JP2014205086A - Purification equipment for contaminated soil and method for purifying contaminated soil - Google Patents

Purification equipment for contaminated soil and method for purifying contaminated soil Download PDF

Info

Publication number
JP2014205086A
JP2014205086A JP2013082368A JP2013082368A JP2014205086A JP 2014205086 A JP2014205086 A JP 2014205086A JP 2013082368 A JP2013082368 A JP 2013082368A JP 2013082368 A JP2013082368 A JP 2013082368A JP 2014205086 A JP2014205086 A JP 2014205086A
Authority
JP
Japan
Prior art keywords
heat
aquifer
water
groundwater
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013082368A
Other languages
Japanese (ja)
Other versions
JP6163345B2 (en
Inventor
孝昭 清水
Takaaki Shimizu
孝昭 清水
信康 奥田
Nobuyasu Okuda
信康 奥田
靖英 古川
Yasuhide Furukawa
靖英 古川
朋宏 中島
Tomohiro Nakajima
朋宏 中島
一洋 向井
Kazuhiro Mukai
一洋 向井
慎行 谷
Chikayuki Tani
慎行 谷
薫 稲葉
Kaoru Inaba
薫 稲葉
啓介 大村
Keisuke Omura
啓介 大村
洋一 泉澤
Yoichi Izumisawa
洋一 泉澤
野口 達也
Tatsuya Noguchi
達也 野口
壮仁 川島
Masahito Kawashima
壮仁 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Takenaka Doboku Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Takenaka Doboku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd, Takenaka Doboku Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2013082368A priority Critical patent/JP6163345B2/en
Publication of JP2014205086A publication Critical patent/JP2014205086A/en
Application granted granted Critical
Publication of JP6163345B2 publication Critical patent/JP6163345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the purification efficiency of contaminated soil.SOLUTION: At the summer season, by making ground water into hot water H via a heat medium and a heat exchanger 70 using waste heat emitted from an air conditioner and pouring the same into an aquifer 12, the purification efficiency of contaminated soil 20 improves compared with purification with ordinary temperature water G. Further, by storing waste heat (warm heat-cool heat) emitted from the air conditioner 60 in the ground, the energy efficiency of the whole obtained by totaling the purification of the contaminated soil 20 and the air conditioning of the air conditioner 60 is increased.

Description

本発明は、汚染土壌の浄化設備、及び汚染土壌の浄化方法に関する。   The present invention relates to a contaminated soil purification facility and a contaminated soil purification method.

特許文献1には、平坦地に建てる建物の冷暖房設備の製造法に関する技術が開示されている。この先行技術では、人工池用の穴の周縁に鉛直柱状熱交換筒を多数本埋込み、蒸発器・圧縮器・凝縮器・膨張弁よりなる閉回路を循環する冷媒を有するヒートポンプを設置し、鉛直柱状熱交換筒と蒸発器内を循環する一次不凍液循環路と凝縮器と熱交換室内機内を循環する二次不凍液循環路とを設けている。   Patent Document 1 discloses a technique related to a method for manufacturing a cooling and heating facility for a building built on a flat ground. In this prior art, a large number of vertical columnar heat exchange tubes are embedded in the periphery of the hole for the artificial pond, and a heat pump having a refrigerant circulating in a closed circuit consisting of an evaporator, a compressor, a condenser, and an expansion valve is installed. A columnar heat exchange cylinder, a primary antifreeze liquid circulation path that circulates in the evaporator, a condenser, and a secondary antifreeze liquid circulation path that circulates in the heat exchange indoor unit are provided.

特許文献2には、土壌汚染地域の地熱を利用した設備に関する技術が開示されている。この先行技術では、採熱管と第一循環路を有する一次側熱交換器と、放熱管と第二循環路を有する二次側熱交換器と、の間に、蒸発器、圧縮器、凝縮器および膨張弁を有するヒートポンプを設け、採熱管を土壌汚染地域に水平または垂直に埋設して、その内部を循環させる第一熱媒によって地中熱を採取し、ヒートポンプで昇温した後、その熱を内部に循環させる第二熱媒によって放熱管から放熱している。   Patent Document 2 discloses a technique related to equipment using geothermal heat in a soil-contaminated area. In this prior art, an evaporator, a compressor, and a condenser are disposed between a primary side heat exchanger having a heat collecting pipe and a first circulation path, and a secondary side heat exchanger having a heat radiation pipe and a second circulation path. And a heat pump with an expansion valve, burying the heat collection pipe horizontally or vertically in the soil-contaminated area, collecting ground heat with the first heat medium circulating inside, and raising the temperature with the heat pump, then the heat The heat is radiated from the heat radiating pipe by the second heat medium circulating inside.

特許文献3には、汚染土壌およびまたは地下水の原位置浄化工法に関する技術が開示されている。この先行技術では、土壌中およびまたは地下水中の温度以上の融点を持つ浄化剤を加熱して液状化し、揮発性有機塩素化合物または硝酸性窒素による汚染土壌中およびまたは地下水中に注入し、汚染土壌中およびまたは地下水中に浸透拡散し、温度低下に伴い固形化している。   Patent Document 3 discloses a technique related to an in-situ purification method for contaminated soil and / or groundwater. In this prior art, a cleaning agent having a melting point equal to or higher than that of soil and / or groundwater is heated to liquefy and injected into contaminated soil and / or groundwater with volatile organochlorine compounds or nitrate nitrogen. It penetrates and diffuses into the middle and / or groundwater and solidifies as the temperature drops.

また、その他、関連する技術が特許文献4〜特許文献8に記載されている。   In addition, related techniques are described in Patent Documents 4 to 8.

ここで、地下水の温度は年間を通じて約18℃前後である。よって、汚染土壌の浄化において、汚染物質の地下水への溶出度や汚染物質を分解する微生物の活性度等を向上させることが困難であり、浄化効率の向上に限界があった。   Here, the temperature of groundwater is around 18 ° C. throughout the year. Therefore, in the purification of contaminated soil, it is difficult to improve the elution degree of the pollutant into the ground water, the activity of microorganisms that decompose the pollutant, and the like, and there has been a limit to improving the purification efficiency.

特許第3999591号Japanese Patent No. 3999591 特開2003−343929号公報JP 2003-343929 A 特開2004−216220号公報JP 2004-216220 A 特開平9−098770号公報JP-A-9-098770 特開2010−000454号公報JP 2010-000454 A 特許第4176383号Japanese Patent No. 4176383 特許第4428125号Patent No. 4428125 特許第4428638号Japanese Patent No. 4428638

本発明は、汚染土壌の浄化効率を向上させることが課題である。   An object of the present invention is to improve the purification efficiency of contaminated soil.

請求項1の発明は、帯水層から汚染物質を含む地下水を揚水し、揚水した前記地下水を浄化装置で浄化して前記帯水層に注水する浄化井戸装置と、揚水された前記地下水と熱媒体との間で熱交換を行う熱交換器と、前記熱交換器で熱交換された前記熱媒体の熱エネルギーを利用すると共に利用後に前記熱媒体を熱交換器に送る利用手段と、を備えている。   The invention of claim 1 includes a purification well device that pumps groundwater containing pollutants from an aquifer, purifies the pumped groundwater with a purifier, and pours the groundwater into the aquifer, and the pumped groundwater and heat A heat exchanger for exchanging heat with the medium; and utilization means for utilizing the heat energy of the heat medium exchanged with the heat exchanger and sending the heat medium to the heat exchanger after use. ing.

請求項1に記載の発明では、揚水した汚染物質を含む地下水を浄化装置で浄化すると共に熱交換器で熱媒体と熱交換して帯水層に注水する。また、地下水と熱交換された熱媒体を利用手段で利用すると共に、利用後に熱交換器に送られ、前述したように地下水と熱交換される。   In the first aspect of the present invention, the groundwater containing the polluted pumped water is purified by the purifier and heat-exchanged with the heat medium by the heat exchanger and poured into the aquifer. Moreover, while using the heat medium heat-exchanged with groundwater by a utilization means, it is sent to a heat exchanger after utilization and heat-exchanges with groundwater as mentioned above.

このように、揚水した地下水を熱交換器で熱媒体と熱交換し温水にして帯水層に注水することで、例えば、汚染物質が効果的に溶出される。或いは、汚染物質が効果的に微生物で分解される。よって、常温の地下水で浄化する場合と比較し、汚染物質の浄化効率が向上する(浄化が促進する)。   In this way, for example, pollutants are effectively eluted by pumping the groundwater that has been pumped into the aquifer through heat exchange with a heat medium using a heat exchanger to make warm water. Alternatively, pollutants are effectively decomposed by microorganisms. Therefore, the purification efficiency of pollutants is improved (purification is promoted) as compared with the case of purifying with room temperature groundwater.

また、利用手段から出る排熱を利用することで、汚染土壌の浄化と利用手段とを別々の装置で行う場合と比較し、汚染土壌の浄化と利用手段とを総合した全体のエネルギー効率が高められる。   In addition, by using the exhaust heat generated from the utilization means, the overall energy efficiency of the purification and utilization means of the contaminated soil is improved compared to the case where the purification of the contaminated soil and the utilization means are performed by separate devices. It is done.

請求項2の発明は、前記利用手段は、空調装置であり、前記浄化井戸装置は、夏季に温水を前記帯水層に注水して蓄熱し、冬季に冷水を前記帯水層に注水して蓄熱するように構成されている。   In the invention of claim 2, the utilization means is an air conditioner, and the purification well device injects hot water into the aquifer in the summer to store heat, and injects cold water into the aquifer in the winter. It is configured to store heat.

請求項2に記載の発明では、夏季に冷房を行う空調装置によって温度が上昇した熱媒体を熱交換器で地下水を温水にして帯水層に注水して貯留し、冬季に温水を揚水して熱交換器で熱媒体の温度を上昇させて暖房に利用する。   In the second aspect of the invention, the heat medium whose temperature has been increased by an air conditioner that cools in summer is stored by injecting water into the aquifer using ground heat as a warm water in a heat exchanger, and pumping the warm water in winter. The temperature of the heat medium is raised with a heat exchanger and used for heating.

また、冬季に暖房を行う空調装置によって温度が低下した熱媒体を熱交換器で地下水を冷水にして帯水層に注水して貯留し、夏季に冷水を揚水して熱交換器で熱媒体の温度を低下させて冷房に利用する。   In addition, in the winter season, the heat medium whose temperature has been lowered by the air conditioner that heats up is stored in the aquifer using ground heat as cold water in the heat exchanger, and in the summer, the cold water is pumped and stored in the heat exchanger. Reduce the temperature and use it for cooling.

このように、熱交換器によって地下水と熱交換された熱媒体の熱エネルギーが、一年を通じて効果的に有効に利用される。また、汚染土壌の浄化と空調装置とを総合したエネルギー効率を高められる。   Thus, the heat energy of the heat medium exchanged with the groundwater by the heat exchanger is effectively used throughout the year. Moreover, the energy efficiency which combined purification of the contaminated soil and an air conditioner can be improved.

請求項3の発明は、汚染物質を含む前記帯水層は、地盤中に難透水層で仕切られて複数層あり、前記浄化井戸装置は、前記帯水層毎に注水及び揚水の流量を制御することが可能とされ、前記熱交換器は、複数の前記帯水層から揚水された前記地下水を熱交換するように構成され、各前記帯水層から揚水される前記地下水の温度差が少なくなるように、前記帯水層毎に前記流量を制御する第一制御手段を備えている。   According to a third aspect of the present invention, the aquifer containing pollutants is divided into a plurality of layers in the ground by a hardly permeable layer, and the purification well device controls a flow rate of water injection and pumping for each aquifer. The heat exchanger is configured to exchange heat with the groundwater pumped from a plurality of the aquifers, and a temperature difference between the groundwaters pumped from the aquifers is small. In this way, first control means for controlling the flow rate is provided for each aquifer.

請求項3に記載の発明では、各帯水層から揚水される地下水の温度差が少なくなるように、第一制御手段が帯水層毎に注水及び揚水の流量を制御する。よって、揚水された地下水に温度差による熱損失が抑制され、熱交換器による熱交換の変換効率が向上する。   In the invention described in claim 3, the first control means controls the flow rate of the water injection and pumping for each aquifer so that the temperature difference of the groundwater pumped from each aquifer is reduced. Therefore, heat loss due to the temperature difference is suppressed in the pumped-up groundwater, and the conversion efficiency of heat exchange by the heat exchanger is improved.

請求項4の発明は、揚水された前記地下水の流量に応じて、前記熱交換器で熱交換する熱媒体の流量を制御する第二制御手段を備えている。   According to a fourth aspect of the invention, there is provided second control means for controlling the flow rate of the heat medium that exchanges heat with the heat exchanger according to the flow rate of the pumped groundwater.

請求項4に記載の発明では、第二制御手段が揚水された地下水の流量に応じて熱交換器で熱交換する液体の流量を制御することで、利用手段で熱エネルギーの利用効率が向上する。   In the invention according to claim 4, the utilization efficiency of the heat energy is improved by the utilization means by controlling the flow rate of the liquid to be heat exchanged by the heat exchanger according to the flow rate of the pumped ground water by the second control means. .

請求項5の発明は、帯水層から汚染物質を含む地下水を揚水し、揚水した前記地下水を浄化装置で浄化して前記帯水層に注水する浄化井戸装置と、揚水された前記地下水と熱媒体との間で熱交換を行う熱交換器と、熱交換された前記熱媒体の熱エネルギーを利用する利用手段と、を備え、前記帯水層に貯留されている冷水の前記地下水を揚水して前記熱交換器で前記熱媒体と熱交換し温水にして前記帯水層に注水する温水注水工程と、前記帯水層に貯留されている温水の前記地下水を揚水して前記熱交換器で前記熱媒体と熱交換し冷水にして前記帯水層に注水する冷水注水工程と、を交互に間をあけて断続的に行う。   The invention of claim 5 is a purification well device for pumping groundwater containing pollutants from an aquifer, purifying the pumped groundwater with a purifier, and pouring the groundwater into the aquifer, and the pumped groundwater and heat A heat exchanger that exchanges heat with the medium, and a utilization means that uses heat energy of the heat medium that has undergone heat exchange, and pumps the groundwater stored in the aquifer. A hot water injection step of exchanging heat with the heat medium in the heat exchanger to inject water into the aquifer, and pumping up the ground water stored in the aquifer to pump the ground water in the heat exchanger. A cold water injection process in which heat is exchanged with the heat medium to form cold water and poured into the aquifer is intermittently performed at intervals.

請求項5に記載の発明では、揚水した汚染物質を含む地下水を浄化装置で浄化すると共に熱交換器で熱媒体と熱交換して帯水層に注水する。また、地下水と熱交換された熱媒体を利用手段で利用すると共に、利用後に熱交換器に送られ前述したように地下水と熱交換される。   In invention of Claim 5, ground water containing the polluted water pumped up is purified with a purification device, and heat exchange with a heat medium is carried out with a heat exchanger, and water is poured into the aquifer. In addition, the heat medium exchanged with the groundwater is used by the utilization means, and is sent to the heat exchanger after use and exchanged with the groundwater as described above.

このように、帯水層に温水が貯留されることで、例えば、汚染物質が効果的に溶出される。或いは汚染物質が効果的に微生物で分解される。よって、常温の地下水で浄化する場合と比較し、汚染物質の浄化効率が向上する(浄化が促進する)。   Thus, for example, pollutants are effectively eluted by storing warm water in the aquifer. Alternatively, pollutants are effectively decomposed by microorganisms. Therefore, the purification efficiency of pollutants is improved (purification is promoted) as compared with the case of purifying with room temperature groundwater.

また、温水注水工程で帯水層に温水を注水して貯留し、冷水注水工程で貯留された温水を揚水して熱交換器で熱媒体と熱交換して利用手段で利用すると共に、熱媒体と熱交換されることで冷水になった地下水を帯水層に注水して貯留する。そして、温水注水工程で貯留された冷水を揚水して熱交換器で熱媒体と熱交換して利用手段で利用すると共に、熱媒体と熱交換されることで温水になった地下水を帯水層に注水して貯留する。   In addition, hot water is injected into the aquifer in the hot water injection process and stored, and the hot water stored in the cold water injection process is pumped and used in the utilization means by exchanging heat with the heat medium in the heat exchanger. The groundwater that has become cold water by heat exchange with water is poured into the aquifer and stored. Then, the cold water stored in the hot water injection process is pumped, and heat is exchanged with the heat medium in the heat exchanger and used in the utilization means, and the ground water that has been warmed by the heat exchange with the heat medium is used in the aquifer Water is stored in the tank.

このように、温水注水工程と冷水注水工程とを交互に間をあけて断続的に行うことで、利用手段から出る排熱(温熱及び冷熱)を地中に地下水(温水及び冷水)として貯留して蓄熱して利用することになり、汚染土壌の浄化と利用手段とを別々の装置で行う場合と比較し、汚染土壌の浄化と利用手段とを総合した全体のエネルギー効率が高められる。   In this way, the hot water injection process and the cold water injection process are intermittently performed at intervals, thereby storing the exhaust heat (heat and cold) from the utilization means as ground water (hot and cold) in the ground. Compared to the case where the purification of contaminated soil and the utilization means are performed by separate devices, the overall energy efficiency of the combined purification and utilization means of the contaminated soil is enhanced.

請求項6の発明は、前記温水注水工程においては、前記熱交換器で熱交換することで温水にされた前記地下水を前記浄化装置で浄化し、前記冷水注水工程においては、前記帯水層に貯留されている温水を揚水した前記地下水を前記浄化装置で浄化する。   Invention of Claim 6 purifies the ground water made warm by exchanging heat with the heat exchanger in the hot water injection process with the purification device, and in the cold water injection process, The said groundwater which pumped up the stored warm water is purified with the said purification apparatus.

請求項6に記載の発明では、熱交換器で熱交換することで温水にされた地下水又は揚水された温水の地下水を浄化装置で浄化することで、浄化装置での浄化効率が向上する。   In invention of Claim 6, the purification efficiency in a purification apparatus improves by purifying the groundwater made into warm water by exchanging heat with a heat exchanger, or the groundwater of the pumped warm water with a purification apparatus.

本発明によれば、汚染土壌の浄化効率を向上させることができる。   According to the present invention, the purification efficiency of contaminated soil can be improved.

本発明の第一実施形態に係る汚染土壌の浄化設備の構成を模式的に示すと共に夏季における汚染土壌の浄化を模式的に示す構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows typically the structure of the purification equipment of the contaminated soil which concerns on 1st embodiment of this invention, and shows purification of the contaminated soil in the summer. 冬季における汚染土壌の浄化を模式的に示す図1に対応する構成図である。It is a block diagram corresponding to FIG. 1 which shows typically purification | cleaning of the contaminated soil in winter. 本発明の第二実施形態に係る汚染土壌の浄化設備の構成を模式的に示すと共に夏季における汚染土壌の浄化を模式的に示す構成図である。It is a block diagram which shows typically the structure of the purification facility of the contaminated soil which concerns on 2nd embodiment of this invention, and shows purification | cleaning of the contaminated soil in summer. 冬季における汚染土壌の浄化を模式的に示す図3に対応する構成図である。It is a block diagram corresponding to FIG. 3 which shows typically purification | cleaning of the contaminated soil in winter. 第二実施携形態の浄化設備の井戸の要部の構成を模式的に示す構成図である。It is a block diagram which shows typically the structure of the principal part of the well of the purification equipment of 2nd embodiment. 夏季における汚染土壌の浄化の様子を(A)から(B)へと順番に示す工程図である。It is process drawing which shows the mode of purification of the contaminated soil in summer in order from (A) to (B). 冬季における汚染土壌の浄化の様子を(A)から(B)へと順番に示す工程図である。It is process drawing which shows the mode of purification of the contaminated soil in winter in order from (A) to (B).

<第一実施形態>
本発明の第一実施形態に係る汚染土壌の浄化設備について説明する。
<First embodiment>
The purification equipment of the contaminated soil which concerns on 1st embodiment of this invention is demonstrated.

[土壌]
図1及び図2に示すように、地盤10における地下水位Sの下側が帯水層12となっている。帯水層12には、汚染物質が含まれる汚染土壌20が存在している。なお、汚染物質は、トリクロロエチレンやベンゼンに代表される有機化合物、六価クロムやヒ素等の金属化合物、シアン等の無機化合物、ガソリンや軽油に代表される鉱油類等である。
[soil]
As shown in FIGS. 1 and 2, the aquifer 12 is below the groundwater level S in the ground 10. In the aquifer 12, contaminated soil 20 containing pollutants is present. Contaminants include organic compounds typified by trichlorethylene and benzene, metal compounds such as hexavalent chromium and arsenic, inorganic compounds such as cyan, and mineral oils typified by gasoline and light oil.

帯水層12の下は、帯水層12よりも透水性の低い難透水層14となっている。また、地盤10の上には、図示していないオフィスビルや商業施設等の構造物が建てられている。なお、難透水層14がない地盤であってもよい。   Below the aquifer 12 is a hardly permeable layer 14 that is less permeable than the aquifer 12. On the ground 10, a structure such as an office building or a commercial facility (not shown) is built. In addition, the ground without the hardly water-permeable layer 14 may be sufficient.

[浄化設備]
浄化設備100は、遮水壁50と浄化井戸装置110と熱交換器70と空調装置60と制御装置80とを含んで構成されている。
[Purification equipment]
The purification facility 100 includes a water shielding wall 50, a purification well device 110, a heat exchanger 70, an air conditioner 60, and a control device 80.

遮水壁50は、汚染土壌20の周囲を囲むように形成されている。また、下端部50Aが難透水層14に根入れされている。よって、汚染土壌20は、遮水壁50と難透水層14とで囲まれ閉鎖されている。   The impermeable wall 50 is formed so as to surround the periphery of the contaminated soil 20. Further, the lower end portion 50 </ b> A is embedded in the hardly water-permeable layer 14. Therefore, the contaminated soil 20 is surrounded and closed by the impermeable wall 50 and the hardly permeable layer 14.

浄化井戸装置110は、浄化装置112と二つの井戸120、122とを有している。二つの井戸120、122は、遮水壁50で囲まれた内側に汚染土壌20が間に挟まれるように間隔をあけて配置されている。   The purification well device 110 has a purification device 112 and two wells 120 and 122. The two wells 120 and 122 are arranged at an interval so that the contaminated soil 20 is sandwiched between the inner sides surrounded by the impermeable wall 50.

これら二つの井戸120と井戸122とは、地下水ライン124で繋がり、この地下水ライン124に浄化装置112が設置されている。そして、浄化井戸装置110は、図示していないポンプやバルブ等によって、図1に示すように、一方の井戸120から揚水し、揚水した汚染物質を含む地下水を浄化装置112で浄化したのち、他方の井戸122から注水することが可能なように構成されている。更に、浄化井戸装置110は、図2に示すように、他方の井戸122から揚水し、揚水した汚染物質を含む地下水を浄化装置112で浄化したのち、一方の他方の井戸120から注水することも可能なように構成されている。つまり、これら二つの井戸120、122は、それぞれ揚水と注水とを行うことが可能な構成となっている。   These two wells 120 and 122 are connected by a groundwater line 124, and a purification device 112 is installed in the groundwater line 124. Then, as shown in FIG. 1, the purification well device 110 is pumped from one well 120 by a pump or a valve (not shown), and after purifying the groundwater containing the pumped contaminants with the purification device 112, the other The water can be poured from the well 122. Further, as shown in FIG. 2, the purification well device 110 may pump water from the other well 122, purify the groundwater containing the polluted water with the purification device 112, and then pour water from the other well 120. It is configured as possible. That is, these two wells 120 and 122 are configured to perform pumping and water injection, respectively.

浄化装置112における浄化方法は、種々の周知技術を適用することができる。例えば、空気を送り込んで揮発性汚染物質を揮発させて水質改善する方法、浄化剤を添加し反応させて水質改善する方法、汚染物質を吸着することで地下水と汚染物質との分離を図る方法などを適用することができる。   Various known techniques can be applied to the purification method in the purification device 112. For example, a method to improve the water quality by sending air to volatilize volatile pollutants, a method to improve water quality by adding a purifier and reacting, a method to separate groundwater and pollutants by adsorbing pollutants, etc. Can be applied.

また、汚染土壌20を浄化するために揚水した地下水に洗浄剤を添加して井戸120、122から注水してもよい。或いは、生物浄化を行う場合は、栄養塩や酸素を混入させたて注水したり、新たに微生物を混入させて注水したりしてもよい。   In addition, a cleaning agent may be added to the groundwater pumped to purify the contaminated soil 20 and water may be poured from the wells 120 and 122. Or when performing biological purification, you may pour water after mixing a nutrient salt and oxygen, or you may pour water by mixing a microorganism newly.

熱交換器70は、地下水ライン124を流れる地下水と熱媒体ライン72を流れる熱媒体との間で熱交換を行う。なお、本実施形態では熱媒体は水が用いられている。しかし、熱交換が可能な媒体であればよく、例えば、オイルや気体等の流体であってもよい。また、熱媒体は、図示してないポンプ等によって熱媒体ライン72を循環するようになっている。   The heat exchanger 70 performs heat exchange between the groundwater flowing through the groundwater line 124 and the heat medium flowing through the heat medium line 72. In this embodiment, water is used as the heat medium. However, any medium that can exchange heat may be used. For example, a fluid such as oil or gas may be used. The heat medium is circulated through the heat medium line 72 by a pump or the like (not shown).

空調装置60は、地盤10に建てられている図示していないオフィスビルや商業施設等の構造物内の空調を行う。空調装置60は、熱媒体ライン72を循環する熱交換された熱媒体の熱エネルギー(温熱及び冷熱)を利用することが可能なように構成されている。なお、空調装置60は、熱媒体ライン72を循環する熱媒体の熱エネルギー以外のエネルギーも同時に使用して構造物内の空調を行うことが可能に構成されている。   The air conditioner 60 performs air conditioning in a structure such as an office building or a commercial facility (not shown) built on the ground 10. The air conditioner 60 is configured to be able to use the heat energy (hot and cold) of the heat exchanged heat medium circulating in the heat medium line 72. The air conditioner 60 is configured to be able to air-condition the structure using energy other than the heat energy of the heat medium circulating in the heat medium line 72 at the same time.

ここで、図1及び図2における各矢印は、帯水層12での地下水の流れ、地下水ライン124での地下水の流れ、熱媒体ライン72での熱媒体の流れ、空調装置60での空気の流れ、をそれぞれ示している。また、後述するように、図1と図2とでは、これらの矢印の方向が逆になっている。   Here, the arrows in FIGS. 1 and 2 indicate the flow of groundwater in the aquifer 12, the flow of groundwater in the groundwater line 124, the flow of heat medium in the heat medium line 72, and the flow of air in the air conditioner 60. Each flow is shown. Also, as will be described later, the directions of these arrows are reversed in FIGS.

制御装置80は、地下水ライン124の図示していないポンプやバルブ等の動作を制御することで、井戸120及び井戸122における注水と揚水との切り替え(地下水ライン124を流れる方向の切り替え)や注水する注水量及び揚水する揚水量を制御する。更に、制御装置80は、熱媒体ライン72の図示していないポンプなどを制御し、熱媒体が熱媒体ライン72を循環する方向及び流速(単位時間当たりの流量)を制御する。   The control device 80 controls the operation of pumps and valves (not shown) of the groundwater line 124 to switch between water injection and pumping in the well 120 and the well 122 (switching the direction of flowing through the groundwater line 124) and water injection. Control the amount of water injection and pumping. Further, the control device 80 controls a pump (not shown) of the heat medium line 72 and the like, and controls the direction in which the heat medium circulates through the heat medium line 72 and the flow velocity (flow rate per unit time).

汚染土壌20には、汚染物質を含む地下水の状態を測定する測定器82が埋設されている。測定器82は、帯水層12を流れる地下水の水圧、地下水中の汚染物質や浄化剤等の濃度、溶存酸素等の水質、地下水の温度等を測定するようになっている。また、測定結果は制御装置80に送られる。なお、図1及び図2では、測定器82は一箇所のみに設けられているが(図示されているが)、複数箇所に設けられていてもよい。   In the contaminated soil 20, a measuring instrument 82 for measuring the state of groundwater containing the pollutant is embedded. The measuring device 82 measures the pressure of groundwater flowing through the aquifer 12, the concentration of contaminants and purifiers in the groundwater, the quality of water such as dissolved oxygen, the temperature of groundwater, and the like. Further, the measurement result is sent to the control device 80. In FIG. 1 and FIG. 2, the measuring instrument 82 is provided at only one location (although illustrated), it may be provided at a plurality of locations.

<作用及び効果>
つぎに、汚染土壌の浄化方法について説明しながら、本実施形態の作用効果を説明する。なお、下記では、夏季から土壌汚染の浄化を開始しているが、これに限定されるものではない。
<Action and effect>
Next, the effects of the present embodiment will be described while explaining a method for purifying contaminated soil. In the following, soil contamination purification starts in the summer, but is not limited thereto.

図6(A)は、遮水壁50で囲まれた帯水層12の汚染物質を含む地下水を浄化する前の状態を示している。なお、このときの地下水の温度は常温(12℃〜20℃)の常温水Gである。なお、後述するように符号Cは常温水Gよりも低温の冷水を意味し、符号Hは常温水Gよりも高温の温水を意味する。温水Hの水温は、常温水Gよりも高温であれば特に限定されないが、本実施形態では25℃〜35℃となっている。また、冷水Cの水温は、常温水Gよりも低温であれば特に限定されないが、本実施形態で0°〜10℃となっている。なお、常温水G(地下水)の温度は、地質的及び地理的な影響を受ける。例えば、緯度が高いと低温となり、緯度が低いと高温となる。また、山麓部に近いと低温になり海岸平野に近いと高温になる。   FIG. 6A shows a state before purifying groundwater containing contaminants in the aquifer 12 surrounded by the impermeable wall 50. In addition, the temperature of groundwater at this time is the normal temperature water G of normal temperature (12 degreeC-20 degreeC). As will be described later, the symbol C means cold water having a temperature lower than that of the normal temperature water G, and the symbol H means hot water having a temperature higher than that of the normal temperature water G. The water temperature of the hot water H is not particularly limited as long as it is higher than that of the normal temperature water G, but in the present embodiment, it is 25 ° C to 35 ° C. The water temperature of the cold water C is not particularly limited as long as it is lower than that of the room temperature water G, but is 0 ° to 10 ° C. in the present embodiment. In addition, the temperature of the normal temperature water G (ground water) is influenced by geology and geography. For example, when the latitude is high, the temperature is low, and when the latitude is low, the temperature is high. Moreover, it becomes low temperature near the foot of the mountain, and high temperature near the coastal plain.

図1及び、図6(A)〜図6(E)に示すように、夏季に井戸120から揚水した汚染物質を含む地下水(常温水G(12℃〜20℃)を熱交換器70で熱媒体と熱交換して温水にして浄化装置112で浄化して井戸122から帯水層12に注水する(温水注水工程)。   As shown in FIG. 1 and FIGS. 6 (A) to 6 (E), groundwater (room temperature water G (12 ° C. to 20 ° C.) containing pollutants pumped from the well 120 in the summer is heated by the heat exchanger 70. Heat is exchanged with the medium to obtain warm water, which is purified by the purification device 112 and injected from the well 122 to the aquifer 12 (warm water injection step).

このように、浄化装置112では温水Hで浄化するので、空気を送り込んで揮発性汚染物質を揮発させて水質改善する場合、温度が高い方が揮発しやすいため浄化効率が向上する。或いは、浄化剤を添加し反応させて水質改善する場合も、温度が高い方が、反応速度高くなるため浄化効率が向上する。つまり、温水Hで浄化することで浄化効率が向上し浄化が促進する。   As described above, since the purification device 112 purifies with the hot water H, when air is sent to improve the water quality by volatilizing the volatile contaminants, the higher temperature tends to volatilize, so the purification efficiency is improved. Alternatively, also when a purification agent is added and reacted to improve water quality, the higher the temperature, the higher the reaction rate, so that the purification efficiency is improved. That is, purification with hot water H improves purification efficiency and promotes purification.

熱交換器70で地下水(常温水G)と熱交換された熱媒体は温度が低下し、この温度が低下した熱媒体を空調装置60で冷房に利用すると共に、冷房に利用され温度が上昇した熱媒体が熱交換器70に送れられる。そして、温度が上昇した熱媒体が前述したように地下水と熱交換されることで地下水が温水となり帯水層12に注水される。なお、常温水Gは夏季の外気よりも低温であるので、熱媒体は常温水Gと熱交換することで温度が低下し空調装置60での冷房に利用することが可能である。   The temperature of the heat medium exchanged with the ground water (normal temperature water G) in the heat exchanger 70 is lowered, and the heat medium having the lowered temperature is used for cooling by the air conditioner 60 and is also used for cooling. The heat medium is sent to the heat exchanger 70. Then, the heat medium whose temperature has risen is exchanged with the ground water as described above, so that the ground water becomes warm water and is poured into the aquifer 12. Since the normal temperature water G is cooler than the outdoor air in summer, the temperature of the heat medium decreases by exchanging heat with the normal temperature water G and can be used for cooling in the air conditioner 60.

このように井戸120から常温水Gを揚水し、井戸122から温水Hを注水することで、図6(A)〜図6(E)に示すように、徐々に帯水層12の地下水が常温水Gから温水Hに置き換わっていく。そして、図6(E)に示すように夏季が終了すると、帯水層12の地下水が常温水Gから温水Hに置き換わる。   By pumping the normal temperature water G from the well 120 and pouring the hot water H from the well 122 in this way, as shown in FIGS. The water G is replaced with warm water H. Then, as shown in FIG. 6 (E), when the summer season ends, the groundwater in the aquifer 12 is replaced with the hot water H from the normal temperature water G.

秋季の間は、汚染土壌20(図1参照)の浄化を休止する(図6(E)の状態で放置される)。しかし、地下は、土壌の断熱機能により大気の温度変化の影響を受けにくく、保温性に優れており、秋季の間、帯水層12に貯留されている温水Hは殆ど温度低下しない。すなわち、空調装置60の排熱(温熱)が温水Hとして帯水層12に蓄熱されている。   During the autumn season, the purification of the contaminated soil 20 (see FIG. 1) is suspended (left in the state of FIG. 6E). However, the underground is not easily affected by the temperature change of the atmosphere due to the heat insulating function of the soil, and is excellent in heat retention, and the temperature of the warm water H stored in the aquifer 12 during the autumn season hardly decreases. That is, the exhaust heat (warm heat) of the air conditioner 60 is stored in the aquifer 12 as warm water H.

ここで、帯水層12の地下水が温水Hとなることで、洗浄剤を添加して汚染物質を地下水に溶出させる場合、温度が高い温水Hの方が効果的に汚染物質が溶出し浄化が促進する。また、生物浄化を行う場合、浄化を行う微生物の働きが活発になり、微生物の増殖速度が高まるため、微生物が汚染物質を分解する酵素を出しやすくなり、この結果、汚染物質が効果的に浄化され浄化が促進する。このように温水Hとなることで、常温水Gの場合と比較し、汚染物質の浄化効率が向上し浄化が促進する。   Here, when the groundwater of the aquifer 12 becomes the warm water H, when the cleaning agent is added and the pollutant is eluted in the groundwater, the warm water H having a higher temperature is more effectively eluted and purified. Facilitate. In addition, when biological purification is performed, the microorganisms that perform purification become active and the growth rate of the microorganisms increases, which makes it easier for the microorganisms to produce enzymes that break down the pollutants. As a result, the pollutants are effectively purified. Purification is promoted. By becoming warm water H in this way, the purification efficiency of pollutants is improved and purification is promoted as compared with the case of room temperature water G.

冬季になると、図2及び、図7(A)〜図7(E)に示すように、井戸122から揚水した汚染物質を含む地下水(温水H)を浄化装置112で浄化して熱交換器70で熱媒体と熱交換して冷水Cにして井戸120から帯水層12に注水する(冷水注水工程)。   In the winter season, as shown in FIG. 2 and FIGS. 7A to 7E, the ground water (warm water H) containing the pollutant pumped from the well 122 is purified by the purifier 112 and the heat exchanger 70. Then, heat is exchanged with the heat medium to make cold water C, and water is poured from the well 120 to the aquifer 12 (cold water injection step).

夏季と同じく、浄化装置112では、温水Hで浄化するので、浄化効率が向上し浄化が促進する。   As in the summer, the purification device 112 purifies with the hot water H, so that the purification efficiency is improved and the purification is promoted.

熱交換器70で地下水(温水H)と熱交換された熱媒体は温度が上昇し、この温度が上方した熱媒体を空調装置60で暖房に利用すると共に、暖房に利用され温度が低下した熱媒体が熱交換器70に送れられる。そして、温度が低下した熱媒体が前述したように地下水(温水H)と熱交換されることで地下水が冷水Cとなり帯水層12に注水される。   The heat medium heat-exchanged with the ground water (warm water H) in the heat exchanger 70 has a raised temperature, and the heat medium whose temperature has been raised is used for heating by the air conditioner 60 and is also used for heating and the temperature is lowered. The medium is sent to the heat exchanger 70. Then, as described above, the heat medium whose temperature has been lowered is heat-exchanged with the groundwater (hot water H), so that the groundwater becomes cold water C and is poured into the aquifer 12.

なお、このとき温水Hの地下水と熱交換するので、常温水Gの地下水と熱交換するよりも、熱媒体の温度が効果的に上昇し、空調装置60での暖房効率が向上する。   In addition, since heat is exchanged with the groundwater of the hot water H at this time, the temperature of the heat medium is more effectively raised than when the heat is exchanged with the groundwater of the normal temperature water G, and the heating efficiency in the air conditioner 60 is improved.

このように、井戸122から温水Hが揚水され、井戸120から冷水Cを注水することで、図7(A)〜図7(E)に示すように、徐々に帯水層12の地下水が温水Hから冷水Cに置き換わっていく。そして、図7(E)に示すように冬季が終了すると、帯水層12の地下水が温水Hから冷水Cに置き換わる。   In this way, the warm water H is pumped from the well 122 and the cold water C is poured from the well 120, so that the groundwater of the aquifer 12 is gradually warmed as shown in FIGS. 7 (A) to 7 (E). Replace H with cold water C. Then, as shown in FIG. 7E, when the winter season ends, the groundwater in the aquifer 12 is replaced with hot water H by cold water C.

春季の間は、汚染土壌20(図2参照)の浄化を休止する(図7(E)の状態で放置される)。しかし、地下は保温性に優れており、春季の間、帯水層12に貯留している冷水Cは殆ど温度低下しない。すなわち、空調装置60の排熱(冷熱)が冷水Cとして帯水層12に蓄熱されている。   During the spring season, the purification of the contaminated soil 20 (see FIG. 2) is suspended (left in the state of FIG. 7E). However, the underground is excellent in heat retention, and the temperature of the cold water C stored in the aquifer 12 during spring is hardly decreased. That is, the exhaust heat (cold heat) of the air conditioner 60 is stored in the aquifer 12 as cold water C.

翌年の夏季になると、再び図1及び、図6(A)〜図6(E)に示すように、井戸120から揚水した汚染物質を含む冷水Cを熱交換器70で熱媒体と熱交換して温水Hにして浄化装置112で浄化して井戸122から帯水層12に注水する(温水注水工程)。なお、最初の年は、常温水Gが揚水されるが、翌年からは帯水層12に貯留された冷水Cが揚水される。   In the summer of the following year, as shown in FIG. 1 and FIGS. 6 (A) to 6 (E), cold water C containing pollutants pumped from the well 120 is heat-exchanged with the heat medium by the heat exchanger 70. The hot water H is then purified by the purification device 112 and injected into the aquifer 12 from the well 122 (warm water injection process). In the first year, normal temperature water G is pumped up, but cold water C stored in the aquifer 12 is pumped up from the next year.

熱交換器70で冷水Cと熱交換された熱媒体は温度が低下し、この温度が低下した熱媒体を空調装置60で冷房に利用すると共に、冷房に利用され温度が上昇した熱媒体が熱交換器70に送れられる。そして、温度が上昇した熱媒体が前述したように地下水と熱交換されることで地下水が温水Hとなり帯水層12に注水される。   The temperature of the heat medium exchanged with the chilled water C by the heat exchanger 70 decreases, and the heat medium having the decreased temperature is used for cooling by the air conditioner 60, and the heat medium having the increased temperature used for cooling is heated. It is sent to the exchanger 70. Then, the heat medium whose temperature has risen is heat-exchanged with the ground water as described above, so that the ground water becomes warm water H and is poured into the aquifer 12.

なお、翌年の夏季以降では、冷水Cの地下水と熱交換するので、常温水Gの地下水と熱交換するよりも、熱媒体の温度が効果的に低下し、空調装置60での冷房効率が向上する。   In addition, since the heat exchange with the ground water of the cold water C is performed after the summer of the following year, the temperature of the heat medium is effectively reduced and the cooling efficiency in the air conditioner 60 is improved as compared with the heat exchange with the ground water of the normal temperature water G. To do.

このように井戸120から冷水Cが揚水され、井戸122から温水Hを注水することで、図6(A)〜図6(E)に示すように、徐々に帯水層12の地下水が冷水Cから温水Hに置き換わっていく。そして、図6(E)に示すように夏季が終了すると、帯水層12の地下水が冷水Cから温水Hに置き換わる。   Thus, the cold water C is pumped from the well 120 and the hot water H is injected from the well 122, so that the groundwater of the aquifer 12 gradually becomes cold water C as shown in FIGS. 6 (A) to 6 (E). Will be replaced by hot water H. And as shown in FIG.6 (E), when the summer season is complete | finished, the groundwater of the aquifer 12 will replace the cold water C with the hot water H. FIG.

以上説明したように温水注水工程と冷水注水工程とを間隔をあけて断続的に繰り替えすることで、汚染土壌20が浄化されていき、最終的に汚染物質が規定値以下になる。なお、汚染物質が規定位置以下になるには、数年から十数年必要とされているが、本発明を適用することで浄化が促進され、本発明が適用されてない場合と比較し、短時間で規定値以下となる。   As described above, the contaminated soil 20 is purified by intermittently repeating the hot water injection process and the cold water injection process at intervals, so that the pollutant finally becomes a specified value or less. It should be noted that it takes several to tens of years for the pollutant to fall below the specified position, but purification is promoted by applying the present invention, and in a shorter time than when the present invention is not applied. And below the specified value.

ここで、制御装置80は、汚染土壌20の汚染物質を含む地下水の状態を測定する測定器82に測定結果(汚染物質の除去の進捗状況)と汚染物質の除去計画とを比較し、地下水ライン124の図示していないポンプやバルブ等の動作を制御して、井戸120及び井戸122での注水量と揚水量とを制御している。例えば、汚染物質の濃度が計画よりも高い場合は(浄化の進捗が予定より遅い場合は)、注水量や揚水量を増やして地下水の移動速度(図6(A)〜図6(E)及び図7(A)〜図7(E))を上げる。また、浄化剤、栄養塩、酸素、微生物の量を増加させる。また、例えば、帯水層12の温度(温水Hと冷水Cとの置き換わり状況)に応じて注水量や揚水量を増やして地下水の移動速度(図6(A)〜図6(E)及び図7(A)〜図7(E))を制御する。   Here, the control device 80 compares the measurement result (progress of the removal of the pollutant) and the pollutant removal plan with the measuring device 82 that measures the state of the groundwater containing the pollutant in the contaminated soil 20, and the groundwater line. The operation of pumps and valves (not shown) 124 is controlled to control the amount of water injected and the amount of pumped water in the well 120 and the well 122. For example, when the concentration of pollutants is higher than planned (when the progress of purification is slower than planned), the amount of water injection or pumping is increased to increase the movement speed of groundwater (FIGS. 6 (A) to 6 (E) and 7A to 7E) are raised. It also increases the amount of cleaning agents, nutrients, oxygen and microorganisms. Moreover, for example, according to the temperature of the aquifer 12 (the replacement situation of the hot water H and the cold water C), the amount of injected water or the amount of pumped water is increased to increase the groundwater movement speed (FIGS. 6A to 6E and FIG. 7 (A) to 7 (E)) are controlled.

更に、制御装置80は、揚水された地下水(常温水G、冷水C、温水H)、すなわち地下水ライン124の流量に応じて、熱交換器70で熱交換する熱媒体の流量、つまり熱媒体ライン72を流れる流速を制御する。つまり、地下水ライン124の流量が多い場合は、熱媒体ライン72を流れる流速を速くし、地下水ライン124の流量が少ない場合は、熱媒体ライン72を流れる流速を遅くする。これにより空調装置60での空調効率が向上する。   Further, the control device 80 controls the flow rate of the heat medium exchanged by the heat exchanger 70 according to the flow rate of the pumped ground water (normal temperature water G, cold water C, hot water H), that is, the ground water line 124, that is, the heat medium line. The flow rate through 72 is controlled. That is, when the flow rate of the groundwater line 124 is large, the flow velocity flowing through the heat medium line 72 is increased, and when the flow rate of the groundwater line 124 is small, the flow velocity flowing through the heat medium line 72 is decreased. Thereby, the air conditioning efficiency in the air conditioner 60 is improved.

このように、夏季に空調装置60からでる排熱(温熱)を熱媒体及び熱交換器70を介して地下水を温水Hにして帯水層12に注水することで、常温水Gで浄化する場合と比較し、汚染土壌20の浄化効率が向上する。   In this way, when the exhaust heat (hot heat) generated from the air conditioner 60 in the summer is purified by the normal temperature water G by pouring the ground water into the aquifer 12 through the heat medium and the heat exchanger 70 as the hot water H. As compared with the above, the purification efficiency of the contaminated soil 20 is improved.

また、夏季と冬季とに空調装置60から出る排熱(温熱・冷熱)を温水H及び冷水Cにして帯水層12に貯留して蓄熱することで、汚染土壌20の浄化と空調装置60の空調とを総合した全体のエネルギー効率が高められている。   In addition, the waste heat (heat / cold heat) from the air conditioner 60 is stored in the aquifer 12 as hot water H and cold water C and stored in the aquifer 12 in summer and winter, thereby purifying the contaminated soil 20 and the air conditioner 60. Overall energy efficiency combined with air conditioning is improved.

なお、前述したように、上記では、夏季から土壌汚染の浄化を開始しているが、これに限定されるものではない。冬季から土壌汚染の浄化を開始してもよい。この場合、最初の冬季においては、常温水Gが揚水される。しかし、常温水Gは冬季の外気よりも高温であるので、熱媒体は常温水Gと熱交換することで温度が上昇し空調装置60での暖房に利用することが可能である。   In addition, as mentioned above, although the purification | cleaning of soil contamination is started from the summer in the above, it is not limited to this. Purification of soil contamination may be started from winter. In this case, normal temperature water G is pumped in the first winter season. However, since the normal temperature water G is hotter than the outside air in winter, the heat medium is heated by the heat exchange with the normal temperature water G and can be used for heating by the air conditioner 60.

<第二実施形態>
本発明の第二実施形態に係る汚染土壌の浄化設備について説明する。なお、第一実施形態と同一の部材には同一の符号を付し、重複する説明は省略する。
<Second embodiment>
The purification equipment of the contaminated soil which concerns on 2nd embodiment of this invention is demonstrated. In addition, the same code | symbol is attached | subjected to the member same as 1st embodiment, and the overlapping description is abbreviate | omitted.

[土壌]
図3及び図4に示すように、地盤11における地下水位Sの下側が帯水層12となっている。帯水層12には、汚染物質が含まれる汚染土壌20が存在している。帯水層12の下は、帯水層12よりも透水性の低い難透水層14となっている。
[soil]
As shown in FIGS. 3 and 4, the aquifer 12 is below the groundwater level S in the ground 11. In the aquifer 12, contaminated soil 20 containing pollutants is present. Below the aquifer 12 is a hardly permeable layer 14 that is less permeable than the aquifer 12.

本実施形態では、難透水層14の下側も帯水層16となっている。そして、この帯水層16にも、汚染物質が存在する汚染土壌22が存在している。   In the present embodiment, the aquifer 16 is also provided on the lower side of the poorly permeable layer 14. And also in this aquifer 16, the contaminated soil 22 in which a pollutant exists exists.

汚染土壌20、22に含まれる汚染物質は、第一実施形態と同様に、トリクロロエチレンやベンゼンに代表される有機化合物、六価クロムやヒ素等の金属化合物、シアン等の無機化合物、ガソリンや軽油に代表される鉱油類等である。また、第一実施形態と同様に、地盤11の上には、図示していないオフィスビルや商業施設等の構造物が建てられている。   As in the first embodiment, the pollutants contained in the contaminated soils 20 and 22 are organic compounds typified by trichlorethylene and benzene, metal compounds such as hexavalent chromium and arsenic, inorganic compounds such as cyan, gasoline and light oil. These are representative mineral oils. Further, as in the first embodiment, structures such as office buildings and commercial facilities (not shown) are built on the ground 11.

[浄化設備]
浄化設備200は、遮水壁52と浄化井戸装置210と熱交換器70と空調装置60と制御装置80とを含んで構成されている。なお、熱交換器70及び空調装置60は、第一実施形態と同様の構成であるので、説明を省略する。
[Purification equipment]
The purification equipment 200 includes a water shielding wall 52, a purification well device 210, a heat exchanger 70, an air conditioner 60, and a control device 80. In addition, since the heat exchanger 70 and the air conditioner 60 are the structures similar to 1st embodiment, description is abbreviate | omitted.

遮水壁52は、汚染土壌20及び汚染土壌22の周囲を囲むように形成されている。また、下端部52Aは下側の帯水層16に到達し、更に汚染土壌22よりも下方に位置するように形成されている。よって、汚染土壌20及び汚染土壌22は、遮水壁52で囲まれ閉鎖されている。   The impermeable wall 52 is formed so as to surround the contaminated soil 20 and the contaminated soil 22. Further, the lower end portion 52 </ b> A reaches the lower aquifer 16 and is formed to be positioned below the contaminated soil 22. Therefore, the contaminated soil 20 and the contaminated soil 22 are surrounded by the water-impervious wall 52 and closed.

浄化井戸装置210は、浄化装置112と二つの井戸220、222とを有している。二つの井戸220、222は、遮水壁52で囲まれた内側に汚染土壌20、22が間に挟まれるように間隔をあけて配置されている。また、二つの井戸220、222は、難透水層14を貫通し、下側の帯水層16に到達している。井戸220と井戸222とは地下水ライン224で繋がり、この地下水ライン224に浄化装置112が設置されている。なお、浄化装置112は、第一実施形態と同一の構成であるので説明を省略する。   The purification well device 210 includes a purification device 112 and two wells 220 and 222. The two wells 220 and 222 are arranged at an interval so that the contaminated soils 20 and 22 are sandwiched between the inner sides surrounded by the water shielding wall 52. Further, the two wells 220 and 222 penetrate the poorly permeable layer 14 and reach the lower aquifer 16. The well 220 and the well 222 are connected by a groundwater line 224, and the purification device 112 is installed in the groundwater line 224. In addition, since the purification apparatus 112 is the same structure as 1st embodiment, description is abbreviate | omitted.

浄化井戸装置210は、図示していないポンプやバルブ等によって図3に示すように、一方の井戸220から揚水し、揚水した汚染物質を含む地下水を浄化装置112で浄化したのち、他方の井戸222から注水することが可能なように構成されている。更に、浄化井戸装置210は、図4に示すように、他方の井戸222から揚水し、揚水した汚染物質を含む地下水を浄化装置112で浄化したのち、一方の他方の井戸220から注水することも可能なように構成されている。   As shown in FIG. 3, the purification well apparatus 210 pumps water from one well 220 by using a pump or a valve (not shown), and purifies the groundwater containing the polluted material with the purification apparatus 112, and then the other well 222. It is configured to be able to pour water from. Further, as shown in FIG. 4, the purification well device 210 may pump water from the other well 222, purify the groundwater containing the pumped contaminants with the purification device 112, and then pour water from the other well 220. It is configured as possible.

このように二つの井戸220、222は、それぞれ揚水と注水とを行うことが可能な構成となっている。更に二つの井戸220、222は、上側の帯水層12と下側の帯水層16とに対して、それぞれ個別に揚水及び注水することが可能とされると共に、それぞれ個別に注水及び揚水の流量を制御することが可能な構成となっている。なお、二つの井戸220、222の具体的な構成の一例は後述する。   As described above, the two wells 220 and 222 are configured to perform pumping and water injection, respectively. Further, the two wells 220 and 222 can individually pump water and pour water into the upper aquifer 12 and the lower aquifer 16, respectively. The flow rate can be controlled. An example of a specific configuration of the two wells 220 and 222 will be described later.

ここで、図3及び図4における各矢印は、帯水層12及び帯水層16での地下水の流れ、地下水ライン224での地下水の流れ、熱媒体ライン72での熱媒体の流れ、空調装置60での空気の流れ、をそれぞれ示している。また、後述するように、図3と図4とでは、これらの矢印の方向が逆になっている。   Here, arrows in FIGS. 3 and 4 indicate the flow of groundwater in the aquifer 12 and the aquifer 16, the flow of groundwater in the groundwater line 224, the flow of heat medium in the heat medium line 72, and the air conditioner. The air flow at 60 is shown respectively. As will be described later, the directions of these arrows are reversed in FIGS. 3 and 4.

制御装置280は、地下水ライン224の図示していないポンプやバルブ等の動作を制御することで、井戸220及び井戸222における注水と揚水との切り替え(地下水ライン124を流れる方向の切り替え)、及び注水する注水量と揚水する揚水量を上側の帯水層12及び下側の帯水層16とで個別に制御するようになっている。更に、制御装置280は、熱媒体ライン72の図示していないポンプなどを制御し、熱媒体が熱媒体ライン72を循環する方向及び流速(単位時間当たりの流量)を制御するようになっている。   The control device 280 controls the operation of pumps and valves (not shown) of the groundwater line 224 to switch between water injection and pumping in the well 220 and the well 222 (switching the direction of flowing through the groundwater line 124), and water injection The amount of water to be injected and the amount of water to be pumped are individually controlled by the upper aquifer 12 and the lower aquifer 16. Further, the control device 280 controls a pump or the like (not shown) of the heat medium line 72 to control the direction in which the heat medium circulates through the heat medium line 72 and the flow rate (flow rate per unit time). .

汚染土壌20、22には、汚染物質を含む地下水の状態を測定する測定器82がそれぞれ埋設されている。各測定器82は、上側の帯水層12及び下側の帯水層16を流れる地下水の水圧、地下水中の汚染物質や浄化剤等の濃度、溶存酸素等の水質、地下水の温度等をそれぞれ測定するようになっている。また、測定結果は制御装置280に送られる。なお、図3及び図4では、測定器82は一箇所のみに設けられているが(図示されているが)、複数箇所に設けられていてもよい。   In the contaminated soils 20 and 22, measuring devices 82 for measuring the state of groundwater containing the pollutants are embedded. Each measuring device 82 measures the water pressure of the groundwater flowing through the upper aquifer 12 and the lower aquifer 16, the concentration of contaminants and purifiers in the groundwater, the water quality such as dissolved oxygen, the temperature of the groundwater, etc. It comes to measure. The measurement result is sent to the control device 280. 3 and 4, the measuring device 82 is provided at only one location (although illustrated), it may be provided at a plurality of locations.

(井戸220及び井戸222の構成例)
上述したように、井戸220、222は、上側の帯水層12と下側の帯水層16とに対して、それぞれ個別に注水及び揚水の流量を制御することが可能な構成となっている。よって、ここで、井戸220、222の構成例について説明する。なお、下記では、井戸222を説明しているが、井戸220も同様の構成である。
(Configuration example of well 220 and well 222)
As described above, the wells 220 and 222 are configured such that the flow rate of water injection and pumping can be individually controlled for the upper aquifer 12 and the lower aquifer 16. . Therefore, a configuration example of the wells 220 and 222 will be described here. Although the well 222 is described below, the well 220 has the same configuration.

図5に示すように、一本の井戸222には、注水と揚水とを行うことが可能な第一井戸鋼管230と第二井戸鋼管232とが挿入されている。また、井戸222内の難透水層14の深度に止水材層240が設けられている   As shown in FIG. 5, a first well steel pipe 230 and a second well steel pipe 232 capable of performing water injection and pumping are inserted into one well 222. Further, a water blocking material layer 240 is provided at a depth of the poorly permeable layer 14 in the well 222.

第一井戸鋼管230は、先端部230Aが止水材層240の上方に位置するように配置されている。また、第一井戸鋼管230の先端部230Aは、地下水を注水及び揚水が可能なように有孔管となっている。   The first well steel pipe 230 is disposed so that the tip end portion 230 </ b> A is located above the water blocking material layer 240. The tip 230A of the first well steel pipe 230 is a perforated pipe so that groundwater can be poured and pumped.

第二井戸鋼管232は、止水材層240を貫通し、先端部232Aが止水材層240の下方に位置するように配置されている。また、第二井戸鋼管232の先端部232Aは、地下水を注水及び揚水が可能なように有孔管となっている。   The second well steel pipe 232 is disposed so as to penetrate the water-stopping material layer 240 and the tip 232 </ b> A is positioned below the water-stopping material layer 240. The tip 232A of the second well steel pipe 232 is a perforated pipe so that groundwater can be poured and pumped.

そして、これら第一井戸鋼管230及び第二井戸鋼管232は、地下水ライン224(図3及び図4参照)で合流して浄化装置112(図3及び図4参照)で浄化されると共に、熱交換器70で熱媒体と熱交換するように構成されている。   Then, the first well steel pipe 230 and the second well steel pipe 232 join in the groundwater line 224 (see FIGS. 3 and 4) and are purified by the purification device 112 (see FIGS. 3 and 4), and heat exchange is performed. The apparatus 70 is configured to exchange heat with the heat medium.

なお、井戸220、222は、上側の帯水層12と下側の帯水層16とが、それぞれ個別に注水及び揚水し且つ流量を制御することが可能な構成は上記構成に限定されない。どのような構成であってもよい。更に、上側の帯水層12の井戸と下側の帯水層16の井戸との二本の井戸を有する構成であってもよい。   In the wells 220 and 222, the configuration in which the upper aquifer 12 and the lower aquifer 16 can individually inject and pump water and control the flow rate is not limited to the above configuration. Any configuration may be used. Furthermore, the structure which has two wells, the well of the upper aquifer 12 and the well of the lower aquifer 16, may be sufficient.

<作用及び効果>
つぎに、汚染土壌の浄化方法について説明しながら、本実施形態の作用効果を説明する。なお、基本的な浄化方法は第一実施形態と同様であるので、第一実施形態と同様の部分は、適宜省略又は適宜簡略化して説明する。
<Action and effect>
Next, the effects of the present embodiment will be described while explaining a method for purifying contaminated soil. Since the basic purification method is the same as that of the first embodiment, the same parts as those of the first embodiment will be omitted or simplified as appropriate.

図3に示すように、夏季に井戸220から揚水した汚染物質を含む地下水(常温水(約18℃))を熱交換器70で熱媒体と熱交換して温水にして浄化装置112で浄化して井戸222から帯水層12及び帯水層16に注水する(温水注水工程)。   As shown in FIG. 3, the groundwater containing the pollutant pumped from the well 220 in the summer (room temperature water (about 18 ° C.)) is heat-exchanged with the heat medium by the heat exchanger 70 to be warm water and purified by the purification device 112. Then, water is poured from the well 222 to the aquifer 12 and the aquifer 16 (warm water injection process).

熱交換器70で地下水(常温水G)と熱交換された熱媒体は温度が低下し、この温度が低下した熱媒体を空調装置60で冷房に利用すると共に、冷房に利用され温度が上昇した熱媒体が熱交換器70に送れられる。そして、温度が上昇した熱媒体が前述したように地下水と熱交換されることで地下水が温水となり帯水層12及び帯水層16に注水される。   The temperature of the heat medium exchanged with the ground water (normal temperature water G) in the heat exchanger 70 is lowered, and the heat medium having the lowered temperature is used for cooling by the air conditioner 60 and is also used for cooling. The heat medium is sent to the heat exchanger 70. Then, as described above, the heat medium whose temperature has been raised is heat-exchanged with the groundwater, so that the groundwater becomes warm water and is poured into the aquifer 12 and the aquifer 16.

このように井戸220から常温水Gが揚水され、井戸222から温水を注水することで、徐々に帯水層12及び帯水層16の地下水が常温水Gから温水Hに置き換わっていく。そして、夏季が終了すると、帯水層12及び帯水層16の地下水が冷水C(又は常温水G)から温水Hに置き換わる(図6(A)〜図6(E)を参照)。   As described above, the normal temperature water G is pumped from the well 220 and the hot water is poured from the well 222, whereby the groundwater in the aquifer 12 and the aquifer 16 is gradually replaced with the hot water H from the normal temperature water G. Then, when the summer season ends, the groundwater in the aquifer 12 and aquifer 16 is replaced by cold water C (or room temperature water G) to warm water H (see FIGS. 6A to 6E).

そして、秋季の間は、汚染土壌20、22の浄化を休止する。しかし、地下は保温性に優れており、秋季の間、帯水層12、16に貯留されている温水Hは殆ど温度低下しない。すなわち、空調装置60の排熱(温熱)が温水Hとして帯水層12及び帯水層16に蓄熱されている。   During the autumn season, purification of the contaminated soils 20 and 22 is suspended. However, the underground has excellent heat retention, and the temperature of the warm water H stored in the aquifers 12 and 16 hardly decreases during the autumn season. That is, the exhaust heat (warm heat) of the air conditioner 60 is stored in the aquifer 12 and the aquifer 16 as warm water H.

ここで、帯水層12及び帯水層16の地下水が温水Hとなることで、第一実施形態と同様に、常温水Gの場合と比較し、汚染物質の浄化効率が向上し浄化が促進する。なお、上側の帯水層12と下側の帯水層16とで異なる浄化方法で浄化してもよい。   Here, since the groundwater of the aquifer 12 and the aquifer 16 becomes the warm water H, the purification efficiency of pollutants is improved and the purification is promoted as compared with the case of the normal temperature water G as in the first embodiment. To do. The upper aquifer 12 and the lower aquifer 16 may be purified by different purification methods.

また、浄化装置112では温水Hで浄化することで、第一実施形態と同様に、浄化効率が向上し浄化が促進する。   Further, the purification device 112 purifies with the hot water H, so that the purification efficiency is improved and the purification is promoted as in the first embodiment.

冬季になると図4に示すように、井戸222から揚水した汚染物質を含む地下水(温水H)を浄化装置112で浄化して熱交換器70で熱媒体と熱交換して冷水Cにして井戸122から帯水層12及び帯水層16に注水する(冷水注水工程)。   In the winter season, as shown in FIG. 4, ground water (warm water H) containing pollutants pumped from the well 222 is purified by the purifier 112 and heat exchanged with the heat medium by the heat exchanger 70 to form cold water C. To the aquifer 12 and aquifer 16 (cold water injection step).

熱交換器70で地下水(温水H)と熱交換された熱媒体は温度が上昇し、この温度が上方した熱媒体を空調装置60で暖房に利用すると共に、暖房に利用され温度が低下した熱媒体が熱交換器70に送れられる。そして、温度が低下した熱媒体が前述したように地下水(温水H)と熱交換されることで地下水が冷水Cとなり帯水層12及び帯水層16に注水される。   The heat medium heat-exchanged with the ground water (warm water H) in the heat exchanger 70 has a raised temperature, and the heat medium whose temperature has been raised is used for heating by the air conditioner 60 and is also used for heating and the temperature is lowered. The medium is sent to the heat exchanger 70. Then, as described above, the heat medium having the lowered temperature is heat-exchanged with the groundwater (warm water H), so that the groundwater becomes cold water C and is poured into the aquifer 12 and the aquifer 16.

また、冬季においても浄化装置112では温水Hで浄化するので、前述したように浄化効率が向上し浄化が促進する。   Further, since the purification device 112 purifies with the hot water H even in winter, the purification efficiency is improved and the purification is promoted as described above.

このように、井戸122から温水Hが揚水され、井戸120から冷水Cを注水することで、徐々に帯水層12及び帯水層16の地下水が温水Hから冷水Cに置き換わっていく。冬季が終了すると、帯水層12及び帯水層16の地下水が温度の温水Hから冷水Cに置き換わる(図7(A)〜図7(E)を参照)。   As described above, the hot water H is pumped from the well 122 and the cold water C is poured from the well 120, whereby the groundwater in the aquifer 12 and the aquifer 16 is gradually replaced from the hot water H to the cold water C. When the winter season ends, the groundwater in the aquifer 12 and aquifer 16 is replaced by hot water H at temperature to cold water C (see FIGS. 7A to 7E).

そして、春季の間は、汚染土壌20(図2参照)の浄化を休止する。しかし、地下は保温性に優れており、春季の間、帯水層12、16に貯留されている冷水Cは殆ど温度低下しない。すなわち、空調装置60の排熱(冷熱)が冷水Cとして帯水層12及び帯水層16に蓄熱されている。   During the spring season, purification of the contaminated soil 20 (see FIG. 2) is suspended. However, the underground has excellent heat retention, and the temperature of the cold water C stored in the aquifers 12 and 16 hardly decreases during the spring season. That is, the exhaust heat (cold heat) of the air conditioner 60 is stored in the aquifer 12 and the aquifer 16 as cold water C.

翌年の夏季になると、再び井戸220から揚水した汚染物質を含む冷水Cを熱交換器70で熱媒体と熱交換して温水Hにして浄化装置112で浄化して井戸222から帯水層12及び帯水層16に注水する。なお、最初の年は、常温水Gが揚水されるが、翌年からは帯水層12及び帯水層16に貯留された冷水Cが揚水される。   In the summer of the following year, the cold water C containing the pollutant pumped from the well 220 again is heat-exchanged with the heat medium by the heat exchanger 70 to be converted into hot water H and purified by the purification device 112, and from the well 222 to the aquifer 12 and Water is poured into the aquifer 16. In the first year, the normal temperature water G is pumped, but from the next year, the cold water C stored in the aquifer 12 and the aquifer 16 is pumped.

熱交換器70で冷水Cと熱交換された熱媒体は温度が低下し、この温度が低下した熱媒体を空調装置60で冷房に利用すると共に、冷房に利用され温度が上昇した熱媒体が熱交換器70に送れられる。そして、温度が上昇した熱媒体が前述したように地下水と熱交換されることで地下水が温水Hとなり帯水層12及び帯水層16に注水される。   The temperature of the heat medium exchanged with the chilled water C by the heat exchanger 70 decreases, and the heat medium having the decreased temperature is used for cooling by the air conditioner 60, and the heat medium having the increased temperature used for cooling is heated. It is sent to the exchanger 70. Then, the heat medium whose temperature has been raised is heat-exchanged with the ground water as described above, so that the ground water becomes the warm water H and is poured into the aquifer 12 and the aquifer 16.

なお、冷水Cの地下水と熱交換するので、常温水Gの地下水と熱交換するよりも、熱媒体の温度が効果的に低下し、空調装置60での冷房効率が向上する。   Since the heat exchange with the ground water of the cold water C is performed, the temperature of the heat medium is more effectively lowered than the heat exchange with the ground water of the normal temperature water G, and the cooling efficiency in the air conditioner 60 is improved.

このように井戸220から冷水Cが揚水され、井戸222から温水Hを注水することで、徐々に帯水層12及び帯水層16の地下水が冷水Cから温水Hに置き換わっていく。そして、帯水層12及び帯水層16の地下水が冷水Cから温水Hに置き換わる(図6(A)〜図6(E)を参照)。   Thus, the cold water C is pumped from the well 220 and the hot water H is poured from the well 222, whereby the groundwater in the aquifer 12 and the aquifer 16 is gradually replaced with the hot water H from the cold water C. And the groundwater of the aquifer 12 and the aquifer 16 is replaced by the cold water C to the hot water H (see FIGS. 6A to 6E).

以上説明したように温水注水工程と冷水注水工程とを間隔をあけて断続的に繰り替えすることで、汚染土壌20と汚染土壌22とが浄化されていき最終的に汚染物質が規定値以下になる。なお、汚染物質が規定位置以下になるには、数年から十数年必要とされているが、本発明を適用することで浄化が促進され、本発明が適用されてない場合と比較し、短時間で規定値以下となる。   As described above, the contaminated soil 20 and the contaminated soil 22 are purified by intermittently repeating the hot water injection process and the cold water injection process at intervals, and finally the pollutants become below the specified value. . It should be noted that it takes several to tens of years for the pollutant to fall below the specified position, but purification is promoted by applying the present invention, and in a shorter time than when the present invention is not applied. And below the specified value.

ここで、制御装置280は、上側の帯水層12の汚染土壌20の汚染物質を含む地下水の状態を測定する測定器82に測定結果(汚染物質の除去の進捗状況)と、下側の帯水層16の汚染土壌22の汚染物質を含む地下水の状態を測定する測定器82に測定結果(汚染物質の除去の進捗状況)と、汚染物質の除去計画と、を比較し、地下水ライン224の図示していないポンプやバルブの動作を制御して、上側の帯水層12への注水量及び揚水量と、下側の帯水層16への注水量及び揚水量と、を制御している。   Here, the control device 280 sends a measurement result (progress of removal of the pollutant) to the measuring device 82 that measures the state of the groundwater containing the pollutant in the contaminated soil 20 of the upper aquifer 12 and the lower band. The measurement result (progress of removal of pollutants) is compared with the pollutant removal plan in a measuring device 82 that measures the state of groundwater containing pollutants in the contaminated soil 22 of the water layer 16, and the groundwater line 224 The operation of pumps and valves (not shown) is controlled to control the amount of water injected and pumped into the upper aquifer 12 and the amount of water injected and pumped into the lower aquifer 16. .

更に、制御装置280は、上側の帯水層12から揚水される地下水(冷水C又は温水H)と下側の帯水層16から揚水される地下水(冷水C又は温水H)との温度差が少なくなるように、上側の帯水層12の揚水量及び注水量と、下側の帯水層16の揚水量及び注水量と、を個別に制御する。よって、揚水された地下水(冷水C又は温水H)の温度差による熱損失が抑制され、熱交換器70による熱交換の変換効率が向上する。   Furthermore, the control device 280 has a temperature difference between the groundwater pumped from the upper aquifer 12 (cold water C or hot water H) and the groundwater pumped from the lower aquifer 16 (cold water C or hot water H). The amount of pumping and water injection of the upper aquifer 12 and the amount of water pumping and water injection of the lower aquifer 16 are individually controlled so as to decrease. Therefore, the heat loss by the temperature difference of the pumped-up ground water (cold water C or warm water H) is suppressed, and the conversion efficiency of the heat exchange by the heat exchanger 70 improves.

更に、制御装置280は、第一実施形態と同様に、揚水された地下水(常温水G、冷水C、温水H)、すなわち地下水ライン124の流量に応じて、熱交換器70で熱交換する熱媒体の流量、つまり熱媒体ライン72を流れる流速を制御する。これにより空調装置60での空調効率が向上する。   Furthermore, as in the first embodiment, the control device 280 performs heat exchange in the heat exchanger 70 according to the pumped ground water (normal temperature water G, cold water C, hot water H), that is, the flow rate of the ground water line 124. The flow rate of the medium, that is, the flow velocity flowing through the heat medium line 72 is controlled. Thereby, the air conditioning efficiency in the air conditioner 60 is improved.

<その他>
尚、本発明は上記実施形態に限定されない。
<Others>
The present invention is not limited to the above embodiment.

例えば、上記実施形態では、遮水壁50、52は、汚染土壌20、22の周囲を囲むように形成されているが、これに限定されるものではない。遮水壁の一部が開口した構造であってもよい。更に、遮水壁がない浄化設備の構成であってもよい。   For example, in the said embodiment, although the impermeable walls 50 and 52 are formed so that the circumference | surroundings of the contaminated soil 20 and 22 may be enclosed, it is not limited to this. A structure in which a part of the impermeable wall is opened may be used. Furthermore, the structure of the purification equipment which does not have a water-impervious wall may be sufficient.

また、例えば、上記実施形態では、地下水と熱交換した熱媒体は、図示していない構造物に設けられた空調装置60で利用したが、これに限定されない。空調装置以外の装置や設備に利用してもよい。例えば、夏季には、機械や装置の冷却に利用し、冬季には機械や装置の加熱に利用してもうよい。或いは、温水プールに利用するなどしてもよい。また、例えば、揚水した地下水は熱交換器で熱交換する前に浄化装置で浄化してもよい。   For example, in the said embodiment, although the heat medium heat-exchanged with groundwater was utilized with the air conditioner 60 provided in the structure which is not shown in figure, it is not limited to this. You may utilize for apparatuses and facilities other than an air conditioner. For example, it may be used for cooling machines and devices in summer, and may be used for heating machinery and devices in winter. Alternatively, it may be used for a heated pool. Further, for example, the pumped-up groundwater may be purified with a purification device before heat exchange with the heat exchanger.

また、例えば、上記実施形態では、夏季においては井戸122、222から揚水し井戸120、220から注水し、冬季においては井戸120、220から揚水し井戸122、222から注水したが、これに限定されない。夏季及び冬季共に、井戸122、222(又は井戸120、220)から揚水し、井戸120、220(又は井戸122、222)から注水するようにしてもよい。この場合、温水が浄化装置112に流れるように地下水ラインの流れをバルブなどで切り替えられるようにしてもよい。   Further, for example, in the above embodiment, the water is pumped from the wells 122 and 222 in the summer and poured from the wells 120 and 220, and the water is pumped from the wells 120 and 220 and poured from the wells 122 and 222 in the winter. . In both summer and winter, water may be pumped from the wells 122 and 222 (or the wells 120 and 220) and injected from the wells 120 and 220 (or the wells 122 and 222). In this case, the flow of the groundwater line may be switched by a valve or the like so that the hot water flows to the purification device 112.

また、例えば、上記第二実施形態では、上側の帯水層12と下側の帯水層16との二つの帯水層の汚染土壌の浄化する浄化設備であったが、これに限定されない。三層以上の帯水層にも本発明を適用することができる。   Moreover, for example, in the second embodiment, although the purification facility purifies the contaminated soil of the two aquifers of the upper aquifer 12 and the lower aquifer 16, the present invention is not limited to this. The present invention can also be applied to three or more aquifers.

更に、本発明の要旨を逸脱しない範囲において種々なる態様で実施し得ることは言うまでもない   Furthermore, it cannot be overemphasized that it can implement with a various aspect in the range which does not deviate from the summary of this invention.

12 帯水層
14 難透水層
16 帯水層
70 熱交換器
60 空調装置(利用手段の一例)
80 制御装置(第一制御手段の一例、第二制御手段の一例)
100 浄化設備
110 浄化井戸装置
112 浄化装置
200 浄化設備
210 浄化井戸装置
280 制御装置(第一制御手段の一例、第二制御手段の一例)
12 Aquifer 14 Difficult-permeable layer 16 Aquifer 70 Heat exchanger 60 Air conditioner (an example of utilization means)
80 control device (example of first control means, example of second control means)
DESCRIPTION OF SYMBOLS 100 Purification equipment 110 Purification well apparatus 112 Purification apparatus 200 Purification equipment 210 Purification well apparatus 280 Control apparatus (an example of a 1st control means, an example of a 2nd control means)

Claims (6)

帯水層から汚染物質を含む地下水を揚水し、揚水した前記地下水を浄化装置で浄化して前記帯水層に注水する浄化井戸装置と、
揚水された前記地下水と熱媒体との間で熱交換を行う熱交換器と、
前記熱交換器で熱交換された前記熱媒体の熱エネルギーを利用すると共に利用後に前記熱媒体を熱交換器に送る利用手段と、
を備える汚染土壌の浄化設備。
A purification well device that pumps groundwater containing contaminants from an aquifer, purifies the pumped groundwater with a purification device, and injects the water into the aquifer,
A heat exchanger that exchanges heat between the pumped groundwater and the heat medium;
Utilization means for using the heat energy of the heat medium exchanged by the heat exchanger and sending the heat medium to the heat exchanger after use;
Contaminated soil purification equipment comprising.
前記利用手段は、空調装置であり、
前記浄化井戸装置は、夏季に温水を前記帯水層に注水して蓄熱し、冬季に冷水を前記帯水層に注水して蓄熱するように構成されている、
請求項1に記載の汚染土壌の浄化設備。
The utilization means is an air conditioner,
The purification well device is configured to inject hot water into the aquifer in summer to store heat, and to inject cold water into the aquifer in winter to store heat.
The purification equipment of the contaminated soil of Claim 1.
汚染物質を含む前記帯水層は、地盤中に難透水層で仕切られて複数層あり、
前記浄化井戸装置は、前記帯水層毎に注水及び揚水の流量を制御することが可能とされ、
前記熱交換器は、複数の前記帯水層から揚水された前記地下水を熱交換するように構成され、
各前記帯水層から揚水される前記地下水の温度差が少なくなるように、前記帯水層毎に前記流量を制御する第一制御手段を備える、
請求項1又は請求項2に記載の汚染土壌の浄化設備。
The aquifer containing pollutants has a plurality of layers partitioned by a poorly permeable layer in the ground,
The purification well device is capable of controlling the flow rate of water injection and pumping for each aquifer,
The heat exchanger is configured to exchange heat with the groundwater pumped from a plurality of the aquifers,
Comprising first control means for controlling the flow rate for each aquifer so that the difference in temperature of the groundwater pumped from each aquifer decreases.
The purification equipment of the contaminated soil of Claim 1 or Claim 2.
揚水された前記地下水の流量に応じて、前記熱交換器で熱交換する熱媒体の流量を制御する第二制御手段を備える、
請求項1〜請求項3のいずれか1項に記載の汚染土壌の浄化設備。
In accordance with the flow rate of the pumped groundwater, second control means for controlling the flow rate of the heat medium that exchanges heat with the heat exchanger is provided.
The purification equipment for contaminated soil according to any one of claims 1 to 3.
帯水層から汚染物質を含む地下水を揚水し、揚水した前記地下水を浄化装置で浄化して前記帯水層に注水する浄化井戸装置と、
揚水された前記地下水と熱媒体との間で熱交換を行う熱交換器と、
熱交換された前記熱媒体の熱エネルギーを利用する利用手段と、
を備え、
前記帯水層に貯留されている冷水の前記地下水を揚水して前記熱交換器で前記熱媒体と熱交換し温水にして前記帯水層に注水する温水注水工程と、
前記帯水層に貯留されている温水の前記地下水を揚水して前記熱交換器で前記熱媒体と熱交換し冷水にして前記帯水層に注水する冷水注水工程と、
を交互に間をあけて断続的に行う汚染土壌の浄化方法。
A purification well device that pumps groundwater containing contaminants from an aquifer, purifies the pumped groundwater with a purification device, and injects the water into the aquifer,
A heat exchanger that exchanges heat between the pumped groundwater and the heat medium;
A utilization means for utilizing the heat energy of the heat medium subjected to heat exchange;
With
A hot water injection step of pumping the ground water stored in the aquifer and heat-exchanging the heat medium with the heat exchanger to form hot water and injecting the water into the aquifer;
A cold water injection step of pumping the groundwater stored in the aquifer and heat-exchanging the heat medium with the heat exchanger to form cold water and injecting into the aquifer;
A method for remediation of contaminated soil, which is performed intermittently at intervals.
前記温水注水工程においては、前記熱交換器で熱交換することで温水にされた前記地下水を前記浄化装置で浄化し、
前記冷水注水工程においては、前記帯水層に貯留されている温水を揚水した前記地下水を前記浄化装置で浄化する、
請求項5に記載の汚染土壌の浄化方法。
In the warm water injection step, the ground water that has been heated by exchanging heat in the heat exchanger is purified by the purification device,
In the cold water injection process, the purification device purifies the groundwater pumped up hot water stored in the aquifer,
The method for purifying contaminated soil according to claim 5.
JP2013082368A 2013-04-10 2013-04-10 Purification equipment for contaminated soil and method for purification of contaminated soil Active JP6163345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013082368A JP6163345B2 (en) 2013-04-10 2013-04-10 Purification equipment for contaminated soil and method for purification of contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013082368A JP6163345B2 (en) 2013-04-10 2013-04-10 Purification equipment for contaminated soil and method for purification of contaminated soil

Publications (2)

Publication Number Publication Date
JP2014205086A true JP2014205086A (en) 2014-10-30
JP6163345B2 JP6163345B2 (en) 2017-07-12

Family

ID=52119130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013082368A Active JP6163345B2 (en) 2013-04-10 2013-04-10 Purification equipment for contaminated soil and method for purification of contaminated soil

Country Status (1)

Country Link
JP (1) JP6163345B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017131802A (en) * 2016-01-25 2017-08-03 株式会社竹中工務店 Underground soil remediation system
JP2018069204A (en) * 2016-11-04 2018-05-10 株式会社竹中工務店 Contaminated ground purification system
JP2018091041A (en) * 2016-12-02 2018-06-14 株式会社竹中工務店 Ground improvement structure
JP2018173257A (en) * 2017-03-31 2018-11-08 三菱重工サーマルシステムズ株式会社 Underground heat utilization system and underground heat utilization method
CN109028623A (en) * 2018-08-02 2018-12-18 王洁 A kind of shallow layer geothermal energy underground buried tube system structure and application method
JP2019030821A (en) * 2017-08-04 2019-02-28 株式会社竹中工務店 Subsurface soil purification system
JP2019030822A (en) * 2017-08-04 2019-02-28 株式会社竹中工務店 Subsurface soil purification system
JP2019042623A (en) * 2017-08-30 2019-03-22 株式会社竹中工務店 Method for preventing diffusion of contaminant
WO2020036186A1 (en) * 2018-08-14 2020-02-20 三菱重工サーマルシステムズ株式会社 Geothermal heat utilization system and operation method for geothermal heat utilization system
WO2020036196A1 (en) * 2018-08-14 2020-02-20 三菱重工サーマルシステムズ株式会社 Geothermal heat utilization system
WO2020059788A1 (en) * 2018-09-20 2020-03-26 三菱重工サーマルシステムズ株式会社 Geothermal energy utilization system and method for operating geothermal energy utilization system
JP2020200755A (en) * 2020-08-24 2020-12-17 株式会社竹中工務店 Ground improvement structure
JP2020200756A (en) * 2020-08-24 2020-12-17 株式会社竹中工務店 Round improvement structure
US11084075B2 (en) 2016-08-29 2021-08-10 Takenaka Corporation Subsurface soil purification method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280689A (en) * 1996-04-10 1997-10-31 Shimizu Corp Heat pump facility utilizing groundwater as heat source
JPH11325650A (en) * 1998-05-19 1999-11-26 Takenaka Komuten Co Ltd Heat storage system
JP2000154985A (en) * 1998-09-16 2000-06-06 Shimizu Corp Underground heat storage system
JP2002113456A (en) * 2000-10-10 2002-04-16 Pub Works Res Inst Ministry Of Constr Method of decontaminating ground and equipment therefor
US20090281668A1 (en) * 2008-05-09 2009-11-12 Johnson Controls Technology Company Geothermal and remediation system and method
JP2012233636A (en) * 2011-04-29 2012-11-29 Shimizu Corp Geothermal heat utilization system
JP2013076516A (en) * 2011-09-30 2013-04-25 Japan Organo Co Ltd Heat utilization system and heat utilization method of contaminated groundwater
JP2013075263A (en) * 2011-09-30 2013-04-25 Japan Organo Co Ltd Removing system and removing method of volatile substance in underground water
JP2014069162A (en) * 2012-10-01 2014-04-21 Shimizu Corp Purification treatment system of polluted under ground water

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280689A (en) * 1996-04-10 1997-10-31 Shimizu Corp Heat pump facility utilizing groundwater as heat source
JPH11325650A (en) * 1998-05-19 1999-11-26 Takenaka Komuten Co Ltd Heat storage system
JP2000154985A (en) * 1998-09-16 2000-06-06 Shimizu Corp Underground heat storage system
JP2002113456A (en) * 2000-10-10 2002-04-16 Pub Works Res Inst Ministry Of Constr Method of decontaminating ground and equipment therefor
US20090281668A1 (en) * 2008-05-09 2009-11-12 Johnson Controls Technology Company Geothermal and remediation system and method
JP2012233636A (en) * 2011-04-29 2012-11-29 Shimizu Corp Geothermal heat utilization system
JP2013076516A (en) * 2011-09-30 2013-04-25 Japan Organo Co Ltd Heat utilization system and heat utilization method of contaminated groundwater
JP2013075263A (en) * 2011-09-30 2013-04-25 Japan Organo Co Ltd Removing system and removing method of volatile substance in underground water
JP2014069162A (en) * 2012-10-01 2014-04-21 Shimizu Corp Purification treatment system of polluted under ground water

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017131802A (en) * 2016-01-25 2017-08-03 株式会社竹中工務店 Underground soil remediation system
US11084075B2 (en) 2016-08-29 2021-08-10 Takenaka Corporation Subsurface soil purification method
JP2018069204A (en) * 2016-11-04 2018-05-10 株式会社竹中工務店 Contaminated ground purification system
JP2018091041A (en) * 2016-12-02 2018-06-14 株式会社竹中工務店 Ground improvement structure
JP2018173257A (en) * 2017-03-31 2018-11-08 三菱重工サーマルシステムズ株式会社 Underground heat utilization system and underground heat utilization method
JP2019030821A (en) * 2017-08-04 2019-02-28 株式会社竹中工務店 Subsurface soil purification system
JP2019030822A (en) * 2017-08-04 2019-02-28 株式会社竹中工務店 Subsurface soil purification system
JP7140350B2 (en) 2017-08-30 2022-09-21 株式会社竹中工務店 Contaminant diffusion suppression method
JP2019042623A (en) * 2017-08-30 2019-03-22 株式会社竹中工務店 Method for preventing diffusion of contaminant
CN109028623A (en) * 2018-08-02 2018-12-18 王洁 A kind of shallow layer geothermal energy underground buried tube system structure and application method
CN109028623B (en) * 2018-08-02 2020-06-30 北京北控恒有源科技发展有限公司 Shallow geothermal energy underground pipe laying system structure and using method
JP2020026933A (en) * 2018-08-14 2020-02-20 三菱重工サーマルシステムズ株式会社 Underground heat utilization system and operation method for underground heat utilization system
JP2020026934A (en) * 2018-08-14 2020-02-20 三菱重工サーマルシステムズ株式会社 Underground heat utilization system
WO2020036196A1 (en) * 2018-08-14 2020-02-20 三菱重工サーマルシステムズ株式会社 Geothermal heat utilization system
JP7261405B2 (en) 2018-08-14 2023-04-20 三菱重工サーマルシステムズ株式会社 Geothermal heat utilization system
JP7173484B2 (en) 2018-08-14 2022-11-16 三菱重工サーマルシステムズ株式会社 GEO-HEAT SYSTEM AND METHOD OF OPERATION OF GEO-HEAT SYSTEM
WO2020036186A1 (en) * 2018-08-14 2020-02-20 三菱重工サーマルシステムズ株式会社 Geothermal heat utilization system and operation method for geothermal heat utilization system
WO2020059788A1 (en) * 2018-09-20 2020-03-26 三菱重工サーマルシステムズ株式会社 Geothermal energy utilization system and method for operating geothermal energy utilization system
JP7093937B2 (en) 2018-09-20 2022-07-01 三菱重工サーマルシステムズ株式会社 How to operate the geothermal heat utilization system and the geothermal heat utilization system
JPWO2020059788A1 (en) * 2018-09-20 2021-08-30 三菱重工サーマルシステムズ株式会社 How to operate the geothermal heat utilization system and the geothermal heat utilization system
JP2020200756A (en) * 2020-08-24 2020-12-17 株式会社竹中工務店 Round improvement structure
JP7205792B2 (en) 2020-08-24 2023-01-17 株式会社竹中工務店 ground improvement structure
JP7205791B2 (en) 2020-08-24 2023-01-17 株式会社竹中工務店 ground improvement structure
JP2020200755A (en) * 2020-08-24 2020-12-17 株式会社竹中工務店 Ground improvement structure

Also Published As

Publication number Publication date
JP6163345B2 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
JP6163345B2 (en) Purification equipment for contaminated soil and method for purification of contaminated soil
JP6163346B2 (en) Purification equipment for contaminated soil and method for purification of contaminated soil
KR101283349B1 (en) Tube well type heat pump system for removing and sterilizing foreign material and air
CA3045862C (en) Method using artificial freezing technique for sealing and displacement of soil pollutant
US10384246B2 (en) Thermal in-situ sustainable remediation system and method
JP2015152236A (en) Underground heat collection system and underground heat cooling/heating or hot water supply system
KR20100062755A (en) Cooling and heating system in water curtain house using potential heat of underground water
JP4869145B2 (en) Underground heat exchange system
JP2011149690A (en) Underground heat exchanger burying structure
JP5389565B2 (en) Geothermal air conditioning system
JP2010190435A (en) Rainwater permeation type underground heat exchange system
US20100251710A1 (en) System for utilizing renewable geothermal energy
JP2018069204A (en) Contaminated ground purification system
JP2009036382A (en) Air conditioning mechanism of ground environment
JP2010151351A (en) Underground heat exchanger burying structure
JP4609946B2 (en) Underground heat storage system and reserve water source for seasonal energy use
JP2017210951A (en) Ground heat recovery device including triple pipe
CN106242029A (en) A kind of karez formula underground water pollution repair system
KR101220897B1 (en) equipment for exchanging terrestrial heat
US11185901B1 (en) Thermal in situ sustainable remediation system and method for groundwater and soil restoration
JP2012242045A (en) Ground water heat utilization system
KR101697616B1 (en) Temperature control system for road using heat storaging tank
CN104445485A (en) Freezing separation system suitable for garbage landfill leachate
DE102014104992A1 (en) A method of constructing a geothermal probe and arrangement for introducing heat into and extracting heat from a geothermal probe
JP2014005965A (en) Underground heat exchange system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170619

R150 Certificate of patent or registration of utility model

Ref document number: 6163345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250