JP2014202933A - Method for molding fine structure, and molded article and optical component obtained by the same - Google Patents

Method for molding fine structure, and molded article and optical component obtained by the same Download PDF

Info

Publication number
JP2014202933A
JP2014202933A JP2013079312A JP2013079312A JP2014202933A JP 2014202933 A JP2014202933 A JP 2014202933A JP 2013079312 A JP2013079312 A JP 2013079312A JP 2013079312 A JP2013079312 A JP 2013079312A JP 2014202933 A JP2014202933 A JP 2014202933A
Authority
JP
Japan
Prior art keywords
forming
microstructure
fine structure
base film
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013079312A
Other languages
Japanese (ja)
Inventor
朋宏 高橋
Tomohiro Takahashi
朋宏 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2013079312A priority Critical patent/JP2014202933A/en
Publication of JP2014202933A publication Critical patent/JP2014202933A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming a fine structure in various shapes with high dimensional accuracy on a three-dimensional solid face and a molded article obtained by the method.SOLUTION: A method for forming a fine structure 9 includes steps of: forming a fine structure 4 on a substrate film 1; forming a layer 5 comprising a thermoplastic resin on the fine structure 4 to obtain a laminate; sticking the laminate obtained in the above step to a molding object 7, with the thermoplastic resin 5 side facing the molding object 7; and peeling the substrate 1 where the fine structure 4 is formed in the laminate stuck to the molding object 7, from the molding object.

Description

本発明は微細構造の形成方法に関し、さらに詳しくは、3次元立体面上に微細構造を形成する方法、及びその形成方法で得られる成形品に関するものである。   The present invention relates to a method for forming a fine structure, and more particularly to a method for forming a fine structure on a three-dimensional solid surface and a molded product obtained by the formation method.

光の波長より小さい周期を有する微細な凹凸からなる微細構造は反射防止機能を発現するため、そのような微細構造をレンズの表面に形成して反射防止機能を付与することが提案されている(特許文献1)。
また、レンズ表面などの3次元的な曲面上に微細構造を形成する方法としては、微細構造を形成した金属、酸化物、樹脂等からなる可撓性膜を曲面に沿って接合する方法が知られている(特許文献2)。この方法では厚さ10〜100μmの可撓性膜を製品表面に接合するため、凹凸構造について10μm以下の寸法精度を必要とする製品では、曲面部において可撓性膜の膜厚による寸法誤差が凹凸構造に生じてしまうため適用し難いという問題がある。また、可撓性膜の厚さを10μm以下にすることは、可撓性膜のハンドリング性が極めて悪くなるため実用に供することは現実的ではない。
Since a fine structure composed of fine irregularities having a period smaller than the wavelength of light expresses an antireflection function, it has been proposed to provide such an antireflection function by forming such a fine structure on the surface of the lens ( Patent Document 1).
As a method for forming a fine structure on a three-dimensional curved surface such as a lens surface, a method is known in which a flexible film made of metal, oxide, resin, or the like having a fine structure is joined along the curved surface. (Patent Document 2). In this method, a flexible film having a thickness of 10 to 100 μm is bonded to the product surface. Therefore, in a product that requires a dimensional accuracy of 10 μm or less for the concavo-convex structure, there is a dimensional error due to the film thickness of the flexible film in the curved portion. There is a problem that it is difficult to apply because it occurs in the uneven structure. Moreover, it is not realistic to make the thickness of the flexible film 10 μm or less because the handling property of the flexible film is extremely deteriorated.

一方、微細構造を曲面上に直接形成する方法としては、真空プロセスで曲面上に蒸着した金属ナノ粒子をマスクとして利用し、エッチング法により曲面上にナノ構造を形成する方法がある(非特許文献1)。この方法では製品曲面上に微細構造を直接形成するため、高い寸法精度で成形体を得ることが可能だが、金属ナノ粒子は球状であるため得られる微細構造の形状が限定されるという問題がある。   On the other hand, as a method of directly forming a fine structure on a curved surface, there is a method of forming nanostructures on the curved surface by an etching method using metal nanoparticles deposited on the curved surface by a vacuum process as a mask (non-patent document). 1). This method forms a microstructure directly on the curved surface of the product, so that it is possible to obtain a molded body with high dimensional accuracy. However, since the metal nanoparticles are spherical, there is a problem that the shape of the microstructure that can be obtained is limited. .

特開2006−171219 公報JP 2006-171219 A 特開2004−361635 公報JP 2004-361635 A

ナノ粒子の創生と応用展開 (2008年、フロンティア出版、編・著 米澤徹)Creation and application of nanoparticles (2008, Frontier Publishing, edited by Toru Yonezawa)

本発明は上記課題を解決するため、3次元立体面上に高い寸法精度で各種形状の微細構造を形成する方法、及びその形成方法で得られる成形品を提供することを目的とする。   In order to solve the above-described problems, an object of the present invention is to provide a method for forming microstructures of various shapes on a three-dimensional solid surface with high dimensional accuracy, and a molded product obtained by the formation method.

上記の課題を解決する本発明は、基材フィルム上に微細構造を形成する工程と、前記微細構造上に熱可塑性樹脂よりなる層を形成して積層体とする工程と、前記工程で得られる微細構造が形成された基材フィルムと前記熱可塑性樹脂よりなる層とからなる積層体を、前記熱可塑性樹脂側を被成形体に対面させて貼り付ける工程と、被成形体に貼り付けた前記積層体のうち前記微細構造が形成された基材フィルムを剥離する工程よりなることを特徴とする微細構造の形成方法により達成できる。
ここで、本発明における「微細構造」とは、互いに隣接するトップとボトムの高さの差が0.05μm〜5μmであり、互いに隣接するトップ間の距離が0.05μm〜10μmの凹凸構造である。
The present invention for solving the above problems is obtained by the steps of forming a fine structure on a base film, forming a layer made of a thermoplastic resin on the fine structure, and forming the laminate. A step of attaching a laminate composed of a base film on which a microstructure is formed and a layer made of the thermoplastic resin, with the thermoplastic resin side facing the object to be formed, and the object attached to the object to be formed It can be achieved by a method for forming a fine structure characterized by comprising a step of peeling the substrate film on which the fine structure is formed in the laminate.
Here, the “fine structure” in the present invention is a concavo-convex structure in which the difference in height between the adjacent top and bottom is 0.05 μm to 5 μm, and the distance between the adjacent tops is 0.05 μm to 10 μm. is there.

また本発明は、前記基材フィルム上に微細構造を形成する工程が、該微細構造の反転形状を有する型を紫外線硬化樹脂を介して前記基材フィルムに押し付けた状態で紫外線を照射して硬化させ、基材フィルム上に硬化した紫外線硬化樹脂からなる微細構造を形成する工程であるのが好ましい。   Further, in the present invention, the step of forming a microstructure on the base film is cured by irradiating with ultraviolet rays in a state where a mold having an inverted shape of the microstructure is pressed against the base film through an ultraviolet curable resin. And a step of forming a microstructure made of an ultraviolet curable resin cured on the base film.

また、本発明における被成形体の微細構造が形成された面の形状は3次元立体面であるのが好ましい。   Moreover, it is preferable that the shape of the surface on which the microstructure of the molded body in the present invention is formed is a three-dimensional solid surface.

また、前記積層体を前記被成形体の3次元立体面である表面に貼り付ける工程が真空成形または圧空成形であり、前記熱可塑性樹脂のガラス転移温度をT1℃、前記基材フィルムの貯蔵弾性率が0.1MPaとなる温度をT2℃としたときに、前記積層体の温度をT1+20℃〜T2℃の範囲内として真空成形または圧空成形あるいはその両者を組み合わせて行うのが好ましい。   In addition, the step of attaching the laminate to the surface which is a three-dimensional solid surface of the molded body is vacuum forming or pressure forming, the glass transition temperature of the thermoplastic resin is T1 ° C., and the storage elasticity of the base film When the temperature at which the rate is 0.1 MPa is T2 ° C., the temperature of the laminate is preferably in the range of T1 + 20 ° C. to T2 ° C., and vacuum molding or pressure molding or a combination of both is preferably performed.

さらに、前記基材フィルムは無延伸フィルムであり、前記積層体を被成形体の3次元立体面に貼り付ける工程は、前記基材フィルムの貯蔵蔵弾性率が0.1〜10MPaとなる温度範囲で行われるのが好ましい。   Furthermore, the said base film is an unstretched film, and the process of sticking the said laminated body on the three-dimensional solid surface of a to-be-molded body is the temperature range from which the storage elastic modulus of the said base film will be 0.1-10 MPa. Is preferably carried out.

また、前記積層体を被成形体に貼り付ける工程において、前記基材フィルムに形成される微細構造が紫外線硬化樹脂により形成されるときに、該工程は、前記紫外線硬化樹脂の貯蔵弾性率が0.1〜100MPaとなる温度範囲で行われるのが好ましい。   Further, in the step of attaching the laminate to a molded body, when the microstructure formed on the base film is formed of an ultraviolet curable resin, the step has a storage elastic modulus of the ultraviolet curable resin of 0. It is preferably carried out in a temperature range of 1 to 100 MPa.

本発明において、被成形体の表面を形成する材料は、前記積層体の熱可塑性樹脂と同じであるのが好ましい。   In this invention, it is preferable that the material which forms the surface of a to-be-molded body is the same as the thermoplastic resin of the said laminated body.

また、基材フィルム上に紫外線硬化樹脂を用いて微細構造を形成する工程において、前記基材フィルム上に形成する前記微細構造は、前記積層体を被成形体に貼り付ける際に被成形体に追従して延伸されることを想定した形状であって、前記被成形体上に形成される微細構造とは形状が異なっていることが好ましい。   Further, in the step of forming the microstructure using the ultraviolet curable resin on the base film, the microstructure to be formed on the base film is applied to the molded body when the laminate is attached to the molded body. The shape is assumed to follow and be stretched, and the shape is preferably different from the microstructure formed on the molded body.

また本発明は、上記の微細構造の形成方法で得られる表面に微細構造を形成した成形品である。さらに、該成形品の反転形状を有する型を作製し、次いで、該型を転写することによって表面に微細構造を有する成形体を得ること特徴とする微細構造を有する成形体の製造方法である。   Moreover, this invention is a molded article which formed the fine structure in the surface obtained by said formation method of a fine structure. Further, the present invention provides a method for producing a molded body having a microstructure, characterized in that a mold having an inverted shape of the molded product is produced, and then the mold is transferred to obtain a molded body having a microstructure on the surface.

また本発明は、前記被成形体が透明材料からなる前記の微細構造の形成方法により得られる成形品からなる光学部品である。また本発明は、前記微細構造を有する成形体の製造方法により得られる表面に微細構造を形成した光学部品である。   Moreover, this invention is an optical component which consists of a molded article obtained by the said formation method of the said microstructure from which the said to-be-molded body consists of transparent materials. Moreover, this invention is an optical component which formed the fine structure in the surface obtained by the manufacturing method of the molded object which has the said fine structure.

本発明によれば、公知のリソグラフィ技術で作製した微細構造を用いて、被成形体表面に微細構造を容易に形成することが可能である。また本発明の積層体を3次元立体面を有する被成形体表面に貼り付けた場合に、被成形体の寸法変化は熱可塑性樹脂よりなる層の膜厚だけであるため、寸法精度の高い微細構造を有する成形体を作製できる。   According to the present invention, it is possible to easily form a fine structure on the surface of a molded body using a fine structure produced by a known lithography technique. In addition, when the laminate of the present invention is attached to the surface of a molded body having a three-dimensional solid surface, the dimensional change of the molded body is only the film thickness of a layer made of a thermoplastic resin. A molded body having a structure can be produced.

紫外線硬化樹脂を用いた微細構造の形成工程を示す図である。It is a figure which shows the formation process of the fine structure using ultraviolet curable resin. 熱プレスによる微細構造の形成工程を示す図である。It is a figure which shows the formation process of the microstructure by hot press. 微細構造上に熱可塑性樹脂を塗布する工程を示す図である。It is a figure which shows the process of apply | coating a thermoplastic resin on a microstructure. 真空圧空成形機を用いて被成形体の表面に微細構造を形成する工程を示す図である。It is a figure which shows the process of forming a fine structure in the surface of a to-be-molded body using a vacuum pressure forming machine. 実施例における基材フィルム上に紫外線硬化性樹脂により形成されたモスアイ構造の反転構造の断面SEM写真である。It is a cross-sectional SEM photograph of the reversal structure of the moth-eye structure formed with the ultraviolet curable resin on the base film in an Example. 実施例におけるアクリル製レンズ上に形成されたモスアイ構造の断面SEM写真である。It is a cross-sectional SEM photograph of the moth eye structure formed on the acrylic lens in an Example. 実施例におけるモスアイ構造形成前後のアクリル製レンズの反射率測定結果を示す図である。It is a figure which shows the reflectance measurement result of the acrylic lens before and after moth eye structure formation in an Example.

以下、本発明を図示の実施形態に基づいて説明する。
本発明は、基材フィルム上に微細構造を形成する工程と、前記微細構造上に熱可塑性樹脂よりなる層を形成して積層体とする工程と、前記工程で得られる微細構造が形成された基材フィルムと前記熱可塑性樹脂よりなる層とからなる積層体を、前記熱可塑性樹脂側を被成形体に対面させて貼り付ける工程と、前記被成形体に貼り付けた前記積層体のうち前記微細構造が形成された基材フィルムを剥離する工程よりなることを特徴とする微細構造の形成方法である。
以下、各工程を追って説明する。
なお、これらの図において図示される各部の大きさ、厚さ、寸法等は、実際の微細構造の形成工程における大きさ、厚さ、寸法とは異なる。
Hereinafter, the present invention will be described based on the illustrated embodiments.
The present invention includes a step of forming a fine structure on a base film, a step of forming a layer made of a thermoplastic resin on the fine structure to form a laminate, and a fine structure obtained in the step. A step of attaching a laminate comprising a base film and a layer made of the thermoplastic resin with the thermoplastic resin side facing the molded body, and among the laminated bodies attached to the molded body, A method for forming a fine structure, comprising a step of peeling a base film on which a fine structure is formed.
Hereinafter, each process will be described.
It should be noted that the size, thickness, dimensions, etc. of each part shown in these drawings are different from the size, thickness, dimensions in the actual fine structure forming process.

図1に紫外線硬化樹脂を用いた基材フィルム上への微細構造の形成工程を示す。該工程はいわゆる光ナノインプリントと呼ばれる方法である。基材フィルム1上の微細構造4は紫外線硬化樹脂2を基材フィルム1上に塗布し、紫外線硬化樹脂2側から微細構造の反転型3を押し当てて、紫外線照射して硬化させることで得ることができる。紫外線照射は硬化に寄与する波長に対して、基材フィルム1と反転型3で透過率の高いどちらか一方向からあるいは両方から照射すればよい。   FIG. 1 shows a process for forming a fine structure on a base film using an ultraviolet curable resin. This step is a so-called optical nanoimprint method. The fine structure 4 on the base film 1 is obtained by applying the ultraviolet curable resin 2 on the base film 1, pressing the reverse structure 3 of the fine structure from the ultraviolet curable resin 2 side, and curing by irradiating with ultraviolet rays. be able to. Irradiation with ultraviolet rays may be performed from one or both of the base film 1 and the inversion mold 3 having high transmittance with respect to the wavelength contributing to curing.

また図2に熱プレスによる基材フィルム上への微細構造の形成工程を示す。該工程はいわゆる熱ナノインプリントと呼ばれる方法である。基材フィルム1上から微細構造4の反転形状を有する反転型3を加熱したのち、圧力をかけることで基材フィルム1上に微細構造4を形成することができる。さらに基材フィルム1を押し出し成形で作製する場合は、ロール表面形状を微細構造4の反転形状としておくことで、押し出し成形時に基材フィルム1の表面に微細構造4を形成することができる。基材フィルム1の表面に微細構造4を形成する方法は、必要とする面積、構造の大きさ、フィルムの物性等を鑑み、適宜選択すればよい。   Moreover, the formation process of the fine structure on the base film by hot press is shown in FIG. This step is a so-called thermal nanoimprint method. The fine structure 4 can be formed on the base film 1 by applying pressure after heating the reverse mold 3 having the reverse shape of the fine structure 4 from the base film 1. Furthermore, when producing the base film 1 by extrusion molding, the microstructure 4 can be formed on the surface of the base film 1 at the time of extrusion molding by setting the roll surface shape to the inverted shape of the microstructure 4. The method for forming the microstructure 4 on the surface of the base film 1 may be appropriately selected in view of the required area, the size of the structure, the physical properties of the film, and the like.

微細構造4の反転形状を有する反転型3は、公知技術を用いて作製する事ができる。例えば、マスク露光法、電子線リソグラフィ法、干渉露光法などがある。また大きな面積に対応することができる、自己組織化といわれるアルミの陽極酸化、微粒子配置なども利用できる。微細構造の反転型3の作製は、必要とする面積、微細構造の大きさに応じ、適宜選択すればよい。   The reversal mold 3 having the reversal shape of the fine structure 4 can be manufactured using a known technique. For example, there are a mask exposure method, an electron beam lithography method, an interference exposure method and the like. In addition, aluminum anodization, which is known as self-organization, and fine particle arrangement, which can deal with a large area, can be used. The fine structure inversion mold 3 may be appropriately selected according to the required area and the size of the fine structure.

微細構造の形成に紫外線硬化樹脂2を用いる場合、紫外線硬化樹脂の硬化後の貯蔵弾性率は0.1〜100MPaであることが好ましく、より好ましくは0.1〜10MPaである。なぜなら、後で説明する被成形体に微細構造有する積層体を貼り付ける工程において、紫外線硬化樹脂2と基材フィルム1との弾性率を近い値にすることで、紫外線硬化樹脂2と基材フィルム1が剥離するのを防ぐことができるためである。紫外線硬化樹脂2の貯蔵弾性率が前記範囲外の場合、被成形体に微細構造を貼り付ける工程において、基材フィルム1と紫外線硬化樹脂2にかかる応力差により、基材フィルム1と紫外線硬化樹脂2が剥離する問題が生じやすい。
また、紫外線硬化樹脂2を基材フィルム1上に塗布する前に、紫外線硬化樹脂2を塗布する基材フィルム1の表面にコロナ処理、プライマー処理等の公知の易接着処理を施しても良い。これにより紫外線硬化性樹脂2と基材フィルム1の剥離をいっそう防止することができる。
When the ultraviolet curable resin 2 is used for forming the fine structure, the storage elastic modulus after curing of the ultraviolet curable resin is preferably 0.1 to 100 MPa, and more preferably 0.1 to 10 MPa. This is because, in the step of attaching a laminate having a fine structure to a molded body, which will be described later, by making the elastic modulus of the ultraviolet curable resin 2 and the base film 1 close to each other, the ultraviolet curable resin 2 and the base film It is because it can prevent that 1 peels. When the storage elastic modulus of the ultraviolet curable resin 2 is outside the above range, the base film 1 and the ultraviolet curable resin are caused by a difference in stress applied to the base film 1 and the ultraviolet curable resin 2 in the step of attaching the fine structure to the molded body. The problem that 2 peels easily occurs.
Moreover, before apply | coating the ultraviolet curable resin 2 on the base film 1, you may give well-known easy adhesion processes, such as a corona treatment and a primer process, to the surface of the base film 1 which apply | coats the ultraviolet curable resin 2. FIG. Thereby, peeling of the ultraviolet curable resin 2 and the base film 1 can be further prevented.

基材フィルム1としては無延伸のフィルムを用いるのが好ましい。これは後で説明する被成形体に微細構造を有する積層体を貼り付ける工程において、基材フィルムを延伸させながら3次元立体面を有する被成形体の表面に追従させるためである。貼り付け工程の前に既に延伸されたフィルムを用いた場合では、一般にフィルムの素材の結晶性が高まるため、基材フィルム1が伸びにくくなり被成形体表面への追従が困難になる。さらに、基材フィルム1の延伸方向と非延伸方向での伸び率が異なってくるため、基材フィルム1を等方的に伸ばすことが困難になる等の問題が生じやすい。   As the substrate film 1, an unstretched film is preferably used. This is to cause the surface of the molded body having a three-dimensional solid surface to follow while stretching the base film in the step of attaching the laminate having a microstructure to the molded body, which will be described later. In the case of using a film that has already been stretched before the attaching step, the crystallinity of the material of the film generally increases, so that the base film 1 is difficult to stretch and it is difficult to follow the surface of the molded body. Furthermore, since the elongation rates in the stretching direction and the non-stretching direction of the base film 1 are different, problems such as difficulty in stretching the base film 1 is likely to occur.

また、基材フィルム1の材料としては、アクリル系樹脂、ポリ塩化ビニル、ポリスチレン、ポリカーボネートなどが例示できる。基材フィルム1の材料は、被成形体の大きさ、形状に応じて適宜選択すればよい。特にゴム入りアクリル系樹脂を用いるのが加工性の観点から好ましい。   Examples of the material of the base film 1 include acrylic resins, polyvinyl chloride, polystyrene, and polycarbonate. What is necessary is just to select the material of the base film 1 suitably according to the magnitude | size and shape of a to-be-molded body. In particular, it is preferable to use a rubber-containing acrylic resin from the viewpoint of workability.

形成する微細構造としては、モスアイ構造、ラインアンドスペース構造、ピラー構造、ホール構造などのフォトニック結晶、回折格子などが挙げられる。ここで、微細構造とは、互いに隣接するトップとボトムの高さの差が0.05μm〜5μmであり、互いに隣接するトップ間の距離が0.05μm〜10μmの凹凸構造である。   Examples of the fine structure to be formed include a moth-eye structure, a line and space structure, a pillar structure, a hole structure, and other photonic crystals, a diffraction grating, and the like. Here, the fine structure is a concavo-convex structure in which the difference in height between the adjacent top and bottom is 0.05 μm to 5 μm, and the distance between the adjacent tops is 0.05 μm to 10 μm.

次に、微細構造上に熱可塑性樹脂よりなる層5を形成する工程について説明する。図3のように、微細構造4上に熱可塑性樹脂を塗布する工程は、まず熱可塑性樹脂に対して可溶な溶剤を用いて熱可塑性樹脂を溶解させた溶液6を作製する。溶液6をスピンコート、バーコート、スプレーコートなどの装置を用いて微細構造4上に均一に塗布した後、溶液6から前記溶剤を蒸発させることで微細構造4の凹凸に熱可塑性樹脂が充填され、平滑な熱可塑性樹脂よりなる層5が得られる。   Next, the process of forming the layer 5 made of a thermoplastic resin on the microstructure will be described. As shown in FIG. 3, in the step of applying the thermoplastic resin on the microstructure 4, first, a solution 6 in which the thermoplastic resin is dissolved is prepared using a solvent that is soluble in the thermoplastic resin. After the solution 6 is uniformly applied on the microstructure 4 using an apparatus such as spin coat, bar coat, spray coat, etc., the solvent is evaporated from the solution 6 to fill the irregularities of the microstructure 4 with the thermoplastic resin. A layer 5 made of a smooth thermoplastic resin is obtained.

熱可塑性樹脂にはアクリル系樹脂、ポリ塩化ビニル、ポリスチレン、ポリカーボネートなどが例示でき、前記熱可塑性樹脂を溶解させる溶剤にはケトン、エステル、塩素化溶剤などを用いることができる。また、前記溶剤は微細構造4を形成する材料に対して不要な溶剤を選択する必要がある。これは、溶液6中の前記溶剤が微細構造4を溶解するのを防ぐためである。   Examples of the thermoplastic resin include acrylic resins, polyvinyl chloride, polystyrene, and polycarbonate, and ketones, esters, chlorinated solvents, and the like can be used as solvents for dissolving the thermoplastic resins. Further, it is necessary to select an unnecessary solvent for the material forming the microstructure 4 as the solvent. This is to prevent the solvent in the solution 6 from dissolving the fine structure 4.

熱可塑性樹脂よりなる層5の厚さは10μm以下であるのが好ましい。これは後で説明する基材フィルム1と熱可塑性樹脂よりなる層5とからなる積層体を被成形体に貼り付ける工程において、厚さが10μmより厚い場合、被成形体に形成する微細構造4を構成する層の厚さが10μm以上となり、被成形体の寸法精度を低下させるためである。ここで厚さ10μm以下の熱可塑性樹脂よりなる層5を作製するためには、溶液6の粘度は1.0cP以下が好ましい。溶液6の粘度が1.0cPより大きいと、微細構造4上に平滑で厚さ10μm以下の熱可塑性樹脂よりなる層5を形成するのが困難なためである。   The thickness of the layer 5 made of a thermoplastic resin is preferably 10 μm or less. This is because, in the step of attaching a laminate comprising a base film 1 and a layer 5 made of a thermoplastic resin, which will be described later, to the molded body, when the thickness is greater than 10 μm, the microstructure 4 formed on the molded body This is because the thickness of the layer constituting the layer becomes 10 μm or more and the dimensional accuracy of the molded body is lowered. Here, in order to produce the layer 5 made of a thermoplastic resin having a thickness of 10 μm or less, the viscosity of the solution 6 is preferably 1.0 cP or less. This is because if the viscosity of the solution 6 is larger than 1.0 cP, it is difficult to form a smooth layer 5 made of a thermoplastic resin having a thickness of 10 μm or less on the microstructure 4.

また、熱可塑性樹脂を微細構造4上に塗布する前に、フッ素系の離型剤を微細構造4上に塗布してもよく、前記離型剤を添加した溶液6を微細構造4上に塗布しても良い。これは後で説明する被成形体に貼り付けた前記積層体から基材フィルム1を剥離する工程において、前記積層体の基材フィルム1と熱可塑性樹脂よりなる層5の離型性を良くするためである。   Further, before the thermoplastic resin is applied on the microstructure 4, a fluorine-based release agent may be applied on the microstructure 4, and the solution 6 to which the release agent is added is applied on the microstructure 4. You may do it. This improves the releasability of the base film 1 of the laminate and the layer 5 made of thermoplastic resin in the step of peeling the base film 1 from the laminate attached to the molded body, which will be described later. Because.

図4のように、微細構造4を表面に形成した基材フィルム1と微細構造4上に塗布した熱可塑性樹脂よりなる層5とからなる積層体を被成形体7に貼り付ける工程は、例えば真空圧空成形機8を用いて行うのが好ましい。被成形体7を真空圧空成形機8内に固定し、前記積層体の熱可塑性樹脂5側と被成形体7が互いに対面するように配置する。熱風や赤外線加熱等により前記積層体の熱可塑性樹脂5を軟化させた後、前記積層体の基材フィルム1側を加圧状態、前記積層体の熱可塑性樹脂側を減圧状態にすることで、被成形体に前記積層体を貼り付けることができる。
なお、熱可塑性樹脂側を減圧する場合、基材フィルム1側を大気圧とすることを妨げるものではなく、逆に、基材フィルム1側を加圧する場合、熱可塑性樹脂側を大気圧とすることを妨げるものではない。
As shown in FIG. 4, the step of attaching a laminate composed of the base film 1 having the microstructure 4 formed on the surface and the layer 5 made of the thermoplastic resin applied on the microstructure 4 to the molded body 7 is, for example, It is preferable to use a vacuum / pressure forming machine 8. The molded body 7 is fixed in a vacuum / pressure forming machine 8 and is arranged so that the thermoplastic resin 5 side of the laminate and the molded body 7 face each other. After softening the thermoplastic resin 5 of the laminate by hot air or infrared heating, the base film 1 side of the laminate is in a pressurized state, and the thermoplastic resin side of the laminate is in a reduced pressure state, The said laminated body can be affixed on a to-be-molded body.
In addition, when depressurizing the thermoplastic resin side, it does not prevent the base film 1 side from being set to atmospheric pressure. Conversely, when pressurizing the base film 1 side, the thermoplastic resin side is set to atmospheric pressure. It does not prevent it.

熱可塑性樹脂のガラス転移温度をT1℃、基材フィルム1の貯蔵弾性率が0.1MPaとなる温度をT2℃とした場合、前記積層体を被成形体7に貼り付ける工程における前記積層体の温度は、T1+20℃〜T2℃の範囲内とするのが好ましく、より好ましくはT1+40℃〜T2℃の範囲内とするのが良い。前記積層体をT1+20℃より低い温度で被成形体7に貼り付けるときは、前記積層体の熱可塑性樹脂が軟化不十分で、熱可塑性樹脂よりなる層5からなる微細構造4を被成形体7に接着させることができないことがある。一方、前記積層体をT2℃より高い温度で被成形体7に貼り付けるときは、加熱により軟化した前記積層体の基材フィルム1がフィルム形状を保持できないことがある。   When the glass transition temperature of the thermoplastic resin is T1 ° C. and the temperature at which the storage elastic modulus of the base film 1 is 0.1 MPa is T2 ° C., the laminated body in the step of attaching the laminated body to the molded body 7 The temperature is preferably in the range of T1 + 20 ° C. to T2 ° C., and more preferably in the range of T1 + 40 ° C. to T2 ° C. When the laminate is attached to the molding 7 at a temperature lower than T1 + 20 ° C., the thermoplastic resin of the laminate is insufficiently softened, and the microstructure 4 composed of the layer 5 made of the thermoplastic resin is formed on the molding 7. May not be able to adhere to. On the other hand, when the laminate is affixed to the molded body 7 at a temperature higher than T2 ° C., the base film 1 of the laminate that has been softened by heating may not be able to maintain the film shape.

また、前記積層体を被成形体7に貼り付ける圧力は200〜350kPaの範囲内で行うのが良い。前記積層体を被成形体7に貼り付ける圧力が200kPa以下の場合、前記積層体に対面する被成形体7の曲面に対して前記積層体が十分に追従しないため、熱可塑性樹脂5からなる微細構造4を被成形体7の曲面全体に形成させるのが困難になることがある。一方、350kPa以上の圧力で前記積層体を被成形体7に貼り付ける場合、前記積層体の基材フィルム1が圧力により破断することがある。   Moreover, it is good to perform the pressure which affixes the said laminated body on the to-be-molded body 7 within the range of 200-350 kPa. When the pressure at which the laminate is bonded to the molded body 7 is 200 kPa or less, the laminate does not sufficiently follow the curved surface of the molded body 7 facing the laminated body. It may be difficult to form the structure 4 on the entire curved surface of the molded body 7. On the other hand, when the said laminated body is affixed on the to-be-molded body 7 by the pressure of 350 kPa or more, the base film 1 of the said laminated body may fracture | rupture by a pressure.

さらに、被成形体7の表面は前記積層体の熱可塑性樹脂5と接着性の高い物性の材料であることが好ましい。熱可塑性樹脂5と接着性の高い材料には、アクリル樹脂、ポリカーボネート、ガラス、ポリスチレン、ミクロオレフィン系樹脂などを例示できる。また、被成形体7の表面にコロナ処理、プライマー処理等の公知の易接着処理を施しても良い。   Furthermore, it is preferable that the surface of the molded body 7 is made of a material having high adhesive properties with the thermoplastic resin 5 of the laminate. Examples of the material having high adhesiveness with the thermoplastic resin 5 include acrylic resin, polycarbonate, glass, polystyrene, and microolefin resin. Moreover, you may give well-known easy-adhesion processes, such as a corona process and a primer process, to the surface of the to-be-molded body 7. FIG.

被成形体7に貼り付けた前記積層体から基材フィルム1を剥離すると、熱可塑性樹脂よりなる層5からなる微細構造4の反転構造9が被成形体7の表面に形成される。前記積層体を貼り付けた被成形体7から基材フィルム1を剥離する温度はT1+20℃以下であるのが好ましい。T1+20℃より高い温度で、前記積層体を貼り付けた被成形体7から基材フィルム1を剥離すると、被成形体7に接触している熱可塑性樹脂5が軟化しており、被成形体7と熱可塑性樹脂5の接着が低いため、基材フィルム1と同時に熱可塑性樹脂5が剥離され、被成形体7の表面に反転構造9を形成するのが困難になることがある。   When the base film 1 is peeled from the laminated body attached to the molded body 7, an inverted structure 9 of the microstructure 4 composed of the layer 5 made of a thermoplastic resin is formed on the surface of the molded body 7. The temperature at which the base film 1 is peeled from the molded body 7 to which the laminate is attached is preferably T1 + 20 ° C. or lower. When the base film 1 is peeled from the molded body 7 to which the laminate is attached at a temperature higher than T1 + 20 ° C., the thermoplastic resin 5 in contact with the molded body 7 is softened, and the molded body 7 And the thermoplastic resin 5 are low in adhesion, the thermoplastic resin 5 is peeled off at the same time as the base film 1, and it may be difficult to form the inverted structure 9 on the surface of the molded body 7.

熱可塑性樹脂よりなる層5と被成形体7の接着性を向上させるため、基材フィルム1と熱可塑性樹脂よりなる層5からなる積層体のうち、熱可塑性樹脂よりなる層5側に熱可塑性樹脂と被成形体7に対して接着性の高い材料で接着層を形成しても良い。なお、前記接着層の厚さは1μm以下が好ましい。これは1μm以上の場合、前記積層体を被成形体7に貼り付ける圧力によって前記接着層に膜厚むらが生じ、被成形体の寸法精度が劣化するためである。熱可塑性樹脂と被成形体7に接着性の高い材料としては、シランカップリング剤、エポキシ系接着剤、アクリル系接着剤などを例示できる。   In order to improve the adhesion between the layer 5 made of the thermoplastic resin and the molded body 7, among the laminates made of the base film 1 and the layer 5 made of the thermoplastic resin, the thermoplastic is applied to the layer 5 side made of the thermoplastic resin. The adhesive layer may be formed of a material having high adhesion to the resin and the molded body 7. The thickness of the adhesive layer is preferably 1 μm or less. This is because, when the thickness is 1 μm or more, film thickness unevenness occurs in the adhesive layer due to the pressure for adhering the laminated body to the molded body 7, and the dimensional accuracy of the molded body deteriorates. Examples of the material having high adhesiveness to the thermoplastic resin and the molded body 7 include silane coupling agents, epoxy adhesives, acrylic adhesives, and the like.

前記積層体を被成形体7に貼り付ける際、被成形体7の形状に応じて前記積層体が延伸しながら追従するため、前記積層体の基材フィルム1に形成した微細構造4も延伸する。基材フィルム1の延伸を想定した微細構造4の形状設計を行うことで、被成形体7全面に渡って所望の特性を得ることができる。   When the laminate is attached to the molded body 7, the microstructure follows the stretched body according to the shape of the molded body 7, so that the microstructure 4 formed on the base film 1 of the laminated body is also stretched. . By designing the shape of the microstructure 4 assuming the stretching of the base film 1, desired characteristics can be obtained over the entire surface of the molded body 7.

得られた成形体を光学部品として使用しても良い。また、前記成形体に金属蒸着処理を行い、偏光分離などの高機能化を計ることも可能である。さらに、電鋳処理をして反転型を作製し、前記反転型から射出成形や熱プレスなどの量産性に富む転写により表面に微細構造を形成した成形品を作製することが可能である。   You may use the obtained molded object as an optical component. Further, it is possible to perform metal vapor deposition treatment on the molded body so as to increase the functionality such as polarization separation. Furthermore, it is possible to produce an inverted mold by electroforming, and to produce a molded product having a fine structure formed on the surface by transfer that is rich in mass production, such as injection molding or hot press, from the inverted mold.

微細構造の金型には周期300nm、高さ300nmのモスアイ構造を持つニッケル型(協同インターナショナル社製)を用いた。基材フィルムには、厚さ100μmのポリ塩化ビニルフィルム(タフニール、日本ウェーブロック社製、以下PVC)またはゴム入りアクリル系フィルム(以下RT)を使用した。ゴム入りアクリル系フィルム(RT)としては、厚さを150μmとした他は特開2009−228000に開示される実施例1に記載のフィルムと同等のものを用いた。   A nickel mold (manufactured by Kyodo International Co., Ltd.) having a moth-eye structure with a period of 300 nm and a height of 300 nm was used as the fine mold. A polyvinyl chloride film (Tough Neil, manufactured by Nippon Wavelock Co., Ltd., hereinafter referred to as “PVC”) or a rubber-containing acrylic film (hereinafter referred to as “RT”) was used as the base film. As the rubber-containing acrylic film (RT), the same film as described in Example 1 disclosed in JP-A-2009-228000 was used except that the thickness was 150 μm.

アクリル系紫外線硬化樹脂UVX4332(東亜合成社製)を介して金型を基材フィルムに貼り付け、紫外線照射した。金型を基材フィルムから剥離すると、硬化した紫外線硬化樹脂からなるモスアイ構造の反転構造を基材フィルム上に得ることができた(図5参照)。モスアイ構造の反転構造上にメチルイソブチルケトンを溶剤として5wt%に溶解・希釈したPMMA(パラペットGH、クラレ社製)をスピンコートにより塗布し、70℃に加温して溶剤を蒸発させ、熱可塑性樹脂層を形成した。なお、基材フィルムの貯蔵弾性率が0.1MPaとなる温度T2はポリ塩化ビニルフィルムが134℃であり、アクリル系フィルムが177℃である。また熱可塑性樹脂として使用したPMMAのガラス転移温度T1は90℃である。   A mold was attached to the substrate film via an acrylic ultraviolet curable resin UVX4332 (manufactured by Toa Gosei Co., Ltd.) and irradiated with ultraviolet rays. When the mold was peeled from the base film, an inverted structure of a moth-eye structure made of a cured ultraviolet curable resin could be obtained on the base film (see FIG. 5). PMMA (parapet GH, manufactured by Kuraray Co., Ltd.) dissolved and diluted to 5 wt% with methyl isobutyl ketone as a solvent is applied to the inverted structure of the moth-eye structure by spin coating, and the solvent is evaporated by heating to 70 ° C. A resin layer was formed. The temperature T2 at which the storage elastic modulus of the base film becomes 0.1 MPa is 134 ° C. for the polyvinyl chloride film and 177 ° C. for the acrylic film. Moreover, the glass transition temperature T1 of PMMA used as a thermoplastic resin is 90 degreeC.

モスアイ構造の反転構造を表面に形成する基材フィルムと熱可塑性樹脂からなる積層体を真空圧空成形機(布施真空製)内で100〜180℃の範囲内の所定温度まで加熱し、300kPaでアクリル製レンズ(φ60mm)に貼り付けた。前記積層体を貼り付けたアクリル製レンズを室温まで冷却した後、基材フィルムを剥離するとアクリル製レンズの表面にPMMAからなるモスアイ構造の形成が確認された。表1に試験条件および結果を示す。なお、本実施例においては「不可」となった例についても、被成形体の形状等が本実施例と異なった場合には同条件で「可」となる可能性があることから、参考例とした。   A laminate composed of a base material film and a thermoplastic resin that forms an inverted structure of a moth-eye structure on the surface is heated to a predetermined temperature in the range of 100 to 180 ° C. in a vacuum / pressure forming machine (manufactured by Fuse Vacuum) and acrylic at 300 kPa. Affixed to a lens (φ60 mm). After cooling the acrylic lens to which the laminate was attached to room temperature, when the base film was peeled off, it was confirmed that a moth-eye structure made of PMMA was formed on the surface of the acrylic lens. Table 1 shows the test conditions and results. In addition, even in the case of “impossible” in this example, if the shape of the molded body is different from the present example, it may be “possible” under the same conditions. It was.

<参考例7>
実施例と同じ紫外線硬化樹脂、モスアイ構造およびアクリル製レンズを用い、基材フィルム1に2軸延伸したPETフィルム(東洋紡エステル、A4300、東洋紡績製)を用いて100〜180℃で真空圧空成形を実施した。この結果、何れの温度でも真空圧空成形時にフィルムが破断し、微細構造4を形成することはできなかった。
<Reference Example 7>
Using the same UV curable resin, moth-eye structure and acrylic lens as in the example, vacuum pressure forming at 100 to 180 ° C. using a biaxially stretched PET film (Toyobo Ester, A4300, manufactured by Toyobo) on the substrate film Carried out. As a result, the film was broken at the time of vacuum / pressure forming at any temperature, and the microstructure 4 could not be formed.

実施例4で得られたアクリル製レンズの表面にモスアイ構造(図6参照)を形成した成形体を観察した結果、レンズの天頂部から裾部にかけてモスアイ構造が0〜30%延伸していた。また、図7に示すように、モスアイ形成前後でのアクリル製レンズの表面反射率を顕微分光装置(ラムダビジョン製)で測定し、モスアイ構造の形成による反射率の低減を確認した。   As a result of observing a molded body in which a moth-eye structure (see FIG. 6) was formed on the surface of the acrylic lens obtained in Example 4, the moth-eye structure was stretched by 0 to 30% from the top to the bottom of the lens. Further, as shown in FIG. 7, the surface reflectance of the acrylic lens before and after the formation of the moth eye was measured with a microspectroscope (made by Lambda Vision), and the reduction of the reflectance due to the formation of the moth eye structure was confirmed.

実施例4で得られたアクリル製レンズの表面にモスアイ構造を形成した成形体から電鋳処理を行い、反転金型を作製した。前記反転金型から射出成形を行った所、実施例4で得られた成形体と同じ光学性能を示す成形体が得られた。   An inversion mold was produced by performing an electroforming process from a molded body in which a moth-eye structure was formed on the surface of the acrylic lens obtained in Example 4. When injection molding was performed from the reversal mold, a molded body having the same optical performance as the molded body obtained in Example 4 was obtained.

1 基材フィルム
2 紫外線硬化樹脂
3 微細構造の反転型
4 微細構造
5 熱可塑性樹脂よりなる層
6 熱可塑性樹脂を溶剤で希釈した溶液
7 被成形体
8 真空圧空成形機
9 微細構造の反転構造
DESCRIPTION OF SYMBOLS 1 Base film 2 Ultraviolet curable resin 3 Micro structure reversal type 4 Micro structure 5 Layer made of thermoplastic resin 6 Solution which diluted thermoplastic resin with solvent 7 Molded object 8 Vacuum pressure molding machine 9 Micro structure reversal structure

Claims (12)

基材フィルム上に微細構造を形成する工程と、
前記微細構造上に熱可塑性樹脂よりなる層を形成して積層体とする工程と、
前記工程で得られる微細構造が形成された基材フィルムと前記熱可塑性樹脂よりなる層とからなる積層体を、前記熱可塑性樹脂側を被成形体に対面させて貼り付ける工程と、
被成形体に貼り付けた前記積層体のうち前記微細構造が形成された基材フィルムを被成形体から剥離する工程と
よりなることを特徴とする微細構造の形成方法。
Forming a microstructure on the substrate film;
Forming a layer of a thermoplastic resin on the microstructure to form a laminate;
A step of attaching a laminate composed of a base film on which the microstructure obtained in the step is formed and a layer made of the thermoplastic resin, with the thermoplastic resin side facing the molded body; and
A method for forming a fine structure, comprising: a step of peeling a base film on which the fine structure is formed from the laminate attached to the object to be formed from the object to be formed.
前記基材フィルム上に微細構造を形成する工程が、該微細構造の反転形状を有する型を紫外線硬化樹脂を介して基材フィルムに押し付けた状態で紫外線照射により紫外線硬化樹脂を硬化させ、基材フィルム上に硬化した紫外線硬化樹脂からなる微細構造を形成する工程である請求項1記載の微細構造の形成方法。 The step of forming a microstructure on the base film is a step of curing the UV curable resin by UV irradiation in a state where a mold having an inverted shape of the microstructure is pressed against the base film through the UV curable resin. 2. The method for forming a fine structure according to claim 1, which is a step of forming a fine structure made of an ultraviolet curable resin cured on a film. 前記被成形体の微細構造が形成された面の形状が3次元立体面である請求項1または2記載の微細構造の形成方法。 The method for forming a fine structure according to claim 1 or 2, wherein a shape of the surface on which the fine structure of the molded body is formed is a three-dimensional solid surface. 前記積層体を被成形体に貼り付ける工程が真空成形または圧空成形による工程であり、前記熱可塑性樹脂のガラス転移温度をT1℃、前記基材フィルムの貯蔵弾性率が0.1MPaとなる温度をT2℃としたときに、前記積層体の温度をT1+20℃〜T2℃の範囲内として真空成形または圧空成形を行うことを特徴とする請求項3に記載の微細構造の形成方法。 The step of attaching the laminate to the body to be molded is a step by vacuum forming or pressure forming, and the glass transition temperature of the thermoplastic resin is T1 ° C., and the storage elastic modulus of the base film is 0.1 MPa. 4. The method for forming a microstructure according to claim 3, wherein when T2 ° C. is set, vacuum forming or pressure forming is performed with the temperature of the laminated body in a range of T1 + 20 ° C. to T2 ° C. 5. 前記基材フィルムは無延伸フィルムであり、前記積層体を被成形体の3次元立体面に貼り付ける工程が、前記基材フィルムの貯蔵弾性率が0.1〜10MPaとなる温度範囲で行われることを特徴とする請求項1〜4のいずれか1項に記載の微細構造の形成方法。 The base film is an unstretched film, and the step of attaching the laminate to the three-dimensional surface of the molded body is performed in a temperature range where the storage elastic modulus of the base film is 0.1 to 10 MPa. The method for forming a microstructure according to any one of claims 1 to 4, wherein: 前記積層体を被成形体に貼り付ける工程において、前記基材フィルムに形成される微細構造が紫外線硬化樹脂により形成されており、前記紫外線硬化樹脂の貯蔵弾性率が0.1〜100MPaであることを特徴とする請求項1〜5のいずれか1項に記載の微細構造の形成方法。 In the step of affixing the laminate to the molded body, the microstructure formed on the base film is formed of an ultraviolet curable resin, and the storage elastic modulus of the ultraviolet curable resin is 0.1 to 100 MPa. The method for forming a microstructure according to any one of claims 1 to 5, wherein: 前記積層体の熱可塑性樹脂が被成形体の表面を形成する材料と同じであることを特徴とする請求項1〜6のいずれか1項に記載の微細構造の形成方法。 The method for forming a microstructure according to any one of claims 1 to 6, wherein the thermoplastic resin of the laminate is the same as a material forming the surface of the molded body. 基材フィルム上に微細構造を形成する工程において、基材フィルム上に形成する微細構造が、前記積層体を被成形体に貼り付ける工程で延伸することを想定した形状であって、前記被成形体上に形成される微細構造とは形状が異なっていることを特徴とする請求項3の微細構造の形成方法。 In the step of forming the fine structure on the base film, the fine structure to be formed on the base film is a shape that is assumed to be stretched in the step of attaching the laminate to the target object, and 4. The method for forming a fine structure according to claim 3, wherein the shape is different from the fine structure formed on the body. 請求項1〜8のいずれか1項に記載の微細構造の形成方法で得られる成形品。 A molded product obtained by the method for forming a microstructure according to any one of claims 1 to 8. 請求項1〜8のいずれか1項に記載の微細構造の形成方法で得られる表面に微細構造を有する成形品から該成形品の反転形状を有する型を作製し、次いで、該型を転写することによって表面に微細構造を有する成形体を得ることを特徴とする微細構造を有する成形体の製造方法。 A mold having an inverted shape of the molded article is produced from a molded article having a microstructure on the surface obtained by the method for forming a microstructure according to any one of claims 1 to 8, and then the mold is transferred. The manufacturing method of the molded object which has a microstructure characterized by obtaining the molded object which has a microstructure on the surface by this. 前記被成形体が透明材料よりなる請求項9に記載の成形品からなる光学部品。 The optical component comprising the molded product according to claim 9, wherein the molded body is made of a transparent material. 請求項10に記載の成形体の製造方法により得られる光学部品。 The optical component obtained by the manufacturing method of the molded object of Claim 10.
JP2013079312A 2013-04-05 2013-04-05 Method for molding fine structure, and molded article and optical component obtained by the same Pending JP2014202933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013079312A JP2014202933A (en) 2013-04-05 2013-04-05 Method for molding fine structure, and molded article and optical component obtained by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013079312A JP2014202933A (en) 2013-04-05 2013-04-05 Method for molding fine structure, and molded article and optical component obtained by the same

Publications (1)

Publication Number Publication Date
JP2014202933A true JP2014202933A (en) 2014-10-27

Family

ID=52353400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013079312A Pending JP2014202933A (en) 2013-04-05 2013-04-05 Method for molding fine structure, and molded article and optical component obtained by the same

Country Status (1)

Country Link
JP (1) JP2014202933A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214111A (en) * 1988-07-01 1990-01-18 Dainippon Printing Co Ltd Shaping film
JP2006039450A (en) * 2004-07-30 2006-02-09 Seiko Epson Corp Method for forming antireflection film, apparatus for forming antireflection film, antireflection film and optical component
JP2006341595A (en) * 2005-05-10 2006-12-21 Dainippon Ink & Chem Inc Molding method and molding device of sheet for thermoforming
JP2007238742A (en) * 2006-03-08 2007-09-20 Toray Ind Inc Resin composition for easily surface-shapable sheet, easily surface-shapable sheet, and laminate of easily surface-shapable sheet
JP2009239022A (en) * 2008-03-27 2009-10-15 Lintec Corp Sheet for manufacturing light emitting module, sheet for light emitting module and manufacturing method thereof, and light emitting module
JP2012101483A (en) * 2010-11-11 2012-05-31 Asahi Kasei Corp Resin mold manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214111A (en) * 1988-07-01 1990-01-18 Dainippon Printing Co Ltd Shaping film
JP2006039450A (en) * 2004-07-30 2006-02-09 Seiko Epson Corp Method for forming antireflection film, apparatus for forming antireflection film, antireflection film and optical component
JP2006341595A (en) * 2005-05-10 2006-12-21 Dainippon Ink & Chem Inc Molding method and molding device of sheet for thermoforming
JP2007238742A (en) * 2006-03-08 2007-09-20 Toray Ind Inc Resin composition for easily surface-shapable sheet, easily surface-shapable sheet, and laminate of easily surface-shapable sheet
JP2009239022A (en) * 2008-03-27 2009-10-15 Lintec Corp Sheet for manufacturing light emitting module, sheet for light emitting module and manufacturing method thereof, and light emitting module
JP2012101483A (en) * 2010-11-11 2012-05-31 Asahi Kasei Corp Resin mold manufacturing method

Similar Documents

Publication Publication Date Title
Baik et al. Highly adaptable and biocompatible octopus‐like adhesive patches with meniscus‐controlled unfoldable 3D microtips for underwater surface and hairy skin
CN105377542B (en) Laminate structure and its manufacture method and article
KR101819809B1 (en) Microrelief structural body, decorative sheet, decorative resin molded body, method for producing microrelief structural body, and method for producing decorative resin molded body
JP5777714B2 (en) Method for producing molded article covered with film
CN101177237A (en) Nanometer array and method for forming the same
Li et al. Application and development of shape memory micro/nano patterns
JP2007245702A (en) Method for manufacturing template and processed base material having transfer fine pattern
KR101565835B1 (en) Fabrication method of replication mold, fine structures using the same and its applications thereof.
JP2014202947A (en) Production method of molded article having fine structure, and optical component obtained by the method
JP6432134B2 (en) Curable composition, fine concavo-convex structure, decorative sheet, decorative resin molded body, and method for producing decorative resin molded body
JP6438590B2 (en) Decorative sheet for vacuum thermoforming, article formed using the same, and method for manufacturing decoration sheet for vacuum thermoforming
JP6125299B2 (en) Laminated film consisting of a base film with a fine structure formed on the surface and a transfer resin
JP2010105242A (en) Method for manufacturing in-mold decorated article
JP2014202933A (en) Method for molding fine structure, and molded article and optical component obtained by the same
KR20150073412A (en) Decoration sheet and method for preparing the same
JP2010082830A (en) Method for producing decorative molded article with micro unevenness formed
JP6693077B2 (en) Molded body with nanostructure
JP6059967B2 (en) Manufacturing method of resin molded products
US20090267247A1 (en) Method for manufacturing lens
KR102165315B1 (en) Nanostructured Anti Reflective Film for the Curved Surface and Method for Fabricating the same
KR102320282B1 (en) Electropole disk and method for manufacturing electric pole mold using the electric pole disk
JP2009226631A5 (en)
JP7098864B2 (en) A method for manufacturing an article with a moth-eye pattern, and a method for manufacturing an inverted type with a moth-eye pattern.
JP5039850B1 (en) Method for producing functional resin laminate
JP2007160603A (en) Manufacturing method of mold for molding optical member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170905