JP2014206197A - Vibration control support device - Google Patents

Vibration control support device Download PDF

Info

Publication number
JP2014206197A
JP2014206197A JP2013083024A JP2013083024A JP2014206197A JP 2014206197 A JP2014206197 A JP 2014206197A JP 2013083024 A JP2013083024 A JP 2013083024A JP 2013083024 A JP2013083024 A JP 2013083024A JP 2014206197 A JP2014206197 A JP 2014206197A
Authority
JP
Japan
Prior art keywords
rubber
support device
surrounding member
rubber plate
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013083024A
Other languages
Japanese (ja)
Inventor
宣明 佐藤
Nobuaki Sato
宣明 佐藤
昌義 川田
Masayoshi Kawada
昌義 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2013083024A priority Critical patent/JP2014206197A/en
Publication of JP2014206197A publication Critical patent/JP2014206197A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a vibration control support device having higher proof stress against twist deformation and keeping high load bearing function.SOLUTION: A vibration control support device 1 includes a lamination rubber 4 having hard plates 2 and rubber plates 3 alternately laminated, and a pair of flange plates 7, 8 arranged on both sides of the lamination rubber 4 in a lamination direction. An outer periphery of at least one of the rubber plates 3 is provided with a surrounding member 14 surrounding the outer periphery of the rubber plate 3. The surrounding member 14 is configured to have the tensile rigidity higher than that of the rubber plate 3 and is adhered with vulcanization on an outer peripheral face of the rubber plate 3 of the surrounding member 14.

Description

本発明は、硬質板と弾性体とを交互に積層してなる積層体と、積層体の積層方向両端に配置される一対のフランジ板とを有する防振支持装置に関する。   The present invention relates to an anti-vibration support device having a laminate formed by alternately laminating hard plates and elastic bodies, and a pair of flange plates disposed at both ends of the laminate in the stacking direction.

従来から、この種の防振支持装置は、高い荷重を支持することができることから、建設機械、建設車両などのサスペンションや荷台のマウントあるいは建築構造物の免震構造などの様々な用途に用いられている。   Conventionally, this type of anti-vibration support device can support high loads, so it is used for various applications such as suspensions for construction machines and construction vehicles, mounts for loading platforms, and seismic isolation structures for building structures. ing.

このような積層タイプの防振支持装置は、積層方向に向けた圧縮荷重に対しては高い耐久性を示し高荷重を支持することが可能であるが、積層方向に向けた引張り荷重に対しては、圧縮方向と比較して耐久性が低下することが知られている。そのため、一対のフランジ板をリンクチェーン等の連結部材で互いに連結することにより、積層体に加わる引張り荷重を低減するようにしたものが開発されている。
しかしながら上記連結部材を備えた構造であっても、荷重を支持した状態の積層体に対し積層方向に直交する方向に大きな振幅の振動が入力されると、前記した一対のフランジ板が振幅方向に相対変位し、その際支持荷重によって振幅方向の一端側において一対のフランジ板間距離が小さくなり、振幅方向の他端側において一対のフランジ板間距離が大きくなる、いわゆるこじり変形が生じることがある。こじり変形が生じると、振幅方向の一端側に圧縮荷重が作用し、他端側に引張荷重が作用する。このような積層タイプの防振支持装置においては弾性体とフランジ板との拘束面が比較的大きいのに対し自由表面積が小さいことから、引張荷重が作用する側においては拘束面中央部のゴムに内部応力が集中して損傷してしまう。
そこで、例えば特許文献1に示す防振支持装置では、こじり変形による引張り荷重が集中するゴム層の厚みを他のゴム層の厚みよりも厚くすることにより、引張り荷重が各ゴム層に生じさせる内部応力を均一化して、ゴム層に局部的な亀裂が発生することを防止するようにしている。
Such a laminated type anti-vibration support device shows high durability against a compressive load in the stacking direction and can support a high load, but against a tensile load in the stacking direction. Is known to have lower durability than the compression direction. Therefore, what developed the thing which reduced the tensile load added to a laminated body by mutually connecting a pair of flange board with connection members, such as a link chain.
However, even in the structure including the connecting member, when a large amplitude vibration is input in a direction orthogonal to the stacking direction with respect to the stacked body in a state where the load is supported, the pair of flange plates described above are moved in the amplitude direction. Relative displacement may cause so-called twisting deformation in which the distance between the pair of flange plates decreases at one end side in the amplitude direction due to the support load, and the distance between the pair of flange plates increases at the other end side in the amplitude direction. . When twisting deformation occurs, a compressive load acts on one end side in the amplitude direction, and a tensile load acts on the other end side. In such a laminated type anti-vibration support device, the restraint surface between the elastic body and the flange plate is relatively large, but the free surface area is small. Internal stress is concentrated and damaged.
Therefore, for example, in the vibration isolating support device shown in Patent Document 1, the thickness of the rubber layer on which the tensile load due to the twisting deformation is concentrated is made thicker than the thickness of the other rubber layers, whereby the tensile load is generated in each rubber layer. The stress is made uniform to prevent local cracks from occurring in the rubber layer.

特開2007−333052号公報JP 2007-333052 A

しかしながら、上記従来の防振支持装置では、ゴム層の厚みを厚くすることにより、こじり変形に対する耐久性を高めるようにしているので、ゴム層の厚みが厚くなった分だけ積層ゴムの積層方向に向けた圧縮荷重に対する剛性が低下して、この防振支持装置の荷重支持機能が低下してしまうという問題があった。   However, in the above conventional vibration-proof support device, the rubber layer is thickened to increase the durability against twisting deformation, so the rubber layer is thickened in the laminating direction of the laminated rubber. There is a problem that the rigidity against the directed compressive load is lowered and the load support function of the vibration isolating support device is lowered.

この発明は、従来技術が抱えるこのような問題を解決することを課題とするものであり、その目的とするところは、こじり変形に対する耐久性を高めつつ、高い荷重支持機能を維持することができる防止支持装置を提供することにある。   An object of the present invention is to solve such problems of the prior art, and the object of the present invention is to maintain a high load support function while enhancing durability against twisting deformation. It is to provide a prevention support device.

本発明の防振支持装置は、積層体を構成する少なくとも1層の弾性体の外周に、該弾性体の外周を囲繞する囲繞部材が設けられ、前記囲繞部材は、前記弾性体よりも高い引張り剛性を有し、該弾性体の外周部に固定されていることを特徴とする。
本発明の防振支持装置では、囲繞部材が積層方向に向けた圧縮荷重に対する積層体の剛性を高めるとともに、こじり変形によって引張荷重が作用した側の弾性体の内部に発生する応力を低減させるので、こじり変形に対する耐久性を向上させつつ、防振支持装置の荷重支持機能を高く維持することができる。
In the vibration isolating support device of the present invention, a surrounding member surrounding the outer periphery of the elastic body is provided on the outer periphery of at least one layer of the elastic body constituting the laminated body, and the surrounding member is higher in tension than the elastic body. It has rigidity and is fixed to the outer peripheral portion of the elastic body.
In the anti-vibration support device of the present invention, the surrounding member increases the rigidity of the laminated body against the compressive load directed in the laminating direction, and reduces the stress generated in the elastic body on the side on which the tensile load is applied due to the twisting deformation. The load supporting function of the anti-vibration support device can be maintained high while improving the durability against twisting deformation.

本発明の防振支持装置では、前記囲繞部材はリング体に形成され、その内周面が前記弾性体の外周面に全周に亘って固定されているのが好ましい。
この構成によれば、積層方向に向けた圧縮荷重を受けたときに弾性体が生じる積層方向に直交する径方向外側への弾性変形を囲繞部材により確実に規制することができるとともに、積層体が何れの方向に向けてこじり変形を受けても、こじり変形時に内部応力の上昇を生じる部分を囲繞部材により押して、弾性体に生じる内部応力をより確実に低減させることができる。
In the vibration isolating support device of the present invention, it is preferable that the surrounding member is formed in a ring body, and an inner peripheral surface thereof is fixed to an outer peripheral surface of the elastic body over the entire periphery.
According to this configuration, the elastic deformation to the outer side in the radial direction perpendicular to the laminating direction in which the elastic body is generated when receiving a compressive load in the laminating direction can be reliably regulated by the surrounding member, and the laminated body Regardless of which direction it is subjected to the twisting deformation, it is possible to more reliably reduce the internal stress generated in the elastic body by pushing the portion where the internal stress rises during the twisting deformation by the surrounding member.

本発明の防振支持装置では、前記囲繞部材は複数の囲繞片を周方向に連結した構成とされ、それぞれの前記囲繞片が内周面において前記弾性体の外周面に固定されているのが好ましい。
この構成によれば、硬質板と弾性体とを積層して積層体を構成した後に弾性体の外周に囲繞部材を組み付けることができるなど、囲繞部材の弾性体への組付けを容易にすることができる。
In the anti-vibration support device of the present invention, the surrounding member is configured by connecting a plurality of surrounding pieces in the circumferential direction, and each surrounding piece is fixed to the outer peripheral surface of the elastic body on the inner peripheral surface. preferable.
According to this configuration, it is possible to easily assemble the surrounding member to the elastic body, for example, it is possible to assemble the surrounding member on the outer periphery of the elastic body after forming the laminated body by laminating the hard plate and the elastic body. Can do.

本発明の防振支持装置では、前記囲繞部材は前記硬質板に対して積層方向に離間して配置されているのが好ましい。
この構成によれば、積層体の変形時に囲繞部材と硬質板とが互いに接することを防止することにより、これらの部材が互いに衝突したり、互いに接触した状態で変位することによるこすれを生じたりするのを防止して、囲繞部材あるいは硬質板が破損することを防止することができ、また、これらの部材が互いに接して異音を生じることを防止することができる。
In the anti-vibration support device of the present invention, it is preferable that the surrounding member is spaced apart from the hard plate in the stacking direction.
According to this configuration, when the laminated body is deformed, the surrounding member and the hard plate are prevented from coming into contact with each other, so that these members collide with each other or are rubbed due to displacement while being in contact with each other. It is possible to prevent the surrounding member or the hard plate from being damaged, and it is possible to prevent these members from coming into contact with each other and generating abnormal noise.

本発明の防振支持装置では、前記弾性体が前記囲繞部材により径方向内側に予圧縮されているのが好ましい。
この構成によれば、弾性体に予め圧縮力を加えた状態とすることにより、引張り荷重に対する弾性体の耐久性を高めて、こじり変形に対する防振支持装置の耐力をさらに高めることができる。
In the anti-vibration support device of the present invention, it is preferable that the elastic body is pre-compressed radially inward by the surrounding member.
According to this configuration, by setting a compression force to the elastic body in advance, it is possible to increase the durability of the elastic body against a tensile load and further increase the proof strength of the vibration isolating support device against twisting deformation.

本発明によれば、こじり変形に対する耐久性を高めつつ、高い荷重支持機能を維持することができる防止支持装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the prevention support apparatus which can maintain a high load support function can be provided, improving the durability with respect to a twist deformation.

本発明の一実施の形態である防振支持装置の断面図である。It is sectional drawing of the anti-vibration support apparatus which is one embodiment of this invention. 図1に示す防振支持装置の平面図である。It is a top view of the vibration isolating support apparatus shown in FIG. 図1に示す防振支持装置の変形例の断面図である。It is sectional drawing of the modification of the vibration isolating support apparatus shown in FIG. 積層方向に向けた引張り荷重に対するゴム板の内部応力の変化を、本発明の実施例と比較例とで比較して示す特性線図である。It is a characteristic diagram which shows the change of the internal stress of the rubber plate with respect to the tensile load toward the lamination direction in the Example of this invention, and a comparative example. (a)は積層方向に向けた引張り荷重を受けた比較例のゴム板の内部応力分布を示す図であり、(b)は積層方向に向けた引張り荷重を受けた実施例のゴム板の内部応力分布を示す図である。(A) is a figure which shows the internal stress distribution of the rubber plate of the comparative example which received the tensile load toward the lamination direction, (b) is the inside of the rubber plate of the Example which received the tensile load toward the lamination direction It is a figure which shows stress distribution. こじり変形を受けたときの引張り荷重が作用する側のゴム板の内部応力の変化を、本発明の実施例と比較例とで比較して示す特性線図である。It is a characteristic diagram which shows the change of the internal stress of the rubber plate on the side to which a tensile load acts when it receives a twist deformation in an example of the present invention and a comparative example. (a)はこじり変形による引張り荷重を受けた比較例のゴム板の内部応力分布を示す図であり、(b)はこじり変形による引張り荷重を受けた実施例のゴム板の内部応力分布を示す図である。(A) is a figure which shows the internal stress distribution of the rubber plate of the comparative example which received the tensile load by a twist deformation | transformation, (b) shows the internal stress distribution of the rubber plate of the Example which received the tensile load by a twist deformation. FIG.

以下に図面を参照しつつ、この発明の実施の形態について例示説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1、図2に示す本発明の一実施の形態である防振支持装置1は、建設車両のサスペンション等に用いられるものである。この防振支持装置1はサスペンションと車体との間に設けられ、車体の荷重を支持するとともにタイヤ側から車体側への振動伝達を抑制することができる。   An anti-vibration support device 1 according to an embodiment of the present invention shown in FIGS. 1 and 2 is used for a suspension of a construction vehicle. The anti-vibration support device 1 is provided between the suspension and the vehicle body, and can support the load of the vehicle body and suppress vibration transmission from the tire side to the vehicle body side.

この防振支持装置1は、複数の硬質板2と、弾性的性質を有する複数(本実施の形態では9層)の弾性体つまりゴム板3とが交互に積層された積層体としての積層ゴム4を有している。
硬質板2は所定の厚みを有する円板状に形成され、その軸心には貫通孔が設けられている。ゴム板3は所定の厚みを有する円板状に形成され、その軸心には貫通孔が設けられている。このように、硬質板2とゴム板3はそれぞれリング状に形成され、互いに加硫接着により貼り合わされている。これにより、積層ゴム4は、中央部に積層方向(図1中、上下方向)に向けて延びる平面視で円形の空洞部5を備えた略肉厚円筒状に形成されている。硬質板2は、その外径寸法がゴム板3の外径寸法よりも大きくされてゴム板3の外周面に対して径方向外側へ突出している。また、空洞部5の周面はゴム板3と一体に形成された円筒状のゴム体6により覆われている。
This anti-vibration support device 1 includes a laminated rubber as a laminated body in which a plurality of hard plates 2 and a plurality (9 layers in this embodiment) of elastic bodies, that is, rubber plates 3 are alternately laminated. 4.
The hard plate 2 is formed in a disc shape having a predetermined thickness, and a through hole is provided in the axial center thereof. The rubber plate 3 is formed in a disc shape having a predetermined thickness, and a through hole is provided in the axis. Thus, the hard plate 2 and the rubber plate 3 are each formed in a ring shape, and are bonded to each other by vulcanization adhesion. Thus, the laminated rubber 4 is formed in a substantially thick cylindrical shape having a circular cavity portion 5 in a plan view extending in the lamination direction (vertical direction in FIG. 1) at the center portion. The hard plate 2 has an outer diameter dimension larger than that of the rubber plate 3 and protrudes radially outward with respect to the outer peripheral surface of the rubber plate 3. The peripheral surface of the cavity 5 is covered with a cylindrical rubber body 6 formed integrally with the rubber plate 3.

積層ゴム4を構成する硬質板2は、例えば、鋼板やアルミ板等の金属板、ナイロン板等の樹脂板により構成することができる。一方、ゴム板3は各種の加硫ゴムを素材としたモールド成形により形成することができるが、弾性体としてゴム材以外のエラストマー等の弾性材料により形成されたものを用いることもできる。   The hard plate 2 constituting the laminated rubber 4 can be constituted by, for example, a metal plate such as a steel plate or an aluminum plate, or a resin plate such as a nylon plate. On the other hand, the rubber plate 3 can be formed by molding using various vulcanized rubbers, but an elastic body formed of an elastic material such as an elastomer other than the rubber material can also be used.

積層ゴム4の積層方向両端には、それぞれ鋼板等の金属板や硬質の樹脂板等により形成される一対のフランジ板7,8が配設されている。図2に示すように、これらのフランジ板7,8は矩形の板状に形成され、それぞれ積層ゴム4の下端および上端のゴム板3に加硫接着により固着され、積層ゴム4を積層方向に挟持している。フランジ板7,8の四隅にはそれぞれ固定孔(図2中にフランジ板8の固定孔8aのみを示す)が設けられ、これらの固定孔8aに挿通される図示しないボルトとナットとによりフランジ板7,8を所望の部材に固定することができる。本実施の形態では、積層ゴム4の下端側のフランジ板7は建設車両のサスペンション側に固定され、上端側のフランジ板8は建設車両の車体側に固定される。   At both ends of the laminated rubber 4 in the laminating direction, a pair of flange plates 7 and 8 formed by a metal plate such as a steel plate or a hard resin plate are disposed. As shown in FIG. 2, these flange plates 7 and 8 are formed in a rectangular plate shape, and are fixed to the rubber plate 3 at the lower end and the upper end of the laminated rubber 4 by vulcanization, respectively. It is pinched. Fixing holes (only the fixing holes 8a of the flange plate 8 are shown in FIG. 2) are provided at the four corners of the flange plates 7 and 8, respectively, and the flange plates are formed by bolts and nuts (not shown) inserted through these fixing holes 8a. 7 and 8 can be fixed to a desired member. In the present embodiment, the flange plate 7 on the lower end side of the laminated rubber 4 is fixed to the suspension side of the construction vehicle, and the flange plate 8 on the upper end side is fixed to the vehicle body side of the construction vehicle.

積層ゴム4の空洞部5には金属製のリンクチェーン9が配設されている。このリンクチェーン9は3つのリンク片10,11,12を線状に連結した構成となっている。下側のリンク片10は円板状の支持部10aを有し、この支持部10aにおいて下側のフランジ板7に支持されている。上側のリンク片11は上側のフランジ板8を貫通するボルト部11aを有し、このボルト部11aにおいてナット13により上側のフランジ板8に固定されている。そして、下側のリンク片10と上側のリンク片11とは中間のリンク片12により互いに連結されている。リンクチェーン9は積層ゴム4よりも十分に高い剛性及び強度を有しており、積層ゴム4を積層方向に予圧縮した状態で一対のフランジ板7,8を所定の間隔に保持している。また、リンクチェーン9は、リンク片10,11,12間が屈曲可能となっており、フランジ板7とフランジ板8との間の径方向への相対移動を許容している。
なお、防振支持装置1は、リンクチェーン9を備えない構成とすることもできる。
A metal link chain 9 is disposed in the cavity 5 of the laminated rubber 4. The link chain 9 has a configuration in which three link pieces 10, 11, 12 are connected in a linear shape. The lower link piece 10 has a disk-like support portion 10a, and is supported by the lower flange plate 7 at the support portion 10a. The upper link piece 11 has a bolt portion 11 a that penetrates the upper flange plate 8, and the bolt portion 11 a is fixed to the upper flange plate 8 by a nut 13. The lower link piece 10 and the upper link piece 11 are connected to each other by an intermediate link piece 12. The link chain 9 has sufficiently higher rigidity and strength than the laminated rubber 4 and holds the pair of flange plates 7 and 8 at a predetermined interval in a state where the laminated rubber 4 is pre-compressed in the laminating direction. The link chain 9 can be bent between the link pieces 10, 11, and 12, and allows relative movement in the radial direction between the flange plate 7 and the flange plate 8.
The anti-vibration support device 1 may be configured without the link chain 9.

積層ゴム4のゴム板3の外周には、それぞれ囲繞部材14が配置されている。これらの囲繞部材14は、周方向に垂直な断面形状が全周に亘って一様なリング体に形成されており、ゴム板3の外周を全周に亘って囲繞している。囲繞部材14の内周面はゴム板3の外周部である外周面に全周に亘って接着されており、これにより囲繞部材14はゴム板3の外周部に固定されている。なお、囲繞部材14の内周面は、その軸方向両縁部が面取りされることにより半円形状断面に形成されている。
囲繞部材14は、例えば加硫接着によりゴム板3の外周面に接着固定することができる。この場合、囲繞部材14のゴム板3への加硫接着は、加硫成形用の金型内に硬質板2とともに囲繞部材14をセットした状態で未加硫のゴムによりゴム板3を加硫成形することにより行うことができる。このとき、ゴム板3または囲繞部材14に接着剤を塗布した上で加硫接着することもできる。
囲繞部材14は、例えば鋼材等の金属材料や硬質の樹脂材料等により形成することができ、その径方向外側へ向けた引張り剛性はゴム板3の引張り剛性よりも高くなっている。本実施の形態においては、囲繞部材14は鋼材により形成されるが、その径方向外側へ向けた引張り剛性がゴム板14の引張り剛性よりも高いものであれば、囲繞部材14を他の材質により形成したものとすることもできる。
なお、引張り剛性とは、ゴム板3や囲繞部材14をその外径を拡大させるように径方向外側へ向けて単位変形させるのに必要な力(荷重/変形量)のことである。したがって、囲繞部材14がゴム板3よりも高い引張り剛性を有することにより、積層方向に向けた圧縮荷重によりゴム板3が硬質板2の間で潰されたときに、囲繞部材14によりゴム板3が径方向外側へ弾性変形しないように当該弾性変形を規制することができる。
囲繞部材14はゴム板3よりも積層方向の厚みが薄く形成され、ゴム板3の外周面の積層方向の中央部に接着固定されている。これにより、囲繞部材14は硬質板2に対して積層方向に離間して配置され、車両走行時等においてゴム板3が弾性変形しても硬質板2に接触しないようにされている。なお、囲繞部材14の外径寸法は、硬質板2の外径寸法とほぼ同一とされている。
Enclosure members 14 are arranged on the outer periphery of the rubber plate 3 of the laminated rubber 4. These surrounding members 14 are formed in a ring body whose cross-sectional shape perpendicular to the circumferential direction is uniform over the entire circumference, and surrounds the outer periphery of the rubber plate 3 over the entire circumference. The inner peripheral surface of the surrounding member 14 is bonded to the outer peripheral surface, which is the outer peripheral portion of the rubber plate 3, so that the surrounding member 14 is fixed to the outer peripheral portion of the rubber plate 3. In addition, the inner peripheral surface of the surrounding member 14 is formed in a semicircular cross section by chamfering both axial edges.
The surrounding member 14 can be bonded and fixed to the outer peripheral surface of the rubber plate 3 by, for example, vulcanization bonding. In this case, vulcanization adhesion of the surrounding member 14 to the rubber plate 3 is performed by vulcanizing the rubber plate 3 with unvulcanized rubber in a state where the surrounding member 14 is set together with the hard plate 2 in a mold for vulcanization molding. This can be done by molding. At this time, an adhesive may be applied to the rubber plate 3 or the surrounding member 14 and then vulcanized and bonded.
The surrounding member 14 can be formed of, for example, a metal material such as a steel material or a hard resin material, and the tensile rigidity toward the outer side in the radial direction is higher than the tensile rigidity of the rubber plate 3. In the present embodiment, the surrounding member 14 is formed of a steel material. However, if the tensile rigidity toward the outside in the radial direction is higher than the tensile rigidity of the rubber plate 14, the surrounding member 14 is made of another material. It can also be formed.
The tensile rigidity is a force (load / deformation amount) necessary for unit deformation of the rubber plate 3 or the surrounding member 14 toward the radially outer side so as to increase the outer diameter thereof. Therefore, when the surrounding member 14 has higher tensile rigidity than the rubber plate 3, when the rubber plate 3 is crushed between the hard plates 2 by a compressive load in the stacking direction, the surrounding member 14 causes the rubber plate 3 to be crushed. The elastic deformation can be regulated so as not to be elastically deformed radially outward.
The surrounding member 14 is formed to be thinner in the stacking direction than the rubber plate 3, and is bonded and fixed to the central portion of the outer peripheral surface of the rubber plate 3 in the stacking direction. As a result, the surrounding member 14 is disposed away from the hard plate 2 in the stacking direction so that it does not come into contact with the hard plate 2 even when the rubber plate 3 is elastically deformed when the vehicle is running. The outer diameter of the surrounding member 14 is substantially the same as the outer diameter of the hard plate 2.

囲繞部材14はゴム板3を径方向内側へ向けて予圧縮する構成とすることができる。
本実施の形態においては、囲繞部材14をゴム板3の外周面に接着固定した後、かしめ装置等を用いて、囲繞部材14を縮径する方向に塑性変形させるようにしている。これにより、ゴム板3に径方向内側へ向けた圧縮荷重を付与し、つまりゴム板3を予圧縮して、積層方向に引張り荷重を受けたときにゴム板3の内部に生じる内部応力を低減させることができる。
The surrounding member 14 can be configured to pre-compress the rubber plate 3 inward in the radial direction.
In the present embodiment, after the surrounding member 14 is bonded and fixed to the outer peripheral surface of the rubber plate 3, the surrounding member 14 is plastically deformed in the direction of reducing the diameter by using a caulking device or the like. As a result, a compression load directed radially inward is applied to the rubber plate 3, that is, the rubber plate 3 is pre-compressed, and the internal stress generated in the rubber plate 3 when receiving a tensile load in the stacking direction is reduced. Can be made.

次に、本発明の一実施の形態である防振支持装置1の作用について説明する。   Next, the operation of the vibration isolating support device 1 according to the embodiment of the present invention will be described.

防振支持装置1は、下端側のフランジ板7が建設車両のサスペンション側に固定され、上端側のフランジ板8が建設車両の車体側に固定されることにより車体の荷重を防振支持することができる。
積層ゴム4を構成するゴム板3に車体の荷重つまり積層方向の圧縮荷重が加えられると、ゴム板3が一対の硬質板2の間で潰されて積層方向に直交する径方向外側へ弾性変形しようとする。このとき、本発明では、ゴム板3の外周は囲繞部材14で囲繞され、ゴム板3の径方向外側への弾性変形は囲繞部材14により規制されているので、当該圧縮荷重に対してゴム板3が弾性変形しづらくなり、当該圧縮荷重に対する積層ゴム4の剛性が高められることになる。したがって、ゴム板3の積層方向に向けた厚みを厚くして、積層方向に向けた引張り荷重に対するゴム板3の耐力を高めるようにしても、ゴム板3の外周を囲繞部材14で囲繞することにより、圧縮荷重に対する積層ゴム4の剛性を高く維持することができる。つまり、防振支持装置1は高い荷重支持機能を維持することができる。
The anti-vibration support device 1 provides anti-vibration support for the load on the vehicle body by fixing the flange plate 7 on the lower end side to the suspension side of the construction vehicle and fixing the flange plate 8 on the upper end side to the vehicle body side of the construction vehicle. Can do.
When a vehicle body load, that is, a compressive load in the laminating direction, is applied to the rubber plate 3 constituting the laminated rubber 4, the rubber plate 3 is crushed between a pair of hard plates 2 and elastically deformed radially outward perpendicular to the laminating direction. try to. At this time, in the present invention, the outer periphery of the rubber plate 3 is surrounded by the surrounding member 14, and the elastic deformation of the rubber plate 3 to the outer side in the radial direction is restricted by the surrounding member 14. 3 becomes difficult to elastically deform, and the rigidity of the laminated rubber 4 against the compression load is increased. Accordingly, the outer periphery of the rubber plate 3 is surrounded by the surrounding member 14 even if the thickness of the rubber plate 3 in the stacking direction is increased to increase the resistance of the rubber plate 3 to a tensile load in the stacking direction. Thus, the rigidity of the laminated rubber 4 with respect to the compressive load can be maintained high. That is, the anti-vibration support device 1 can maintain a high load support function.

また、車体の荷重を支持した状態の防止支持装置1に積層方向に直交する方向の大きな振幅の振動が加わると、積層ゴム4がこじり変形して、ゴム板3の振幅方向の一方側が圧縮荷重を受け、他方側が引張り荷重を受けることになる。このとき、ゴム板3の圧縮荷重を受ける部分が一対の硬質板2の間で潰されて径方向外側へ向けて押し出されると、囲繞部材14がゴム板3の当該押し出される部分に押されて径方向へ移動し、ゴム板3の引張り荷重を受ける部分の外周面を径方向内側へ向けて押すことになる。したがって、ゴム板3のこじり変形による引張り荷重を受ける部分は、上記のようにゴム板3の厚みを厚く形成することに加えて囲繞部材14に径方向内側へ押されて圧縮力が加えられることによっても、その内部応力が低減されることになる。   Further, when a vibration with a large amplitude in a direction perpendicular to the lamination direction is applied to the prevention support device 1 in a state in which the load of the vehicle body is supported, the laminated rubber 4 is twisted and deformed, and one side in the amplitude direction of the rubber plate 3 is compressed. And the other side receives a tensile load. At this time, when the portion of the rubber plate 3 that receives the compressive load is crushed between the pair of hard plates 2 and pushed outward in the radial direction, the surrounding member 14 is pushed by the portion to be pushed of the rubber plate 3. It moves to radial direction, and pushes the outer peripheral surface of the part which receives the tensile load of the rubber plate 3 toward radial inner side. Therefore, the portion of the rubber plate 3 that receives the tensile load due to the twisting deformation is pushed radially inward by the surrounding member 14 in addition to forming the rubber plate 3 thick as described above, so that a compressive force is applied. This also reduces the internal stress.

このように、本発明の防振支持装置1では、ゴム板3の外周を囲繞部材14で囲繞することにより、積層方向に向けた圧縮荷重に対する積層ゴム4の剛性を維持しつつ、こじり変形に対するゴム板3の耐力を高めることができる。
なお、上記のように、囲繞部材14の内周面は軸方向両縁部が面取りされて半円形状断面に形成されているので、径方向外側へ弾性変形したゴム板3の外周面が、囲繞部材14の軸方向両側に滑らかに弾性変形できるようにして、圧縮荷重を加えられたゴム板3の外周面が囲繞部材14の内周面の縁部で切断されることを防止することができる。
As described above, in the vibration isolating support device 1 of the present invention, by surrounding the outer periphery of the rubber plate 3 with the surrounding member 14, the rigidity of the laminated rubber 4 against the compressive load in the laminating direction is maintained, and against the twist deformation. The yield strength of the rubber plate 3 can be increased.
As described above, since the inner peripheral surface of the surrounding member 14 is formed in a semicircular cross-section by chamfering both edges in the axial direction, the outer peripheral surface of the rubber plate 3 elastically deformed radially outward is It is possible to prevent the outer peripheral surface of the rubber plate 3 applied with a compressive load from being cut at the edge of the inner peripheral surface of the surrounding member 14 so that the elastic member can be smoothly elastically deformed on both sides in the axial direction of the surrounding member 14. it can.

図3は図1に示す防振支持装置の変形例の断面図である。図3においては、前述した部材に対応する部材には同一の符号を付してある。   FIG. 3 is a cross-sectional view of a modification of the vibration isolating support device shown in FIG. In FIG. 3, members corresponding to those described above are denoted by the same reference numerals.

図1に示す場合では、各ゴム板3の積層方向の厚みを同一にするとともに全てのゴム板3の外周に囲繞部材14を設けるようにしている。
これに対して、図3に示す変形例では、積層ゴム4を構成するゴム板3の厚み寸法を、図中上側から下側へ向けて徐々にまたは段階的に大きくし、下側の3層のゴム板3の厚みを最も厚くするようにしている。そして、厚みが一番厚くされた下側の3層のゴム板3の外周にのみ囲繞部材14を設けるようにしている。これらの囲繞部材14は、図1に示す囲繞部材14と同様な構成を有しており、ゴム板3の外周面に全周に亘って加硫接着により固定されている。
In the case shown in FIG. 1, the thicknesses of the rubber plates 3 in the stacking direction are made the same, and the surrounding members 14 are provided on the outer periphery of all the rubber plates 3.
On the other hand, in the modification shown in FIG. 3, the thickness dimension of the rubber plate 3 constituting the laminated rubber 4 is increased gradually or stepwise from the upper side to the lower side in the figure, and the lower three layers The thickness of the rubber plate 3 is maximized. The surrounding member 14 is provided only on the outer periphery of the lower three-layer rubber plate 3 having the largest thickness. These surrounding members 14 have the same configuration as the surrounding member 14 shown in FIG. 1, and are fixed to the outer peripheral surface of the rubber plate 3 by vulcanization bonding over the entire periphery.

下側のフランジ板7が固定されるサスペンションのリンク構造によっては、積層ゴム4がこじり変形を受けたときに、下側つまりフランジ板7の側の3層のゴム板3に、こじり変形に伴う大きな引張り荷重が加えられることがある。このような場合、図3に示す変形例のように、こじり変形に伴う大きな引張り荷重が加わる下側の3層のゴム板3の厚みを他のゴム板3の厚みよりも厚くすることにより、積層ゴム4の圧縮荷重に対する剛性を低下させることなく、こじり変形に対する積層ゴム4の耐久性を高めることができる。また、厚みが一番厚いゴム板3の外周にのみ囲繞部材14を設けることで、部品点数の増加を最小限として防振支持装置1のコスト増加を最小限に抑えることができる。   Depending on the link structure of the suspension to which the lower flange plate 7 is fixed, when the laminated rubber 4 is subjected to a twisting deformation, the lower three layers of the rubber plate 3 on the flange plate 7 side are accompanied by the twisting deformation. Large tensile loads may be applied. In such a case, as in the modification shown in FIG. 3, by making the thickness of the lower three-layer rubber plate 3 to which a large tensile load accompanying the twisting deformation is applied larger than the thickness of the other rubber plate 3, The durability of the laminated rubber 4 against twisting deformation can be enhanced without reducing the rigidity of the laminated rubber 4 against the compressive load. Further, by providing the surrounding member 14 only on the outer periphery of the thickest rubber plate 3, the increase in the number of components can be minimized and the increase in cost of the vibration isolating support device 1 can be minimized.

以下に、本発明の実施例と比較例との比較について説明する。なお、本発明はこの実施例に限定されるものではない。   Below, the comparison with the Example of this invention and a comparative example is demonstrated. In addition, this invention is not limited to this Example.

実施例の防振支持装置は、図1、図2に示される防振支持装置1の構成つまりゴム板の外周に囲繞部材が接着固定された構成のものであり、ゴム板の直径は240mm、厚みは25mmとされ、囲繞部材の厚みは10mmとされている。一方、比較例1の防振支持装置は、ゴム板の外周に囲繞部材が設けられていない構成であり、ゴム板の直径は240mm、厚みは17.5mmである。なお、積層方向に向けた圧縮荷重に対する積層ゴムの剛性が同一となるように、硬質板の枚数は同一のまま、比較例の防振支持装置のゴム板の積層方向に向けた厚み寸法は実施例のゴム板の当該厚み寸法よりも小さくされている。実施例のゴム板は囲繞部材により剛性が高められているので、囲繞部材が設けられない場合に比べて厚み寸法を大きくしても同一の剛性を得ることができる。   The anti-vibration support device of the example is the configuration of the anti-vibration support device 1 shown in FIG. 1 and FIG. 2, that is, a configuration in which a surrounding member is bonded and fixed to the outer periphery of the rubber plate. The thickness is 25 mm, and the thickness of the surrounding member is 10 mm. On the other hand, the anti-vibration support device of Comparative Example 1 has a configuration in which no surrounding member is provided on the outer periphery of the rubber plate, and the rubber plate has a diameter of 240 mm and a thickness of 17.5 mm. Note that the thickness of the rubber plate of the vibration isolating support device of the comparative example is the same as that of the rubber plate in the lamination direction so that the rigidity of the laminated rubber against the compressive load in the lamination direction is the same. It is made smaller than the said thickness dimension of the rubber plate of an example. Since the rubber plate of the embodiment is enhanced in rigidity by the surrounding member, the same rigidity can be obtained even if the thickness dimension is increased as compared with the case where the surrounding member is not provided.

実施例と比較例について、積層方向に向けた引張り荷重に対する弾性体の内部応力の変化を、一方の硬質板を固定し他方の硬質板に対してその板面上に均一に引張り荷重を加える条件下で、それぞれ有限要素法を用いて解析した。その結果を図4、図5に示す。
図4に示すように、実施例のゴム板は比較例のゴム板に比べて厚み寸法が大きくされているので、圧縮荷重に対する剛性が比較例と同一であるにも拘わらず、引張り荷重が加えられたときに生じる内部応力の値は比較例に比べて全体的に13.5%ほど小さくなっている。図5(a)に示すように、比較例ではゴム板の幅方向中央部分に内部応力が集中しているのに対して、図5(b)に示すように、実施例ではゴム板に生じる内部応力が比較例に比べて全体的に小さくなっていることが解る。特にゴム板の積層方向中央部では内部応力の低下が顕著である。なお、図5においては、色が濃い部分ほど内部応力が高いことを示す。
Regarding Examples and Comparative Examples, the change in the internal stress of the elastic body with respect to the tensile load in the stacking direction is a condition in which one hard plate is fixed and the tensile load is uniformly applied to the other hard plate on the plate surface. Below, it analyzed using the finite element method. The results are shown in FIGS.
As shown in FIG. 4, since the rubber plate of the example has a larger thickness than the rubber plate of the comparative example, the tensile load is applied even though the rigidity against the compressive load is the same as that of the comparative example. The value of the internal stress generated when it is applied is about 13.5% smaller than that of the comparative example. As shown in FIG. 5 (a), in the comparative example, the internal stress is concentrated in the central portion in the width direction of the rubber plate, whereas in the embodiment, it occurs in the rubber plate as shown in FIG. 5 (b). It can be seen that the internal stress is generally smaller than that of the comparative example. In particular, the decrease in internal stress is significant at the central portion of the rubber plate in the stacking direction. In FIG. 5, the darker the color, the higher the internal stress.

また、実施例と比較例について、こじり変形を受けたときの引張り荷重に対するゴム板の内部応力の変化を、それぞれ有限要素法を用いて解析した。その結果を図6、図7に示す。
図6に示すように、こじり変形を受けたときに生じる引張り力に対しては、実施例のゴム板の内部応力の値は比較例の内部応力の値に比べて全体的に54.5%ほど小さくなっている。図7(a)に示すように、比較例ではゴム板の幅方向中央部分に内部応力が集中しているのに対して、図7(b)に示すように、実施例ではゴム板に生じる内部応力が比較例に比べて全体的に小さくなっていることが解る。特にゴム板の積層方向中央部では内部応力の低下が顕著である。なお、図7においては、色が濃い部分ほど内部応力が高いことを示す。
Moreover, about the Example and the comparative example, the change of the internal stress of the rubber plate with respect to the tensile load when it received a twist deformation was analyzed using the finite element method, respectively. The results are shown in FIGS.
As shown in FIG. 6, the internal stress value of the rubber plate of the example is 54.5% as a whole compared to the internal stress value of the comparative example with respect to the tensile force generated when subjected to the twisting deformation. It is getting smaller. As shown in FIG. 7 (a), in the comparative example, the internal stress is concentrated at the central portion in the width direction of the rubber plate, whereas as shown in FIG. 7 (b), it occurs in the rubber plate in the embodiment. It can be seen that the internal stress is generally smaller than that of the comparative example. In particular, the decrease in internal stress is significant at the central portion of the rubber plate in the stacking direction. In FIG. 7, the darker the color, the higher the internal stress.

積層方向に向けた引張り力が加えられたときには、比較例の内部応力の値に対して実施例の内部応力の値が13.5%低減されるのに対して、こじり変形が加えられたときには、比較例の内部応力の値に対して実施例の内部応力の値が54.5%低減されている。このことから、こじり変形による引張り荷重に対しては、ゴム板の厚み寸法を厚くしたことによる内部応力低減効果だけでなく、こじり変形に伴い、囲繞部材がゴム板の圧縮荷重を受ける側の弾性変形により径方向外側へ押され、ゴム板のこじり変形による引張り荷重を受ける部分に囲繞部材から径方向内側へ向けた圧縮力が加えられることによっても、ゴム板の内部応力が低減されていることが解る。   When a tensile force is applied in the stacking direction, the value of the internal stress of the example is reduced by 13.5% with respect to the value of the internal stress of the comparative example, whereas when a twisting deformation is applied. The value of the internal stress of the example is reduced by 54.5% with respect to the value of the internal stress of the comparative example. Therefore, not only the effect of reducing internal stress by increasing the thickness of the rubber plate, but also the elasticity of the surrounding member that receives the compressive load of the rubber plate due to the twisting deformation, against the tensile load due to the twisting deformation. The internal stress of the rubber plate is also reduced by applying a compressive force directed radially inward from the surrounding member to the portion that receives the tensile load due to the twisting deformation of the rubber plate due to the deformation. I understand.

このように、実施例の防振支持装置は、比較例の防振支持装置に対し、圧縮荷重に対する剛性が同一であるにも拘わらず引張り荷重に対する耐久性が高められている。したがって、実施例の防振支持装置は、比較例に対して、こじり変形に対する耐久性を高めつつ高い荷重支持機能を維持することができている。   As described above, the anti-vibration support device of the example has higher durability against the tensile load although the rigidity against the compressive load is the same as the anti-vibration support device of the comparative example. Therefore, the anti-vibration support device of the example can maintain a high load support function while improving the durability against the twisting deformation as compared with the comparative example.

本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。   It goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.

例えば、前記実施の形態においては、囲繞部材14をリング体に形成するようにしているが、これに限らず、囲繞部材14を周方向に分割された複数の囲繞片で構成し、これらの囲繞片をボルトとナット等の締結手段により周方向に連結した構成とすることもできる。この場合、囲繞部材14は、各囲繞片が全周に亘って互いに連結されていれば、各囲繞片を周方向に間隔を空けて配置したす構成とすることもできる。なお、各囲繞片はそれぞれその内周面においてゴム板の外周面に固定されることになる。   For example, in the above-described embodiment, the surrounding member 14 is formed in a ring body. However, the present invention is not limited to this, and the surrounding member 14 is configured by a plurality of surrounding pieces divided in the circumferential direction. It can also be set as the structure which connected the piece to the circumferential direction by fastening means, such as a volt | bolt and a nut. In this case, the surrounding member 14 may be configured such that the surrounding pieces are arranged at intervals in the circumferential direction as long as the surrounding pieces are connected to each other over the entire circumference. Each of the surrounding pieces is fixed to the outer peripheral surface of the rubber plate on the inner peripheral surface thereof.

また、前記実施の形態においては、図1に示すように全てのゴム板3の外周に囲繞部材14を設け、または、図3に示すように下方側の3つのゴム板3の外周にのみ囲繞部材14を設けるようにしているが、引張り荷重に対する内部応力の低減が必要な所望のゴム板3の外周に囲繞部材14を設けることができる。   In the above embodiment, the surrounding member 14 is provided on the outer periphery of all the rubber plates 3 as shown in FIG. 1, or the outer periphery of only the three lower rubber plates 3 as shown in FIG. Although the member 14 is provided, the surrounding member 14 can be provided on the outer periphery of a desired rubber plate 3 that needs to reduce the internal stress with respect to the tensile load.

さらに、前記実施の形態においては、本発明の防振支持装置1を建設車両のサスペンションに用いるようにしているが、これに限らず、本発明の防振支持装置1は、例えば建築構造物の免振構造、エンジンやモータ等の振動発生部とフロアや車体等の振動受部との間に配置する防振装置など、他の用途にも用いることができる。   Furthermore, in the said embodiment, although the vibration isolating support apparatus 1 of this invention is used for the suspension of a construction vehicle, it is not restricted to this, For example, the vibration isolating support apparatus 1 of this invention is a building structure. It can also be used for other applications such as a vibration isolator disposed between a vibration isolating structure, a vibration generating unit such as an engine or a motor, and a vibration receiving unit such as a floor or a vehicle body.

さらに、前記実施の形態においては、囲繞部材14の内周面をゴム板3の外周面に加硫接着により接着するようにしているが、これに限らず、加硫成形された後のゴム板3の外周面に囲繞部材14の内周面を、接着剤等を用いて接着固定するようにしてもよい。   Furthermore, in the said embodiment, although the inner peripheral surface of the surrounding member 14 is adhere | attached on the outer peripheral surface of the rubber plate 3 by vulcanization adhesion, it is not restricted to this, The rubber plate after vulcanization molding is carried out The inner peripheral surface of the surrounding member 14 may be bonded and fixed to the outer peripheral surface 3 using an adhesive or the like.

1:防振支持装置 2:硬質板 3:ゴム板(弾性体) 4:積層ゴム(積層体) 7,8:フランジ板 14:囲繞部材 1: Anti-vibration support device 2: Hard plate 3: Rubber plate (elastic body) 4: Laminated rubber (laminated body) 7, 8: Flange plate 14: Go member

Claims (5)

硬質板と弾性体とを交互に積層してなる積層体と、前記積層体の積層方向両端に配置される一対のフランジ板とを有する防振支持装置であって、
少なくとも1層の前記弾性体の外周に、該弾性体の外周を囲繞する囲繞部材が設けられ、
前記囲繞部材は、前記弾性体よりも高い引張り剛性を有し、該弾性体の外周部に固定されていることを特徴とする防振支持装置。
An anti-vibration support device having a laminate formed by alternately laminating a hard plate and an elastic body, and a pair of flange plates arranged at both ends in the lamination direction of the laminate,
On the outer periphery of the elastic body of at least one layer, an enclosing member that surrounds the outer periphery of the elastic body is provided,
The vibration isolating support device, wherein the surrounding member has higher tensile rigidity than the elastic body, and is fixed to an outer peripheral portion of the elastic body.
前記囲繞部材はリング体に形成され、その内周面が前記弾性体の外周面に全周に亘って固定されている請求項1記載の防振支持装置。   The vibration isolation support device according to claim 1, wherein the surrounding member is formed in a ring body, and an inner peripheral surface thereof is fixed to an outer peripheral surface of the elastic body over the entire periphery. 前記囲繞部材は複数の囲繞片を周方向に連結した構成とされ、それぞれの前記囲繞片が内周面において前記弾性体の外周面に固定されている請求項1記載の防振支持装置。   The vibration isolation support device according to claim 1, wherein the surrounding member is configured by connecting a plurality of surrounding pieces in a circumferential direction, and each surrounding piece is fixed to an outer peripheral surface of the elastic body on an inner peripheral surface. 前記囲繞部材は前記硬質板に対して積層方向に離間して配置されている請求項1〜3のいずれか1項に記載の防振支持装置。   The vibration isolating support device according to any one of claims 1 to 3, wherein the surrounding member is spaced apart from the hard plate in the stacking direction. 前記弾性体が前記囲繞部材により径方向内側に予圧縮されている請求項1〜4のいずれか1項に記載の防振支持装置。   The anti-vibration support device according to any one of claims 1 to 4, wherein the elastic body is pre-compressed radially inward by the surrounding member.
JP2013083024A 2013-04-11 2013-04-11 Vibration control support device Pending JP2014206197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013083024A JP2014206197A (en) 2013-04-11 2013-04-11 Vibration control support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013083024A JP2014206197A (en) 2013-04-11 2013-04-11 Vibration control support device

Publications (1)

Publication Number Publication Date
JP2014206197A true JP2014206197A (en) 2014-10-30

Family

ID=52119909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013083024A Pending JP2014206197A (en) 2013-04-11 2013-04-11 Vibration control support device

Country Status (1)

Country Link
JP (1) JP2014206197A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017036612A (en) * 2015-08-11 2017-02-16 黒沢建設株式会社 Displacement control device to be used for base isolated structure and precompression introducing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017036612A (en) * 2015-08-11 2017-02-16 黒沢建設株式会社 Displacement control device to be used for base isolated structure and precompression introducing method

Similar Documents

Publication Publication Date Title
JP5541329B2 (en) Seismic isolation device
JP5373274B2 (en) Anti-vibration structure
EP3018381B1 (en) Vibration-damping structure
US20120298832A1 (en) Vibration-damping device
JP2008075743A (en) Vibration-proof structure and its manufacturing method
JP6157000B2 (en) Vibration isolator
JP2011185308A (en) Vibration isolation structure
US9334923B2 (en) Metal belt for continuously variable transmission
KR20170135934A (en) Vibration Absorber for Drive Train
JP2009236228A (en) Vibration-proof support device
JP2006057833A (en) Vibration-proof structure
JP2014206197A (en) Vibration control support device
JP2015206402A (en) Vibration isolator
US20220186809A1 (en) Vibration control bush
JP5913821B2 (en) Anti-vibration device manufacturing method
JP2020063761A (en) Shaft spring
JP4832344B2 (en) Anti-vibration bush manufacturing method and anti-vibration bush
JP2005344764A (en) Vibration control bush
JP5703035B2 (en) Seismic isolation device
JP6532712B2 (en) Seismic isolation structure
JP4868435B2 (en) Laminated rubber body with lead plug
JP5537467B2 (en) Strut mount and manufacturing method of strut mount
JP5425519B2 (en) Vibration isolator
JP2010255827A (en) Vibration control device
JP2012140974A (en) Cylindrical vibration damping device