus 3 for processing the solid sample 30 to form an end face 30a, an SEM apparatus 4 for observing the end face 30a formed substantially parallel to the focused ion beam axis A FIB of the FIB apparatus 3, and the solid sample 30 A FIB-SEM composite apparatus comprising a sample stage 2 that is rotatable about an axis perpendicular to a plane formed by a focused ion beam axis A FIB of the FIB apparatus and an electron beam axis A SEM of the SEM apparatus, The sample stage 2 is rotated by the SEM device 4 while the end surface 30a is positioned at or near the intersection of the focused ion beam axis A FIB of the FIB device and the electron beam axis A SEM of the SEM device. When observing the end surface 30a of the solid sample, it is used by being detachably or fixedly attached to the mounting surface of the sample stage 2 of the FIB-SEM composite apparatus. A swash sample holder 1.

前記試料ステージ2の載置面に接する底面1aと、該底面1aに対して傾斜し、該傾斜に沿って前記固体試料30を保持する傾斜面1bとを有し、該傾斜面1bは、前記傾斜試料ホルダー1を前記試料ステージ2の載置面に取り付けた状態で、適宜に該試料ステージ2を回転させることによって、図10のように、前記FIB装置の集束イオンビーム軸AFIBと平行になり得、かつ図11のように、前記SEM装置4の電子線軸ASEMと垂直になり得る角度で底面に対して傾斜している。 A bottom surface 1a in contact with the mounting surface of the sample stage 2; and an inclined surface 1b that is inclined with respect to the bottom surface 1a and holds the solid sample 30 along the inclination. With the tilted sample holder 1 attached to the mounting surface of the sample stage 2, the sample stage 2 is appropriately rotated so as to be parallel to the focused ion beam axis A FIB of the FIB apparatus as shown in FIG. As shown in FIG. 11, the SEM device 4 is inclined with respect to the bottom surface at an angle that can be perpendicular to the electron beam axis A SEM .

具体例としては、傾斜試料ホルダー1は、基底を直角三角形とする略三角柱の形状をなしている。傾斜面1bは、所定の角度dとして、FIB装置3の集束イオンビーム軸AFIBとSEM装置4の電子線軸ASEMとがなす角度θを直角から減じた角度(90−θ)で底面1aに対して傾斜している。 As a specific example, the tilted sample holder 1 has a substantially triangular prism shape whose base is a right triangle. The inclined surface 1b has a predetermined angle d on the bottom surface 1a at an angle (90-θ) obtained by subtracting an angle θ formed by the focused ion beam axis A FIB of the FIB device 3 and the electron beam axis A SEM of the SEM device 4 from a right angle. It is inclined with respect to it.

試料ステージ2は、真空に排気可能な図示しない試料室内に設置される。試料ステージ2は、ユーセントリック機構を有するステージを用いることができるが、これに限定されない。   The sample stage 2 is installed in a sample chamber (not shown) that can be evacuated to vacuum. The sample stage 2 can be a stage having a eucentric mechanism, but is not limited thereto.

試料ステージ2は、傾斜試料ホルダー1の底面1aと試料ステージ2の載置面とが接する形で傾斜試料ホルダー1が取り付けられ、これにより固体試料30を保持しながら所望の位置まで移動させる。試料ステージ2は、図示しない駆動機構により、図10のxz方向および紙面に垂直な方向(y方向)への直線移動と、xz面(FIB装置3の集束イオンビーム軸AFIBとSEM装置の電子線軸ASEMとがなす面)に垂直な軸を中心とする回転が可能である。 The tilted sample holder 1 is attached to the sample stage 2 so that the bottom surface 1a of the tilted sample holder 1 and the mounting surface of the sample stage 2 are in contact with each other, thereby moving the solid sample 30 to a desired position. The sample stage 2 is moved linearly in the xz direction of FIG. 10 and in a direction perpendicular to the paper surface (y direction) by the drive mechanism (not shown), and the xz plane (the focused ion beam axis A FIB of the FIB apparatus 3 and the electrons of the SEM apparatus). Rotation about an axis perpendicular to the surface formed by the line axis A SEM is possible.

固体試料30は、試料ステージ2を移動させることによって、固体試料30の端面30aが集束イオンビーム軸AFIBと電子線軸ASEMとの交点pまたはその近傍に位置される。そして、この集束イオンビーム軸AFIBと電子線軸ASEMとの交点またはその近傍を中心として試料ステージ2を回転することによって、固体試料30の端面30aと、集束イオンビーム軸AFIBおよび電子線軸ASEMとの角度が調整される。 By moving the sample stage 2, the end surface 30a of the solid sample 30 is positioned at or near the intersection point p between the focused ion beam axis A FIB and the electron beam axis A SEM . Then, by rotating the sample stage 2 around the intersection of the focused ion beam axis A FIB and the electron beam axis A SEM or the vicinity thereof, the end surface 30a of the solid sample 30, the focused ion beam axis A FIB and the electron beam axis A The angle with the SEM is adjusted.

本実施形態では、FIB装置3の鏡筒3aが鉛直方向(図10のz方向)に配置され、SEM装置4の鏡筒4aが鉛直方向から傾斜して配置されている。FIB装置3の集束イオンビーム軸AFIBは水平方向(図1のx方向)と直角な鉛直方向を向き、SEM装置4の電子線軸ASEMと角度θをなしている。 In this embodiment, the lens barrel 3a of the FIB device 3 is arranged in the vertical direction (z direction in FIG. 10), and the lens barrel 4a of the SEM device 4 is arranged inclined from the vertical direction. The focused ion beam axis A FIB of the FIB apparatus 3 is oriented in the vertical direction perpendicular to the horizontal direction (x direction in FIG. 1), and forms an angle θ with the electron beam axis A SEM of the SEM apparatus 4.

この傾斜試料ホルダー1を試料ステージ2に取り付けたFIB−SEM複合装置を用いた固体試料30の端面30aの加工および観察の方法を、図10および図11を参照しながら以下に説明する。   A method of processing and observing the end surface 30a of the solid sample 30 using the FIB-SEM composite apparatus in which the tilted sample holder 1 is attached to the sample stage 2 will be described below with reference to FIGS.

固体試料30を保持した傾斜試料ホルダー1を、FIB−SEM複合装置の水平な試料ステージ2に取り付けて、FIB−SEM複合装置の試料室内に導入する。   The tilted sample holder 1 holding the solid sample 30 is attached to the horizontal sample stage 2 of the FIB-SEM composite apparatus and introduced into the sample chamber of the FIB-SEM composite apparatus.

固体試料30は、試料ステージ2を移動させることによって、固体試料30の端面30aが集束イオンビーム軸AFIBと電子線軸ASEMとの交点pまたはその近傍に位置される。 By moving the sample stage 2, the end surface 30a of the solid sample 30 is positioned at or near the intersection point p between the focused ion beam axis A FIB and the electron beam axis A SEM .

次に、集束イオンビーム軸AFIBと電子線軸ASEMとの交点またはその近傍を中心として試料ステージ2を回転することによって、図10に示すように、FIB装置3の集束イオンビーム軸AFIBに対して固体試料30の端面30aが平行になるように固体試料30を配置する。例えば、図11の状態から試料ステージ2を角度90−θだけFIB装置3の方向へ回転することにより、固体試料30が水平になり、端面30aがFIB装置3の集束イオンビーム軸AFIBと平行になる。 Then, by rotating the sample stage 2 about an intersection or near a focused ion beam axis A FIB and electron beam axis A SEM, as shown in FIG. 10, the focused ion beam axis A FIB of FIB 3 On the other hand, the solid sample 30 is arranged so that the end surfaces 30a of the solid sample 30 are parallel to each other. For example, when the sample stage 2 is rotated in the direction of the FIB apparatus 3 by an angle 90-θ from the state of FIG. 11, the solid sample 30 becomes horizontal and the end face 30a is parallel to the focused ion beam axis A FIB of the FIB apparatus 3. become.

この配置で、FIB装置3からの集束イオンビームを固体試料30の端面30aに入射し、端面30aを、この端面30aと平行な方向から加工する。   With this arrangement, the focused ion beam from the FIB apparatus 3 is incident on the end face 30a of the solid sample 30, and the end face 30a is processed from a direction parallel to the end face 30a.

FIB装置3による端面30aの加工が終了した後、図10の状態から、端面30aを加工した固体試料30を試料室内から取り出さずに、試料ステージ2を角度90−θだけSEM装置4の方向へ回転することにより、図11に示すように、SEM装置4の電子線軸4aに対して端面30aが垂直になる。   After the processing of the end face 30a by the FIB apparatus 3 is completed, the sample stage 2 is moved toward the SEM apparatus 4 by an angle 90-θ without taking out the solid sample 30 processed from the end face 30a from the sample chamber from the state of FIG. By rotating, the end face 30a becomes perpendicular to the electron beam axis 4a of the SEM device 4 as shown in FIG.

この配置で、SEM装置4によって固体試料30の加工した端面30aを観察する。   With this arrangement, the processed end face 30 a of the solid sample 30 is observed by the SEM device 4.

なお、SEM装置4によって固体試料30の加工した端面30aを観察した後、固体試料30を試料室内から取り出さずに、試料ステージ2を回転させることによって、再度図10に示すようにFIB装置3の集束イオンビーム軸AFIBに対して端面30aが平行になるように固体試料30を配置し、この配置でFIB装置3によって固体試料30の端面30aを追加工することもできる。 In addition, after observing the processed end surface 30a of the solid sample 30 with the SEM device 4, the sample stage 2 is rotated without taking the solid sample 30 out of the sample chamber, so that the FIB device 3 again as shown in FIG. The solid sample 30 can be arranged so that the end face 30a is parallel to the focused ion beam axis A FIB , and the end face 30a of the solid sample 30 can be additionally processed by the FIB apparatus 3 in this arrangement.

図12、図13は、また別の実施形態を各々、加工観察の場合として示したものであるが、その特徴は以上の説明と同様である。   FIGS. 12 and 13 show other embodiments as processing observations, but the features are the same as those described above.

そして、図10、図11、並びに図12、図13のいずれの形態においても、傾斜ホルダーとその利用方法においては、前記試料ステージ2の載置面に接する底面と、該底面に対して所定の角度傾斜し、該傾斜に沿って前記固体試料を保持する傾斜面について、該所定の角度が、次の(1)の角度と(2)の角度とで挟まれた数値の範囲内(両端の数値を含む)にあることが好ましく考慮される。
(1) 図14、図15のように、前記FIB装置の集束イオンビーム軸AFIBに垂直な面を第1の基準面P1としたときに、前記FIB装置の集束イオンビーム軸AFIBと前記SEM装置の電子線軸ASEMとがなす角の角度θと、前記試料ステージの載置面が前記SEM装置の鏡筒側に前記第1の基準面P1を越えて回転可能な限界位置において、前記第1の基準面P1と該試料ステージの載置面とがなす角の角度αとを加えた角度(θ+α)
(2) 図16のように、前記SEM装置の電子線軸に垂直な面を第2の基準面P2としたときに、前記角度θと、前記試料ステージの載置面が前記FIB装置の鏡筒側に前記第2の基準面P2を越えて回転可能な限界位置において、前記第2の基準面P2と前記試料ステージの載置面とがなす角の角度βとを直角から減じた角度(90−θ−β)。
And in any form of FIG. 10, FIG. 11, FIG. 12, and FIG. 13, in the tilt holder and its utilization method, the bottom surface in contact with the mounting surface of the sample stage 2 and a predetermined amount with respect to the bottom surface With respect to the inclined surface that is inclined at an angle and holds the solid sample along the inclination, the predetermined angle is within a range of numerical values sandwiched between the following angles (1) and (2) (at both ends) (Including numerical values) is preferably considered.
(1) As shown in FIGS. 14 and 15, when a plane perpendicular to the focused ion beam axis A FIB of the FIB apparatus is defined as a first reference plane P1, the focused ion beam axis A FIB of the FIB apparatus and the above-mentioned The angle θ formed by the electron beam axis A SEM of the SEM apparatus and the limit position where the mounting surface of the sample stage can rotate beyond the first reference plane P1 on the lens barrel side of the SEM apparatus, An angle (θ + α) obtained by adding an angle α formed by the first reference plane P1 and the mounting surface of the sample stage.
(2) As shown in FIG. 16, when the plane perpendicular to the electron beam axis of the SEM apparatus is the second reference plane P2, the angle θ and the mounting surface of the sample stage are the lens barrel of the FIB apparatus. An angle (90) obtained by subtracting an angle β formed by the second reference plane P2 and the mounting surface of the sample stage from a right angle at a limit position where the second reference plane P2 can be rotated to the side. -Θ-β).

以上のとおり、いくつかの実施形態に基づき本発明について説明したが、本発明はこれらの実施形態に限定されることはなく、その要旨を逸脱しない範囲内において各種の変形や変更が可能である。   As described above, the present invention has been described based on some embodiments, but the present invention is not limited to these embodiments, and various modifications and changes can be made without departing from the scope of the present invention. .

1 傾斜試料ホルダー
1a 底面
1b 傾斜面
2 試料ステージ
3 FIB装置
3a 鏡筒
4 SEM装置
4a 鏡筒
10,20 FIB−SEM複合装置
30 固体試料
30a 端面
FIB FIB装置の集束イオンビーム軸
SEM SEM装置の電子線軸
p 集束イオンビーム軸と電子線軸との交点
P1 第1の基準面
P2 第2の基準面
DESCRIPTION OF SYMBOLS 1 Inclined sample holder 1a Bottom surface 1b Inclined surface 2 Sample stage 3 FIB apparatus 3a Lens tube 4 SEM apparatus 4a Lens tube 10, 20 FIB-SEM compound apparatus 30 Solid sample 30a End surface A Focused ion beam axis of FIB FIB apparatus A SEM SEM apparatus Electron beam axis p of intersection of focused ion beam axis and electron beam axis P1 first reference plane P2 second reference plane

Claims (10)

固体試料を加工して端面を形成するFIB装置と、該FIB装置の集束イオンビーム軸と略平行に形成される前記端面を観察するSEM装置と、前記固体試料を保持し、前記FIB装置の集束イオンビーム軸と前記SEM装置の電子線軸とがなす面に垂直な軸を中心に回転可能な試料ステージとを備えるFIB−SEM複合装置において、
前記端面を前記FIB装置の集束イオンビーム軸と前記SEM装置の電子線軸との交点またはその近傍に位置させた状態で、前記試料ステージを回転させて前記SEM装置によって前記固体試料の端面の観察を行うときに、前記FIB−SEM複合装置の試料ステージの載置面に着脱可能または固定的に取り付けて使用される傾斜試料ホルダーであって、
前記試料ステージの載置面に接する底面と、該底面に対して傾斜し、該傾斜に沿って前記固体試料を保持する傾斜面とを有し、
該傾斜面は、前記傾斜試料ホルダーを前記試料ステージの載置面に取り付けた状態で、適宜に該試料ステージを回転させることによって、前記FIB装置の集束イオンビーム軸と垂直になり得、かつ前記SEM装置の電子線軸と平行になり得る角度で底面に対して傾斜していることを特徴とする傾斜試料ホルダー。
An FIB apparatus that forms an end face by processing a solid sample, an SEM apparatus that observes the end face formed substantially parallel to the focused ion beam axis of the FIB apparatus, and a focusing apparatus for holding the solid sample and focusing the FIB apparatus. In a FIB-SEM composite apparatus comprising a sample stage rotatable around an axis perpendicular to a plane formed by an ion beam axis and an electron beam axis of the SEM apparatus,
With the end face positioned at or near the intersection of the focused ion beam axis of the FIB apparatus and the electron beam axis of the SEM apparatus, the sample stage is rotated and the end face of the solid sample is observed by the SEM apparatus. A tilted sample holder that is used when detachably or fixedly attached to a mounting surface of a sample stage of the FIB-SEM composite apparatus when performing,
A bottom surface in contact with the mounting surface of the sample stage, and an inclined surface that is inclined with respect to the bottom surface and holds the solid sample along the inclination,
The inclined surface can be perpendicular to the focused ion beam axis of the FIB apparatus by appropriately rotating the sample stage with the inclined sample holder attached to the mounting surface of the sample stage, and A tilted sample holder, wherein the tilted sample holder is tilted with respect to the bottom surface at an angle that can be parallel to the electron beam axis of the SEM apparatus.
固体試料を加工して端面を形成するFIB装置と、該FIB装置の集束イオンビーム軸と略平行に形成される前記端面を観察するSEM装置と、前記固体試料を保持し、前記FIB装置の集束イオンビーム軸と前記SEM装置の電子線軸とがなす面に垂直な軸を中心に回転可能な試料ステージとを備えるFIB−SEM複合装置において、
前記端面を前記FIB装置の集束イオンビーム軸と前記SEM装置の電子線軸との交点またはその近傍に位置させた状態で、前記試料ステージを回転させて前記SEM装置によって前記固体試料の端面の観察を行うときに、前記FIB−SEM複合装置の試料ステージの載置面に着脱可能または固定的に取り付けて使用される傾斜試料ホルダーであって、
前記試料ステージの載置面に接する底面と、該底面に対して所定の角度傾斜し、該傾斜に沿って前記固体試料を保持する傾斜面とを有し、該所定の角度が、次の(1)の角度と(2)の角度とで挟まれた数値の範囲内(両端の数値を含む)にあることを特徴とする傾斜試料ホルダー:
(1) 前記FIB装置の集束イオンビーム軸に垂直な面を第1の基準面としたときに、前記FIB装置の集束イオンビーム軸と前記SEM装置の電子線軸とがなす角の角度θと、前記試料ステージの載置面が前記SEM装置の鏡筒側に前記第1の基準面を越えて回転可能な限界位置において、前記第1の基準面と該試料ステージの載置面とがなす角の角度αとを直角から減じた角度(90−θ−α)
(2) 前記SEM装置の電子線軸に垂直な面を第2の基準面としたときに、前記角度θと、前記試料ステージの載置面が前記FIB装置の鏡筒側に前記第2の基準面を越えて回転可能な限界位置において、前記第2の基準面と前記試料ステージの載置面とがなす角の角度βとを加えた角度(θ+β)。
An FIB apparatus that forms an end face by processing a solid sample, an SEM apparatus that observes the end face formed substantially parallel to the focused ion beam axis of the FIB apparatus, and a focusing apparatus for holding the solid sample and focusing the FIB apparatus. In a FIB-SEM composite apparatus comprising a sample stage rotatable around an axis perpendicular to a plane formed by an ion beam axis and an electron beam axis of the SEM apparatus,
With the end face positioned at or near the intersection of the focused ion beam axis of the FIB apparatus and the electron beam axis of the SEM apparatus, the sample stage is rotated and the end face of the solid sample is observed by the SEM apparatus. A tilted sample holder that is used when detachably or fixedly attached to a mounting surface of a sample stage of the FIB-SEM composite apparatus when performing,
A bottom surface that is in contact with the mounting surface of the sample stage; and an inclined surface that is inclined at a predetermined angle relative to the bottom surface and holds the solid sample along the inclination. Inclined specimen holder characterized in that it is within the range of numerical values (including numerical values at both ends) sandwiched between the angle of 1) and the angle of (2):
(1) An angle θ formed by the focused ion beam axis of the FIB apparatus and the electron beam axis of the SEM apparatus when a plane perpendicular to the focused ion beam axis of the FIB apparatus is a first reference plane; An angle formed by the first reference surface and the mounting surface of the sample stage at a limit position where the mounting surface of the sample stage can rotate beyond the first reference surface toward the lens barrel side of the SEM apparatus. The angle obtained by subtracting the angle α from the right angle (90−θ−α)
(2) When the surface perpendicular to the electron beam axis of the SEM device is used as a second reference surface, the angle θ and the mounting surface of the sample stage are located on the lens barrel side of the FIB device. An angle (θ + β) obtained by adding an angle β formed by the second reference surface and the mounting surface of the sample stage at a limit position where the surface can be rotated beyond the surface.
前記所定の角度が、次の(a)の角度と(b)の角度とで挟まれた数値の範囲内(両端の数値を含む)にあることを特徴とする請求項2に記載の傾斜試料ホルダー:
(a) 前記FIB装置の集束イオンビーム軸と前記SEM装置の電子線軸とがなす角の角度θを直角から減じた角度(90−θ)
(b) 前記角度θ。
The inclined sample according to claim 2, wherein the predetermined angle is within a range of numerical values (including numerical values at both ends) sandwiched between the following angle (a) and the angle (b). holder:
(A) Angle (90−θ) obtained by subtracting the angle θ formed by the focused ion beam axis of the FIB apparatus and the electron beam axis of the SEM apparatus from a right angle.
(B) The angle θ.
固体試料を加工して端面を形成するFIB装置と、該FIB装置の集束イオンビーム軸と略平行に形成される前記端面を観察するSEM装置と、前記固体試料を保持し、前記FIB装置の集束イオンビーム軸と前記SEM装置の電子線軸とがなす面に垂直な軸を中心に回転可能な試料ステージとを備えるFIB−SEM複合装置において、
前記端面を前記FIB装置の集束イオンビーム軸と前記SEM装置の電子線軸との交点またはその近傍に位置させた状態で、前記試料ステージを回転させて前記SEM装置によって前記固体試料の端面の観察を行うときに、前記FIB−SEM複合装置の試料ステージの載置面に着脱可能または固定的に取り付けて使用される傾斜試料ホルダーであって、
基底を直角三角形とする略三角柱の形状をなし、該基底の内角の一つが前記FIB装置の集束イオンビーム軸と前記SEM装置の電子線軸とがなす角の角度θであることを特徴とする傾斜試料ホルダー。
An FIB apparatus that forms an end face by processing a solid sample, an SEM apparatus that observes the end face formed substantially parallel to the focused ion beam axis of the FIB apparatus, and a focusing apparatus for holding the solid sample and focusing the FIB apparatus. In a FIB-SEM composite apparatus comprising a sample stage rotatable around an axis perpendicular to a plane formed by an ion beam axis and an electron beam axis of the SEM apparatus,
With the end face positioned at or near the intersection of the focused ion beam axis of the FIB apparatus and the electron beam axis of the SEM apparatus, the sample stage is rotated and the end face of the solid sample is observed by the SEM apparatus. A tilted sample holder that is used when detachably or fixedly attached to a mounting surface of a sample stage of the FIB-SEM composite apparatus when performing,
An inclination characterized in that the base has a substantially triangular prism shape having a right triangle, and one of the inner angles of the base is an angle θ formed by the focused ion beam axis of the FIB device and the electron beam axis of the SEM device. Sample holder.
前記固体試料を請求項1から4のいずれかに記載の傾斜試料ホルダーの傾斜面に沿って保持し、該傾斜試料ホルダーを前記試料ステージの載置面に取り付けた状態で、適宜に該試料ステージを回転させることによって、該傾斜試料ホルダーの傾斜面が前記FIB装置の集束イオンビーム軸と垂直になるように配置する工程と、
この配置で前記FIB装置によって前記固体試料を加工して、前記FIB装置の集束イオンビーム軸と略平行に前記固体試料の端面を形成する工程と、
該端面が形成された前記固体試料を、前記FIB−SEM複合装置の試料室内から取り出さずに、適宜に前記試料ステージを回転させることによって、前記SEM装置の電子線軸に対して前記固体試料の端面が垂直になるように前記固体試料を配置する工程と、
この配置で前記SEM装置によって前記固体試料の端面に正対して観察する工程とを含む固体試料の加工観察方法。
The solid sample is held along the inclined surface of the inclined sample holder according to any one of claims 1 to 4, and the sample stage is appropriately attached while the inclined sample holder is attached to the mounting surface of the sample stage. Rotating the tilted sample holder so that the tilted surface of the tilted sample holder is perpendicular to the focused ion beam axis of the FIB apparatus;
Processing the solid sample with the FIB device in this arrangement to form an end face of the solid sample substantially parallel to the focused ion beam axis of the FIB device;
The end surface of the solid sample is rotated with respect to the electron beam axis of the SEM device by appropriately rotating the sample stage without taking out the solid sample with the end surface from the sample chamber of the FIB-SEM composite device. Placing the solid sample so that is vertical;
A solid sample processing observation method including the step of observing the SEM device with the arrangement facing the end face of the solid sample.
前記SEM装置によって前記固体試料の端面に正対して観察する工程の後、
前記固体試料を前記試料室内から取り出さずに、適宜に前記試料ステージを回転させることによって、該傾斜試料ホルダーの傾斜面が前記FIB装置の集束イオンビーム軸と垂直になるように配置する工程と、
この配置で前記FIB装置によって前記固体試料の端面の近傍を追加工する工程とを含む請求項5に記載の固体試料の加工観察方法。
After the step of directly observing the end surface of the solid sample with the SEM device,
Arranging the inclined sample holder so that the inclined surface of the inclined sample holder is perpendicular to the focused ion beam axis of the FIB apparatus by appropriately rotating the sample stage without taking the solid sample from the sample chamber;
The solid sample processing and observation method according to claim 5, further comprising a step of additionally processing the vicinity of the end surface of the solid sample by the FIB apparatus in this arrangement.
固体試料を加工して端面を形成するFIB装置と、該FIB装置の集束イオンビーム軸と略平行に形成される前記端面を観察するSEM装置と、前記固体試料を保持し、前記FIB装置の集束イオンビーム軸と前記SEM装置の電子線軸とがなす面に垂直な軸を中心に回転可能な試料ステージとを備えるFIB−SEM複合装置において、
前記端面を前記FIB装置の集束イオンビーム軸と前記SEM装置の電子線軸との交点またはその近傍に位置させた状態で、前記試料ステージを回転させて前記SEM装置によって前記固体試料の端面の観察を行うときに、前記FIB−SEM複合装置の試料ステージの載置面に着脱可能または固定的に取り付けて使用される傾斜試料ホルダーであって、
前記試料ステージの載置面に接する底面と、該底面に対して傾斜し、該傾斜に沿って前記固体試料を保持する傾斜面とを有し、
該傾斜面は、前記傾斜試料ホルダーを前記試料ステージの載置面に取り付けた状態で、適宜に該試料ステージを回転させることによって、前記FIB装置の集束イオンビーム軸と平行になり得、かつ前記SEM装置の電子線軸と垂直になり得る角度で底面に対して傾斜していることを特徴とする傾斜試料ホルダー。
An FIB apparatus that forms an end face by processing a solid sample, an SEM apparatus that observes the end face formed substantially parallel to the focused ion beam axis of the FIB apparatus, and a focusing apparatus for holding the solid sample and focusing the FIB apparatus. In a FIB-SEM composite apparatus comprising a sample stage rotatable around an axis perpendicular to a plane formed by an ion beam axis and an electron beam axis of the SEM apparatus,
With the end face positioned at or near the intersection of the focused ion beam axis of the FIB apparatus and the electron beam axis of the SEM apparatus, the sample stage is rotated and the end face of the solid sample is observed by the SEM apparatus. A tilted sample holder that is used when detachably or fixedly attached to a mounting surface of a sample stage of the FIB-SEM composite apparatus when performing,
A bottom surface in contact with the mounting surface of the sample stage, and an inclined surface that is inclined with respect to the bottom surface and holds the solid sample along the inclination,
The inclined surface can be parallel to the focused ion beam axis of the FIB apparatus by appropriately rotating the sample stage with the inclined sample holder attached to the mounting surface of the sample stage, and A tilted sample holder, wherein the tilted sample holder is tilted with respect to the bottom surface at an angle that can be perpendicular to the electron beam axis of the SEM apparatus.
固体試料を加工して端面を形成するFIB装置と、該FIB装置の集束イオンビーム軸と略平行に形成される前記端面を観察するSEM装置と、前記固体試料を保持し、前記FIB装置の集束イオンビーム軸と前記SEM装置の電子線軸とがなす面に垂直な軸を中心に回転可能な試料ステージとを備えるFIB−SEM複合装置において、
前記端面を前記FIB装置の集束イオンビーム軸と前記SEM装置の電子線軸との交点またはその近傍に位置させた状態で、前記試料ステージを回転させて前記SEM装置によって前記固体試料の端面の観察を行うときに、前記FIB−SEM複合装置の試料ステージの載置面に着脱可能または固定的に取り付けて使用される傾斜試料ホルダーであって、
前記試料ステージの載置面に接する底面と、該底面に対して所定の角度傾斜し、該傾斜に沿って前記固体試料を保持する傾斜面とを有し、該所定の角度が、次の(1)の角度と(2)の角度とで挟まれた数値の範囲内(両端の数値を含む)にあることを特徴とする傾
斜試料ホルダー:
(1) 前記FIB装置の集束イオンビーム軸に垂直な面を第1の基準面としたときに、前記FIB装置の集束イオンビーム軸と前記SEM装置の電子線軸とがなす角の角度θと、前記試料ステージの載置面が前記SEM装置の鏡筒側に前記第1の基準面を越えて回転可能な限界位置において、前記第1の基準面と該試料ステージの載置面とがなす角の角度αとを加えた角度(θ+α)
(2) 前記SEM装置の電子線軸に垂直な面を第2の基準面としたときに、前記角度θと、前記試料ステージの載置面が前記FIB装置の鏡筒側に前記第2の基準面を越えて回転可能な限界位置において、前記第2の基準面と前記試料ステージの載置面とがなす角の角度βとを直角から減じた角度(90−θ−β)。
An FIB apparatus that forms an end face by processing a solid sample, an SEM apparatus that observes the end face formed substantially parallel to the focused ion beam axis of the FIB apparatus, and a focusing apparatus for holding the solid sample and focusing the FIB apparatus. In a FIB-SEM composite apparatus comprising a sample stage rotatable around an axis perpendicular to a plane formed by an ion beam axis and an electron beam axis of the SEM apparatus,
With the end face positioned at or near the intersection of the focused ion beam axis of the FIB apparatus and the electron beam axis of the SEM apparatus, the sample stage is rotated and the end face of the solid sample is observed by the SEM apparatus. A tilted sample holder that is used when detachably or fixedly attached to a mounting surface of a sample stage of the FIB-SEM composite apparatus when performing,
A bottom surface that is in contact with the mounting surface of the sample stage; and an inclined surface that is inclined at a predetermined angle relative to the bottom surface and holds the solid sample along the inclination. Inclined specimen holder characterized in that it is within the range of numerical values (including numerical values at both ends) sandwiched between the angle of 1) and the angle of (2):
(1) An angle θ formed by the focused ion beam axis of the FIB apparatus and the electron beam axis of the SEM apparatus when a plane perpendicular to the focused ion beam axis of the FIB apparatus is a first reference plane; An angle formed by the first reference surface and the mounting surface of the sample stage at a limit position where the mounting surface of the sample stage can rotate beyond the first reference surface toward the lens barrel side of the SEM apparatus. Angle (θ + α)
(2) When the surface perpendicular to the electron beam axis of the SEM device is used as a second reference surface, the angle θ and the mounting surface of the sample stage are located on the lens barrel side of the FIB device. An angle (90−θ−β) obtained by subtracting an angle β formed by the second reference surface and the mounting surface of the sample stage from a right angle at a limit position where the surface can be rotated beyond the surface.
前記固体試料を請求項7または8のいずれかに記載の傾斜試料ホルダーの傾斜面に沿って保持し、該傾斜試料ホルダーを前記試料ステージの載置面に取り付けた状態で、適宜に該試料ステージを回転させることによって、該傾斜試料ホルダーの傾斜面が前記FIB装置の集束イオンビーム軸と平行になるように配置する工程と、
この配置で前記FIB装置によって前記固体試料を加工して、前記FIB装置の集束イオンビーム軸と略平行に前記固体試料の端面を形成する工程と、
該端面が形成された前記固体試料を、前記FIB−SEM複合装置の試料室内から取り出さずに、適宜に前記試料ステージを回転させることによって、前記SEM装置の電子線軸に対して前記固体試料の端面が垂直になるように前記固体試料を配置する工程と、
この配置で前記SEM装置によって前記固体試料の端面に正対して観察する工程とを含む固体試料の加工観察方法。
The solid sample is held along the inclined surface of the inclined sample holder according to any one of claims 7 and 8, and the sample stage is appropriately attached with the inclined sample holder attached to the mounting surface of the sample stage. Rotating the tilted sample holder so that the tilted surface of the tilted sample holder is parallel to the focused ion beam axis of the FIB device;
Processing the solid sample with the FIB device in this arrangement to form an end face of the solid sample substantially parallel to the focused ion beam axis of the FIB device;
The end surface of the solid sample is rotated with respect to the electron beam axis of the SEM device by appropriately rotating the sample stage without taking out the solid sample with the end surface from the sample chamber of the FIB-SEM composite device. Placing the solid sample so that is vertical;
A solid sample processing observation method including the step of observing the SEM device with the arrangement facing the end face of the solid sample.
前記SEM装置によって前記固体試料の端面に正対して観察する工程の後、
前記固体試料を前記試料室内から取り出さずに、適宜に前記試料ステージを回転させることによって、該傾斜試料ホルダーの傾斜面が前記FIB装置の集束イオンビーム軸と平行になるように配置する工程と、
この配置で前記FIB装置によって前記固体試料の端面の近傍を追加工する工程とを含
む請求項5に記載の固体試料の加工観察方法。
After the step of directly observing the end surface of the solid sample with the SEM device,
Arranging the inclined sample holder so that the inclined surface of the inclined sample holder is parallel to the focused ion beam axis of the FIB apparatus by appropriately rotating the sample stage without removing the solid sample from the sample chamber;
The solid sample processing and observation method according to claim 5, further comprising a step of additionally processing the vicinity of the end surface of the solid sample by the FIB apparatus in this arrangement.
JP2014064857A 2013-03-26 2014-03-26 Inclination sample holder for fib-sem composite device, fib-sem composite device and processing observation method of solid sample using composite device Pending JP2014209474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014064857A JP2014209474A (en) 2013-03-26 2014-03-26 Inclination sample holder for fib-sem composite device, fib-sem composite device and processing observation method of solid sample using composite device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013065017 2013-03-26
JP2013065017 2013-03-26
JP2014064857A JP2014209474A (en) 2013-03-26 2014-03-26 Inclination sample holder for fib-sem composite device, fib-sem composite device and processing observation method of solid sample using composite device

Publications (1)

Publication Number Publication Date
JP2014209474A true JP2014209474A (en) 2014-11-06

Family

ID=51903569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014064857A Pending JP2014209474A (en) 2013-03-26 2014-03-26 Inclination sample holder for fib-sem composite device, fib-sem composite device and processing observation method of solid sample using composite device

Country Status (1)

Country Link
JP (1) JP2014209474A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305794A (en) * 2007-06-06 2008-12-18 Carl Zeiss Nts Gmbh Particle beam device and method for using with particle beam device
JP2011216465A (en) * 2010-03-18 2011-10-27 Sii Nanotechnology Inc Compound charged particle beam device and sample processing observation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008305794A (en) * 2007-06-06 2008-12-18 Carl Zeiss Nts Gmbh Particle beam device and method for using with particle beam device
JP2011216465A (en) * 2010-03-18 2011-10-27 Sii Nanotechnology Inc Compound charged particle beam device and sample processing observation method

Similar Documents

Publication Publication Date Title
JP5612493B2 (en) Compound charged particle beam system
KR102552236B1 (en) Composite charged particle beam apparatus
JP2009014709A5 (en)
US6417512B1 (en) Sample distortion removing method in thin piece forming
KR102056507B1 (en) Charged particle beam device and specimen observation method
JP2014063726A (en) Composite charged particle beam device, and thin sample processing method
US20160189929A1 (en) Rapid tem sample preparation method with backside fib milling
JP4654216B2 (en) Sample holder for charged particle beam equipment
JP2009025133A (en) Sample preparing method and sample preparing apparatus
KR102318216B1 (en) Focused ion beam apparatus
JP2013065512A (en) Composite charged particle beam device
JP2014209474A (en) Inclination sample holder for fib-sem composite device, fib-sem composite device and processing observation method of solid sample using composite device
US9773638B2 (en) Specimen preparation device
JP2008031027A (en) Sapphire single crystal substrate
JP2010097844A (en) Scanning electron microscope and its using method
JP2008014820A (en) Sample stand
JP7152757B2 (en) Sample processing observation method
JP2009192341A (en) Preparation method of sliced sample for transmission electron microscope, and sample stand used therefor
JP3106846U (en) Sample holder for charged particle beam equipment
JP2013080605A (en) Sample holder tip, sample holder, and manufacturing method of sample holder tip
WO2024034052A1 (en) Ion milling device and processing method using same
KR20200124209A (en) A device for producing flake samples and a method for producing flake samples
JPWO2016121080A1 (en) Ion milling mask position adjusting method, electron microscope capable of adjusting mask position, mask adjusting device mounted on sample stage, and sample mask component of ion milling device
JP2017182923A (en) Specimen holder and focused ion beam device
JP7127883B2 (en) Composite charged particle beam system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170113

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170905

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180417