JP2014202552A - Method for removing silica in nuclear reactor coolant purification system and method for estimating silica adsorption amount - Google Patents

Method for removing silica in nuclear reactor coolant purification system and method for estimating silica adsorption amount Download PDF

Info

Publication number
JP2014202552A
JP2014202552A JP2013077543A JP2013077543A JP2014202552A JP 2014202552 A JP2014202552 A JP 2014202552A JP 2013077543 A JP2013077543 A JP 2013077543A JP 2013077543 A JP2013077543 A JP 2013077543A JP 2014202552 A JP2014202552 A JP 2014202552A
Authority
JP
Japan
Prior art keywords
silica
exchange resin
ion exchange
water
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013077543A
Other languages
Japanese (ja)
Other versions
JP6178095B2 (en
Inventor
博光 稲垣
Hiromitsu Inagaki
博光 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2013077543A priority Critical patent/JP6178095B2/en
Publication of JP2014202552A publication Critical patent/JP2014202552A/en
Application granted granted Critical
Publication of JP6178095B2 publication Critical patent/JP6178095B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To provide a silica removal method capable of efficiently removing silica from a nuclear reactor water.SOLUTION: A silica removal method for removing silica from a nuclear reactor water exchanges an ion exchange resin, provided on a filter demineralizer constituting a nuclear reactor coolant purification system for purifying reactor water, for new one, at the time when a silica adsorption amount peaks, to remove silica from reactor water. In this case, silica adsorbed on the ion exchange resin is removed before re-emitted by substitution with other anions having strong adsorption power, and therefore silica can be efficiently removed from the reactor water. This leads to a slower rise of silica concentration of the reactor water after the exchange and leads to a longer period of time to reach a control value which requires next exchange. Thus, the number of exchanges of ion exchange resins can be reduced more than before.

Description

本発明は、沸騰水型原子力発電プラントの原子炉冷却材浄化系において、原子炉水に含まれるシリカを除去する方法及びその方法に係り、イオン交換樹脂のシリカ吸着量を推定する方法に関する。   The present invention relates to a method for removing silica contained in reactor water in a reactor coolant purification system of a boiling water nuclear power plant and a method for estimating the silica adsorption amount of an ion exchange resin.

沸騰水型原子力発電プラントでは、原子炉水に含まれるシリカを、ろ過脱塩装置のフィルタ表面のイオン交換樹脂に吸着させ取り除くことで、原子炉水のシリカ濃度を管理値以下に抑えている。これは、原子炉水中のシリカ濃度が高いと、応力腐食割れ等の構造材への悪影響が懸念されるためである(例えば、下記特許文献1のろ過脱塩装置11)。   In boiling water nuclear power plants, silica contained in reactor water is adsorbed and removed by the ion exchange resin on the filter surface of the filter demineralizer to keep the silica concentration in the reactor water below the control value. This is because when the silica concentration in the reactor water is high, there is a concern about adverse effects on structural materials such as stress corrosion cracking (for example, the filtration desalination apparatus 11 of Patent Document 1 below).

特開平7−104095公報Japanese Patent Laid-Open No. 7-104095

フィルタ表面のイオン交換樹脂の交換容量は、シリカ吸着量の増加に伴って減少することから、一般的には、図2に示すように、ろ過脱塩装置の出口における原子炉水のシリカ濃度が管理値に達するまではイオン交換樹脂(陰イオン交換樹脂及び陽イオン交換樹脂の混合樹脂)を使い続け、シリカ濃度が管理値に達した時点で、古くなったイオン交換樹脂を廃棄し新しいイオン交換樹脂と交換している。交換後、イオン交換樹脂がシリカを吸着することから、ろ過脱塩装置の出口における原子炉水のシリカ濃度は一旦下がる。その後、使用を続けると、ろ過脱塩装置の出口における原子炉水のシリカ濃度は次第に上昇してゆき、シリカ濃度が管理値に達した時点で、再びイオン交換樹脂を交換している。   Since the exchange capacity of the ion exchange resin on the filter surface decreases as the silica adsorption amount increases, in general, as shown in FIG. 2, the silica concentration of the reactor water at the outlet of the filtration desalination apparatus is Until the control value is reached, continue to use ion exchange resin (mixed resin of anion exchange resin and cation exchange resin). When the silica concentration reaches the control value, the old ion exchange resin is discarded and new ion exchange is performed. Replaced with resin. After the exchange, since the ion exchange resin adsorbs silica, the silica concentration of the reactor water at the outlet of the filtration desalination apparatus is once lowered. After that, when the use is continued, the silica concentration of the reactor water at the outlet of the filtration desalination apparatus gradually increases, and when the silica concentration reaches the control value, the ion exchange resin is replaced again.

ところで、イオン交換樹脂(陰イオン交換樹脂)に対する陰イオンの吸着力は、塩素(低)<シリカ<硝酸<硫酸<クロム酸(高)の順に低い。交換後、イオン交換樹脂には、他の陰イオンに比べて原子炉水に含まれる総量の多いシリカが一旦付着する。しかし、原子炉水に含まれるシリカ及びそれ以外の陰イオンを吸着することにより、イオン交換樹脂が総交換容量に達し、シリカ吸着量がピークに達すると、その後、一旦イオン交換樹脂に吸着していたシリカは、吸着力の高いクロム酸等の陰イオンに置換されて、原子炉水に再放出される(図11参照)。   By the way, the adsorptive power of anions to ion exchange resins (anion exchange resins) is low in the order of chlorine (low) <silica <nitric acid <sulfuric acid <chromic acid (high). After the exchange, silica having a larger total amount contained in the reactor water than the other anions is once attached to the ion exchange resin. However, by adsorbing silica and other anions contained in the reactor water, the ion exchange resin reaches the total exchange capacity, and when the silica adsorption amount reaches a peak, it is once adsorbed to the ion exchange resin. Silica is replaced with anions such as chromic acid having a high adsorptive power, and is released again into the reactor water (see FIG. 11).

そのため、シリカ濃度が管理値に達した時点でイオン交換樹脂を交換する方法では、上記したシリカの再放出により、交換時点においてイオン交換樹脂のシリカ吸着量がピーク時よりも大きく減少してしまう場合があり、シリカを効率よく除去できないため、イオン交換樹脂の交換回数が増えてしまい、放射性廃棄物(交換により廃棄されるイオン交換樹脂)の量が増加するという問題があった。
本発明は上記のような事情に基づいて完成されたものであって、原子炉水からシリカを効率よく除去することを目的とする。
Therefore, in the method of exchanging the ion exchange resin when the silica concentration reaches the control value, the silica adsorption amount of the ion exchange resin at the time of the exchange is greatly reduced from the peak due to the re-release of the silica described above. Since silica cannot be efficiently removed, the number of exchanges of the ion exchange resin increases, and there is a problem that the amount of radioactive waste (ion exchange resin discarded by exchange) increases.
This invention is completed based on the above situations, Comprising: It aims at removing a silica efficiently from nuclear reactor water.

本発明は、原子炉水からシリカを除去するシリカ除去方法であって、原子炉水を浄化する原子炉冷却材浄化系を構成するろ過脱塩装置に備えられたイオン交換樹脂を、シリカ吸着量がピークとなった時点で交換することにより、シリカを原子炉水から除去する。このようにすれば、シリカの再放出がない又は少ない分、一度のイオン交換樹脂の交換で、原子炉水からより多くのシリカを除去できるため、イオン交換樹脂の交換回数を減らすことができる。尚、ピーク(極大)とは、イオン交換樹脂が総交換容量(吸着飽和)に達する時の、シリカ吸着量を意味する。   The present invention relates to a silica removal method for removing silica from reactor water, wherein an ion exchange resin provided in a filtration desalination apparatus constituting a reactor coolant purification system for purifying reactor water is used as a silica adsorption amount. The silica is removed from the reactor water by exchanging at the time when reaches a peak. By doing so, since more silica can be removed from the reactor water by exchanging the ion exchange resin once, with no or little re-release of silica, the number of ion exchange resin exchanges can be reduced. The peak (maximum) means the amount of silica adsorbed when the ion exchange resin reaches the total exchange capacity (adsorption saturation).

本発明の実施態様として以下の構成が好ましい。
前記イオン交換樹脂のシリカ吸着量を、前記ろ過脱塩装置の入口水のシリカ濃度と、前記ろ過脱塩装置の出口水のシリカ濃度に基づいて推定する。このようにすれば、イオン交換樹脂のシリカ吸着量を直接測定できない場合でも、イオン交換樹脂のシリカ吸着量がピークとなるタイミングを特定できる。
The following configuration is preferable as an embodiment of the present invention.
The silica adsorption amount of the ion exchange resin is estimated based on the silica concentration of the inlet water of the filtration demineralizer and the silica concentration of the outlet water of the filtration demineralizer. In this way, even when the silica adsorption amount of the ion exchange resin cannot be directly measured, the timing at which the silica adsorption amount of the ion exchange resin peaks can be specified.

本発明は、原子炉冷却材浄化系を構成するろ過脱塩装置に備えられたイオン交換樹脂脂のシリカ吸着量の推定方法であって、原子炉に対するシリカの単位時間当たりの増減量に基づいて、原子炉水のシリカ濃度の変化を求める第一関係式と、前記イオン交換樹脂へのシリカ吸着反応の平衡定数と、前記ろ過脱塩装置の入口水の水酸化物イオン濃度と、シリカ負荷量と、前記イオン交換樹脂の残り交換容量とに基づいて、前記ろ過脱塩装置の出口水のシリカ濃度を求める第二関係式と、前記ろ過脱塩装置の入口水のシリカ濃度と、前記ろ過脱塩装置の出口水のシリカ濃度と、に基づいて、前記イオン交換樹脂脂のシリカ吸着量の変化量を求める第三関係式を用いて、記イオン交換樹脂脂のシリカ吸着量を推定する。   The present invention is a method for estimating the amount of silica adsorbed by ion-exchange resin fat provided in a filtration desalination apparatus constituting a reactor coolant purification system, and is based on the amount of increase / decrease per unit time of silica relative to a reactor. The first relational expression for determining the change in the silica concentration of the reactor water, the equilibrium constant of the silica adsorption reaction to the ion exchange resin, the hydroxide ion concentration of the inlet water of the filtration desalination apparatus, and the silica load And the second relational expression for determining the silica concentration of the outlet water of the filtration demineralizer based on the remaining exchange capacity of the ion exchange resin, the silica concentration of the inlet water of the filtration demineralizer, Based on the silica concentration of the outlet water of the salt device, the silica adsorption amount of the ion exchange resin fat is estimated using a third relational expression for obtaining the amount of change in the silica adsorption amount of the ion exchange resin fat.

本発明によれば、原子炉水からシリカを効率よく除去することが出来る。これより、イオン交換樹脂の交換回数が減り、放射性廃棄物の発生量を減少させることが出来る。   According to the present invention, silica can be efficiently removed from reactor water. Thereby, the frequency | count of replacement | exchange of ion exchange resin reduces, and the generation amount of radioactive waste can be reduced.

実施形態に開示する沸騰水型原子炉の系統構成図System configuration diagram of a boiling water reactor disclosed in the embodiment 原子炉水のシリカ濃度が管理値に達した時点でイオン交換樹脂を交換する場合の、原子炉水のシリカ濃度の推移を示す図Figure showing the transition of the silica concentration of reactor water when the ion exchange resin is replaced when the silica concentration of the reactor water reaches the control value イオン交換樹脂のシリカ吸着量がピークとなった時点でイオン交換樹脂を交換した場合の、原子炉水のシリカ濃度の推移を示す図Figure showing the change in the silica concentration of reactor water when the ion exchange resin is replaced when the amount of silica adsorbed on the ion exchange resin reaches its peak 数式1を構成する各項の説明一覧を示す図The figure which shows the description list of each term which comprises Numerical formula 1 沸騰水型原子力発電プラントにおける水の循環を示すブロック図Block diagram showing water circulation in a boiling water nuclear power plant 数式2を構成する各項の説明一覧を示す図The figure which shows the description list of each term which comprises Numerical formula 2 数式3〜数式8を構成する各項の説明一覧を示す図The figure which shows the description list of each term which comprises Numerical formula 3-Numerical formula 8. シミュレーション装置の電気的構成を示すブロック図Block diagram showing the electrical configuration of the simulation device シミュレーションに必要な計算条件及び変数をまとめた表Table summarizing calculation conditions and variables required for simulation シミュレーションで得られる計算結果をまとめた表Table summarizing calculation results obtained by simulation イオン交換樹脂に吸着されたシリカがクロム酸に置換される様子を示す図The figure which shows a mode that the silica adsorbed on the ion exchange resin is replaced with chromic acid

<一実施形態>
本発明の一実施形態を図1ないし図10によって説明する。
1.沸騰水型原子力発電プラントの系統構成
図1は、沸騰水型原子力発電プラントの系統構成図である。沸騰水型原子力発電プラントは、沸騰水型原子炉(以下、単に原子炉)1と、タービン2、復水器3、復水ろ過装置4、復水脱塩装置5、給水加熱器6から構成されている。そして、原子炉1で発生した水蒸気はタービン2に送られた後、復水器3で凝縮されて復水となると共に、復水ろ過装置4、復水脱塩装置5を通り浄化されて、給水加熱器6を経て給水として原子炉1に戻るように形成されている。尚、復水脱塩装置5には粒子状のイオン交換樹脂(陰イオン交換樹脂及び陽イオン交換樹脂)を有するフィルタが設けられていて、復水に含まれるシリカを吸着保持することにより、復水のシリカ濃度を抑える構成となっている。
<One Embodiment>
An embodiment of the present invention will be described with reference to FIGS.
1. System configuration of boiling water nuclear power plant FIG. 1 is a system configuration diagram of a boiling water nuclear power plant. The boiling water nuclear power plant is composed of a boiling water reactor (hereinafter simply referred to as a nuclear reactor) 1, a turbine 2, a condenser 3, a condensate filtration device 4, a condensate demineralizer 5, and a feed water heater 6. Has been. Then, the steam generated in the nuclear reactor 1 is sent to the turbine 2 and then condensed in the condenser 3 to become condensate. It is formed so as to return to the nuclear reactor 1 as feed water through the feed water heater 6. The condensate demineralizer 5 is provided with a filter having a particulate ion exchange resin (anion exchange resin and cation exchange resin). It is the structure which suppresses the silica concentration of water.

また、原子炉冷却材浄化系(原子炉水を浄化させる浄化系)7は、プリコート型樹脂塔12からなるろ過脱塩装置11と、原子炉水をプリコート型樹脂塔12に循環させる浄化ポンプ8を備えている。プリコート型樹脂塔12は、原子炉水が循環するタンク内に複数のプリコートフィルタを植設したものである。プリコートフィルタは、円筒状のエレメントの外表面にイオン交換樹脂を貼付した構成となっている。尚、イオン交換樹脂は、粉末状の陰イオン交換樹脂と陽イオン交換樹脂を混合したイオン交換樹脂であり、陰イオン交換樹脂にてシリカを含む陰イオンを吸着し、陽イオン交換樹脂では主に陽イオンである放射能を吸着して除去し、原子炉水の純度を高く維持する構成となっている。   Further, the reactor coolant purification system (purification system for purifying the reactor water) 7 includes a filtration desalination apparatus 11 comprising a precoat resin tower 12 and a purification pump 8 for circulating the reactor water to the precoat resin tower 12. It has. The precoat resin tower 12 has a plurality of precoat filters implanted in a tank in which reactor water circulates. The precoat filter has a configuration in which an ion exchange resin is attached to the outer surface of a cylindrical element. The ion exchange resin is an ion exchange resin in which a powdered anion exchange resin and a cation exchange resin are mixed, and the anion containing silica is adsorbed by the anion exchange resin. It is configured to adsorb and remove cations and maintain high purity of the reactor water.

そのため、浄化ポンプ8を駆動して、原子炉水をプリコート型粉末混合樹脂塔12に通すと、プリコートフィルタのイオン交換樹脂にシリカ等の不純物や放射能が吸着することから、原子炉水からシリカ等の不純物や放射能が取り除かれ、原子炉水は浄化された処理水になる。そして、この処理水は、上記した給水に合流して原子炉1に戻るシステムとなっている。なお、符号13は、原子炉冷却材再循環系の再循環ポンプである。   Therefore, when the purification pump 8 is driven and the reactor water is passed through the precoat type powder mixing resin tower 12, impurities such as silica and radioactivity are adsorbed on the ion exchange resin of the precoat filter. Such impurities and radioactivity are removed, and the reactor water becomes purified treated water. And this treated water becomes a system which joins the above-mentioned water supply and returns to the nuclear reactor 1. Reference numeral 13 denotes a recirculation pump of the reactor coolant recirculation system.

2.原子炉水からのシリカ除去方法
本実施形態にて開示するシリカの除去方法では、原子炉水を浄化する原子炉冷却材浄化系7を構成する、ろ過脱塩装置11のプリコート型樹脂塔12に備えられたイオン交換樹脂を、シリカ吸着量がピークとなる時点で交換することにより、シリカを原子炉水から効率的に除去する。尚、ピーク(極大)とは、イオン交換樹脂が総交換容量(吸着飽和)に達する時点、もしくはその時点におけるシリカ吸着量を意味する。
2. Silica Removal Method from Reactor Water In the silica removal method disclosed in the present embodiment, the precoat type resin tower 12 of the filtration desalination apparatus 11 constituting the reactor coolant purification system 7 that purifies the reactor water is used. Silica is efficiently removed from the reactor water by exchanging the provided ion exchange resin when the silica adsorption amount reaches a peak. The peak (maximum) means the time when the ion exchange resin reaches the total exchange capacity (adsorption saturation) or the silica adsorption amount at that time.

この場合、シリカの再放出がない又は少ない分、原子炉水からより多くのシリカが除去される。従って、イオン交換樹脂の交換後、原子炉水のシリカ濃度の上昇が緩慢になることから、イオン交換樹脂の交換回数を、従来に比べて減らすことができる。   In this case, more or less silica is removed from the reactor water with no or less silica re-release. Therefore, since the increase in the silica concentration of the reactor water becomes slow after the ion exchange resin is replaced, the number of ion exchange resin replacements can be reduced as compared with the conventional case.

例えば、原子炉水のシリカ濃度が管理値に達した時点でイオン交換樹脂を交換した場合(従来ケース)、図2に示すように1年あたりの交換回数は7回となる。   For example, when the ion exchange resin is replaced when the silica concentration in the reactor water reaches the control value (conventional case), the number of replacements per year is 7 as shown in FIG.

これに対して、イオン交換樹脂のシリカ吸着量がピークとなる時点で交換した場合、原子炉水にシリカが多く含まれている初期には、原子炉水のシリカ濃度が管理値に達する前にイオン交換樹脂を交換することとなり、交換の間隔が短くなってしまう。   On the other hand, if the ion exchange resin is exchanged at the peak of the amount of silica adsorbed, at the initial stage when the reactor water contains a lot of silica, before the silica concentration in the reactor water reaches the control value, The ion exchange resin will be exchanged, and the exchange interval will be shortened.

しかし、イオン交換樹脂を交換する都度、原子炉水のシリカ濃度の上昇が緩慢になりある程度交換を繰り返すと、原子炉水のシリカ濃度が管理値に達するまでの時間が長くなることから、図3に示すように1年あたりの交換回数は4回となる。従って、従来に比べて、イオン交換樹脂の交換回数を減らすことが可能となる。   However, each time the ion exchange resin is replaced, the increase in the silica concentration of the reactor water becomes slow, and if the replacement is repeated to some extent, the time until the silica concentration of the reactor water reaches the control value becomes longer. As shown, the number of exchanges per year is four. Therefore, it is possible to reduce the number of exchanges of the ion exchange resin as compared with the conventional case.

ところで、ろ過脱塩装置11は高い放射能を含むことから、イオン交換樹脂のシリカ吸着量を直接測定することが出来ないという事情がある。そこで、本実施形態では、イオン交換樹脂のシリカ吸着量を、ろ過脱塩装置11の入口水のシリカ濃度(図1に示す点P1でのシリカ濃度)と、ろ過脱塩装置11の出口水のシリカ濃度(図1に示す点P2でのシリカ濃度)に基づいて推定する。   By the way, since the filtration desalination apparatus 11 contains high radioactivity, there exists a situation that the silica adsorption amount of an ion exchange resin cannot be measured directly. Therefore, in the present embodiment, the silica adsorption amount of the ion exchange resin is determined based on the silica concentration of the inlet water of the filtration demineralizer 11 (silica concentration at the point P1 shown in FIG. 1) and the outlet water of the filtration demineralizer 11. It is estimated based on the silica concentration (silica concentration at the point P2 shown in FIG. 1).

具体的に説明を行うと、原子炉水にも、ろ過脱塩装置11と同様に放射能が含まれているが、原子炉水に含まれる放射能は、ろ過脱塩装置11に比べて低いため、シリカ濃度を測定することが出来る。そのため、ろ過脱塩装置11の入口水のシリカ濃度と、ろ過脱塩装置11の出口水のシリカ濃度をそれぞれ測定等により特定すれば、下記の数式1に基づいて、イオン交換樹脂へのシリカ吸着量の変化量(時間に対する変化量)を求めることが可能となる。尚、数式1の各項の説明は図4に示す。   If it demonstrates concretely, the nuclear reactor water also contains the radioactivity similarly to the filtration desalination apparatus 11, but the radioactivity contained in the reactor water is lower than that of the filtration demineralization apparatus 11. Therefore, the silica concentration can be measured. Therefore, if the silica concentration of the inlet water of the filtration desalting apparatus 11 and the silica concentration of the outlet water of the filtration desalting apparatus 11 are respectively specified by measurement or the like, the silica adsorption to the ion exchange resin based on the following formula 1 It is possible to determine the amount of change (amount of change with respect to time). The explanation of each term in Equation 1 is shown in FIG.

Figure 2014202552
Figure 2014202552

従って、数式1より算出したシリカ吸着量の変化量を時間積分することで、イオン交換樹脂のシリカ吸着量を推定できる。   Therefore, the silica adsorption amount of the ion exchange resin can be estimated by integrating the change amount of the silica adsorption amount calculated from Equation 1 with time.

一方、シリカ吸着量のピークはイオン交換樹脂の総交換容量から、総交換容量に達する時点の他の陰イオンの吸着量を差し引くことで、求めることが出来る。尚、イオン交換樹脂に対する他の陰イオンの吸着量は、ろ過脱塩装置11の出入口における各陰イオンの濃度から求めることが出来る他、実験値や経験値を用いることも可能である。また、イオン交換樹脂の総交換容量は、単位重量あたりのイオン交換樹脂(陰イオン交換樹脂)の交換容量と、イオン交換樹脂の重量とに基づいて算出することが出来る。   On the other hand, the peak of the silica adsorption amount can be obtained by subtracting the adsorption amount of other anions when reaching the total exchange capacity from the total exchange capacity of the ion exchange resin. In addition, the adsorption amount of the other anion with respect to ion exchange resin can be calculated | required from the density | concentration of each anion in the entrance / exit of the filtration desalination apparatus 11, and it is also possible to use an experimental value and experience value. The total exchange capacity of the ion exchange resin can be calculated based on the exchange capacity of the ion exchange resin (anion exchange resin) per unit weight and the weight of the ion exchange resin.

したがって、数式1より推定したシリカ吸着量をモル濃度に換算した数値(以下、シリカ負荷量)が、ピークに到達するまでイオン交換樹脂を使い続け、シリカ負荷量が、ピークに到達した時点で、イオン交換樹脂を交換すればよいことになる。   Therefore, when the numerical value obtained by converting the silica adsorption amount estimated from Equation 1 into a molar concentration (hereinafter referred to as silica load amount) continues to use the ion exchange resin until reaching the peak, and when the silica load amount reaches the peak, It is only necessary to replace the ion exchange resin.

また、上記ではろ過脱塩装置11の入口水及び出口水のシリカ濃度の測定値を利用して、イオン交換樹脂のシリカ吸着量を算出する例を説明したが、イオン交換樹脂のシリカ吸着量を、シリカ濃度の測定値を利用せずに、シミュレーションから求めることも可能である。   Moreover, although the example which calculates the silica adsorption amount of ion exchange resin using the measured value of the silica concentration of the inlet water of the filtration desalination apparatus 11 above and the outlet water was demonstrated, the silica adsorption amount of ion exchange resin was demonstrated. It is also possible to obtain from simulation without using the measured value of silica concentration.

3.イオン交換樹脂のシリカ吸着量のシミュレーションによる推定方法
図5は、沸騰水型原子力発電プラントのうち、原子炉水のシリカ濃度の変化に関係する部分について、水の循環を示したブロック図である。
3. FIG. 5 is a block diagram showing water circulation in a portion related to a change in the silica concentration of reactor water in a boiling water nuclear power plant.

図5に示すように、原子炉1へのシリカの出入り(増減)には、給水を介して取り込まれる取込量X(下記数式2の右辺第1項)と、タービン2側に流出する主蒸気に含まれて出て行く流出量Y(下記数式2の右辺第2項)と、ろ過脱塩装置11にてイオン交換樹脂に吸着除去される吸着除去量Z(下記数式2の右辺第3項)とがある。   As shown in FIG. 5, silica enters and exits (increase / decrease) in the nuclear reactor 1 and the intake amount X (first term on the right side of Equation 2 below) taken in through the feed water and the main flow out to the turbine 2 side. The outflow amount Y contained in the vapor and flowing out (the second term on the right side of the following formula 2) and the adsorption removal amount Z (the third side on the right side of the following formula 2) adsorbed and removed by the ion exchange resin in the filtration desalting apparatus 11 Section).

そのため、下記の数式2に示すように、原子炉水のシリカ濃度の変化と原子炉水保有量の積(ΔCRW・V)は、原子炉1に対するシリカの単位時間当たりの増減量、具体的には給水を介して取り込まれる単位時間当たりの取込量Xから、タービン2側に出て行く単位時間当たりの流出量Yと、ろ過脱塩装置11にてイオン交換樹脂に吸着除去される単位時間当たりの吸着除去量Zとを差し引いた量に等しい。尚、数式2が本発明の「第一関係式」に相当する。また、数式2の各項の説明は図6に示す。 Therefore, as shown in Equation 2 below, the product of the change in the reactor water silica concentration and the reactor water retention amount (ΔC RW · V) is the amount of increase / decrease per unit time of silica relative to the reactor 1, specifically Is the amount of outflow Y per unit time that goes out to the turbine 2 side from the amount of intake X per unit time taken in through the feed water, and the unit that is adsorbed and removed by the ion exchange resin in the filtration demineralizer 11 It is equal to the amount obtained by subtracting the adsorption removal amount Z per hour. Formula 2 corresponds to the “first relational expression” of the present invention. Also, explanation of each term in Equation 2 is shown in FIG.

Figure 2014202552
Figure 2014202552

また、数式3は、イオン交換樹脂のシリカ負荷量(シリカ吸着量をイオン交換樹脂あたりのモル当量に換算したもの)を求めた式である。数式4は、ろ過脱塩装置11の出口水のシリカ濃度を、イオン交換樹脂へのシリカ吸着反応の平衡定数(数式4の右辺1項)、ろ過脱塩装置11の入口水の水酸化物イオン濃度(数式4の右辺2項)、シリカ負荷量(数式4の右辺3項の分子)、およびイオン交換樹脂の残り交換容量(総交換容量からシリカを含む全ての陰イオンの負荷量を引いたもの:数式4の右辺3項の分母)とに基づいて、算出する式である。   Formula 3 is a formula for obtaining the silica load of the ion exchange resin (the silica adsorption amount converted to the molar equivalent per ion exchange resin). Equation 4 shows the silica concentration of the outlet water of the filtration desalting apparatus 11, the equilibrium constant of the silica adsorption reaction to the ion exchange resin (term 1 on the right side of the expression 4), and the hydroxide ions of the inlet water of the filtration desalting apparatus 11. Concentration (term 2 on the right side of Formula 4), silica load (numerator on the right side 3 of Formula 4), and the remaining exchange capacity of the ion exchange resin (total exchange capacity minus all anions including silica) Thing: a formula to be calculated based on the denominator of the third term on the right side of Formula 4.

また、数式5は、ろ過脱塩装置11の入口水のシリカ濃度と出口水のシリカ濃度から、イオン交換樹脂のシリカ吸着量の変化量を算出した式である。尚、数式4が本発明の「第二関係式」の一例、数式5が本発明の「第三関係式」の一例である。   Equation 5 is an equation in which the amount of change in the silica adsorption amount of the ion exchange resin is calculated from the silica concentration of the inlet water and the silica concentration of the outlet water of the filtration desalting apparatus 11. Formula 4 is an example of the “second relational expression” in the present invention, and Formula 5 is an example of the “third relational expression” in the present invention.

また、数式6〜数式9は、クロム酸イオン、硫酸イオン、硝酸イオン及び塩化物イオンの負荷量の増分を求める式である。また、数式3〜数式8の各項の説明は、図7に示す。   Equations 6 to 9 are equations for obtaining increments of the loadings of chromate ions, sulfate ions, nitrate ions, and chloride ions. Moreover, the description of each term of Formula 3 to Formula 8 is shown in FIG.

Figure 2014202552
Figure 2014202552

Figure 2014202552
Figure 2014202552

Figure 2014202552
Figure 2014202552

Figure 2014202552
Figure 2014202552

Figure 2014202552
Figure 2014202552

Figure 2014202552
Figure 2014202552

Figure 2014202552
Figure 2014202552

図8はシミュレーション装置50のブロックである。シミュレーション装置50は、演算部51と、記憶部53と、キーボードやマウス等の入力部55、表示部57を備える。記憶部53には、上記した数式1〜数式9に基づいて、原子炉水のシリカ濃度、ろ過脱塩装置11の出口水のシリカ濃度、イオン交換樹脂のシリカ吸着量を計算するシミュレーションソフトが格納されている。   FIG. 8 is a block diagram of the simulation apparatus 50. The simulation device 50 includes a calculation unit 51, a storage unit 53, an input unit 55 such as a keyboard and a mouse, and a display unit 57. The storage unit 53 stores simulation software for calculating the silica concentration of the reactor water, the silica concentration of the outlet water of the filtration desalting apparatus 11, and the silica adsorption amount of the ion exchange resin based on the above-described Equations 1 to 9. Has been.

そして、シミュレーションソフトの起動後、図9に示す各定数やパラメータ等の計算条件と、各変数の初期値を入力すると、演算部51が各数式1〜数式9に基づいて、原子炉水のシリカ濃度、ろ過脱塩装置11の出口水のシリカ濃度、イオン交換樹脂へのシリカ吸着量及びシリカ負荷量を自動計算し、その結果が表示部57に表示される(図10参照)。   Then, after starting the simulation software, when the calculation conditions such as the constants and parameters shown in FIG. 9 and the initial values of the variables are input, the calculation unit 51 uses the formulas 1 to 9 to calculate the reactor water silica. The concentration, the silica concentration of the outlet water of the filtration desalting apparatus 11, the silica adsorption amount to the ion exchange resin, and the silica load amount are automatically calculated, and the results are displayed on the display unit 57 (see FIG. 10).

尚、定数は、シミュレーションを実行するのに必要な計算条件のうち、数値が固定される条件であり、この例では、図9に示すように、給水流量、原子炉の保有水量、原子炉水の水酸化物イオン濃度、原子炉水のクロム酸イオン濃度、原子炉水の硫酸イオン濃度、原子炉水の硝酸イオン濃度、原子炉水の塩素イオン濃度、原子炉水のキャリーオーバー率、ろ過脱塩装置11の浄化流量、イオン交換樹脂装荷量、イオン交換樹脂総交換容量、イオン交換樹脂のシリカ吸着反応の平衡定数を定数としている。また、パラメータはオペレータが適宜変更できる条件であり、この例では、図9に示すように、給水のシリカ濃度とイオン交換樹脂の交換日時をパラメータとしている。また、変数は、シミュレーションにより刻々と変化する値であり、この例では、原子炉水のシリカ濃度、イオン交換樹脂のクロム酸イオン負荷量、硫酸イオン負荷量、硝酸イオン負荷量、塩化物イオン負荷量、ろ過脱塩装置11の出口水のシリカ濃度、イオン交換樹脂へのシリカ吸着量、負荷量である。   The constant is a condition in which the numerical value is fixed among the calculation conditions necessary for executing the simulation. In this example, as shown in FIG. 9, the feed water flow rate, the amount of water retained in the reactor, the reactor water Hydroxide ion concentration, Reactor water chromate ion concentration, Reactor water sulfate ion concentration, Reactor water nitrate ion concentration, Reactor water chloride ion concentration, Reactor water carryover rate, Filtration removal The purification flow rate of the salt device 11, the ion exchange resin loading amount, the total exchange capacity of the ion exchange resin, and the equilibrium constant of the silica adsorption reaction of the ion exchange resin are set as constants. The parameters are conditions that can be appropriately changed by the operator. In this example, as shown in FIG. 9, the silica concentration of the water supply and the date and time of replacement of the ion exchange resin are used as parameters. The variables are values that change from simulation to simulation. In this example, the silica concentration in the reactor water, the chromate ion loading, the sulfate loading, the nitrate loading, and the chloride loading of the ion exchange resin. It is the amount, the silica concentration of the outlet water of the filtration demineralizer 11, the silica adsorption amount to the ion exchange resin, and the load amount.

本実施形態では、原子炉水のシリカ濃度や、ろ過脱塩装置11の出口水のシリカ濃度、イオン交換樹脂のシリカ吸着量をシミュレーションできる。そのため、沸騰水型原子力発電プラントの稼働前に、イオン交換樹脂の交換時期や、所定期間(この例では、1年)あたりの交換回数を推定することが可能となり、イオン交換樹脂の交換作業計画の作成に有効である。加えて、イオン交換樹脂のシリカ吸着量がピークとなる時点を推定することが可能となり、その時点でイオン交換樹脂の交換作業を実行することにより、原子炉水からシリカを効率よく除去できる。   In the present embodiment, the silica concentration of the reactor water, the silica concentration of the outlet water of the filtration demineralizer 11, and the silica adsorption amount of the ion exchange resin can be simulated. Therefore, it is possible to estimate the replacement time of the ion exchange resin and the number of replacements per predetermined period (in this example, one year) before the operation of the boiling water nuclear power plant. It is effective for creating. In addition, it becomes possible to estimate the point in time when the amount of silica adsorbed by the ion exchange resin reaches a peak, and by performing the ion exchange resin exchange operation at that point, silica can be efficiently removed from the reactor water.

4.効果説明
本実施形態では、原子炉水からシリカを効率よく除去できるため、イオン交換樹脂の交換回数を減らすことができる。よって、放射性廃棄物(交換により廃棄されるイオン交換樹脂)の量を低減出来る。
4). Description of Effects In this embodiment, silica can be efficiently removed from the reactor water, so that the number of ion exchange resin exchanges can be reduced. Therefore, the amount of radioactive waste (ion exchange resin discarded by exchange) can be reduced.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.

(1)本発明は、イオン交換樹脂のシリカ吸着量がピークとなったところで、イオン交換樹脂を交換するものであればよく、例えば、イオン交換樹脂の交換後、ろ過脱塩装置11の出口水のシリカ濃度と入口水のシリカ濃度が等しくなった時に、イオン交換樹脂を交換するようにしてもよい。というのも、イオン交換樹脂の交換後、イオン交換樹脂の交換容量が残っている間は、イオン交換樹脂がシリカを吸着し続けるため、ろ過脱塩装置11の出口水のシリカ濃度は概ねゼロになる。そして、イオン交換樹脂の交換容量がなくなって、イオン交換樹脂がそれ以上、シリカを吸着できない状態になると、ろ過脱塩装置11に取り込まれたシリカを含む炉水は、そのまま装置外に排出されることになる。従って、シリカ吸着量がピークになると、ろ過脱塩装置11の出口水の濃度と入口水の濃度が概ね同じ濃度になるからである。   (1) The present invention only needs to replace the ion exchange resin when the silica adsorption amount of the ion exchange resin reaches its peak. For example, after the ion exchange resin is replaced, the outlet water of the filtration demineralizer 11 The ion exchange resin may be replaced when the silica concentration of the water and the silica concentration of the inlet water are equal. This is because, after the exchange of the ion exchange resin, while the exchange capacity of the ion exchange resin remains, the ion exchange resin continues to adsorb the silica, so that the silica concentration in the outlet water of the filtration desalination apparatus 11 is substantially zero. Become. Then, when the exchange capacity of the ion exchange resin is lost and the ion exchange resin is no longer capable of adsorbing silica, the reactor water containing silica taken into the filtration demineralizer 11 is directly discharged out of the apparatus. It will be. Therefore, when the silica adsorption amount reaches a peak, the outlet water concentration of the filtration desalting apparatus 11 and the inlet water concentration are approximately the same.

1...沸騰水型原子炉
2...タービン
3...復水器
4...復水ろ過装置
5...復水脱塩装置
6...給水加熱器
7...原子炉冷却材浄化系
8...浄化ポンプ
11...ろ過脱塩装置
12...プリコート型樹脂塔
1 ... Boiling water reactor 2 ... Turbine 3 ... Condenser 4 ... Condensate filtration device 5 ... Condensate demineralizer 6 ... Feed water heater 7 ... Atom Furnace coolant purification system 8 ... Purification pump 11 ... Filtration demineralizer 12 ... Precoat type resin tower

Claims (3)

原子炉水からシリカを除去するシリカ除去方法であって、
原子炉水を浄化する原子炉冷却材浄化系を構成するろ過脱塩装置に備えられたイオン交換樹脂を、シリカ吸着量がピークとなった時点で交換することにより、原子炉水からシリカを除去することを特徴とするシリカ除去方法。
A silica removal method for removing silica from reactor water,
Silica is removed from the reactor water by replacing the ion exchange resin provided in the filtration desalination equipment that constitutes the reactor coolant purification system that purifies the reactor water when the silica adsorption reaches its peak. Silica removal method characterized by performing.
前記イオン交換樹脂のシリカ吸着量を、前記ろ過脱塩装置の入口水のシリカ濃度と、前記ろ過脱塩装置の出口水のシリカ濃度に基づいて、推定することを特徴とする請求項1に記載のシリカ除去方法。   The silica adsorption amount of the ion exchange resin is estimated based on the silica concentration of the inlet water of the filtration demineralizer and the silica concentration of the outlet water of the filtration demineralizer. Silica removal method. 原子炉冷却材浄化系を構成するろ過脱塩装置に備えられたイオン交換樹脂脂のシリカ吸着量の推定方法であって、
原子炉に対するシリカの単位時間当たりの増減量に基づいて、原子炉水のシリカ濃度の変化を求める第一関係式と、
前記イオン交換樹脂へのシリカ吸着反応の平衡定数と、前記ろ過脱塩装置の入口水の水酸化物イオン濃度と、シリカ負荷量と、前記イオン交換樹脂の残り交換容量とに基づいて、前記ろ過脱塩装置の出口水のシリカ濃度を求める第二関係式と、
前記ろ過脱塩装置の入口水のシリカ濃度と、前記ろ過脱塩装置の出口水のシリカ濃度とに基づいて、前記イオン交換樹脂脂のシリカ吸着量の変化量を求める第三関係式を用いて、
前記イオン交換樹脂脂のシリカ吸着量を推定するシリカ吸着量の推定方法。
A method for estimating the amount of silica adsorbed on an ion exchange resin fat provided in a filtration desalination apparatus constituting a reactor coolant purification system,
Based on the amount of silica increase / decrease per unit time relative to the reactor,
Based on the equilibrium constant of the silica adsorption reaction to the ion exchange resin, the hydroxide ion concentration of the inlet water of the filtration demineralizer, the silica loading, and the remaining exchange capacity of the ion exchange resin, the filtration A second relational expression for determining the silica concentration of the outlet water of the desalinator,
Based on the silica concentration of the inlet water of the filtration desalination apparatus and the silica concentration of the outlet water of the filtration desalination apparatus, a third relational expression for determining the amount of change in the silica adsorption amount of the ion exchange resin fat is used. ,
A silica adsorption amount estimation method for estimating a silica adsorption amount of the ion-exchange resin fat.
JP2013077543A 2013-04-03 2013-04-03 Method for removing silica in reactor coolant purification system and method for estimating silica adsorption Active JP6178095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013077543A JP6178095B2 (en) 2013-04-03 2013-04-03 Method for removing silica in reactor coolant purification system and method for estimating silica adsorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013077543A JP6178095B2 (en) 2013-04-03 2013-04-03 Method for removing silica in reactor coolant purification system and method for estimating silica adsorption

Publications (2)

Publication Number Publication Date
JP2014202552A true JP2014202552A (en) 2014-10-27
JP6178095B2 JP6178095B2 (en) 2017-08-09

Family

ID=52353115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013077543A Active JP6178095B2 (en) 2013-04-03 2013-04-03 Method for removing silica in reactor coolant purification system and method for estimating silica adsorption

Country Status (1)

Country Link
JP (1) JP6178095B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422489A (en) * 1990-05-17 1992-01-27 Toshiba Corp Water treatment method of power plant
JPH04204296A (en) * 1990-11-30 1992-07-24 Toshiba Corp Desalting device for nuclear power plant
JPH07104095A (en) * 1993-10-04 1995-04-21 Toshiba Corp Reactor coolant purifying device
JPH10160893A (en) * 1996-11-29 1998-06-19 Toshiba Corp Reactor power facility
JP2002143694A (en) * 2000-11-10 2002-05-21 Japan Organo Co Ltd Method for predicting life of ion exchange resin and prediction system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422489A (en) * 1990-05-17 1992-01-27 Toshiba Corp Water treatment method of power plant
JPH04204296A (en) * 1990-11-30 1992-07-24 Toshiba Corp Desalting device for nuclear power plant
JPH07104095A (en) * 1993-10-04 1995-04-21 Toshiba Corp Reactor coolant purifying device
JPH10160893A (en) * 1996-11-29 1998-06-19 Toshiba Corp Reactor power facility
JP2002143694A (en) * 2000-11-10 2002-05-21 Japan Organo Co Ltd Method for predicting life of ion exchange resin and prediction system

Also Published As

Publication number Publication date
JP6178095B2 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
KR101883895B1 (en) Decontamination and Rad-waste treatment method and a kit therefor reducing the radioactive waste remarkably
CN103762004A (en) Method and system for concentrating radioactive waste water
JP5849342B2 (en) Decontamination equipment and decontamination method for radioactive substances from radioactive contaminated water mixed with seawater
JP2016097335A (en) Method and apparatus for regeneration and evaluation of ion exchange resin
JP6178095B2 (en) Method for removing silica in reactor coolant purification system and method for estimating silica adsorption
JPWO2015098348A1 (en) Anion exchanger, mixture of anion exchanger and cation exchanger, mixed bed comprising anion exchanger and cation exchanger, method for producing them, and method for purifying hydrogen peroxide water
JP2005003598A (en) Desalination tower of mix bed type in pressurized water nuclear power plant, and operation method thereof
CN207718841U (en) Novel presurized water reactor Steam Generators in NPP blowdown water treatment system
JP6501482B2 (en) Decontamination treatment system and decomposition method of decontamination wastewater
WO2011081576A2 (en) Process and device for producing molybdenum-99
CN110067610B (en) Method for operating power plant and thermal power plant
Kim et al. Performance Improvement of Liquid Waste Management System for APR1400
JP2019084496A (en) Waste liquid treatment method and waste liquid treatment apparatus
JP2013245833A (en) Power generating plant
Gavrilov et al. Accounting for environmental aspects in water-chemistry optimization of the second loop of NPP with VVER
Vinnitskii et al. Prospects for using weakly dissociated ion exchange resins in special water treatment systems at VVER-based nuclear power plants for reducing the volume of radioactive waste generated
JP2009300163A (en) Desalter for primary cooling system in nuclear power plant with pressurized water reactor, method for preparing anion exchange resin of boric acid type and purification method for primary cooling water
RU2164714C2 (en) Method for extracting mercury from primary circuit of water-cooled nuclear reactor
Tyapkov Analysis of the Water Chemical Regime at an NPP with a VVER-1000 before and after Reconstruction of the Turbine Condenser’s Tube System
CN109979635A (en) Novel presurized water reactor Steam Generators in NPP blowdown water treatment system
JP2005003597A (en) Method for evaluating performance of strongly acidic positive ion exchanging resin in mixed bed condensate polisher of primary cooling water system at pressurized-water nuclear power generating plant
JP5931353B2 (en) Spent nuclear fuel reprocessing method and spent nuclear fuel reprocessing facility
JP2016191619A (en) Condensate demineralization apparatus and condensate demineralization method
JPH0563240B2 (en)
JP2543767B2 (en) Condensate desalination method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170713

R150 Certificate of patent or registration of utility model

Ref document number: 6178095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250