JP2014205103A - Method of treating to-be-treated water containing hydrogen peroxide and hydrogen peroxide removal apparatus - Google Patents

Method of treating to-be-treated water containing hydrogen peroxide and hydrogen peroxide removal apparatus Download PDF

Info

Publication number
JP2014205103A
JP2014205103A JP2013083447A JP2013083447A JP2014205103A JP 2014205103 A JP2014205103 A JP 2014205103A JP 2013083447 A JP2013083447 A JP 2013083447A JP 2013083447 A JP2013083447 A JP 2013083447A JP 2014205103 A JP2014205103 A JP 2014205103A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
water
treated
photocatalyst
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013083447A
Other languages
Japanese (ja)
Inventor
浩二 小久保
Koji Kokubo
浩二 小久保
山岡 裕幸
Hiroyuki Yamaoka
裕幸 山岡
原田 義勝
Yoshikatsu Harada
義勝 原田
大谷 慎一郎
Shinichiro Otani
慎一郎 大谷
藤井 輝昭
Teruaki Fujii
輝昭 藤井
貞義 須原
Sadayoshi Suhara
貞義 須原
宏一郎 陶山
Koichiro Toyama
宏一郎 陶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2013083447A priority Critical patent/JP2014205103A/en
Publication of JP2014205103A publication Critical patent/JP2014205103A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of treating drainage which decomposes hydrogen peroxide present in drainage to reduce the concentration of hydrogen peroxide to such a level as to allow easy reuse in cleaning of electronic parts and a hydrogen peroxide removal apparatus for realization of the method.SOLUTION: A hydrogen peroxide removal apparatus is provided with a method of decomposing hydrogen peroxide by adjusting the amount of oxygen dissolved in to-be-treated water containing hydrogen peroxide to a level equal to or lower than a predetermined value and decomposing hydrogen peroxide by using UV rays and a photocatalyst, a dissolved oxygen reduction unit, and a hydrogen peroxide decomposition tank housing a photocatalyst and a UV light source capable of irradiating the photocatalyst with UV rays.

Description

本発明は過酸化水素を含む被処理水の処理方法およびそれに用いる過酸化水素除去装置に関し、特に、電子部品製造工程からの過酸化水素を含む排水を回収・再利用するために好適な排水処理方法およびそれに用いる過酸化水素除去装置に関する。   TECHNICAL FIELD The present invention relates to a method for treating water to be treated containing hydrogen peroxide and a hydrogen peroxide removal apparatus used therefor, and more particularly, waste water treatment suitable for collecting and reusing waste water containing hydrogen peroxide from an electronic component manufacturing process. The present invention relates to a method and a hydrogen peroxide removing apparatus used therefor.

電子部品、たとえば、半導体や液晶などを製造する工場で用いられている超純水製造装置は、原水使用コスト及び排水処理コストの低減、放流水の総量規制への対応等の観点から、一般に排水回収系を備えるようになっており、比較的汚染程度の少ない排水を回収して超純水の原水として再利用している。しかし、半導体や液晶パネルの洗浄工程から排出される排水およびその処理水中には、一般的に過酸化水素が含まれていることが多いため、このような処理水を再利用するには、過酸化水素を除去する必要がある。   Ultrapure water production equipment used in factories that manufacture electronic components, such as semiconductors and liquid crystals, generally uses wastewater from the viewpoints of reducing raw water use costs and wastewater treatment costs, and complying with regulations on the total amount of discharged water. A recovery system is provided, and wastewater with a relatively low pollution level is recovered and reused as raw water for ultrapure water. However, since wastewater discharged from the cleaning process of semiconductors and liquid crystal panels and its treated water generally contain hydrogen peroxide in general, it is necessary to recycle such treated water. It is necessary to remove hydrogen oxide.

半導体製造工程から排出される排水の処理における過酸化水素処理方法として、例えば特許文献1に、COD(化学的酸素要求量)含有排水のCOD成分の分解促進のために添加した過酸化水素の残留成分を活性炭処理により分解する方法が示されている。   As a hydrogen peroxide treatment method in the treatment of wastewater discharged from a semiconductor manufacturing process, for example, Patent Document 1 discloses a residual hydrogen peroxide added to promote the decomposition of COD components in COD (chemical oxygen demand) -containing wastewater. A method of decomposing components by activated carbon treatment is shown.

また、特許文献2には、紫外光照射されている光触媒と液体中の過酸化水素を接触させて過酸化水素を分解、除去する方法が開示されており、同文献の方法によれば、電子部品の洗浄に使用した過酸化水素含有廃液の過酸化水素量を0mg/Lにすることができ、河川に放流できる状態にすることができるとされている。   Further, Patent Document 2 discloses a method of decomposing and removing hydrogen peroxide by bringing a photocatalyst irradiated with ultraviolet light into contact with hydrogen peroxide in a liquid. It is said that the amount of hydrogen peroxide in the hydrogen peroxide-containing waste liquid used for cleaning the parts can be reduced to 0 mg / L, so that it can be discharged into the river.

特開平10−000461号公報JP-A-10-000461 特開平10−151451号公報Japanese Patent Laid-Open No. 10-151451 国際公開第2009/63737号International Publication No. 2009/63737

しかしながら、特許文献1に記載の処理方法、すなわち活性炭処理では、過酸化水素濃度を低いレベルに低減するには、活性炭充填塔を大きくするか、活性炭充填塔における空間速度を小さくすることが必要になり、設置スペースの増加、処理量の低下を招き、経済的でないという問題点がある。   However, in the treatment method described in Patent Document 1, that is, activated carbon treatment, in order to reduce the hydrogen peroxide concentration to a low level, it is necessary to enlarge the activated carbon packed tower or reduce the space velocity in the activated carbon packed tower. Therefore, there is a problem that the installation space is increased and the processing amount is reduced, which is not economical.

また、特許文献2に記載の方法、すなわち紫外線と光触媒を過酸化水素の分解に用いる方法は、処理装置をコンパクトに、またその構成を簡単にできるので、経済的に有利な方法ではあるものの、光触媒の光化学反応による過酸化水素の分解と同時に微量の過酸化水素の生成が起きるため、被処理水を電子部品の洗浄に再利用できるような、過酸化水素の濃度が低いレベル、例えば5ppb以下にまでには低減できないという問題点がある。   In addition, the method described in Patent Document 2, that is, the method of using ultraviolet rays and a photocatalyst for the decomposition of hydrogen peroxide is an economically advantageous method because the processing apparatus can be made compact and the configuration thereof can be simplified. Since a small amount of hydrogen peroxide is generated simultaneously with the decomposition of hydrogen peroxide by the photochemical reaction of the photocatalyst, the concentration of hydrogen peroxide is low, for example, 5 ppb or less, so that the water to be treated can be reused for cleaning electronic components. There is a problem that it cannot be reduced by this.

本発明は上記のような問題に鑑みてなされたものであって、紫外線と光触媒とを併用する経済的に有利な方法によって、排水中に存在するppbレベルの濃度の過酸化水素を効果的に分解し、電子部品の洗浄に容易に再利用できるような5ppb以下にまで低減することができる排水処理方法を提供することを目的とする。   The present invention has been made in view of the above problems, and effectively reduces hydrogen peroxide having a ppb level concentration in wastewater by an economically advantageous method using a combination of ultraviolet rays and a photocatalyst. An object of the present invention is to provide a wastewater treatment method that can be decomposed and reduced to 5 ppb or less so that it can be easily reused for cleaning electronic components.

以上の目的を達成するために、本発明者らは鋭意研究を重ねた結果、過酸化水素を含む被処理水の処理において、過酸化水素を含む被処理水中の溶存酸素を所定値以下にした上で、紫外線および光触媒を用いて過酸化水素を分解することにより、被処理水中の過酸化水素濃度を極めて低いレベル、具体的には5ppb以下にまで低減させることが可能であることを見出した。   In order to achieve the above object, as a result of intensive studies, the present inventors made dissolved oxygen in water to be treated containing hydrogen peroxide to be a predetermined value or less in the treatment of water to be treated containing hydrogen peroxide. In the above, it has been found that by decomposing hydrogen peroxide using ultraviolet rays and a photocatalyst, the concentration of hydrogen peroxide in the water to be treated can be reduced to a very low level, specifically to 5 ppb or less. .

すなわち、本発明は、過酸化水素を含む被処理水の処理方法であって、前記被処理水中の溶存酸素濃度を0.1mg/L以下に低減させる第一工程と、光触媒に190nm以上のピーク波長を有する紫外線を照射させた状態で、前記第一工程で処理された前記被処理水を前記光触媒に接触させて、前記被処理水中の過酸化水素を分解する第二工程と、からなることを特徴とする過酸化水素を含む被処理水の処理方法に関する。   That is, the present invention is a method for treating water to be treated containing hydrogen peroxide, the first step of reducing the dissolved oxygen concentration in the water to be treated to 0.1 mg / L or less, and a peak of 190 nm or more in the photocatalyst. A second step of decomposing hydrogen peroxide in the water to be treated by bringing the water to be treated treated in the first step into contact with the photocatalyst while being irradiated with ultraviolet rays having a wavelength. The present invention relates to a method for treating water to be treated containing hydrogen peroxide.

また本発明は、前記被処理水が、電子部品製造工程より排出される排水であることを特徴とする過酸化水素を含む被処理水の処理方法に関する。   The present invention also relates to a method for treating water to be treated containing hydrogen peroxide, characterized in that the water to be treated is wastewater discharged from an electronic component manufacturing process.

さらに本発明は、前記光触媒が、酸化チタンを表面に有する光触媒繊維の不織布であることを特徴とする過酸化水素を含む被処理水の処理方法に関する。   Furthermore, the present invention relates to a method for treating water to be treated containing hydrogen peroxide, wherein the photocatalyst is a non-woven fabric of photocatalytic fibers having titanium oxide on the surface.

またさらに本発明は、前記光触媒繊維が、シリカ成分を主体とする酸化物相(第1相)とTiを含む金属酸化物相(第2相)とからなる繊維であって、第2相を構成する金属酸化物のTiの存在割合が繊維の表層に向かって傾斜的に増大している、光触媒機能を有するシリカ基複合酸化物繊維であることを特徴とする過酸化水素を含む被処理水の処理方法に関する。   Still further, in the invention, the photocatalytic fiber is a fiber composed of an oxide phase (first phase) mainly composed of a silica component and a metal oxide phase (second phase) containing Ti, wherein the second phase is Water to be treated containing hydrogen peroxide, characterized in that it is a silica-based composite oxide fiber having a photocatalytic function, in which the Ti content of the constituent metal oxide increases in a gradient manner toward the surface layer of the fiber Relates to the processing method.

また本発明は、過酸化水素を含む被処理水中の溶存酸素濃度を所定値以下に低減させる溶存酸素低減装置と、前記溶存酸素低減装置にて溶存酸素濃度が所定値以下に低減された過酸化水素を含む被処理水を処理する、光触媒と該光触媒に紫外線を照射可能な紫外線光源とを収容する過酸化水素分解槽と、を備えることを特徴とする過酸化水素除去装置に関する。   The present invention also provides a dissolved oxygen reducing device for reducing the dissolved oxygen concentration in the water to be treated containing hydrogen peroxide to a predetermined value or less, and a peroxidation in which the dissolved oxygen concentration is reduced to a predetermined value or less by the dissolved oxygen reducing device. The present invention relates to a hydrogen peroxide removal apparatus comprising a photocatalyst for treating water to be treated containing hydrogen and a hydrogen peroxide decomposition tank containing an ultraviolet light source capable of irradiating the photocatalyst with ultraviolet light.

さらに本発明は、前記所定値が0.1mg/Lであることを特徴とする過酸化水素除去装置に関する。   Furthermore, the present invention relates to a hydrogen peroxide removing device, wherein the predetermined value is 0.1 mg / L.

またさらに本発明は、前記被処理水が、電子部品製造工程より排出される排水であることを特徴とする過酸化水素除去装置に関する。   Furthermore, the present invention relates to a hydrogen peroxide removing device, wherein the water to be treated is waste water discharged from an electronic component manufacturing process.

また本発明は、前記光触媒繊維が、シリカ成分を主体とする酸化物相(第1相)とTiを含む金属酸化物相(第2相)とからなる繊維であって、第2相を構成する金属酸化物のTiの存在割合が繊維の表層に向かって傾斜的に増大している、光触媒機能を有するシリカ基複合酸化物繊維であることを特徴とする過酸化水素除去装置に関する。   In the present invention, the photocatalyst fiber is a fiber composed of an oxide phase (first phase) mainly composed of a silica component and a metal oxide phase (second phase) containing Ti, and constitutes the second phase. The present invention relates to a hydrogen peroxide removing device characterized by being a silica-based composite oxide fiber having a photocatalytic function in which the proportion of Ti present in the metal oxide increases in a gradient manner toward the surface layer of the fiber.

以上のように本発明によれば、大型の装置を必要としない、紫外線と光触媒とを併用する経済的に有利な方法によって、被処理水中の過酸化水素濃度を極めて低いレベル、具体的には5ppb以下にまで低減できる過酸化水素を含む被処理水の処理方法および過酸化水素除去装置を提供することができる。   As described above, according to the present invention, the hydrogen peroxide concentration in the water to be treated is reduced to an extremely low level by an economically advantageous method using ultraviolet rays and a photocatalyst in combination, which does not require a large apparatus, specifically, It is possible to provide a method for treating water to be treated containing hydrogen peroxide and a hydrogen peroxide removing device that can be reduced to 5 ppb or less.

本発明の過酸化水素除去装置の構成を示す図である。It is a figure which shows the structure of the hydrogen peroxide removal apparatus of this invention. 本発明の過酸化水素分解槽の実施形態の一例を示す図である。It is a figure which shows an example of embodiment of the hydrogen peroxide decomposition tank of this invention.

次に、本発明の過酸化水素除去装置の模式図である図1、および本発明の第2工程で使用する過酸化水素分解槽の一例である図2を参照しながら、本発明の過酸化水素を含む被処理水の処理方法および過酸化水素除去装置を具体的に説明する。   Next, referring to FIG. 1 which is a schematic view of the hydrogen peroxide removing apparatus of the present invention and FIG. 2 which is an example of a hydrogen peroxide decomposition tank used in the second step of the present invention, the peroxidation of the present invention is performed. A method for treating water to be treated containing hydrogen and a hydrogen peroxide removing apparatus will be specifically described.

本発明の過酸化水素を含む被処理水の処理方法は、被処理水中の溶存酸素濃度を低減させる第一工程と、第一工程にて溶存酸素濃度が低減された被処理水を紫外線と光触媒を用いて処理する第二工程と、からなっており、第一工程において溶存酸素濃度を0.1mg/L以下に低減させる方法である。   The treatment method of the water to be treated containing hydrogen peroxide according to the present invention includes a first step for reducing the dissolved oxygen concentration in the water to be treated, and an ultraviolet ray and a photocatalyst for the water to be treated whose dissolved oxygen concentration is reduced in the first step. And a second step in which the dissolved oxygen concentration is reduced to 0.1 mg / L or less in the first step.

また、本発明の過酸化水素除去装置1は、図1に示すように、過酸化水素を含む被処理水中の溶存酸素濃度を所定値以下に低減する溶存酸素除去装置2と、溶存酸素除去装置2にて溶存酸素濃度が所定値以下に低減された被処理水中の過酸化水素を分解する、光触媒と該光触媒に紫外線を照射可能な紫外線光源とを収容する過酸化水素分解槽3と、を備えている。この構成の過酸化水素除去装置によれば、本発明の過酸化水素を含む被処理水の処理方法を具現化することができる。   Moreover, as shown in FIG. 1, the hydrogen peroxide removal apparatus 1 of the present invention includes a dissolved oxygen removal apparatus 2 that reduces the dissolved oxygen concentration in the water to be treated containing hydrogen peroxide to a predetermined value or less, and a dissolved oxygen removal apparatus. A hydrogen peroxide decomposition tank 3 containing a photocatalyst and an ultraviolet light source capable of irradiating the photocatalyst with ultraviolet light, which decomposes hydrogen peroxide in the water to be treated whose dissolved oxygen concentration is reduced to a predetermined value or less in 2; I have. According to the hydrogen peroxide removing apparatus having this configuration, the method for treating water to be treated containing hydrogen peroxide according to the present invention can be realized.

本発明の被処理水の処理方法にて処理する過酸化水素を含む被処理水としては、溶存酸素濃度が0.1mg/Lより大きい被処理水であれば特に制限はなく、例えば、用廃水系に過酸化水素を添加して酸化、還元、殺菌、洗浄などを行った処理水又は排水、半導体、液晶などの電子部品製造工程から排出される洗浄排水およびリンス洗浄排水を超純水として回収再利用するために、過酸化水素の存在下で紫外線を照射して有機物を酸化分解した処理水、半導体、液晶などの電子部品製造工程において使用される微量の過酸化水素を含む超純水などを挙げることができる。これらの中で、本発明の被処理水の処理方法は、半導体、液晶などの電子部品製造工程から排出される洗浄排水を超純水として回収再利用するために、過酸化水素の存在下で紫外線を照射して有機物を酸化分解した処理水のppbレベルの過酸化水素の除去に特に好適に適用することができる。   The treated water containing hydrogen peroxide to be treated by the treated water treatment method of the present invention is not particularly limited as long as the treated water has a dissolved oxygen concentration of more than 0.1 mg / L. For example, waste water for use Treatment water or wastewater that has been oxidized, reduced, sterilized, washed, etc. by adding hydrogen peroxide to the system, and washing wastewater and rinse washing wastewater discharged from the manufacturing process of electronic parts such as semiconductors and liquid crystals are recovered as ultrapure water. Processed water in which organic substances are oxidized and decomposed by irradiating ultraviolet rays in the presence of hydrogen peroxide for reuse, ultrapure water containing a small amount of hydrogen peroxide used in the manufacturing process of electronic components such as semiconductors and liquid crystals, etc. Can be mentioned. Among these, the treatment method of the water to be treated according to the present invention is used in the presence of hydrogen peroxide in order to collect and reuse cleaning wastewater discharged from the manufacturing process of electronic components such as semiconductors and liquid crystals as ultrapure water. The present invention can be particularly suitably applied to the removal of ppb level hydrogen peroxide in treated water that has been oxidatively decomposed by irradiating ultraviolet rays.

一般に電子部品製造工程に使用される超純水は、電子部品の酸化を防ぐため、溶存酸素量を約1μg/Lまで低減されている。しかしながら、超純水を電子部品の洗浄水もしくはリンス洗浄水として用いた場合、超純水は大気に接触するため大気中の酸素を吸収し、洗浄廃水には、少なくとも0.5mg/Lの溶存酸素を含むことになる。また、超純水は洗浄薬液として過酸化水素、オゾン等添加する、もしくは排水処理過程でTOCの分解促進のために同様に過酸化水素、オゾンを添加する場合があり、大気との接触と共に、過酸化水素やオゾンの分解により溶存酸素量が増加する。したがって、本発明により過酸化水素および溶存酸素を減少させることにより、後段の工程で過酸化水素や酸素による酸化を伴う装置の劣化を最小限にすることができ、さらに、回収水として再利用する場合、超純水製造ラインの負荷を減らし、トータルとしてコストを削減できる。   In general, ultrapure water used in an electronic component manufacturing process has a dissolved oxygen content reduced to about 1 μg / L in order to prevent oxidation of the electronic component. However, when ultrapure water is used as cleaning water or rinsing water for electronic components, the ultrapure water is in contact with the atmosphere and absorbs oxygen in the atmosphere, and at least 0.5 mg / L is dissolved in the cleaning wastewater. It will contain oxygen. Ultra pure water may be added with hydrogen peroxide, ozone, etc. as a cleaning chemical, or hydrogen peroxide and ozone may be added in the same way to promote TOC decomposition during wastewater treatment. Dissolved oxygen increases due to decomposition of hydrogen peroxide and ozone. Therefore, by reducing hydrogen peroxide and dissolved oxygen according to the present invention, it is possible to minimize the deterioration of the apparatus accompanied by oxidation with hydrogen peroxide or oxygen in the subsequent steps, and further reuse as recovered water. In this case, the load on the ultrapure water production line can be reduced and the cost can be reduced as a whole.

被処理水中の過酸化水素濃度は500ppb以下であることが好ましく、さらに50ppb以下であることが好ましい。本発明の、過酸化水素を含む被処理水の処理方法および過酸化水素除去装置は、従来技術に比して、特に、過酸化水素濃度が比較的低い、具体的には500ppb以下の被処理水中の過酸化水素を、その濃度が極めて低いレベルにまで低減させるに有利な方法および装置だからである。被処理水中の過酸化水素濃度が500ppb以上の場合は、第一工程の前段に公知の過酸化水素除去法、例えば、活性炭や紫外線照射などの工程をおいても良い。   The hydrogen peroxide concentration in the water to be treated is preferably 500 ppb or less, and more preferably 50 ppb or less. The method for treating water to be treated and the hydrogen peroxide removing apparatus of the present invention have a relatively low hydrogen peroxide concentration, specifically 500 ppb or less, as compared with the prior art. This is because hydrogen peroxide in water is an advantageous method and apparatus for reducing its concentration to a very low level. When the concentration of hydrogen peroxide in the water to be treated is 500 ppb or more, a known hydrogen peroxide removing method, for example, a process such as activated carbon or ultraviolet irradiation may be provided before the first process.

本発明の第一工程では、被処理水中の溶存酸素濃度を、0.1mg/L以下に低減することが好ましく、特に0.07mg/L以下に低減することが好ましい。   In the first step of the present invention, the dissolved oxygen concentration in the water to be treated is preferably reduced to 0.1 mg / L or less, and particularly preferably 0.07 mg / L or less.

光触媒は、その光触媒のバンドギャップ以上のエネルギーを有する紫外光もしくは可視光により励起される。光励起により荷電子帯に正孔が生じ、この正孔によりOHラジカル等の強力なラジカル種を生成し、有機物および過酸化水素を酸化分解する。一方、伝導帯に励起された電子は、通常、酸素を還元し、スーパーオキサイドラジカルが生成することで消費される。しかしながら、生成したスーパーオキサイドラジカルは水との反応により過酸化水素が生成することが知られている。したがって、溶存酸素存在下では、光触媒により、過酸化水素の分解と生成が同時に起きている。さらに、過酸化水素が高濃度の場合、光励起された電子により過酸化水素が還元され、OHラジカルと水酸化イオンに分解することが知られている。すなわち、光励起された電子による還元においても、酸素還元による過酸化水素の生成と過酸化水素の還元による分解が同時に起きている。このとき、溶存酸素と過酸化水素の還元のどちらが優先されるかは、被処理水中の溶存酸素濃度と過酸化水素濃度の相対的な差に基づく。したがって、極低濃度の過酸化水素をさらに低減させるためには、溶存酸素の量を相対的に低減し、酸素還元による過酸化水素の生成を抑制する必要がある。本発明における検討の結果、溶存酸素濃度が0.1mg/L以下であれば、過酸化水素の分解が優先され、極微量の過酸化水素を分解し、被処理水中の過酸化水素濃度を5ppb以下まで低減できることが分かった。   The photocatalyst is excited by ultraviolet light or visible light having energy higher than the band gap of the photocatalyst. Holes are generated in the valence band by photoexcitation, and these radicals generate strong radical species such as OH radicals, which oxidatively decompose organic matter and hydrogen peroxide. On the other hand, electrons excited in the conduction band are usually consumed by reducing oxygen and generating superoxide radicals. However, it is known that the generated superoxide radical generates hydrogen peroxide by reaction with water. Therefore, in the presence of dissolved oxygen, decomposition and generation of hydrogen peroxide occur simultaneously by the photocatalyst. Further, it is known that when hydrogen peroxide has a high concentration, the hydrogen peroxide is reduced by photoexcited electrons and decomposed into OH radicals and hydroxide ions. That is, even in the reduction by photoexcited electrons, the generation of hydrogen peroxide by oxygen reduction and the decomposition by reduction of hydrogen peroxide occur simultaneously. At this time, whether priority is given to the reduction of dissolved oxygen or hydrogen peroxide is based on the relative difference between the dissolved oxygen concentration and the hydrogen peroxide concentration in the water to be treated. Therefore, in order to further reduce the extremely low concentration of hydrogen peroxide, it is necessary to relatively reduce the amount of dissolved oxygen and suppress the production of hydrogen peroxide by oxygen reduction. As a result of the study in the present invention, if the dissolved oxygen concentration is 0.1 mg / L or less, the decomposition of hydrogen peroxide is prioritized, an extremely small amount of hydrogen peroxide is decomposed, and the hydrogen peroxide concentration in the water to be treated is 5 ppb. It turned out that it can reduce to the following.

溶存酸素除去装置2に特に制限はなく、例えば、真空脱気装置、窒素脱気装置、膜脱気装置、脱酸素触媒装置などを挙げることができる。これらの中で、膜脱気装置及び脱酸素触媒装置を好適に用いることができる。   There is no restriction | limiting in particular in the dissolved oxygen removal apparatus 2, For example, a vacuum deaeration apparatus, a nitrogen deaeration apparatus, a membrane deaeration apparatus, a deoxygenation catalyst apparatus etc. can be mentioned. Among these, a membrane deaeration device and a deoxygenation catalyst device can be suitably used.

本発明の溶存酸素除去装置2の実施形態の一例である膜脱気装置について説明する。膜脱気装置としては脱気膜を介して、被処理水が導入される空間(以下、「液体室」という)と、被処理水中の気体が移行される空間(以下、「吸気室」という)とが形成されたものが用いられる。吸気室は真空ポンプなどによって減圧されており、液体室に導入した被処理水に含まれる気体を、脱気膜を介して吸気室側に移行させ、被処理水中の気体を除去する。   A membrane degassing apparatus as an example of an embodiment of the dissolved oxygen removing apparatus 2 of the present invention will be described. As a membrane deaerator, a space (hereinafter referred to as “liquid chamber”) through which water to be treated is introduced through a deaeration membrane and a space (hereinafter referred to as “intake chamber”) in which gas in the water to be treated is transferred. ) And are formed. The suction chamber is depressurized by a vacuum pump or the like, and the gas contained in the water to be treated introduced into the liquid chamber is transferred to the suction chamber side through the deaeration film to remove the gas in the water to be treated.

膜脱気装置に備えられる脱気膜としては、酸素、窒素、および二酸化炭素などの気体を透過させる一方、液体を透過させない膜であれば特に制限なく使用できる。脱気膜の具体例としては、シリコンゴム系、テトラフルオロエチレン系、ポリテトラフルオロエチレン系、ポリオレフィン系、およびポリウレタン系などの疎水性の高分子膜がある。脱気膜の形状としては、中空糸膜状、平膜状などがある。これらの中で、ポリオレフィン系中空糸膜を備えた膜脱気装置を好適に用いることができる。   The deaeration membrane provided in the membrane deaeration device can be used without particular limitation as long as it is a membrane that allows gas such as oxygen, nitrogen, and carbon dioxide to pass therethrough but does not allow liquid to pass. Specific examples of the degassing membrane include hydrophobic polymer membranes such as silicon rubber, tetrafluoroethylene, polytetrafluoroethylene, polyolefin, and polyurethane. Examples of the shape of the deaeration membrane include a hollow fiber membrane shape and a flat membrane shape. Among these, a membrane deaerator equipped with a polyolefin-based hollow fiber membrane can be suitably used.

膜脱気装置に導入される被処理水中の溶存酸素濃度、および被処理水の流量によって適切な仕様(到達真空度)の膜脱気装置を選定することで、被処理水中の溶存酸素濃度を所定値以下に低減することができる。あるいは、膜脱気装置に導入される被処理水中の溶存酸素濃度に応じて、被処理水の流量を調節することにより、被処理水中の溶存酸素濃度を制御することができる。例えば、膜脱気装置に導入される被処理水中の溶存酸素濃度が高くなっても、被処理水の流量を小さくすることで、処理後の被処理水中の溶存酸素濃度を一定に保つことができる。   The concentration of dissolved oxygen in the water to be treated is selected by selecting a membrane deaerator with appropriate specifications (degree of ultimate vacuum) according to the dissolved oxygen concentration in the water to be treated and the flow rate of the water to be treated. It can be reduced below a predetermined value. Alternatively, the dissolved oxygen concentration in the treated water can be controlled by adjusting the flow rate of the treated water in accordance with the dissolved oxygen concentration in the treated water introduced into the membrane deaerator. For example, even if the dissolved oxygen concentration in the water to be treated introduced into the membrane deaerator increases, the dissolved oxygen concentration in the treated water after treatment can be kept constant by reducing the flow rate of the water to be treated. it can.

被処理水中の溶存酸素濃度の測定は、図1に示すように、溶存酸素除去装置2の流体流入部の手前側、および過酸化水素分解槽3の流体流入部の手前側の流路に設置した溶存酸素測定装置4によって行う。過酸化水素分解槽3の流体流入部の手前側の流路に設置した溶存酸素測定装置4により測定した溶存酸素濃度が所定値まで低減できない場合には、非処理水の流量を小さくして溶存酸素濃度を所定値まで低減することができる。   As shown in FIG. 1, the dissolved oxygen concentration in the water to be treated is installed in the flow path on the near side of the fluid inflow portion of the dissolved oxygen removing device 2 and on the near side of the fluid inflow portion of the hydrogen peroxide decomposition tank 3. The dissolved oxygen measuring device 4 is used. If the dissolved oxygen concentration measured by the dissolved oxygen measuring device 4 installed in the flow path on the near side of the fluid inflow portion of the hydrogen peroxide decomposition tank 3 cannot be reduced to a predetermined value, the flow rate of untreated water is reduced. The oxygen concentration can be reduced to a predetermined value.

溶存酸素測定装置としては特に制限はなく、例えば、蛍光式溶存酸素測定装置、隔膜式ガルバニ電極式溶存酸素測定装置、隔膜式ポーラログラフ式溶存酸素測定装置、ジルコニア式溶存酸素測定装置などを挙げることができる。これらの中で、隔膜式ガルバニ電極式溶存酸素測定装置を好適に用いることができる。   The dissolved oxygen measuring device is not particularly limited, and examples thereof include a fluorescent dissolved oxygen measuring device, a diaphragm galvanic electrode dissolved oxygen measuring device, a diaphragm polarographic dissolved oxygen measuring device, and a zirconia dissolved oxygen measuring device. it can. Among these, a diaphragm type galvanic electrode type dissolved oxygen measuring device can be suitably used.

本発明の第二工程では、第一工程において溶存酸素濃度が所定値以下に低減された過酸化水素を含む被処理水を、紫外線および光触媒によって処理する。第二工程においては、光触媒に190nm以上のピーク波長を有する紫外線を照射させた状態で、第一工程で処理された被処理水を光触媒に接触させて、被処理水中の過酸化水素を分解する。したがって、過酸化水素分解槽3においては、紫外線光源は光触媒に紫外線を照射可能なように設置されており、光触媒は被処理水の流路に存在する。過酸化水素分解槽3がこのように構成されているので、過酸化水素分解槽3に導入された被処理水中の過酸化水素は、紫外線および光触媒によって分解される。ここで、光触媒は、被処理水の流路に存在して被処理水に接触すれば良いので、被処理水の流路に固定されていても良いし、被処理水の導入時に被処理水の流路を浮遊するように過酸化水素分解槽3内に投入されていても良い。   In the second step of the present invention, the water to be treated containing hydrogen peroxide whose dissolved oxygen concentration is reduced to a predetermined value or less in the first step is treated with ultraviolet rays and a photocatalyst. In the second step, in a state where the photocatalyst is irradiated with ultraviolet rays having a peak wavelength of 190 nm or more, the water to be treated treated in the first step is brought into contact with the photocatalyst to decompose hydrogen peroxide in the water to be treated. . Therefore, in the hydrogen peroxide decomposition tank 3, the ultraviolet light source is installed so as to irradiate the photocatalyst with ultraviolet rays, and the photocatalyst exists in the flow path of the water to be treated. Since the hydrogen peroxide decomposition tank 3 is configured in this manner, hydrogen peroxide in the water to be treated introduced into the hydrogen peroxide decomposition tank 3 is decomposed by ultraviolet rays and a photocatalyst. Here, the photocatalyst only needs to be present in the flow path of the water to be treated and come into contact with the water to be treated. Therefore, the photocatalyst may be fixed to the flow path of the water to be treated. The hydrogen peroxide decomposition tank 3 may be placed so as to float in the flow path.

本発明に係る光触媒は、光触媒機能を有する組成物そのものであっても、あるいは光触媒機能を有する組成物が担持された構造物であっても良い。   The photocatalyst according to the present invention may be a composition itself having a photocatalytic function or a structure on which a composition having a photocatalytic function is supported.

本発明に係る光触媒を構成する、光触媒機能を有する組成物としては、特に制限はなく、通常の場合、酸化チタン(TiO)、チタン酸ストロンチウム(SrTiO)、硫化カドミウム(CdS)、硫化モリブデン(MoS)、酸化亜鉛(ZnO)、酸化タングステン(WO)、酸化銅(CuO)、酸化鉄(Fe)、シリコン(Si)等を使用することが多く、これらの組成物以外にも、光照射によって励起されて過酸化水素を分解、除去できるものであれば、どのようなものでもよく、酸化チタン、特にアナターゼ型酸化チタンが好ましい。また、本発明に係る光触媒は、光触媒機能を発現する組成物自体の粒状、膜状、ネット状、ラシリング状、繊維状等のいずれの形状物でも、あるいは、光触媒機能を発現する組成物が担体に担持された、粒状、膜状、ネット状、ラシリング状、繊維状等の形状物でも良い。 Constituting the photocatalyst according to the present invention, the composition having a photocatalytic function is not particularly limited, usually, titanium oxide (TiO 2), strontium titanate (SrTiO 2), cadmium sulfide (CdS), molybdenum sulfide (MoS 2 ), zinc oxide (ZnO), tungsten oxide (WO 3 ), copper oxide (CuO 2 ), iron oxide (Fe 2 O 3 ), silicon (Si), etc. are often used, and these compositions In addition, any material that can be excited by light irradiation to decompose and remove hydrogen peroxide may be used, and titanium oxide, particularly anatase-type titanium oxide is preferable. In addition, the photocatalyst according to the present invention may be in any shape such as a granular shape, a film shape, a net shape, a lashing shape, or a fibrous shape of the composition itself that exhibits the photocatalytic function, or the composition that exhibits the photocatalytic function may be a carrier. It may be in the form of particles, film, net, lashing, fiber, etc.

光触媒機能を発現する組成物を担持する担体としては、粒子状の活性炭、シリカ、アルミナ、ガラス等の担体、あるいは、ネット状やラシリング状、繊維状等の形状の石英ガラスや硬質ガラス等よりなる担体などが使用される。また、光触媒機能を発現する組成物自体、または光触媒機能を発現する組成物を担持する担体を過酸化水素分解槽に固定するなどの目的のために、それ自体のみを、あるいは保型部材等を用いて、特定の形状に成形して使用することもできる。   The carrier carrying the composition exhibiting the photocatalytic function is made of particulate activated carbon, silica, alumina, glass, or the like, or is made of quartz, hard glass, or the like in the shape of a net, lascil, or fiber. A carrier or the like is used. Further, for the purpose of fixing the composition itself exhibiting the photocatalytic function or the carrier carrying the composition exhibiting the photocatalytic function to the hydrogen peroxide decomposition tank, only itself or a mold retaining member or the like is used. It can also be used after being molded into a specific shape.

本発明に係る光触媒としては、光触媒を表面に有する光触媒繊維の不織布、特に酸化チタンを表面に有する光触媒繊維の不織布が好ましく、さらには、シリカ成分を主体とする酸化物相(第1相)とTiを含む金属酸化物相(第2相)との複合酸化物の繊維からなり、第2相を構成する金属酸化物のTiの存在割合が繊維の表層に向かって傾斜的に増大しているシリカ基複合酸化物繊維からなる光触媒繊維の不織布が好ましい。   As the photocatalyst according to the present invention, a non-woven fabric of a photocatalyst fiber having a photocatalyst on its surface, particularly a non-woven fabric of a photocatalyst fiber having titanium oxide on its surface is preferable, and further, an oxide phase (first phase) mainly composed of a silica component; It consists of composite oxide fibers with a metal oxide phase (second phase) containing Ti, and the proportion of Ti in the metal oxide composing the second phase increases in a gradient toward the surface layer of the fibers. A non-woven fabric of photocatalyst fibers made of silica-based composite oxide fibers is preferred.

シリカ基複合酸化物繊維の第1相は、シリカ成分を主体とする酸化物相であり、非晶質であっても結晶質であってもよく、またシリカと固溶体あるいは共融点化合物を形成し得る金属元素あるいは金属酸化物を含有してもよい。シリカと固溶体を形成し得る金属元素(A)としては、例えば、チタン等が挙げられる。シリカと固溶体を形成し得る金属酸化物の金属元素(B)としては、例えば、アルミニウム、ジルコニウム、イットリウム、リチウム、ナトリウム、バリウム、カルシウム、ホウ素、亜鉛、ニッケル、マンガン、マグネシウム、及び鉄等が挙げられる。   The first phase of the silica-based composite oxide fiber is an oxide phase mainly composed of a silica component, which may be amorphous or crystalline, and forms a solid solution or a eutectic compound with silica. The obtained metal element or metal oxide may be contained. Examples of the metal element (A) that can form a solid solution with silica include titanium. Examples of the metal element (B) of the metal oxide that can form a solid solution with silica include aluminum, zirconium, yttrium, lithium, sodium, barium, calcium, boron, zinc, nickel, manganese, magnesium, and iron. It is done.

第1相は、シリカ基複合酸化物繊維の内部相を形成しており、力学的特性を負担する重要な役割を演じている。シリカ基複合酸化物繊維全体に対する第1相の存在割合は40〜98質量%であることが好ましく、目的とする第2相の機能を十分に発現させ、なお且つ高い力学的特性をも発現させるためには、第1相の存在割合を50〜95質量%の範囲内に制御することがさらに好ましい。   The first phase forms the internal phase of the silica-based composite oxide fiber and plays an important role in bearing the mechanical properties. The proportion of the first phase with respect to the entire silica-based composite oxide fiber is preferably 40 to 98% by mass, and the desired function of the second phase is sufficiently exhibited, and also high mechanical properties are exhibited. For this purpose, it is more preferable to control the ratio of the first phase within the range of 50 to 95% by mass.

一方、第2相は、チタンを含む金属酸化物相であり、光触媒機能を発現させる上で重要な役割を演じるものである。金属酸化物を構成する金属としては、チタンが挙げられる。この金属酸化物は、単体でもいいし、その共融点化合物やある特定元素により置換型の固溶体を形成したもの等でも良いが、チタニアであることが好ましい。第2相は、シリカ基複合酸化物繊維の表層相を形成しており、シリカ基複合酸化物繊維の第2相の存在割合は、金属酸化物の種類により異なるが、2〜60質量%が好ましく、その機能を十分に発現させ、また高強度をも同時に発現させるには5〜50質量%の範囲内に制御することがさらに好ましい。第2相のTiを含む金属酸化物の結晶粒径は15nm以下が好ましく、特に10nm以下が好ましい。   On the other hand, the second phase is a metal oxide phase containing titanium and plays an important role in developing the photocatalytic function. An example of the metal constituting the metal oxide is titanium. The metal oxide may be a simple substance, or may be a co-melting compound or a substance in which a substitutional solid solution is formed by a specific element, but is preferably titania. The second phase forms the surface layer phase of the silica-based composite oxide fiber, and the proportion of the second phase of the silica-based composite oxide fiber varies depending on the type of metal oxide, but is 2 to 60% by mass. Preferably, it is more preferable to control within the range of 5 to 50% by mass in order to sufficiently develop the function and simultaneously develop high strength. The crystal grain size of the metal oxide containing Ti of the second phase is preferably 15 nm or less, particularly preferably 10 nm or less.

第2相に含まれる金属酸化物のチタンの存在割合は、シリカ基複合酸化物繊維の表面に向かって傾斜的に増大しており、その組成の傾斜が明らかに認められる領域の厚さは表層から5〜500nmの範囲に制御することが好ましいが、繊維直径の約1/3に及んでもよい。尚、第1相及び第2相の「存在割合」とは、第1相を構成する金属酸化物と第2相を構成する金属酸化物全体、即ちシリカ基複合酸化物繊維全体に対する第1相の金属酸化物及び第2相の金属酸化物の質量%を示している。   The proportion of titanium in the metal oxide contained in the second phase increases in a gradient toward the surface of the silica-based composite oxide fiber, and the thickness of the region where the composition gradient is clearly recognized is the surface layer. From 5 to 500 nm, but may be about 1/3 of the fiber diameter. The “existence ratio” of the first phase and the second phase refers to the first phase with respect to the metal oxide constituting the first phase and the entire metal oxide constituting the second phase, that is, the entire silica-based composite oxide fiber. The mass% of the metal oxide and the second phase metal oxide are shown.

上記のような傾斜構造を有する光触媒繊維は、既知の方法によって製造することができ、例えば特許文献3に記載の方法に基づいて製造することができる。   The photocatalyst fiber having the inclined structure as described above can be manufactured by a known method, for example, based on the method described in Patent Document 3.

本発明に係る紫外線は、190nm以上にピーク波長を有する紫外線で前記光触媒のバンドギャップに相当するエネルギー以上のエネルギーを有する波長であれば特に制限は無く、250〜260nmにピーク波長を有する紫外線が好ましい。190nm未満のピーク波長を有する紫外線は、水を直接分解し過酸化水素を発生させるので好ましくないが1ppb以下の過酸化水素を発生させる程度の照射量であれば含んでいても良い。また、紫外線を照射する光源の種類は190nm以上にピーク波長を有し、前記光触媒のバンドギャップに相当するエネルギー以上のエネルギーを有する波長を照射する光源であれば特に制限はなく、低圧または高圧紫外線ランプ、アマルガムランプ、キセノンランプ、ブラックライト、紫外線LEDが利用でき、特にアマルガムランプが好ましい。   The ultraviolet ray according to the present invention is not particularly limited as long as it is an ultraviolet ray having a peak wavelength of 190 nm or more and has an energy equal to or higher than the energy corresponding to the band gap of the photocatalyst, and an ultraviolet ray having a peak wavelength of 250 to 260 nm is preferable. . Ultraviolet light having a peak wavelength of less than 190 nm is not preferable because it directly decomposes water and generates hydrogen peroxide, but may be included as long as the irradiation amount is enough to generate hydrogen peroxide of 1 ppb or less. The type of light source for irradiating ultraviolet rays is not particularly limited as long as it is a light source that has a peak wavelength of 190 nm or more and irradiates a wavelength having energy equal to or higher than the band gap of the photocatalyst. A lamp, an amalgam lamp, a xenon lamp, a black light, and an ultraviolet LED can be used, and an amalgam lamp is particularly preferable.

本発明に係る過酸化水素分解槽3について、その実施形態の一例を図2に示して具体的に説明するが、本発明の範囲を限定することは意図していない。   An example of the embodiment of the hydrogen peroxide decomposition tank 3 according to the present invention will be specifically described with reference to FIG. 2, but it is not intended to limit the scope of the present invention.

本発明に係る過酸化水素分解槽の実施形態の一例である図2の過酸化水素分解槽3は、流体流入部11と流体排出部12とを有し、流体流入部11から流入した被処理水を流体排出部12まで流動させる構造を有しており、流動する被処理水に向かって紫外線を照射可能な紫外線光源13と、過酸化水素分解槽の内面と紫外線光源との間に、前記紫外線光源に対向して配置され、被処理水がその間を通過可能な光触媒フィルタ15と、過酸化水素分解槽の内面と光触媒との間に存する被処理水を光触媒と紫外線光源との間に誘導する第1誘導板18と、紫外線照射部と光触媒フィルタとの間に存する被処理水を過酸化水素分解槽の内面と光触媒との間に誘導する第2誘導板19と、を備えており、第1誘導板18によって光触媒フィルタと紫外線光源との間に誘導される被処理水及び第2誘導板19によって過酸化水素分解槽の内面と光触媒との間に誘導される被処理水の少なくとも一方を通過させるように配置されている。ここで、光触媒フィルタは、ステンレス製の保持材16にシリカ基複合酸化物繊維の不織布が円筒状に巻きつけられたものであり、さらに不織布は円筒状のステンレス製の金網17で保持され、被処理水がその間を通過可能に構成されている。   A hydrogen peroxide decomposition tank 3 of FIG. 2 which is an example of an embodiment of the hydrogen peroxide decomposition tank according to the present invention has a fluid inflow portion 11 and a fluid discharge portion 12, and is to be treated which has flowed from the fluid inflow portion 11. It has a structure that allows water to flow to the fluid discharge unit 12, and is disposed between the ultraviolet light source 13 that can irradiate ultraviolet light toward the flowing water to be treated, and between the inner surface of the hydrogen peroxide decomposition tank and the ultraviolet light source. A photocatalyst filter 15 disposed opposite to the ultraviolet light source and through which the water to be treated can pass, and the water to be treated existing between the inner surface of the hydrogen peroxide decomposition tank and the photocatalyst are guided between the photocatalyst and the ultraviolet light source. A first guide plate 18 and a second guide plate 19 for guiding the water to be treated existing between the ultraviolet irradiation section and the photocatalyst filter between the inner surface of the hydrogen peroxide decomposition tank and the photocatalyst, The first guide plate 18 and the photocatalytic filter It arrange | positions so that the to-be-processed water induced | guided | derived between a linear light source and the to-be-processed water induced | guided | derived between the inner surface of a hydrogen peroxide decomposition tank and a photocatalyst by the 2nd guide plate 19 may be passed. . Here, the photocatalytic filter is a stainless steel holding material 16 in which a nonwoven fabric of silica-based composite oxide fibers is wound in a cylindrical shape, and the nonwoven fabric is held by a cylindrical stainless steel wire mesh 17 and covered. The treated water is configured to pass between them.

また、一つの光触媒フィルタ、一つの第1誘導板及び一つの第2誘導板が一体となって構成された光触媒フィルタカートリッジ14が、配列方向に対して同一向きとなるように2以上配列されており、連結部材20によってそれぞれの光触媒フィルタカートリッジ14は固定されている。そして、互いに隣接する一方の光触媒フィルタカートリッジ14の第1誘導板18と他方の光触媒フィルタカートリッジ14の第2誘導板19との間には所定の間隔(W2)が設けられ、その第1誘導板18と第2誘導板19との間隔W2を被処理水が流通するように構成されている。そして、間隔W2は、同一の光触媒フィルタカートリッジ14内に配設された第1誘導板と第2誘導板との間隔(W1)よりも狭くなっている。   Two or more photocatalyst filter cartridges 14 in which one photocatalyst filter, one first guide plate, and one second guide plate are integrated are arranged in the same direction with respect to the arrangement direction. Each photocatalyst filter cartridge 14 is fixed by the connecting member 20. A predetermined gap (W2) is provided between the first guide plate 18 of one photocatalyst filter cartridge 14 adjacent to the second guide plate 19 of the other photocatalyst filter cartridge 14, and the first guide plate The to-be-processed water distribute | circulates the space | interval W2 of 18 and the 2nd guide plate 19. FIG. The interval W2 is narrower than the interval (W1) between the first guide plate and the second guide plate disposed in the same photocatalytic filter cartridge 14.

この間隔W2は、被処理水が流動できる距離であれば良く、例えば光触媒カートリッジ14の高さ(すなわち、同一の光触媒カートリッジ内に配設された第1誘導板18と第2誘導板19との間隔)W1に対して1/20〜1/2の長さに適宜設定することができるが、被処理水の過酸化水素分解槽3内での流動速度と紫外線のエネルギーによる分解効率に応じて適宜変更できる。すなわち、間隔W2を広くすると、流動速度は向上するが、限られた過酸化水素分解槽3の空間内での光触媒カートリッジ14の数が少なくなり、被処理水の径方向への反復流動が減少し、その結果、後述するように分解効率が低下する。一方、間隔W2を狭くすると、流動速度は、遅くなるが、限られた過酸化水素分解槽3の空間内での光触媒カートリッジ14の数を多くでき、被流動水の径方向への反復流動が増加し、その結果、分解効率が向上する。なお、互いに隣接する一方の光触媒カートリッジ14の第1誘導板18と他方の光触媒カートリッジ14の第2誘導板19との間隔W2は、光触媒カートリッジ14を軸方向にスライドさせることで、適宜調整可能とされていることが好ましい。このように間隔W2を調整可能とすることで、過酸化水素分解槽3内での被処理水の流動抵抗を調節して流速を適切に設定することができる。これにより、光触媒による処理効率を向上させることができる。   The distance W2 may be a distance that allows the water to be treated to flow. For example, the height of the photocatalyst cartridge 14 (that is, between the first guide plate 18 and the second guide plate 19 disposed in the same photocatalyst cartridge). Interval) The length can be appropriately set to 1/20 to 1/2 with respect to W1, but depending on the flow rate in the hydrogen peroxide decomposition tank 3 of the water to be treated and the decomposition efficiency due to the energy of ultraviolet rays It can be changed appropriately. That is, if the interval W2 is increased, the flow rate is improved, but the number of photocatalyst cartridges 14 in the limited space of the hydrogen peroxide decomposition tank 3 is reduced, and the repeated flow in the radial direction of the water to be treated is reduced. As a result, the decomposition efficiency decreases as will be described later. On the other hand, when the interval W2 is narrowed, the flow rate becomes slow, but the number of the photocatalyst cartridges 14 in the limited space of the hydrogen peroxide decomposition tank 3 can be increased, and the flow of water to be flowed in the radial direction can be repeated. As a result, the decomposition efficiency is improved. Note that the interval W2 between the first guide plate 18 of the one adjacent photocatalyst cartridge 14 and the second guide plate 19 of the other photocatalyst cartridge 14 can be appropriately adjusted by sliding the photocatalyst cartridge 14 in the axial direction. It is preferable that By making the interval W2 adjustable in this way, the flow resistance can be appropriately set by adjusting the flow resistance of the water to be treated in the hydrogen peroxide decomposition tank 3. Thereby, the processing efficiency by a photocatalyst can be improved.

したがって、本発明の実施形態の一例である過酸化水素分解槽3においては、流体流入部11から流入した被処理水は、紫外線光源13からの紫外線の照射を受けながら、第1誘導板18によって、光触媒フィルタ15と紫外線光源13との間に誘導される。その後、第2誘導板19によって、最下段にある第一の光触媒フィルタ15を通して、過酸化水素分解槽3の内面と光触媒フィルタ15との間に誘導される。次に、第1誘導板18と第2誘導板19との間の間隔W2を通って、光触媒フィルタ15と紫外線光源13との間に誘導され、その後、第2誘導板19によって、1つ上段にある第二の光触媒フィルタ15を通して、過酸化水素分解槽3の内面と光触媒フィルタ15との間に誘導される。それを交互に繰り返すことで、被処理水中の過酸化水素の分解が行われる。   Therefore, in the hydrogen peroxide decomposition tank 3 which is an example of the embodiment of the present invention, the water to be treated which has flowed from the fluid inflow portion 11 is irradiated with ultraviolet rays from the ultraviolet light source 13 by the first guide plate 18. , Induced between the photocatalytic filter 15 and the ultraviolet light source 13. Thereafter, the second guide plate 19 is guided between the inner surface of the hydrogen peroxide decomposition tank 3 and the photocatalytic filter 15 through the first photocatalytic filter 15 at the lowest stage. Next, the light is guided between the photocatalytic filter 15 and the ultraviolet light source 13 through the space W2 between the first guide plate 18 and the second guide plate 19, and then is moved up by one step by the second guide plate 19. The second photocatalytic filter 15 is guided between the inner surface of the hydrogen peroxide decomposition tank 3 and the photocatalytic filter 15. By repeating this alternately, hydrogen peroxide in the water to be treated is decomposed.

本発明の過酸化水素を含む被処理水の処理方法および過酸化水素除去装置は、電子部品製造工程より排出される排水の処理に特に有効である。すなわち、紫外線が被処理水に充分に照射された状態で紫外線による過酸化水素分解を行いつつ、光触媒と被処理水との接触効率に優れ、且つ、光触媒への紫外線の照射効率が高いため、被処理水中の過酸化水素を最大限分解できる。   The method for treating water to be treated containing hydrogen peroxide and the apparatus for removing hydrogen peroxide according to the present invention are particularly effective for treating waste water discharged from an electronic component manufacturing process. That is, while performing the hydrogen peroxide decomposition by ultraviolet rays while the ultraviolet rays are sufficiently irradiated to the water to be treated, the contact efficiency between the photocatalyst and the water to be treated is excellent, and the irradiation efficiency of the ultraviolet rays to the photocatalyst is high. It can decompose hydrogen peroxide in the water to be treated to the maximum extent.

以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例に
よりなんら限定されるものではない。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited at all by these Examples.

(製造例1)
5リットルの三口フラスコに無水トルエン2. 5リットルと金属ナトリウム400gとを入れ窒素ガス気流下でトルエンの沸点まで加熱し、ジメチルジク口口シラン1リットルを1時間かけて滴下した。滴下終了後、10時間加熱還流し沈殿物を生成させた。この沈殿を濾過し、まずメタノールで洗浄した後、水で洗浄して、白色粉末のポリジメチルシラン420gを得た。ポリジメチルシラン250gを、水冷還流器を備えた三口フラスコ中に仕込み、窒素気流下、420℃で30時間加熱反応させて数平均分子量が1200のポリカルボシランを得た。
(Production Example 1)
In a 5-liter three-necked flask, 2.5 liters of anhydrous toluene and 400 g of metallic sodium were added and heated to the boiling point of toluene under a nitrogen gas stream, and 1 liter of dimethyldiethyl silane was added dropwise over 1 hour. After completion of the dropwise addition, the mixture was heated to reflux for 10 hours to form a precipitate. This precipitate was filtered, washed with methanol and then with water to obtain 420 g of white powder of polydimethylsilane. 250 g of polydimethylsilane was charged into a three-necked flask equipped with a water-cooled reflux condenser, and heated and reacted at 420 ° C. for 30 hours under a nitrogen stream to obtain polycarbosilane having a number average molecular weight of 1200.

上記方法により合成されたポリカルボシラン16gにトルエン100gとテトラブトキシチタン64gを加え、100℃で1時間予備加熱させた後、150℃までゆっくり昇温して5時間反応して変性ポリカルボシランを合成した。この変性ポリカルボシランに意図的に低分子量の有機金属化合物を共存させる目的で5gのテトラブトキシチタンを加えて、変性ポリ力ルボシランと低分子量有機金属化合物の混合物を得た。この変性ボリカルボシランと低分子量有機金属化合物の混合物をトルエンに溶解させた後、メルトブ口一紡糸装置に仕込み、内部を十分に窒素置換してから昇温してトルエンを留去させて、180℃で紡糸を行った。紡糸した不織布を、空気中、段階的に150℃まで加熱し不融化させた後、1200℃の空気中で1時間焼成を行い、光触媒繊維としてチタニアおよびシリカからなるシリカ基複合酸化物繊維を得た。   To 16 g of polycarbosilane synthesized by the above method, 100 g of toluene and 64 g of tetrabutoxytitanium are added, preheated at 100 ° C. for 1 hour, then slowly heated to 150 ° C. and reacted for 5 hours to give modified polycarbosilane. Synthesized. In order to intentionally allow the low molecular weight organometallic compound to coexist with the modified polycarbosilane, 5 g of tetrabutoxytitanium was added to obtain a mixture of the modified polycarbosilane and the low molecular weight organometallic compound. After the mixture of this modified polycarbosilane and low molecular weight organometallic compound was dissolved in toluene, it was charged into a melt-bore single spinning device, the interior was sufficiently purged with nitrogen, and the temperature was raised to distill off the toluene. Spinning was performed at 0 ° C. The spun nonwoven fabric is heated to 150 ° C stepwise in air and then infusible, followed by firing in air at 1200 ° C for 1 hour to obtain silica-based composite oxide fibers composed of titania and silica as photocatalyst fibers. It was.

製造例1によって得られたシリカ基複合酸化物繊維は、第1相の存在割合が80重量%、第2相の存在割合が20重量%であった。存在割合は、蛍光X線分析によって求めた。第2相に含まれるチタニアの結晶粒子は8nmであった。粒子径はTEM (透過型電子顕微鏡観察)によって求めた。シリカ基複合酸化物繊維の表面から、300nmの深さで金属酸化物のチタンの存在割合が傾斜していた。傾斜の深さは、オージェ電子分光分析によって求めた。   The silica-based composite oxide fiber obtained in Production Example 1 had a first phase content of 80% by weight and a second phase content of 20% by weight. The abundance ratio was determined by fluorescent X-ray analysis. The titania crystal particles contained in the second phase were 8 nm. The particle diameter was determined by TEM (transmission electron microscope observation). From the surface of the silica-based composite oxide fiber, the abundance of titanium metal oxide was inclined at a depth of 300 nm. The inclination depth was determined by Auger electron spectroscopy.

(実施例1)
第一工程における溶存酸素除去装置2には、到達真空度100Paのポリオレフィン系中空糸膜脱気装置(PolyPore社製リキセル(登録商標)分離膜コンタクターX40)を用いた。
Example 1
For the dissolved oxygen removing device 2 in the first step, a polyolefin-based hollow fiber membrane degassing device (PolyPore's Lixel (registered trademark) separation membrane contactor X40) having an ultimate vacuum of 100 Pa was used.

第二工程では、図2に示す過酸化水素分解槽3を用いた。過酸化水素分解槽3は、ステンレス製で、内径100mm、高さ400mmのものを使用した。製造例1によって得られたシリカ基複合酸化物繊維の平板状不織布からなる光触媒フィルタ15をステンレス製の円筒状の保持材16に取り付け、ステンレス製の金網17で保持して円筒状成型物とし、この円筒状成型物のそれぞれの端部に第1誘導板18と第2誘導板19を設置することで、光触媒カートリッジ14を作製した。保持材16の不織布取り付け部は、外径を60mm、高さW1を30mmとし、過酸化水素分解槽3の内面と接する第1誘導板18の直径を100mmとした。紫外線光源と接する第2誘導板19は、その中心に紫外線光源の石英管に内接する直径25mmの穴を有する、保持材16と同じ外径60mmの円板状物とした。以上の構成の光触媒カートリッジ14を図2に示す実施形態と同様にそれぞれ間隔W2を6mmとして連結部材20で連結することで、10段の光触媒カートリッジを作製した。これを、図2に示すように、過酸化水素分解槽3の内部に設置した。また、過酸化水素分解槽3の内部紫外光光源13に直径25mmの透明石英製の保護管を挿入し、保護管の中にピーク波長254nm、出力65Wのアマルガムランプ(ヘレウス社製NNI 60/35XL)を1本配置した。   In the second step, the hydrogen peroxide decomposition tank 3 shown in FIG. 2 was used. The hydrogen peroxide decomposition tank 3 is made of stainless steel and has an inner diameter of 100 mm and a height of 400 mm. A photocatalytic filter 15 made of a flat nonwoven fabric of silica-based composite oxide fibers obtained in Production Example 1 is attached to a stainless steel cylindrical holding material 16 and held by a stainless steel wire mesh 17 to form a cylindrical molded product. The photocatalyst cartridge 14 was produced by installing the 1st guide plate 18 and the 2nd guide plate 19 in each edge part of this cylindrical molding. The non-woven fabric attachment portion of the holding material 16 had an outer diameter of 60 mm, a height W1 of 30 mm, and a diameter of the first guide plate 18 in contact with the inner surface of the hydrogen peroxide decomposition tank 3 was 100 mm. The second guide plate 19 in contact with the ultraviolet light source was a disk-shaped object having an outer diameter of 60 mm, which is the same as the holding material 16, and has a hole having a diameter of 25 mm inscribed in the quartz tube of the ultraviolet light source at the center. Similarly to the embodiment shown in FIG. 2, the photocatalyst cartridge 14 having the above-described configuration was connected by the connecting member 20 with the interval W2 being 6 mm, thereby producing a 10-step photocatalyst cartridge. This was installed in the hydrogen peroxide decomposition tank 3 as shown in FIG. A protective tube made of transparent quartz having a diameter of 25 mm is inserted into the internal ultraviolet light source 13 of the hydrogen peroxide decomposition tank 3, and an amalgam lamp (NNI 60 / 35XL manufactured by Heraeus Co., Ltd.) having a peak wavelength of 254 nm and an output of 65 W is inserted into the protective tube. ) Was placed.

溶存酸素除去装置2として用いた膜脱気装置から過酸化水素分解槽3へ被処理水が流通するように膜脱気装置と過酸化水素分解槽3とを流路によって連結して過酸化水素除去装置1を構成した。また、膜脱気装置の流体流入部の手前側、および過酸化水素分解槽3の流体流入部の手前側の流路に、溶存酸素濃度測定装置4を設置して、被処理水中の溶存酸素濃度を測定した。   The membrane deaerator and the hydrogen peroxide decomposition tank 3 are connected by a flow path so that the water to be treated flows from the membrane deaerator used as the dissolved oxygen removal apparatus 2 to the hydrogen peroxide decomposition tank 3. A removal apparatus 1 was configured. Also, a dissolved oxygen concentration measuring device 4 is installed in the flow path on the front side of the fluid inflow portion of the membrane degassing apparatus and on the front side of the fluid inflow portion of the hydrogen peroxide decomposition tank 3, so that the dissolved oxygen in the water to be treated. Concentration was measured.

実施例1における過酸化水素を含有する被処理水の処理を次のように行った。超純水に過酸化水素水を添加して調製した14ppbの過酸化水素を含む被処理水を、流量1L/minで膜脱気装置に導入して溶存酸素の低減処理を行い、次いで、膜脱気装置にて処理された被処理水を、1L/minの流量を維持したまま過酸化水素分解槽3に導入して、紫外線および光触媒による過酸化水素の分解処理を行った。被処理水の処理を行う間は、膜脱気装置を作動させて、膜脱気装置の真空度を0.8kPaに保った。   The treatment water containing hydrogen peroxide in Example 1 was treated as follows. Water to be treated containing 14 ppb hydrogen peroxide prepared by adding hydrogen peroxide to ultrapure water is introduced into the membrane deaerator at a flow rate of 1 L / min to reduce dissolved oxygen, and then the membrane The water to be treated treated by the deaerator was introduced into the hydrogen peroxide decomposition tank 3 while maintaining a flow rate of 1 L / min, and the hydrogen peroxide was decomposed by ultraviolet rays and a photocatalyst. During the treatment of the water to be treated, the membrane deaerator was operated to keep the degree of vacuum of the membrane deaerator at 0.8 kPa.

膜脱気装置の流体流入部の手前側に設置した溶存酸素濃度測定装置4により、実施例1にて処理する超純水の溶存酸素濃度が5.8mg/Lであることが確認され、過酸化水素分解槽3の流体流入部の手前側に設置した溶存酸素濃度測定装置4により、膜脱気装置にて被処理水の溶存酸素濃度が0.07mg/Lまで低減されたことが確認された。   The dissolved oxygen concentration measuring device 4 installed on the front side of the fluid inflow part of the membrane deaerator confirms that the dissolved oxygen concentration of the ultrapure water treated in Example 1 is 5.8 mg / L. The dissolved oxygen concentration measuring device 4 installed on the front side of the fluid inflow portion of the hydrogen oxide decomposition tank 3 confirmed that the dissolved oxygen concentration of the water to be treated was reduced to 0.07 mg / L by the membrane deaerator. It was.

過酸化水素分解槽3から排出された、過酸化水素分解処理後の被処理水を回収し、その過酸化水素の濃度を測定したところ、2ppbであり、実施例1における過酸化水素除去率は86%であることが確認された。   The treated water discharged from the hydrogen peroxide decomposition tank 3 after the hydrogen peroxide decomposition treatment was recovered, and the concentration of the hydrogen peroxide was measured to be 2 ppb. The hydrogen peroxide removal rate in Example 1 was It was confirmed to be 86%.

(比較例1)
溶存酸素除去装置を備えないことと、溶存酸素濃度測定装置4が過酸化水素分解槽3の流体流入部の手前側のみに設置されていること以外は実施例と同様の過酸化水素除去装置を用いて、18ppbの過酸化水素を含む被処理水を、1L/minの流量で過酸化水素分解槽3に導入して、紫外線および光触媒による過酸化水素の分解処理を行った。
(Comparative Example 1)
A hydrogen peroxide removing device similar to that of the example is provided except that a dissolved oxygen removing device is not provided and the dissolved oxygen concentration measuring device 4 is installed only on the front side of the fluid inflow portion of the hydrogen peroxide decomposition tank 3. The water to be treated containing 18 ppb of hydrogen peroxide was introduced into the hydrogen peroxide decomposition tank 3 at a flow rate of 1 L / min, and the hydrogen peroxide was decomposed by ultraviolet rays and a photocatalyst.

過酸化水素分解槽3の流体流入部の手前側に設置した溶存酸素濃度測定装置4により、比較例1にて処理する被処理水の溶存酸素濃度が5.5mg/Lであることが確認された。   It is confirmed by the dissolved oxygen concentration measuring device 4 installed in front of the fluid inflow part of the hydrogen peroxide decomposition tank 3 that the dissolved oxygen concentration of the water to be treated to be treated in Comparative Example 1 is 5.5 mg / L. It was.

過酸化水素分解槽3から排出された、過酸化水素分解処理後の被処理水を回収し、その過酸化水素濃度を測定したところ、22ppbであり、過酸化水素濃度が上昇していることが確認された。   The treated water discharged from the hydrogen peroxide decomposition tank 3 after the hydrogen peroxide decomposition treatment was recovered, and the hydrogen peroxide concentration was measured. As a result, it was 22 ppb, and the hydrogen peroxide concentration increased. confirmed.

(比較例2)
膜脱気装置の真空度を8kPaに保ったこと以外は実施例1と同じ方法で、被処理水中の過酸化水素の分解処理を行った。実施例1と同様の方法により、膜脱気装置にて被処理水の溶存酸素濃度が0.7mg/Lまで低減されたことが確認された。
(Comparative Example 2)
The hydrogen peroxide in the water to be treated was decomposed by the same method as in Example 1 except that the degree of vacuum of the membrane deaerator was kept at 8 kPa. In the same manner as in Example 1, it was confirmed that the dissolved oxygen concentration of the water to be treated was reduced to 0.7 mg / L by the membrane deaerator.

過酸化水素分解槽3から排出された、過酸化水素分解処理後の被処理水を回収し、その過酸化水素濃度を測定したところ、9ppbであり、過酸化水素除去率は36%であることが確認された。   The treated water discharged from the hydrogen peroxide decomposition tank 3 after the hydrogen peroxide decomposition treatment was recovered and the hydrogen peroxide concentration was measured. As a result, it was 9 ppb and the hydrogen peroxide removal rate was 36%. Was confirmed.

(比較例3)
膜脱気装置の真空度を28kPaに保ったことと、膜脱気装置に導入する被処理水の過酸化水素濃度が17ppbであったこと以外は実施例1と同じ方法で、被処理水中の過酸化水素の分解処理を行った。実施例1と同様の方法により、膜脱気装置にて被処理水の溶存酸素濃度が2.4mg/Lまで低減されたことが確認された。
(Comparative Example 3)
In the same manner as in Example 1 except that the vacuum degree of the membrane deaerator was kept at 28 kPa and the hydrogen peroxide concentration of the water to be treated introduced into the membrane deaerator was 17 ppb. Hydrogen peroxide was decomposed. In the same manner as in Example 1, it was confirmed that the dissolved oxygen concentration of the water to be treated was reduced to 2.4 mg / L in the membrane deaerator.

過酸化水素分解槽3から排出された、過酸化水素分解処理後の被処理水を回収し、その過酸化水素濃度を測定したところ、11ppbであり、過酸化水素除去率は35%であることが確認された。   The treated water discharged from the hydrogen peroxide decomposition tank 3 after the hydrogen peroxide decomposition treatment was recovered and the hydrogen peroxide concentration measured was 11 ppb, and the hydrogen peroxide removal rate was 35%. Was confirmed.

(比較例4)
実施例1の過酸化水素分解槽3から光触媒フィルタ(光触媒)15を除去し、比較例4で使用する過酸化水素分解槽を構成した。この光触媒を備えない過酸化水素分解槽を用いたことと、膜脱気装置に導入する被処理水の過酸化水素濃度が13ppbであったこと以外は実施例1と同じ方法で、被処理水中の過酸化水素の分解処理を行った。実施例1と同様の方法により、膜脱気装置にて被処理水の溶存酸素濃度が0.07mg/Lまで低減されたことが確認された。
(Comparative Example 4)
The photocatalytic filter (photocatalyst) 15 was removed from the hydrogen peroxide decomposition tank 3 of Example 1, and the hydrogen peroxide decomposition tank used in Comparative Example 4 was configured. In the same manner as in Example 1 except that this hydrogen peroxide decomposition tank not equipped with a photocatalyst was used and the hydrogen peroxide concentration of the water to be treated introduced into the membrane deaerator was 13 ppb. The hydrogen peroxide was decomposed. In the same manner as in Example 1, it was confirmed that the dissolved oxygen concentration of the water to be treated was reduced to 0.07 mg / L in the membrane deaerator.

過酸化水素分解槽から排出された、過酸化水素分解処理後の被処理水を回収し、その被処理水の過酸化水素濃度を測定したところ、12ppbであり、過酸化水素除去率は7%であった。光触媒を除いて、紫外線照射のみで過酸化水素分解処理を行った場合、過酸化水素の分解効率が著しく低下した。   The treated water discharged from the hydrogen peroxide decomposition tank was recovered and the concentration of hydrogen peroxide in the treated water was measured. As a result, it was 12 ppb, and the hydrogen peroxide removal rate was 7%. Met. Except for the photocatalyst, when the hydrogen peroxide decomposition treatment was performed only by ultraviolet irradiation, the decomposition efficiency of hydrogen peroxide was significantly reduced.

本発明の過酸化水素を含む被処理水の処理方法および過酸化水素除去装置によれば、過酸化水素を含む被処理水の過酸化水素濃度を極めて低いレベル、具体的には5ppb以下に低減できる。   According to the method for treating water to be treated containing hydrogen peroxide and the hydrogen peroxide removing apparatus of the present invention, the hydrogen peroxide concentration of water to be treated containing hydrogen peroxide is reduced to an extremely low level, specifically to 5 ppb or less. it can.

本発明によれば、電子部品、たとえば、半導体や液晶などを製造する工場で用いられている超純水の洗浄排水を、紫外線と光触媒とを併用する経済的に有利な方法によって、排水中に存在するppbレベルの濃度の過酸化水素を効果的に分解できるので、このような洗浄排水を電子部品の洗浄等に容易に再利用することができる。   According to the present invention, ultrapure water cleaning wastewater used in factories that manufacture electronic components such as semiconductors and liquid crystals, etc., can be put into wastewater by an economically advantageous method using a combination of ultraviolet rays and a photocatalyst. Since the existing hydrogen peroxide having a concentration of ppb level can be effectively decomposed, such cleaning waste water can be easily reused for cleaning electronic components and the like.

1 過酸化水素除去装置
2 溶存酸素除去装置
3 過酸化水素分解槽
4 溶存酸素濃度測定装置
11 流体流入部
12 流体排出部
13 紫外線光源
14 光触媒フィルタカートリッジ
15 光触媒フィルタ(光触媒)
16 保持材
17 金網
18 第1誘導板
19 第2誘導板
20 連結部材
DESCRIPTION OF SYMBOLS 1 Hydrogen peroxide removal apparatus 2 Dissolved oxygen removal apparatus 3 Hydrogen peroxide decomposition tank 4 Dissolved oxygen concentration measuring apparatus 11 Fluid inflow part 12 Fluid discharge part 13 Ultraviolet light source 14 Photocatalyst filter cartridge 15 Photocatalyst filter (photocatalyst)
16 Holding Material 17 Wire Mesh 18 First Guide Plate 19 Second Guide Plate 20 Connecting Member

Claims (9)

過酸化水素を含む被処理水の処理方法であって、
前記被処理水中の溶存酸素濃度を溶存酸素除去装置によって0.1mg/L以下に低減させる第一工程と、
光触媒に190nm以上のピーク波長を有する紫外線を照射させた状態で、前記第一工程で処理された前記被処理水を前記光触媒に接触させて、前記被処理水中の過酸化水素を分解する第二工程と、
からなることを特徴とする過酸化水素を含む被処理水の処理方法。
A method for treating water to be treated containing hydrogen peroxide,
A first step of reducing the dissolved oxygen concentration in the water to be treated to 0.1 mg / L or less by a dissolved oxygen removing device;
A second process for decomposing hydrogen peroxide in the treated water by bringing the treated water treated in the first step into contact with the photocatalyst while irradiating the photocatalyst with ultraviolet light having a peak wavelength of 190 nm or more. Process,
A method for treating water to be treated containing hydrogen peroxide, comprising:
前記被処理水が、電子部品製造工程より排出される排水であることを特徴とする請求項1記載の過酸化水素を含む被処理水の処理方法。   The method for treating water to be treated containing hydrogen peroxide according to claim 1, wherein the water to be treated is waste water discharged from an electronic component manufacturing process. 前記光触媒が、酸化チタンを表面に有する光触媒繊維の不織布であること特徴とする請求項1または2に記載の過酸化水素を含む被処理水の処理方法。   The method for treating water to be treated containing hydrogen peroxide according to claim 1 or 2, wherein the photocatalyst is a non-woven fabric of photocatalyst fibers having titanium oxide on the surface. 前記光触媒繊維が、シリカ成分を主体とする酸化物相(第1相)とTiを含む金属酸化物相(第2相)とからなる繊維であって、第2相を構成する金属酸化物のTiの存在割合が繊維の表層に向かって傾斜的に増大している、光触媒機能を有するシリカ基複合酸化物繊維であることを特徴とする請求項3記載の過酸化水素を含む被処理水の処理方法。   The photocatalyst fiber is a fiber composed of an oxide phase (first phase) mainly composed of a silica component and a metal oxide phase (second phase) containing Ti, and a metal oxide constituting the second phase. 4. The water to be treated containing hydrogen peroxide according to claim 3, which is a silica-based composite oxide fiber having a photocatalytic function, in which the proportion of Ti increases in a gradient manner toward the surface layer of the fiber. Processing method. 過酸化水素を含む被処理水中の溶存酸素濃度を所定値以下に低減させる溶存酸素除去装置と、
前記溶存酸素除去装置にて溶存酸素濃度が所定値以下に低減された過酸化水素を含む被処理水を処理する、光触媒と該光触媒に紫外線を照射可能な紫外線光源とを収容する過酸化水素分解槽と、
を備えることを特徴とする過酸化水素除去装置。
A dissolved oxygen removing device that reduces the dissolved oxygen concentration in the water to be treated containing hydrogen peroxide to a predetermined value or less;
Hydrogen peroxide decomposition that treats water to be treated containing hydrogen peroxide whose dissolved oxygen concentration is reduced to a predetermined value or less by the dissolved oxygen removal apparatus, and that contains a photocatalyst and an ultraviolet light source capable of irradiating the photocatalyst with ultraviolet light A tank,
An apparatus for removing hydrogen peroxide, comprising:
前記所定値が0.1mg/Lであることを特徴とする請求項5記載の過酸化水素除去装置。   6. The hydrogen peroxide removing apparatus according to claim 5, wherein the predetermined value is 0.1 mg / L. 前記被処理水が、電子部品製造工程より排出される排水であることを特徴とする請求項5または6記載の過酸化水素除去装置。   The hydrogen peroxide removing apparatus according to claim 5 or 6, wherein the water to be treated is waste water discharged from an electronic component manufacturing process. 前記光触媒が、酸化チタンを表面に有する光触媒繊維の不織布であることを特徴とする請求項5〜7いずれか一項に記載の過酸化水素除去装置。   The hydrogen peroxide removing apparatus according to any one of claims 5 to 7, wherein the photocatalyst is a non-woven fabric of photocatalyst fibers having titanium oxide on a surface thereof. 前記光触媒繊維が、シリカ成分を主体とする酸化物相(第1相)とTiを含む金属酸化物相(第2相)とからなる繊維であって、第2相を構成する金属酸化物のTiの存在割合が繊維の表層に向かって傾斜的に増大している、光触媒機能を有するシリカ基複合酸化物繊維であることを特徴とする請求項8記載の過酸化水素除去装置。   The photocatalyst fiber is a fiber composed of an oxide phase (first phase) mainly composed of a silica component and a metal oxide phase (second phase) containing Ti, and a metal oxide constituting the second phase. 9. The hydrogen peroxide removing apparatus according to claim 8, wherein the presence ratio of Ti is a silica-based composite oxide fiber having a photocatalytic function, which gradually increases toward the surface layer of the fiber.
JP2013083447A 2013-04-12 2013-04-12 Method of treating to-be-treated water containing hydrogen peroxide and hydrogen peroxide removal apparatus Pending JP2014205103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013083447A JP2014205103A (en) 2013-04-12 2013-04-12 Method of treating to-be-treated water containing hydrogen peroxide and hydrogen peroxide removal apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013083447A JP2014205103A (en) 2013-04-12 2013-04-12 Method of treating to-be-treated water containing hydrogen peroxide and hydrogen peroxide removal apparatus

Publications (1)

Publication Number Publication Date
JP2014205103A true JP2014205103A (en) 2014-10-30

Family

ID=52119146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013083447A Pending JP2014205103A (en) 2013-04-12 2013-04-12 Method of treating to-be-treated water containing hydrogen peroxide and hydrogen peroxide removal apparatus

Country Status (1)

Country Link
JP (1) JP2014205103A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019136844A (en) * 2018-02-14 2019-08-22 株式会社ディスコ Processing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019136844A (en) * 2018-02-14 2019-08-22 株式会社ディスコ Processing device
CN110153780A (en) * 2018-02-14 2019-08-23 株式会社迪思科 Processing unit (plant)
JP7150390B2 (en) 2018-02-14 2022-10-11 株式会社ディスコ processing equipment
TWI801498B (en) * 2018-02-14 2023-05-11 日商迪思科股份有限公司 Processing device

Similar Documents

Publication Publication Date Title
JP5141846B2 (en) Ultraviolet oxidation apparatus, ultrapure water production apparatus using the same, ultraviolet oxidation method, and ultrapure water production method
US5302356A (en) Ultrapure water treatment system
EP2483204B1 (en) Methods of making metal-oxides and uses thereof for water treatment and energy applications
KR20140134990A (en) A water treatment system including porous alumina membranes immobilized photocatalysts, operating method thereof, and purifying method of wastewater using thereby
JP2007021347A (en) Hardly decomposable substance-containing water treatment method
KR100703032B1 (en) Nano porous photocatalytic membrane, method of manufacturing the same, water treatment purification system and air purification system using the nano porous photocatalytic membrane
JP2009018282A (en) Ultraviolet oxidation device and ultraviolet oxidation method
KR100720035B1 (en) Water treatment apparatus and method using photocatalyst
JP2010022936A (en) Apparatus and method for producing ultrapure water
CA2194657A1 (en) Photoelectrochemical reactor
KR100480347B1 (en) Apparatus for sterilization and purification using UV Lamp Module and Potocatalyst
JP2014205103A (en) Method of treating to-be-treated water containing hydrogen peroxide and hydrogen peroxide removal apparatus
JP2010227841A (en) Endotoxin decomposition device, purified water production system equipped with the same, system of producing purified water for artificial dialysis, and method of decomposing endotoxin
JP5376670B2 (en) Waste water treatment apparatus and waste water treatment method
JP2004267855A (en) Water treatment apparatus utilizing photocatalyst
KR20210142047A (en) A METHOD FOR PROCESSING WASTE WATER USING CERAMIC SEPARATION MEMBRANE COATED WITH Ti2O AND A SYSTEM FOR PROCESSING WASTE WATER
KR101623032B1 (en) catalytic composite for catalytic ozonation process and the method of removing non-degradable organic material using the same
KR100706536B1 (en) Rapid waste water treatment apparatus and rapid waste water treatment method using the apparatus
KR100833814B1 (en) Water purification device
KR101623554B1 (en) Processing device for sewage purification using organic-inorganic hybrid nano-porous materials and methods therefor
KR101015911B1 (en) TiO2 plate produced by oxidizing Ti plate
JP2014121659A (en) Water treatment apparatus, and method for treating water by using the same
KR102589961B1 (en) Photocatalyst and method for preparing the same
Visa et al. Photocatalytic properties of titania-fly ash thin films.
JP2011212570A (en) Method and apparatus for treating fluorine compound-containing wastewater