JP2014209010A - Vibration reducing/attenuating device - Google Patents

Vibration reducing/attenuating device Download PDF

Info

Publication number
JP2014209010A
JP2014209010A JP2013085871A JP2013085871A JP2014209010A JP 2014209010 A JP2014209010 A JP 2014209010A JP 2013085871 A JP2013085871 A JP 2013085871A JP 2013085871 A JP2013085871 A JP 2013085871A JP 2014209010 A JP2014209010 A JP 2014209010A
Authority
JP
Japan
Prior art keywords
damping device
damping
vibration
vibration reducing
sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013085871A
Other languages
Japanese (ja)
Other versions
JP5805694B2 (en
Inventor
一嘉 飯田
Kazuyoshi Iida
一嘉 飯田
貴行 瀧口
Takayuki Takiguchi
貴行 瀧口
治男 萱野
Haruo Kayano
治男 萱野
小林 達也
Tatsuya Kobayashi
達也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone KBG Co Ltd
Original Assignee
Bridgestone KBG Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone KBG Co Ltd filed Critical Bridgestone KBG Co Ltd
Priority to JP2013085871A priority Critical patent/JP5805694B2/en
Publication of JP2014209010A publication Critical patent/JP2014209010A/en
Application granted granted Critical
Publication of JP5805694B2 publication Critical patent/JP5805694B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems

Abstract

PROBLEM TO BE SOLVED: To provide an attenuating device constituted by combining a structure in which limitation is applied within a fixed movable range to realize a structure free from elastic support, so that it can be applied to any load with respect to horizontal oscillatory input such as earthquake wave and microvibration.SOLUTION: A vibration reducing/attenuating device is constituted by combining a horizontal sliding mechanism and an attenuating/cushioning damper mechanism 20 properly limiting displacement of the sliding mechanism, a sliding structure 1 is mounted between a base-isolated structure and a base substrate structure, and the base substrate structure is provided with a cylindrical body 9 surrounding the horizontal circumference of the sliding structure. An attenuating/cushioning damper surrounding the circumference of the sliding structure, and preferably including an elastomer inside of a polymer-based tube, is disposed between an inner face of the cylindrical body and the sliding structure.

Description

本発明は主として水平方向の微振動を除振する減衰デバイスに関するもので、従来の技術にはない新しい概念の振動低減・減衰デバイスを提供するものである。 The present invention mainly relates to a damping device that removes horizontal micro-vibration, and provides a new concept vibration reducing / damping device that is not available in the prior art.

地震等によって建物等の構造物に作用する水平方向の加振力を低減するために、構造物を弾性体(ゴム)と硬質板を上下方向に交互に積層した免振デバイスで支持することが行われている(特許文献1)。
又、この免震デバイスには、弾性体とされるゴム体だけでなく、揺れに伴う振動を抑えるため鉛等を内蔵し、これらの部材の複合的な作用で地震の揺れを低減し、建物等の構造物側に地震の揺れを伝達し難くする技術もある。
In order to reduce the horizontal excitation force that acts on structures such as buildings due to earthquakes, etc., the structure should be supported by a vibration isolation device in which elastic bodies (rubber) and hard plates are alternately stacked in the vertical direction. (Patent Document 1).
This seismic isolation device contains not only a rubber body, which is an elastic body, but also lead etc. in order to suppress vibrations caused by shaking, and the vibration of earthquakes is reduced by the combined action of these members. There is also a technology that makes it difficult to transmit earthquake shaking to the structure side.

しかるに、この種の免震技術にあっては、弾性体のせん断変形に伴って水平方向に広い可動域が必要であり、被免震構造物に対して比較的大きな免震デバイスとなってしまうという欠点があった。即ち、被免震・免振構造物である機器類、機械類に適用できる最適な免振デバイスがなかったのが現状である。 However, this type of seismic isolation technology requires a wide range of motion in the horizontal direction due to the shear deformation of the elastic body, which results in a relatively large seismic isolation device for the seismically isolated structure. There was a drawback. In other words, there is no optimal vibration isolation device that can be applied to equipment and machinery that are seismically isolated / isolated.

阪神大震災、東日本大震災で多くの機械、機器類がダメージを受け、今後予想される地震からこれら機械・機器類を守るニーズが極めて高まっている。更には、光学系を有する精密機器類、輸送機械、建設機械等挙動・姿勢により水平方向の振動の除去のニーズなども同様に高まっており、一定の変位で、地震波、機械振動、微振動など水平方向の振動低減機能と減衰・緩衝機能を併せ持つ、経済的で効果的で、適用しやすい免震・免振デバイスが広い分野で求められている。 Many machines and equipment were damaged by the Great Hanshin Earthquake and the Great East Japan Earthquake, and the need to protect these machines and equipment from the earthquake that is expected in the future is extremely increasing. Furthermore, the need for eliminating horizontal vibration due to the behavior and attitude of precision equipment, transportation equipment, construction machinery, etc. that have optical systems is also rising, and seismic waves, mechanical vibrations, fine vibrations, etc. with constant displacement Economical, effective, and easy-to-use seismic isolation / isolation devices that have both horizontal vibration reduction and damping / buffer functions are required in a wide range of fields.

特開2001−140977JP 2001-140977 A

本発明は上記の欠点を改善せんとするものであり、地震波、機械振動、微振動等の水平方向の振動入力に対して、どのような荷重に対しても適用できるように、弾性支持を使わない構造で実現しようとしたものであり、特に、水平方向の可動に対して減衰・緩衝機能を有するダンパを組み合わせて、一定の可動範囲でリミットが掛かる構造を組み合わせた免震デバイスを提供するものである。 The present invention is intended to remedy the above drawbacks, and uses an elastic support so that it can be applied to any load against horizontal vibration inputs such as seismic waves, mechanical vibrations, and micro vibrations. In particular, it is intended to provide a seismic isolation device that combines a structure that is limited within a certain range of movement by combining dampers that have damping and buffering functions for horizontal movement. It is.

本発明の振動低減・減衰デバイスの基本構成は、被免震・免振構造体(以下、問題のない限り被免震構造体という)に対し、水平方向の滑り機構と、その変位を適切にリミットする減衰・緩衝ダンパ機構を組み合わせたことを特徴とするものである。 The basic configuration of the vibration reduction / attenuation device of the present invention is such that the horizontal sliding mechanism and its displacement are appropriately adjusted to the seismic isolation / isolation structure (hereinafter referred to as the seismic isolation structure unless there is a problem). It is characterized by a combination of a damping / buffer damper mechanism for limiting.

そして、具体的な構成としては、以下の構成を採用するものである。即ち、被免震構造体と基体構造物の間に装着された滑り構造体と、基体構造物に装着され、この滑り構造体の水平方向の周囲を取り囲む筒体と、筒体内にこの滑り構造体の周囲を取り囲み、水平方向の二次元面内で自在に変位し得る減衰・緩衝ダンパを配したことを特徴とする振動低減・減衰デバイスに係るものである。前記減衰・緩衝ダンパとして、好適には高分子系のチューブの中にエラストマを内包(充填)したものが良いが、水平方向の変位を大きく取らなくても良い場合には、用いられる減衰・緩衝ダンパは内部損失の高い高分子エラストマを用いても良い。   As a specific configuration, the following configuration is adopted. That is, a sliding structure mounted between the base-isolated structure and the base structure, a cylinder mounted on the base structure and surrounding the periphery of the sliding structure in the horizontal direction, and the sliding structure in the cylinder The present invention relates to a vibration reduction / attenuation device characterized in that a damping / buffer damper is provided that surrounds the body and can be freely displaced in a two-dimensional plane in the horizontal direction. The damping / buffer damper is preferably a polymer tube containing elastomer (filled), but if the horizontal displacement does not have to be large, the damping / buffer used is As the damper, a polymer elastomer having a high internal loss may be used.

以上の構成によりもたらされる効果は、水平方向の変位があるところまでは滑り構造体の作用にて免震或いは免振し、一方、減衰・緩衝ダンパの作用にて一定の可動範囲内にて変位にリミットが係る構造としたものである。このため、本発明のデバイスによれば、被免震構造体に対して最適の大きさの振動低減・減衰デバイスを提供できることとなったものである。   The effect brought about by the above configuration is that the structure is isolated or isolated by the action of the sliding structure until there is a displacement in the horizontal direction, while it is displaced within a certain movable range by the action of the damping / buffer damper. This is a structure related to the limit. For this reason, according to the device of the present invention, it is possible to provide a vibration reduction / attenuation device having an optimum size for the seismic isolation structure.

図1は本発明の振動低減・減衰デバイスの基本形態の平面図である。FIG. 1 is a plan view of a basic form of a vibration reducing / damping device of the present invention. 図2は図1のAOA線での断面図である。FIG. 2 is a cross-sectional view taken along line AOA in FIG. 図3は図1の具体例を示す振動低減・減衰デバイスのAOB線での断面図である。FIG. 3 is a cross-sectional view taken along the line AOB of the vibration reduction / damping device showing the specific example of FIG. 図4(1)はチューブの中にゲル状のエラストマを内包した減衰・緩衝ダンパの拡大断面図である。FIG. 4A is an enlarged cross-sectional view of a damping / buffer damper in which a gel-like elastomer is included in a tube. 図4(2)はチューブの中にゲル状のエラストマを内包した減衰・緩衝ダンパの拡大断面図である。FIG. 4 (2) is an enlarged cross-sectional view of a damping / buffer damper in which a gel-like elastomer is contained in a tube. 図5は本発明の振動低減・減衰デバイスの特性を示すグラフである。FIG. 5 is a graph showing the characteristics of the vibration reducing / damping device of the present invention. 図6(1)はブチル系ゴムを用いた減衰・緩衝ダンパの拡大断面図である。FIG. 6A is an enlarged sectional view of a damping / buffer damper using butyl rubber. 図6(2)はブチル系ゴムを用いた減衰・緩衝ダンパの拡大断面図である。FIG. 6 (2) is an enlarged sectional view of a damping / buffer damper using butyl rubber.

本発明の振動低減・減衰デバイスは、水平方向の滑り機構とその変位を適切にリミットする減衰・緩衝ダンパ機構を組み合わせたものであり、更に言えば、被免震構造体と基体構造物の間に滑り構造体が装着され、基体構造物にはこの滑り構造体の水平方向の周囲を取り囲む筒体を配置し、この筒体内面と滑り構造体の間に滑り構造体の周囲を取り囲んで好ましくは、高分子系のチューブの中にエラストマを内包した減衰・緩衝ダンパを配したことを特徴とする振動低減・減衰デバイスに係るものである。 The vibration reduction / damping device of the present invention is a combination of a horizontal sliding mechanism and a damping / buffer damper mechanism for appropriately limiting the displacement, and more specifically, between the seismic isolation structure and the base structure. A sliding structure is attached to the base structure, and a cylindrical body surrounding the sliding structure in the horizontal direction is disposed in the base structure, and the sliding structure is preferably surrounded between the inner surface of the cylindrical body and the sliding structure. Relates to a vibration reducing / damping device characterized in that a damping / buffer damper containing an elastomer is disposed in a polymer tube.

滑り構造体の一例としては、摩擦の小さい摺動性の良いエンジニアリングプラスチックがそのまま利用でき、或いは、金属をコアとし、その上下面に摩擦の小さい摺動性の良いエンジニアリングプラスチックを配した構造体である。そして、ここに用いられるエンジニアリングプラスチックとしては、ポリアセタール(POM)、ポリテトラフルオロエチレン(PIFE)、ポリエステル、ウレタンなどが代表例である。 As an example of a sliding structure, engineering plastics with low friction and good slidability can be used as they are. is there. Typical examples of the engineering plastic used here include polyacetal (POM), polytetrafluoroethylene (PIFE), polyester, and urethane.

尚、滑り構造体の側面に減衰・緩衝ダンパが接触するが、必ずしも垂直面に接する構造だけではなく、傾斜面をもって接触させたり、外側に膨らんだ構成や場合によっては内側に凹んだ面構成を採用することが可能である。 Although the damping / buffer damper contacts the side surface of the sliding structure, it does not necessarily have a structure that contacts the vertical surface, but a structure that contacts with an inclined surface, bulges outward, or in some cases dents inside. It is possible to adopt.

一方、筒体の内面も又上記した滑り構造体の側面と同様に種々の形状を取ることが可能である。
これらの減衰・緩衝ダンパと接触する面は、例えば左右に方向には垂直面であるが、前後方向にはやや外側に膨らんだ面を構成し、異方性を目的とした変形も可能である。
On the other hand, the inner surface of the cylindrical body can take various shapes similarly to the side surface of the sliding structure.
The surface in contact with these damping / buffer dampers is, for example, a vertical surface in the left-right direction, but forms a slightly bulging surface in the front-rear direction, and can be modified for anisotropy. .

減衰・緩衝ダンパを構成する好適例としては、高分子系のチューブは可とう性を有するものであり、具体的にはシリコーンチューブが挙げられる。そして、この高分子系のチューブ内に内包(充填)されるエラストマはアスカC硬度30度以下、針入度70〜280、ちょう度50〜120のゲル状のエラストマが好んで用いられる。具体例としては、ウレタン系、アクリル系、スチレン系、オレフィン系エラストマ等が挙げられる。   As a preferred example of constituting the damping / buffer damper, the polymer tube has flexibility, and specifically includes a silicone tube. The elastomer encapsulated (filled) in the polymer tube is preferably a gel elastomer having an Asuka C hardness of 30 degrees or less, a penetration of 70 to 280, and a consistency of 50 to 120. Specific examples include urethane, acrylic, styrene, and olefin elastomers.

尚、地震波以外で機械振動や微振動等の水平方向の変位を大きくしなくても良いような場合には、滑り構造体を取り囲む減衰・緩衝ダンパは、シュアA硬度30〜50程度の内部損失の高い高分子エラストマであっても良く、かかる例としては、ブチル系やNR/SBR系高分子材料、ウレタン系、ポリエチレン系などの発泡材料等が挙げられる。 In addition, when it is not necessary to increase the horizontal displacement such as mechanical vibration and micro vibration other than the seismic wave, the damping / buffer damper surrounding the sliding structure has an internal loss of about 30-50 with a Sure A hardness. High-polymer elastomers may be used, and examples thereof include butyl-based, NR / SBR-based polymer materials, urethane-based, polyethylene-based foamed materials, and the like.

上記の減衰・緩衝ダンパは、滑り構造体を取り囲むいわゆるドーナッツ状の形状をしているが、断面は必ずしも円形である必要はなく、その求められる性能によって当初から楕円形、矩形、半円形等としておくことが可能であり、部分的に断面形状を変化させておくこともできる。   The above damping / buffer damper has a so-called donut shape that surrounds the sliding structure, but the cross-section does not necessarily have to be circular, depending on its required performance, from the beginning as an ellipse, rectangle, semicircle The cross-sectional shape can be partially changed.

このように構成した減衰・緩衝ダンパは、水平方向の二次元面内で自在に変位し得るものであり、水平方向の荷重(水平変位)に対しある範囲までは抵抗を小さくし、そしてある水平変位に近づくと「たわみ−荷重曲線」が徐々に立ち上がり水平変位にリミットが掛かる構造としたものである。これによって、水平変位が比較的大きくなってしまう従来の免震装置のようなゴムの弾性力に頼らない、変位を適切にリミットする減衰・緩衝ダンパ機構を取り入れた構造となったものである。 The damping / buffer damper configured in this way can be freely displaced in a two-dimensional plane in the horizontal direction. The resistance is reduced to a certain extent against a horizontal load (horizontal displacement), and a certain horizontal As the displacement approaches, the “deflection-load curve” gradually rises and the horizontal displacement is limited. As a result, a structure that incorporates a damping / buffer damper mechanism that appropriately limits the displacement without relying on the elastic force of rubber as in the conventional seismic isolation device in which the horizontal displacement becomes relatively large is obtained.

尚、本発明の振動低減・減衰デバイスにおいて、鉛直方向の振動絶縁構造を組み合わされば、三次元の振動低減デバイスも実現可能であることはいうまでもない。 Needless to say, the vibration reduction / attenuation device of the present invention can also realize a three-dimensional vibration reduction device by combining a vibration isolation structure in the vertical direction.

さて、図1は本発明の振動低減・減衰デバイスの基本形態の平面図、図2は図1のAOA線での断面図、図3は被免震構造体を取り付けるための取り付け台及び基体構造物に取り付けるためのチャンネルを加えたAOB線での断面図である。   1 is a plan view of the basic form of the vibration reduction / damping device of the present invention, FIG. 2 is a cross-sectional view taken along the line AOA in FIG. 1, and FIG. 3 is a mounting base and base structure for mounting the seismic isolation structure. It is sectional drawing in the AOB line which added the channel for attaching to a thing.

符号1は円筒状の滑り構造体であり、この例では金属コア2に対し、上下に摩擦の小さい摺動性の良いエンジニアリングプラスチックプレート3、4が接着された構造である。そして、その中央に図示しない被免震構造体を取り付けるための軸(ボルト)5が装着されている。この軸5には座金6がはめ込まれ、更に被免震構造体を取り付ける取り付け台7が軸5にはめ込まれてナット8にて固定される例である。尚、この例では後述する減衰・緩衝ダンパと接触する側面を垂直に形成した例である。   Reference numeral 1 denotes a cylindrical sliding structure. In this example, an engineering plastic plate 3 or 4 having a low sliding friction and a good sliding property is bonded to the metal core 2. And the axis | shaft (bolt) 5 for attaching the seismic isolation structure which is not illustrated in the center is mounted | worn. In this example, a washer 6 is fitted to the shaft 5, and a mounting base 7 to which the seismic isolation structure is attached is fitted to the shaft 5 and fixed by a nut 8. In this example, a side surface that contacts a damping / buffer damper, which will be described later, is formed vertically.

そして、この滑り構造体1の水平方向の周囲を取り囲む金属製でカップ状の筒体9を配置し、金属製の底プレート10をもって筒体9を封鎖した構造である。これにより、滑り構造体1はこの底プレート10面を水平方向に滑ることになる。尚、符号11はカップ状の筒体9に備えた補強プレートであり、この例では、前記したエンジニアリングプラスチックプレート3、4が底プレート10及び補強プレート11に接触して水平方向に滑ることとなる。尚、この例にあって、AOAの寸法は128mm、AOBの寸法は155mm、滑り構造体1の水平方向の直径は50mm、筒体9の直径は80mmで、側面は垂直に形成されている。 A metal cup-shaped cylinder 9 surrounding the periphery of the sliding structure 1 in the horizontal direction is arranged, and the cylinder 9 is sealed with a metal bottom plate 10. As a result, the sliding structure 1 slides on the surface of the bottom plate 10 in the horizontal direction. Reference numeral 11 denotes a reinforcing plate provided in the cup-shaped cylinder 9, and in this example, the engineering plastic plates 3 and 4 are in contact with the bottom plate 10 and the reinforcing plate 11 and slide in the horizontal direction. . In this example, the AOA has a dimension of 128 mm, the AOB has a dimension of 155 mm, the sliding structure 1 has a horizontal diameter of 50 mm, the cylindrical body 9 has a diameter of 80 mm, and the side surfaces are formed vertically.

従って、この例では滑り構造体1の垂直面と筒体9の垂直面との間には夫々12〜13mmの隙間ができている。そして、この筒体9の内面と滑り構造体1の水平方向の隙間に、かかる滑り構造体1の周囲を取り囲んで減衰・緩衝ダンパ20を配したものである。この減衰・緩衝ダンパ20は、この例では図4に示すようなシリコーン等の可とう性の高分子系のチューブ21の中に、アスカC硬度30度以下、針入度70〜280、ちょう度50〜120のゲル状のエラストマ22を内包したものである。 Therefore, in this example, a gap of 12 to 13 mm is formed between the vertical surface of the sliding structure 1 and the vertical surface of the cylindrical body 9. A damping / buffer damper 20 is disposed in the horizontal gap between the inner surface of the cylindrical body 9 and the sliding structure 1 so as to surround the periphery of the sliding structure 1. In this example, the damping / buffer damper 20 is formed in a flexible polymer tube 21 such as silicone as shown in FIG. 4 and has an Asuka C hardness of 30 degrees or less, a penetration of 70 to 280, and a consistency. 50 to 120 gel-like elastomer 22 is included.

そして、振動低減・減衰デバイスは図3のように基体構造物に取り付けるためのチャンネル12に装着されるものであり、この例はバネ材13を介してボルト14及びナット15をもって装着されたものである。尚、バネ材13を介して装着されることにより、バネ材13は鉛直方向の振動絶縁構造の役割も期待されるもので、係る構造とすることにより水平方向のみならず、三次元の振動低減デバイスとしても効果が期待されるものである。 The vibration reduction / damping device is attached to a channel 12 for attachment to a base structure as shown in FIG. 3, and this example is attached with a bolt 14 and a nut 15 via a spring material 13. is there. The spring material 13 is also expected to play a role of a vibration isolation structure in the vertical direction by being mounted via the spring material 13. By adopting such a structure, not only the horizontal direction but also three-dimensional vibration reduction is achieved. It is expected to be effective as a device.

さて、図4は減衰・緩衝ダンパ20を特に取り出した断面図であり、図4(1)は水平方向に負荷がかかっていない状態であり、図4(2)は水平方向に負荷のかかった状態の断面図である。前者にあって、減衰・緩衝ダンパ20の変位可能分だけ水平方向に変位可能な状態である。即ち、図4(1)は水平方向に負荷がかかっていない静止状態の拡大断面図であり、図4(2)は変位状態の拡大断面図である。このようにダンパ20の変位状態にあっては、ダンパ20が変位方向で筒体9の内面に接触してチューブ21に内包されたエラストマ22が大きく変形して減衰力をもたらすこととなる。   4 is a cross-sectional view of the damping / buffer damper 20 in particular, FIG. 4 (1) shows a state where no load is applied in the horizontal direction, and FIG. 4 (2) shows a state where the load is applied in the horizontal direction. It is sectional drawing of a state. The former is in a state in which it can be displaced in the horizontal direction by the amount by which the damping / buffer damper 20 can be displaced. 4 (1) is an enlarged sectional view in a stationary state where no load is applied in the horizontal direction, and FIG. 4 (2) is an enlarged sectional view in a displaced state. Thus, in the displacement state of the damper 20, the damper 20 contacts the inner surface of the cylindrical body 9 in the displacement direction, and the elastomer 22 contained in the tube 21 is greatly deformed to bring about a damping force.

即ち、図5のグラフにて示すように水平方向の荷重(水平変位)に対しある範囲までは抵抗を小さくし、そしてある水平変位、言い換えれば許容変位に近づくと水平変位にリミットが掛かる構造としたものである。このことは、内包された特殊ゲルのエラストマ22の効果で水平変位が与えられた当初はほとんど抵抗力を発生せずにしばらく変位し、チューブ21が筒体9の内面に接触して押され始めると急激に変位が抑えられ、この例では約8000Nで水平変位が13mmに抑えられるように設計されたものである。 That is, as shown in the graph of FIG. 5, the resistance is reduced to a certain range with respect to the load in the horizontal direction (horizontal displacement), and the horizontal displacement is limited as it approaches a certain horizontal displacement, in other words, the allowable displacement. It is a thing. This is because the effect of the encapsulated special gel elastomer 22 causes a displacement for a while without generating a resistance force at the beginning when the horizontal displacement is given, and the tube 21 starts to be pressed against the inner surface of the cylindrical body 9. In this example, the horizontal displacement is designed to be suppressed to 13 mm at about 8000 N.

尚、振動低減デバイスの水平方向の可動変位及びその変位特性は、減衰・緩衝ダンパ20が滑り構造体1と筒体9との間に挟まれつつ変形することによってもたらされるが、相互に対向する面の形状によっても異なるものであり、図示したものは滑り構造体1と筒体9とを平行な対面(垂直面)としたが、両者又は一方の面に凹みや傾斜をつけておくことによって特性を変化させることが可能である。更に、一方の形状を楕円形状等としても特性を変化させることが可能である。勿論、減衰・緩衝ダンパ20を構成するチューブ21の断面形状を円形以外とすることもある程度の効果がある。   The horizontal displacement of the vibration reduction device and its displacement characteristics are brought about by the damping / buffer damper 20 being deformed while being sandwiched between the sliding structure 1 and the cylindrical body 9, but facing each other. It differs depending on the shape of the surface. In the illustrated example, the sliding structure 1 and the cylindrical body 9 are parallel to each other (vertical surface). It is possible to change the characteristics. Furthermore, it is possible to change the characteristics even if one of the shapes is an elliptical shape or the like. Of course, it is also effective to make the cross-sectional shape of the tube 21 constituting the damping / buffer damper 20 other than circular.

図5中、矢印a線は荷重を上げていった場合の特性であり、矢印b線は荷重を下げていった場合の特性を示すものであり、本発明で使用する減衰・緩衝ダンパ20は内部損失の高い材料を用いたために係るループを描くもので、本発明はこの特性を高度に利用し、振動低減デバイス中に組み込んだものであるといえる。 In FIG. 5, the arrow a line indicates the characteristics when the load is increased, and the arrow b line indicates the characteristics when the load is decreased. The damping / buffer damper 20 used in the present invention is shown in FIG. This loop is drawn because a material having a high internal loss is used, and it can be said that the present invention utilizes this characteristic to a high degree and is incorporated in a vibration reduction device.

尚、天然ゴムにて代表される線形材料を使用した場合には、水平変位・撓み特性はほぼ直線状態に変化するが、本発明の振動低減デバイスは、ある水平変位まではほぼ荷重がかからず、所望の水平変位あたりから急激に抵抗を上げて変位を阻止しようとする機能を持っている点が全く異なるものである。 When a linear material typified by natural rubber is used, the horizontal displacement / deflection characteristics change to a substantially linear state. However, the vibration reducing device of the present invention does not apply a load until a certain horizontal displacement. However, it is completely different in that it has a function to increase the resistance abruptly from around the desired horizontal displacement to prevent the displacement.

図6は減衰・緩衝ダンパ20としてブチル系ゴム23を使用した例であり、滑り構造体1を取り囲む環状の減衰・緩衝ダンパ20を用いたものである。図6(1)は水平方向に負荷がかかっていない静止状態の拡大断面図であり、図6(2)は変位状態の拡大断面図である。かかるブチル系ゴムも前記した特殊ゲルのエラストマを用いた減衰・緩衝ダンパと同様の効果があり、主として各種機械の免振に供されることとなる。   FIG. 6 shows an example in which a butyl rubber 23 is used as the damping / buffer damper 20, and an annular damping / buffer damper 20 surrounding the sliding structure 1 is used. FIG. 6A is an enlarged sectional view in a stationary state where no load is applied in the horizontal direction, and FIG. 6B is an enlarged sectional view in a displaced state. Such butyl rubber has the same effect as the damping / buffer damper using the special gel elastomer described above, and is mainly used for vibration isolation of various machines.

本発明は以上の通りであり、各種産業機械・機器、事務機器、家電製品、美術品、精密機器、輸送機器など機械・機器類の地震或いは大きな水平方向の振動から保護する分野、半導体露光装置や電子顕微鏡など光学系を有する水平方向の微振動を除振する分野、更には美術品、精密機器、鮮魚などの水平方向の振動抑制分野などに適用可能であり、その重要性はますます高くなる。 The present invention is as described above, and is a field for protecting various industrial machines / equipment, office equipment, home appliances, fine arts, precision equipment, transport equipment, etc. from earthquakes or large horizontal vibrations of machines / equipment, semiconductor exposure apparatus It can be applied to the field of horizontal vibration suppression with an optical system such as a microscope and electron microscope, and also to the field of vibration suppression in the horizontal direction such as fine arts, precision instruments, and fresh fish. Become.

1 滑り構造体
2 金属コア
3、4 摩擦の小さい摺動性の良いエンジニアリングプラスチックプレート
5 軸
6 座金
7 取り付け台
8 ナット
9 筒体
10 底プレート
11 補強プレート
12 チャンネル
13 バネ材
14 ボルト
15 ナット
20 減衰・緩衝ダンパ
21 可とう性の高分子系のチューブ
22 ゲル状のエラストマ
23 ブチル系ゴム
DESCRIPTION OF SYMBOLS 1 Sliding structure 2 Metal core 3, 4 Engineering plastic plate 5 with small friction and good slidability Axis 6 Washer 7 Mounting base 8 Nut 9 Tube 10 Bottom plate 11 Reinforcement plate 12 Channel 13 Spring material 14 Bolt 15 Nut 20 Damping Buffer damper 21 Flexible polymer tube 22 Gel elastomer 23 Butyl rubber

Claims (13)

被免震・免振構造体に対し、水平方向の滑り機構と、その変位を適切にリミットする減衰・緩衝ダンパ機構を組み合わせたことを特徴とする振動低減・減衰デバイス。 A vibration reduction / damping device characterized by combining a horizontal sliding mechanism and a damping / buffer damper mechanism that appropriately limits the displacement of the seismic isolation / vibration isolation structure. 被免震・免振構造体と基体構造物の間に装着された滑り構造体と、基体構造物に装着され、この滑り構造体の水平方向の周囲を取り囲む筒体と、筒体内にこの滑り構造体の周囲を取り囲み、水平方向の二次元面内で自在に変位し得る減衰・緩衝ダンパを配したことを特徴とする請求項1記載の振動低減・減衰デバイス。 A sliding structure mounted between the base-isolated structure and the base structure, a cylinder mounted on the base structure and surrounding the horizontal periphery of the sliding structure, and the sliding structure 2. The vibration reducing / damping device according to claim 1, further comprising a damping / damping damper surrounding the structure and capable of being freely displaced in a two-dimensional plane in the horizontal direction. 滑り構造体は、表面が摩擦の小さい摺動性の良いエンジニアリングプラスチックである請求項2記載の振動低減・減衰デバイス。 The vibration reducing / damping device according to claim 2, wherein the sliding structure is an engineering plastic having a small friction surface and good sliding properties. 滑り構造体は、それ自体がエンジニアリングプラスチックである請求項2又は3記載の振動低減・減衰デバイス。 4. The vibration reducing / damping device according to claim 2, wherein the sliding structure is itself an engineering plastic. 滑り構造体は、金属をコアとし、その上下面に摩擦の小さい摺動性の良いエンジニアリングプラスチックを配した構造体である請求項2又は3記載の振動低減・減衰デバイス。 The vibration reduction / damping device according to claim 2 or 3, wherein the sliding structure is a structure in which a metal is used as a core and engineering plastics with low friction and good slidability are arranged on the upper and lower surfaces thereof. エンジニアリングプラスチックがポリアセタール(POM)、ポリテトラフルオロエチレン(PIFE)、ポリエステル、ウレタンである請求項3乃至5いずれか1記載の振動低減・減衰デバイス。 6. The vibration reduction / damping device according to claim 3, wherein the engineering plastic is polyacetal (POM), polytetrafluoroethylene (PIFE), polyester, or urethane. 減衰・緩衝ダンパが、内部損失の高い高分子エラストマである請求項2記載の振動低減・減衰デバイス。 3. The vibration reducing / damping device according to claim 2, wherein the damping / buffer damper is a polymer elastomer having a high internal loss. シュアA硬度30〜50度の内部損失の高い高分子エラストマである請求項7記載の振動低減・減衰デバイス。 8. The vibration reducing / damping device according to claim 7, wherein the vibration reducing / damping device is a polymer elastomer having a Sure A hardness of 30 to 50 degrees and a high internal loss. 内部損失の高い高分子エラストマは、ブチル系高分子材料、ウレタン系、ポリエチレン系などの発泡材料である請求項8記載の振動低減・減衰デバイス。 9. The vibration reducing / damping device according to claim 8, wherein the polymer elastomer having a high internal loss is a foam material such as a butyl polymer material, a urethane material, or a polyethylene material. 減衰・緩衝ダンパが、高分子系のチューブの中にエラストマを内包したものである請求項2記載の振動低減・減衰デバイス。 3. The vibration reducing / damping device according to claim 2, wherein the damping / buffer damper includes an elastomer contained in a polymer tube. 高分子系のチューブがシリコーンチューブである請求項10記載の振動低減・減衰デバイス。 11. The vibration reducing / damping device according to claim 10, wherein the polymer tube is a silicone tube. 高分子系のチューブ内に内包されるエラストマは、アスカC硬度30度以下、針入度70〜280、ちょう度50〜120である請求項11記載の振動低減・減衰デバイス。 The vibration reducing / damping device according to claim 11, wherein the elastomer contained in the polymer tube has an Asuka C hardness of 30 degrees or less, a penetration of 70 to 280, and a consistency of 50 to 120. 高分子系のチューブ内に内包されるエラストマは、ウレタン系、アクリル系、スチレン系、オレフィン系ゲル状エラストマである請求項12記載の振動低減・減衰デバイス。 13. The vibration reduction / damping device according to claim 12, wherein the elastomer contained in the polymer tube is a urethane-based, acrylic-based, styrene-based, or olefin-based gel elastomer.
JP2013085871A 2013-04-16 2013-04-16 Vibration reduction / damping device Active JP5805694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013085871A JP5805694B2 (en) 2013-04-16 2013-04-16 Vibration reduction / damping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013085871A JP5805694B2 (en) 2013-04-16 2013-04-16 Vibration reduction / damping device

Publications (2)

Publication Number Publication Date
JP2014209010A true JP2014209010A (en) 2014-11-06
JP5805694B2 JP5805694B2 (en) 2015-11-04

Family

ID=51903348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013085871A Active JP5805694B2 (en) 2013-04-16 2013-04-16 Vibration reduction / damping device

Country Status (1)

Country Link
JP (1) JP5805694B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021521395A (en) * 2018-04-16 2021-08-26 オウジャギアン,ダミール Seismic isolation isolators and damping devices

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339026A (en) * 1997-06-06 1998-12-22 Naka Ind Ltd Structure for base-isolated floor bearing part and extended bearing member for the part
JPH11351323A (en) * 1998-06-10 1999-12-24 Nikku Shohin Kaihatsu Center:Kk Earthquake resistant fixing device and earthquake resistant fixing structure using same
JP2002294269A (en) * 2001-03-30 2002-10-09 Geltec Co Ltd Extrusible crosslinked grease-like radiation material, container in which the material is filled and enclosed, manufacturing method of the container and radiation method using these
JP2003118040A (en) * 2001-10-11 2003-04-23 Ge Toshiba Silicones Co Ltd Shock relieving composite
JP2009280376A (en) * 2008-05-26 2009-12-03 Daifuku Co Ltd Load supporting device of rack for load storage
JP2013064441A (en) * 2011-09-16 2013-04-11 Taika:Kk Magnetic field responsive resin composition, method for producing the same, and application of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339026A (en) * 1997-06-06 1998-12-22 Naka Ind Ltd Structure for base-isolated floor bearing part and extended bearing member for the part
JPH11351323A (en) * 1998-06-10 1999-12-24 Nikku Shohin Kaihatsu Center:Kk Earthquake resistant fixing device and earthquake resistant fixing structure using same
JP2002294269A (en) * 2001-03-30 2002-10-09 Geltec Co Ltd Extrusible crosslinked grease-like radiation material, container in which the material is filled and enclosed, manufacturing method of the container and radiation method using these
JP2003118040A (en) * 2001-10-11 2003-04-23 Ge Toshiba Silicones Co Ltd Shock relieving composite
JP2009280376A (en) * 2008-05-26 2009-12-03 Daifuku Co Ltd Load supporting device of rack for load storage
JP2013064441A (en) * 2011-09-16 2013-04-11 Taika:Kk Magnetic field responsive resin composition, method for producing the same, and application of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021521395A (en) * 2018-04-16 2021-08-26 オウジャギアン,ダミール Seismic isolation isolators and damping devices
JP7365708B2 (en) 2018-04-16 2023-10-20 オウジャギアン,ダミール Seismic isolation isolators and damping devices

Also Published As

Publication number Publication date
JP5805694B2 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
KR101648136B1 (en) Earthquake-proof distributing board having function reducing vibration in various direction
US8492938B2 (en) Linear vibration device
US20140001687A1 (en) Annular isolator with secondary features
JP2014077458A (en) Vibration isolator
CN106381934B (en) Three-dimensional shock isolation support
JPWO2018030267A1 (en) Linear actuator
JP2007222794A (en) Vibrator
JP2019531449A (en) Horizontal motion vibration isolator
KR101475156B1 (en) Magnetism damper
JP5805694B2 (en) Vibration reduction / damping device
KR101629170B1 (en) Vibrator
JP6872429B2 (en) Charged particle beam device
KR101440523B1 (en) Dynamic vibration absorber using permanent magnets
JP2018096512A (en) Antivibration unit
KR200485747Y1 (en) Damping system for vibration reduction using magnetic force
US10119587B2 (en) Shock absorbing device
KR102061885B1 (en) A Support Structure for Vibrator Speaker Unit
KR100884136B1 (en) Vibration control unit and vibration control body
KR20140088678A (en) Piezo Actuator
JP2008175332A (en) Vibration-proofing member, and method of manufacturing the vibration-proofing member
KR101832624B1 (en) Vibration Absorbing Device
KR20140085268A (en) Piezo Actuator
JP5713962B2 (en) Vibration control device
JP2012062968A (en) Laminated support
US20160105131A1 (en) Vibration generating device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150902

R150 Certificate of patent or registration of utility model

Ref document number: 5805694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250