JP2014202458A - Boiler efficiency calculation device - Google Patents

Boiler efficiency calculation device Download PDF

Info

Publication number
JP2014202458A
JP2014202458A JP2013080999A JP2013080999A JP2014202458A JP 2014202458 A JP2014202458 A JP 2014202458A JP 2013080999 A JP2013080999 A JP 2013080999A JP 2013080999 A JP2013080999 A JP 2013080999A JP 2014202458 A JP2014202458 A JP 2014202458A
Authority
JP
Japan
Prior art keywords
blow
liquid level
water supply
water
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013080999A
Other languages
Japanese (ja)
Inventor
記章 長井
Kisho Nagai
記章 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2013080999A priority Critical patent/JP2014202458A/en
Publication of JP2014202458A publication Critical patent/JP2014202458A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly accurate boiler efficiency calculation device using a new flow rate measurement device.SOLUTION: A boiler efficiency calculation device 10 includes: a feed water tank 20 having a feed water level measurement chamber 25 formed therein; a feed water amount measurement device 30 that has a feed water level measurement member 31 for measuring a first feed water level within the feed water level measurement chamber 25 and a second feed water level lower than the first feed water level and that measures feed water amount to a boiler 80 on the basis of frequency of movement between the first feed water level and the second feed water level; a blow tank 40 having a blow level measurement chamber 45 formed therein; a blow water amount measurement device 50 that has a blow level measurement member 51 for measuring a first blow level within the blow level measurement chamber 45 and a second blow level lower than the first blow level and that measures blow water amount of the boiler 80 on the basis of frequency of movement between the first blow level and the second blow level; and an efficiency calculator 75 for calculating efficiency of the boiler from the feed water amount and the blow water amount.

Description

本発明は、入出熱法によりボイラの効率を算出するボイラ効率算出装置に関する。   The present invention relates to a boiler efficiency calculation device that calculates boiler efficiency by an input / output heat method.

工場やビルでは、ボイラで生成した蒸気を加熱手段や暖房手段として使用しているが、近年の省エネルギーへの関心の高まりもあり、ボイラに供給された燃料が完全燃焼するときに発生する総熱量に対する、蒸気を作り出すために使われた熱量の占める割合であるボイラ効率を把握する必要性が高まっている。   In factories and buildings, steam generated in boilers is used as a heating and heating means, but due to the recent increase in interest in energy conservation, the total amount of heat generated when the fuel supplied to the boiler is completely burned. There is a growing need to understand the boiler efficiency, which is the proportion of the amount of heat used to produce steam.

ボイラのボイラ効率を入出熱法により算出する方法については、例えば、下記特許文献1,2に開示されている。ここで、ボイラ効率を算出するためには、ボイラの給水量やブロー水量を計測する必要があり、下記特許文献1,2では、流量計により給水ライン等の流量を計測している。   About the method of calculating the boiler efficiency of a boiler by the heat input / output method, it is disclosed by the following patent documents 1, 2, for example. Here, in order to calculate the boiler efficiency, it is necessary to measure the amount of water supplied to the boiler and the amount of blown water. In Patent Documents 1 and 2 below, the flow rate of the water supply line and the like is measured by a flow meter.

特開平9−119602号公報JP-A-9-119602 特許第2530427号公報Japanese Patent No. 2530427

しかし、流量計は比較的高価であり、また、施工方法や測定範囲の問題が発生すると、給水量やブロー水量の測定誤差が大きくなり、ボイラ効率の算出精度が大幅に低下するといった課題がある。   However, the flow meter is relatively expensive, and if there is a problem with the construction method or measurement range, the measurement error of the water supply amount or blow water amount becomes large, and there is a problem that the calculation accuracy of the boiler efficiency is greatly reduced. .

本発明は、このような課題に鑑みてなされたものであり、新規な流量計測装置を用いた高精度なボイラ効率算出装置を提供することを目的とする。   This invention is made | formed in view of such a subject, and it aims at providing the highly accurate boiler efficiency calculation apparatus using a novel flow volume measuring apparatus.

上記課題を解決するために、本発明に係るボイラ効率算出装置は、ボイラの給水量及びブロー水量に基づいてボイラ効率を算出するボイラ効率算出装置において、前記ボイラの給水ラインに設置され、内部に給水液位計測室が形成された給水タンクと、前記給水タンクに設置され、前記ボイラへの給水量を計測する給水量計測装置であって、前記給水液位計測室内の第一給水液位と当該第一給水液位よりも低位の第二給水液位とを計測する給水液位計測部材を有し、前記給水液位計測室内の液位の前記第一給水液位と前記第二給水液位との間の移動回数から前記ボイラへの給水量を計測する給水量計測装置と、前記ボイラのブローラインに設置され、内部にブロー液位計測室が形成されたブロータンクと、前記ブロータンクに設置され、前記ボイラのブロー水量を計測するブロー水量計測装置であって、前記ブロー液位計測室内の第一ブロー液位と当該第一ブロー液位よりも低位の第二ブロー液位とを計測するブロー液位計測部材を有し、前記ブロー液位計測室内の液位の前記第一ブロー液位と前記第二ブロー液位との間の移動回数から前記ボイラのブロー水量を計測するブロー水量計測装置と、
前記給水量及びブロー水量からボイラの効率を算出する効率算出器と、を備えることを特徴とする。
In order to solve the above problems, a boiler efficiency calculation apparatus according to the present invention is a boiler efficiency calculation apparatus that calculates boiler efficiency based on a boiler water supply amount and a blow water amount, and is installed in a water supply line of the boiler. A water supply tank in which a water supply liquid level measurement chamber is formed, and a water supply amount measurement device that is installed in the water supply tank and measures the amount of water supplied to the boiler, the first water supply liquid level in the water supply liquid level measurement chamber A feed water level measuring member that measures a second feed water level lower than the first feed water level; the first feed water level and the second feed water at a liquid level in the feed water level measurement chamber; A water supply amount measuring device for measuring the amount of water supplied to the boiler from the number of movements between them, a blow tank installed in a blow line of the boiler and having a blow liquid level measurement chamber formed therein, and the blow tank Installed in the A blow water level measuring device for measuring the amount of blow water in a blower, which measures a first blow liquid level in the blow liquid level measuring chamber and a second blow liquid level lower than the first blow liquid level. A blow water amount measuring device having a measurement member and measuring the blow water amount of the boiler from the number of movements between the first blow liquid level and the second blow liquid level of the liquid level in the blow liquid level measurement chamber;
An efficiency calculator that calculates the efficiency of the boiler from the water supply amount and the blow water amount.

本発明に係るボイラ効率算出装置によれば、新規な流量計測装置を用いて高精度にボイラ効率を算出することができる。   According to the boiler efficiency calculating apparatus according to the present invention, it is possible to calculate the boiler efficiency with high accuracy using a novel flow rate measuring apparatus.

図1は、本発明の実施形態に係るボイラ効率算出装置の構成を概略的に示す模式図である。FIG. 1 is a schematic diagram schematically showing the configuration of a boiler efficiency calculation apparatus according to an embodiment of the present invention. 図2は、給水量計測装置により給水量を計測する際の作用を説明するための図である。FIG. 2 is a diagram for explaining the operation when the water supply amount is measured by the water supply amount measuring device.

以下、図面を参照しながら、本発明の実施形態に係るボイラ効率算出装置について説明する。図1は、本実施形態に係るボイラ効率算出装置の構成を概略的に示す模式図である。   Hereinafter, a boiler efficiency calculating apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram schematically showing a configuration of a boiler efficiency calculation apparatus according to the present embodiment.

ボイラ効率算出装置10は、ボイラ80に設置されており、ボイラ80と構成部材の一部を共有している。ここで、ボイラ80は、缶体81と、缶体81のバーナ82に燃焼用の燃料を供給する燃料供給ライン85と、蒸気取出ライン88と、給水ライン90と、ブローライン95と、ボイラ80全体を制御する制御器70とを備えている。   The boiler efficiency calculation device 10 is installed in the boiler 80 and shares a part of the components with the boiler 80. Here, the boiler 80 includes a can 81, a fuel supply line 85 that supplies fuel for combustion to the burner 82 of the can 81, a steam extraction line 88, a water supply line 90, a blow line 95, and a boiler 80. And a controller 70 for controlling the whole.

ボイラ効率算出装置10は、燃料流量計15と、給水タンク20と、給水量計測装置30と、給水温度センサ37と、ブロータンク40と、ブロー水量計測装置50と、ブロー水温度センサ57と、蒸気圧センサ60と、効率算出器75とを備えている。   The boiler efficiency calculation device 10 includes a fuel flow meter 15, a feed water tank 20, a feed water amount measuring device 30, a feed water temperature sensor 37, a blow tank 40, a blow water amount measuring device 50, a blow water temperature sensor 57, A vapor pressure sensor 60 and an efficiency calculator 75 are provided.

燃料流量計15は、ボイラ80の燃料供給ライン85に設置された流量計であり、バーナ82への燃焼用燃料の供給量を計測する。   The fuel flow meter 15 is a flow meter installed in the fuel supply line 85 of the boiler 80, and measures the amount of combustion fuel supplied to the burner 82.

給水タンク20は、ボイラ80の給水ライン90に設置されており、缶体81への給水を一時的に貯蔵している。給水タンク20は、タンク内を3つの部屋に仕切る第一給水仕切り21と第二給水仕切り22を備えている。   The water supply tank 20 is installed in the water supply line 90 of the boiler 80 and temporarily stores the water supplied to the can 81. The water supply tank 20 includes a first water supply partition 21 and a second water supply partition 22 that divide the tank into three rooms.

これにより、給水タンク20内には、給水ライン90の上流側から下流側に向けて、第一給水室24、第二給水室25及び第三給水室26の3つの部屋が形成されている。第二給水室25は、後述する給水液位計測部材31により給水液位を計測される給水液位計測室である。   Thereby, in the water supply tank 20, three rooms of the 1st water supply chamber 24, the 2nd water supply chamber 25, and the 3rd water supply chamber 26 are formed toward the downstream from the upstream of the water supply line 90. FIG. The 2nd water supply chamber 25 is a water supply liquid level measurement chamber by which a water supply liquid level is measured by the water supply liquid level measurement member 31 mentioned later.

また、給水タンク20は、第一給水室24と第二給水室25との間を接続する第一連通管27と、第二給水室25と第三給水室26との間を接続する第二連通管28とを備えており、連通管27,28を通って各給水室間で給水が移動可能である。ここで、第一連通管27は、給水液位計測室である第二給水室25の給水流入路であり、第二連通管28は、第二給水室25の給水流出路である。   In addition, the water supply tank 20 is connected to the first water pipe 24 connecting the first water supply chamber 24 and the second water supply chamber 25 and the second water supply chamber 25 connecting the second water supply chamber 25 and the third water supply chamber 26. Two communication pipes 28 are provided, and the water supply can move between the water supply chambers through the communication pipes 27 and 28. Here, the first communication pipe 27 is a water supply inflow path of the second water supply chamber 25 that is a water supply liquid level measurement chamber, and the second communication pipe 28 is a water supply outflow path of the second water supply chamber 25.

給水タンク20は、第一連通管27に設置された第一開閉弁271と、第二連通管28に設置された第二開閉弁281とを備え、第一開閉弁271は第一連通管27を開閉し、第二開閉弁281は第二連通管28を開閉する。すなわち、第一開閉弁271は、第二給水室25の給水流入路開閉部材であり、第二開閉弁281は、第二給水室25の給水流出路開閉部材である。   The water supply tank 20 includes a first on-off valve 271 installed in the first series communication pipe 27 and a second on-off valve 281 installed in the second communication pipe 28. The first on-off valve 271 is provided in the first series communication pipe 27. The pipe 27 is opened and closed, and the second on-off valve 281 opens and closes the second communication pipe 28. That is, the first on-off valve 271 is a water supply inflow path opening / closing member of the second water supply chamber 25, and the second on-off valve 281 is a water supply outflow path opening / closing member of the second water supply chamber 25.

給水量計測装置30は、給水タンク20に設置されており、給水タンク20から缶体81への給水量を計測する機能を有する。給水量計測装置30は、第二給水室25内の液位を計測する給水液位計測部材31と、給水液位計測部材31の計測値から給水量を算出する給水量算出器35とを備えている。なお、給水量算出器35は、ボイラ80の制御器70と一体に構成されている。   The water supply amount measuring device 30 is installed in the water supply tank 20 and has a function of measuring the amount of water supply from the water supply tank 20 to the can 81. The water supply amount measuring device 30 includes a water supply liquid level measuring member 31 that measures the liquid level in the second water supply chamber 25, and a water supply amount calculator 35 that calculates the water supply amount from the measured value of the water supply liquid level measuring member 31. ing. The water supply amount calculator 35 is configured integrally with the controller 70 of the boiler 80.

給水液位計測部材31は、第二給水室25内において垂直に延在する第一給水液位用電極311及び第二給水液位用電極312を備えている。第一給水液位用電極311は、第二給水室25内の所定の第一液位を検知するための電極であり、第二給水液位用電極312は、第一液位よりも低位の所定の第二液位を検知するための電極である。よって、第二給水液位用電極312のほうが第一給水液位用電極311よりも長く、その下端が低位に位置している。   The feed water level measuring member 31 includes a first feed water level electrode 311 and a second feed water level electrode 312 that extend vertically in the second feed chamber 25. The first water supply liquid level electrode 311 is an electrode for detecting a predetermined first liquid level in the second water supply chamber 25, and the second water supply liquid level electrode 312 is lower than the first liquid level. It is an electrode for detecting a predetermined second liquid level. Therefore, the second water supply liquid level electrode 312 is longer than the first water supply liquid level electrode 311, and the lower end thereof is positioned lower.

給水量算出器35は、給水液位計測部材31の検知により、第二給水室25内の給水液位が第一液位から第二液位に移動した回数を求め、この液位移動回数から給水タンク20からボイラ80への給水量を算出すると共に、給水量の計測にあたって、第一開閉弁271及び第二開閉弁281の開閉を制御する。   The water supply amount calculator 35 obtains the number of times that the water supply liquid level in the second water supply chamber 25 has moved from the first liquid level to the second liquid level by the detection of the water supply liquid level measuring member 31, and from this number of liquid level movements The amount of water supplied from the water supply tank 20 to the boiler 80 is calculated, and the opening / closing of the first on-off valve 271 and the second on-off valve 281 is controlled in measuring the amount of water supply.

具体的には、給水量算出器35は、給水量の計測にあたって、第二給水室25の給水流入路開閉部材である第一開閉弁271と給水流出路開閉部材である第二開閉弁281とを同時に開くことがないように、第二給水室25内の給水液位が第一液位から第二液位へと下降している間には常に第一開閉弁271を閉じた状態で第二開閉弁281を開いておき、給水液位が第二液位から第一液位へと上昇している間には常に第二開閉弁281を閉じた状態で第一開閉弁271を開いておくよう制御している。   Specifically, the water supply amount calculator 35, in measuring the water supply amount, includes a first on-off valve 271 that is a water supply inflow path opening / closing member of the second water supply chamber 25 and a second on-off valve 281 that is a water supply outflow path opening / closing member. So that the water supply liquid level in the second water supply chamber 25 is lowered from the first liquid level to the second liquid level, the first on-off valve 271 is always closed. The second on-off valve 281 is opened, and the first on-off valve 271 is always opened with the second on-off valve 281 closed while the feed water level is rising from the second liquid level to the first liquid level. Control to keep.

これにより、第二給水室25内の水位が第一液位から第二液位へと下降している間は、第二給水室25内への新たな流入はなく、第二液位まで液位が下降すると、第二給水室25内の第一液位から第二液位の間に存在していた水量分だけ第二給水室25から第三給水室26へと給水が移動したことになり、この移動量が給水タンク20からボイラ80への給水量に相当する。   Thus, while the water level in the second water supply chamber 25 is descending from the first liquid level to the second liquid level, there is no new inflow into the second water supply chamber 25, and the liquid level reaches the second liquid level. When the position is lowered, the water supply has moved from the second water supply chamber 25 to the third water supply chamber 26 by the amount of water existing between the first liquid level and the second liquid level in the second water supply chamber 25. This movement amount corresponds to the amount of water supplied from the water supply tank 20 to the boiler 80.

したがって、第二給水室25内の第一液位から第二液位の間の定容積を予め給水量算出器35に設定しておくことで、給水量算出器35は、第二給水室25内の第一液位から第二液位への移動回数(定容積変化回数)からボイラ80への給水の体積流量を算出することができる。   Therefore, by setting a constant volume between the first liquid level and the second liquid level in the second water supply chamber 25 in the water supply amount calculator 35 in advance, the water supply amount calculator 35 is set to the second water supply chamber 25. The volume flow rate of the feed water to the boiler 80 can be calculated from the number of movements from the first liquid level to the second liquid level (the number of constant volume changes).

給水タンク20への外部からの給水は、給水タンク20の第一給水室24内の液位が所定の液位となるように、例えば、ボールタップ等によって行われると共に、給水タンク20の第三給水室26からボイラ80への給水は、ボイラ80でのボイラ負荷等に応じて適宜行われる。よって、給水タンク20全体で見ると、流入と流出が適宜同時に行われるため、給水タンク20内の液位の変動により給水タンク20を通過した給水の体積流量を算出することは困難である。   Water supply from the outside to the water supply tank 20 is performed by, for example, a ball tap or the like so that the liquid level in the first water supply chamber 24 of the water supply tank 20 becomes a predetermined liquid level. Water supply from the chamber 26 to the boiler 80 is appropriately performed according to the boiler load in the boiler 80 and the like. Therefore, since the inflow and the outflow are performed at the same time when viewed from the entire water supply tank 20, it is difficult to calculate the volume flow rate of the water supplied through the water supply tank 20 due to the fluctuation of the liquid level in the water supply tank 20.

これに対して、本実施形態のように給水タンク20内を3つの給水室24,25,26に分けることで、給水タンク20内への流入や流出は適宜同時に行いながらも、第二給水室25内においては、室内への流入と流出を同時に行わないように制御し、液位変動による給水量の算出を可能とした。   On the other hand, by dividing the inside of the water supply tank 20 into the three water supply chambers 24, 25, and 26 as in the present embodiment, the second water supply chamber can be appropriately inflow and outflow simultaneously. In 25, control was performed so that inflow and outflow into the room would not be performed simultaneously, and calculation of the amount of water supply due to liquid level fluctuations was made possible.

図2は、給水量計測装置30により給水量を計測する際の作用を説明するための図であり、第二給水室25内の給水液位と、第一開閉弁271及び第二開閉弁281の開閉状態と、給水量算出器35がカウントする液位の移動回数との給水量計測時の関係を示す図である。同図に示すように、まず、給水量算出器35は、給水液位が第一液位となったときに、移動回数を0回とし、第一開閉弁271を閉じて第二開閉弁281を開いた状態とする。   FIG. 2 is a diagram for explaining the operation when the water supply amount is measured by the water supply amount measuring device 30. The water supply liquid level in the second water supply chamber 25, the first on-off valve 271 and the second on-off valve 281 are shown. It is a figure which shows the relationship at the time of water supply amount measurement of the open / close state of this and the frequency | count of the movement of the liquid level which the water supply amount calculator 35 counts. As shown in the figure, first, the water supply amount calculator 35 sets the number of movements to zero when the water supply liquid level reaches the first liquid level, closes the first on-off valve 271, and closes the second on-off valve 281. Is in an open state.

そうすると、第二連通管28によってつながっている第二給水室25と第三給水室26の液位は同じになるため、ボイラ80への給水に伴って、第三給水室26内の液位が徐々に低下すると、第二給水室25内の液位も一緒に低下する。このとき、第一開閉弁271は閉じているので、第一給水室24から第二給水室25内に水が移動することはない。   Then, since the liquid level of the 2nd water supply chamber 25 and the 3rd water supply chamber 26 which are connected by the 2nd communicating pipe 28 becomes the same, the liquid level in the 3rd water supply chamber 26 is accompanied with the water supply to the boiler 80. If it falls gradually, the liquid level in the 2nd water supply chamber 25 will also fall together. At this time, since the first on-off valve 271 is closed, water does not move from the first water supply chamber 24 into the second water supply chamber 25.

ボイラ80への給水に伴って第二給水室25内の給水液位が第二液位まで低下すると、給水量算出器35は、第一液位から第二液位への液位の移動回数を1回カウントすると共に、第一開閉弁271を開いて第二開閉弁281を閉じた状態にする。   When the water supply liquid level in the second water supply chamber 25 decreases to the second liquid level as the water is supplied to the boiler 80, the water supply amount calculator 35 counts the number of times the liquid level moves from the first liquid level to the second liquid level. Is counted once, and the first on-off valve 271 is opened and the second on-off valve 281 is closed.

そうすると、第二給水室25と第三給水室26との間は遮断され、第二給水室25の液位は第一連通管27によってつながっている第一給水室24の液位と同じになる。第二給水室25への給水の移動によって第一給水室24の液位が低下すると、給水ライン90の上流部(補給水ライン)から順次第一給水室24内に給水されるため、第二液位まで低下した第二給水室25内の液位は第一給水室24からの給水により第一液位まで徐々に上昇する。   If it does so, between the 2nd water supply chamber 25 and the 3rd water supply chamber 26 will be interrupted | blocked, and the liquid level of the 2nd water supply chamber 25 will be the same as the liquid level of the 1st water supply chamber 24 connected by the 1st continuous pipe 27. Become. When the liquid level in the first water supply chamber 24 decreases due to the movement of the water supply to the second water supply chamber 25, water is supplied into the first water supply chamber 24 sequentially from the upstream portion (supply water line) of the water supply line 90. The liquid level in the second water supply chamber 25 that has decreased to the liquid level gradually rises to the first liquid level by the water supply from the first water supply chamber 24.

第二給水室25内の給水液位が第一液位まで上昇すると、給水量算出器35は、再度、第一開閉弁271を閉じて第二開閉弁281を開いた状態に制御する。これにより、第二給水室25内への第一給水室24からの流入が停止し、第二給水室25から第三給水室26への流出が再開する。そして、再度、第二給水室25内の液位が第二液位まで低下すると、給水量算出器35は、移動回数を2回とカウントする。   When the water supply liquid level in the second water supply chamber 25 rises to the first liquid level, the water supply amount calculator 35 again controls the first open / close valve 271 and the second open / close valve 281 to be opened. Thereby, the inflow from the first water supply chamber 24 into the second water supply chamber 25 is stopped, and the outflow from the second water supply chamber 25 to the third water supply chamber 26 is resumed. And if the liquid level in the 2nd water supply chamber 25 falls to a 2nd liquid level again, the water supply amount calculator 35 will count the frequency | count of a movement twice.

このような制御を繰り返すことで、給水量算出器35は、第二給水室25内の液位の第一液位から第二液位への移動回数を求め、この移動回数に基づいて、給水タンク20からボイラ80への給水量を算出する。   By repeating such control, the water supply amount calculator 35 obtains the number of movements of the liquid level in the second water supply chamber 25 from the first liquid level to the second liquid level, and based on this number of movements, the water supply The amount of water supplied from the tank 20 to the boiler 80 is calculated.

なお、第一液位から第二液位への移動回数に基づいて第二給水室25からの流出量を算出して給水量を求めるのではなく、第二液位から第一液位への移動回数に基づいて第二給水室25への流入量を算出して給水量を求めるようにしても良い。   Note that the amount of water supply is not calculated by calculating the outflow amount from the second water supply chamber 25 based on the number of times of movement from the first liquid level to the second liquid level, but from the second liquid level to the first liquid level. The amount of water supplied may be obtained by calculating the amount of inflow into the second water supply chamber 25 based on the number of times of movement.

給水温度センサ37は、給水タンク20に設置され、第二給水室25内の水温を計測する。   The water supply temperature sensor 37 is installed in the water supply tank 20 and measures the water temperature in the second water supply chamber 25.

ブロータンク40は、ボイラ80のブローライン95に設置されており、缶体81からのブロー水を一時的に貯蔵している。ブロータンク40は、タンク内を2つの部屋に仕切る第一ブロー仕切り41を備えている。   The blow tank 40 is installed in the blow line 95 of the boiler 80 and temporarily stores blow water from the can 81. The blow tank 40 includes a first blow partition 41 that partitions the inside of the tank into two rooms.

これにより、ブロータンク40内には、ブローライン95の上流側から下流側に向けて、第一ブロー室44及び第二ブロー室45の2つの部屋が形成されている。第二ブロー室45は、後述するブロー液位計測部材51によりブロー液位を計測されるブロー液位計測室である。   As a result, two chambers, a first blow chamber 44 and a second blow chamber 45, are formed in the blow tank 40 from the upstream side to the downstream side of the blow line 95. The second blow chamber 45 is a blow liquid level measurement chamber in which the blow liquid level is measured by a blow liquid level measurement member 51 described later.

また、ブロータンク40は、第一ブロー室44と第二ブロー室45との間を接続する第一連通管47を備えており、第一連通管47を通ってブロー室間でブロー水が移動する。第一連通管47は、ブロー液位計測室である第二ブロー室45のブロー流入路であり、ブロータンク40の出口に接続されたブローライン95が第二ブロー室45のブロー流出路である。   The blow tank 40 also includes a first series pipe 47 that connects the first blow chamber 44 and the second blow chamber 45, and the blow water passes between the blow chambers through the first series pipe 47. Move. The first series pipe 47 is a blow inflow path of the second blow chamber 45 which is a blow liquid level measurement chamber, and a blow line 95 connected to the outlet of the blow tank 40 is a blow out path of the second blow chamber 45. is there.

ブロータンク40は、第一連通管47に設置された第一開閉弁471と、ブロー流出路であるブローライン95に設置された第二開閉弁481とを備え、第一開閉弁471は第一連通管47を開閉し、第二開閉弁481はブロー流出路であるブローライン95を開閉する。すなわち、第一開閉弁481は、第二ブロー室45のブロー流入路開閉部材であり、第二開閉弁481は、第二ブロー室45のブロー流出路開閉部材である。   The blow tank 40 includes a first on-off valve 471 installed on the first series pipe 47 and a second on-off valve 481 installed on the blow line 95 which is a blow out path. The series passage 47 is opened and closed, and the second on-off valve 481 opens and closes a blow line 95 that is a blow out path. That is, the first opening / closing valve 481 is a blow inflow path opening / closing member of the second blow chamber 45, and the second opening / closing valve 481 is a blow outflow path opening / closing member of the second blow chamber 45.

ブロー水量計測装置50は、ブロータンク40に設置されており、缶体81から排出されるブロー水量を計測する機能を有する。ブロー水量計測装置50は、第二ブロー室45内の液位を計測するブロー液位計測部材51と、ブロー液位計測部材51の計測値からブロー水量を算出するブロー水量算出器55とを備えている。なお、ブロー水量算出器55は、ボイラ80の制御器70と一体に構成されている。   The blow water amount measuring device 50 is installed in the blow tank 40 and has a function of measuring the blow water amount discharged from the can 81. The blow water amount measuring device 50 includes a blow liquid level measuring member 51 that measures the liquid level in the second blow chamber 45, and a blow water amount calculator 55 that calculates the blow water amount from the measurement value of the blow liquid level measuring member 51. ing. The blow water amount calculator 55 is configured integrally with the controller 70 of the boiler 80.

ブロー液位計測部材51は、第二ブロー室45内において垂直に延在する第一ブロー液位用電極511及び第二ブロー液位用電極512を備えている。第一ブロー液位用電極511は、第二ブロー室45内の所定の第一液位を検知するための電極であり、第二ブロー液位用電極512は、第一液位よりも低位の所定の第二液位を検知するための電極である。よって、第二ブロー液位用電極512のほうが第一ブロー液位用電極511よりも長く、その下端が低位に位置している。   The blow liquid level measuring member 51 includes a first blow liquid level electrode 511 and a second blow liquid level electrode 512 that extend vertically in the second blow chamber 45. The first blow liquid level electrode 511 is an electrode for detecting a predetermined first liquid level in the second blow chamber 45, and the second blow liquid level electrode 512 is lower than the first liquid level. It is an electrode for detecting a predetermined second liquid level. Therefore, the second blow liquid level electrode 512 is longer than the first blow liquid level electrode 511, and the lower end thereof is positioned at a low level.

ブロー水量算出器55は、ブロー液位計測部材51の検知により、第二ブロー室45内のブロー液位が第一液位から第二液位に移動した回数を求め、この液位移動回数からボイラ80のブロー水量を算出すると共に、ブロー水量の計測にあたって、第一開閉弁471及び第二開閉弁481の開閉を制御する。   The blow water amount calculator 55 obtains the number of times the blow liquid level in the second blow chamber 45 has moved from the first liquid level to the second liquid level by detection of the blow liquid level measuring member 51, and from this number of liquid level movements While calculating the blow water amount of the boiler 80, the opening / closing of the first on-off valve 471 and the second on-off valve 481 is controlled in measuring the blow water amount.

具体的には、ブロー水量算出器55は、ブロー水量の計測にあたって、第二ブロー室45のブロー流入路開閉部材である第一開閉弁471とブロー流出路開閉部材である第二開閉弁481とを同時に開くことがないように、第二ブロー室45内のブロー液位が第一液位から第二液位へと下降している間には常に第一開閉弁471を閉じた状態で第二開閉弁481を開いておき、ブロー液位が第二液位から第一液位へと上昇している間には常に第二開閉弁481を閉じた状態で第一開閉弁471を開いておくよう制御している。   Specifically, the blow water amount calculator 55 determines the blow water amount by measuring the first on-off valve 471 that is a blow inflow path opening / closing member of the second blow chamber 45 and the second on-off valve 481 that is a blow out path opening / closing member. So that the first open / close valve 471 is always closed while the blow liquid level in the second blow chamber 45 is descending from the first liquid level to the second liquid level. The second on-off valve 481 is opened, and the first on-off valve 471 is always opened while the second on-off valve 481 is closed while the blow liquid level is rising from the second liquid level to the first liquid level. Control to keep.

これにより、第二ブロー室45内の液位が第一液位から第二液位へと下降している間は、第二ブロー室45内への新たな流入はないことになり、第一液位から第二液位へと液位が下降すると、第二ブロー室45内の第一液位から第二液位の間に存在していた水量分が第二ブロー室45から外部へ排出される排水量となる。   As a result, while the liquid level in the second blow chamber 45 is descending from the first liquid level to the second liquid level, there is no new inflow into the second blow chamber 45. When the liquid level drops from the liquid level to the second liquid level, the amount of water existing between the first liquid level and the second liquid level in the second blow chamber 45 is discharged from the second blow chamber 45 to the outside. It becomes the amount of drainage.

したがって、第二ブロー室45内の第一液位から第二液位の間の定容積を予めブロー水量算出器55に設定しておくことで、ブロー水量算出器55は、第二ブロー室45内の第一液位から第二液位への移動回数に基づいて、ボイラ80から排出されるブロー水の体積流量を算出することができる。   Therefore, by setting a constant volume between the first liquid level and the second liquid level in the second blow chamber 45 in the blow water amount calculator 55 in advance, the blow water amount calculator 55 is connected to the second blow chamber 45. Based on the number of times of movement from the first liquid level to the second liquid level, the volume flow rate of blow water discharged from the boiler 80 can be calculated.

ボイラ80からのブロー水のブロータンク40への流入は、所定のタイミングで行われるため、ブロータンク40からブロー水の排出を行っている間にブロータンク40への流入が行われると、ブロータンク40内の液位の変動によりブロータンク40を通過したブロー水の体積流量を算出することは困難である。   Since the inflow of the blow water from the boiler 80 to the blow tank 40 is performed at a predetermined timing, if the inflow to the blow tank 40 is performed while the blow water is being discharged from the blow tank 40, the blow tank It is difficult to calculate the volume flow rate of the blow water that has passed through the blow tank 40 due to the fluctuation of the liquid level in the 40.

これに対して、本実施形態のようにブロータンク40内を2つのブロー室44,45に分けることで、ボイラ80のブロー排水は任意のタイミングで行いながらも、第二ブロー室45内では、室内への流入と流出を同時に行わないように制御し、液位変動によるブロー水量の算出を可能とした。   On the other hand, by dividing the inside of the blow tank 40 into two blow chambers 44 and 45 as in this embodiment, while the drainage of the boiler 80 is performed at an arbitrary timing, Control was made so that inflow and outflow into the room do not occur at the same time, making it possible to calculate the amount of blown water due to liquid level fluctuations.

ブロー水量計測装置50によりブロー水量を計測する際も、図2に示したように給水量計測装置30と同様の制御処理を第一開閉弁471及び第二開閉弁481等に対して行うことで、ブロー水量算出器55は、第二ブロー室45内の第一液位から第二液位への移動回数を求め、この移動回数に基づいて、ボイラ80からのブロー水量を算出することができる。   When the blow water amount is measured by the blow water amount measuring device 50, the same control process as that of the water supply amount measuring device 30 is performed on the first on-off valve 471 and the second on-off valve 481 as shown in FIG. The blow water amount calculator 55 obtains the number of movements from the first liquid level to the second liquid level in the second blow chamber 45, and can calculate the amount of blow water from the boiler 80 based on the number of movements. .

なお、ブロー水量計測装置50においても、第一液位から第二液位への移動回数に基づいて第二ブロー室45からの流出量を算出してブロー水量を求めるのではなく、第二液位から第一液位への移動回数に基づいて第二ブロー室45への流入量を算出してブロー水量を求めるようにしても良い。   In the blow water amount measuring device 50, the second liquid is not calculated by calculating the outflow amount from the second blow chamber 45 based on the number of times of movement from the first liquid level to the second liquid level. The inflow amount into the second blow chamber 45 may be calculated based on the number of times of movement from the first to the first liquid level to obtain the blow water amount.

ブロー水温度センサ57は、ブロータンク40に設置され、第二ブロー室45内の水温を計測する。蒸気圧センサ60は、缶体81に設置され、ボイラ80が生成する蒸気の圧力を計測する。   The blow water temperature sensor 57 is installed in the blow tank 40 and measures the water temperature in the second blow chamber 45. The vapor pressure sensor 60 is installed in the can body 81 and measures the pressure of the vapor generated by the boiler 80.

効率算出器75は、燃料流量計15が計測したボイラ80への燃料供給量、給水量計測装置30が計測したボイラ80への給水量、ブロー水量計測装置50が計測したボイラ80のブロー水量、給水温度センサ37が計測した給水温度、ブロー水温度センサ57が計測したブロー水温度、蒸気圧センサ60が計測した蒸気圧に基づいて、ボイラ効率を算出する。なお、効率算出器75は、ボイラ80の制御器70と一体に構成されている。   The efficiency calculator 75 includes a fuel supply amount to the boiler 80 measured by the fuel flow meter 15, a water supply amount to the boiler 80 measured by the water supply amount measuring device 30, a blow water amount of the boiler 80 measured by the blow water amount measuring device 50, The boiler efficiency is calculated based on the feed water temperature measured by the feed water temperature sensor 37, the blow water temperature measured by the blow water temperature sensor 57, and the vapor pressure measured by the vapor pressure sensor 60. The efficiency calculator 75 is configured integrally with the controller 70 of the boiler 80.

具体的には、ボイラ効率に関して下記関係式(入出熱法)が成立するため、効率算出器75は、下記関係式の三段目の(式1)に基づいて、ボイラ効率を算出する。

Figure 2014202458
Specifically, since the following relational expression (input / output heat method) is established with respect to the boiler efficiency, the efficiency calculator 75 calculates the boiler efficiency based on the third stage (Expression 1) of the following relational expression.
Figure 2014202458

ここで、「給水量」は給水量計測装置30の計測値、「ブロー水量」はブロー水量計測装置50の計測値を用いる。「給水密度」は給水温度センサ37の計測値、「ブロー水密度」はブロー水温度センサ57の計測値から求める。   Here, the “water supply amount” uses the measurement value of the water supply amount measurement device 30, and the “blow water amount” uses the measurement value of the blow water amount measurement device 50. “Water supply density” is obtained from the measured value of the feed water temperature sensor 37, and “Blow water density” is obtained from the measured value of the blow water temperature sensor 57.

「蒸気熱量」は蒸気圧センサ60の計測値から求めるが、蒸気圧力は計測期間中多少変動があるため平均値を用いる。「給水熱量」は給水温度センサ37の計測値から求める。「燃焼量」は燃料流量計15の計測値を用いる。「燃料低位発熱量」は燃料の種類から決まる値である。   “Steam heat quantity” is obtained from the measured value of the vapor pressure sensor 60, but the average value is used because the steam pressure varies somewhat during the measurement period. “Feed water heat amount” is obtained from the measured value of the feed water temperature sensor 37. As the “combustion amount”, the measured value of the fuel flow meter 15 is used. The “low fuel heating value” is a value determined by the type of fuel.

以上、ボイラ効率算出装置10について詳細に説明したが、本実施形態では、給水ライン90やブローライン95に流量計を設置することなく、給水タンク20やブロータンク40内の液位の変動から給水量やブロー水量を計測しており、低コストで正確に給水量やブロー水量を計測し、高精度にボイラ効率を算出することができる。   As described above, the boiler efficiency calculation device 10 has been described in detail. In the present embodiment, the water supply is performed from the fluctuation of the liquid level in the water supply tank 20 or the blow tank 40 without installing a flow meter in the water supply line 90 or the blow line 95. The amount of water and the amount of blow water are measured, and the amount of water supply and the amount of blow water can be accurately measured at low cost, and the boiler efficiency can be calculated with high accuracy.

なお、本発明の実施の形態は上記実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々の変形が可能である。例えば、流量を計測する際に用いるタンク内の部屋の数は適宜変更可能であり、室内への流入と流出を同時に行わない部屋を構成できれば1つの部屋でも良い。   The embodiment of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. For example, the number of rooms in the tank used for measuring the flow rate can be changed as appropriate, and one room may be used as long as a room that does not flow into and out of the room at the same time can be configured.

また、上記実施形態では、燃料の供給量を計測するために燃料流量計を用いているが、燃料が液体燃料の場合には、上記実施形態の給水量計測装置やブロー水量計測装置のように、燃料供給ラインに設置したタンク内の液位の変動に基づいて燃料供給量を計測するようにしても良い。   In the above embodiment, a fuel flow meter is used to measure the amount of fuel supplied. However, when the fuel is liquid fuel, the water supply amount measuring device and the blow water amount measuring device of the above embodiment are used. The fuel supply amount may be measured based on the fluctuation of the liquid level in the tank installed in the fuel supply line.

10 ボイラ効率算出装置
15 燃料流量計
20 給水タンク
21 第一給水仕切り
22 第二給水仕切り
24 第一給水室
25 第二給水室
26 第三給水室
27 第一連通管
271 第一開閉弁
28 第二連通菅
281 第二開閉弁
30 給水量計測装置
31 給水液位計測部材
311 第一給水液位用電極
312 第二給水液位用電極
35 給水量算出器
37 給水温度センサ
40 ブロータンク
41 第一ブロー仕切り
44 第一ブロー室
45 第二ブロー室
47 第一連通管
471 第一開閉弁
481 第二開閉弁
50 ブロー水量計測装置
51 ブロー液位計測部材
511 第一ブロー液位用電極
512 第二ブロー液位用電極
55 ブロー水量算出器
57 ブロー水温度センサ
60 蒸気圧センサ
70 制御器
75 効率算出器
80 ボイラ
81 缶体
82 バーナ
85 燃料供給ライン
88 蒸気取出ライン
90 給水ライン
95 ブローライン
DESCRIPTION OF SYMBOLS 10 Boiler efficiency calculation apparatus 15 Fuel flow meter 20 Water supply tank 21 1st water supply partition 22 2nd water supply partition 24 1st water supply chamber 25 2nd water supply chamber 26 3rd water supply chamber 27 1st continuous pipe 271 1st on-off valve 28 1st Double communication rod 281 Second on-off valve 30 Water supply amount measuring device 31 Water supply liquid level measuring member 311 First water supply liquid level electrode 312 Second water supply liquid level electrode 35 Water supply amount calculator 37 Water supply temperature sensor 40 Blow tank 41 First Blow partition 44 First blow chamber 45 Second blow chamber 47 First series pipe 471 First on-off valve 481 Second on-off valve 50 Blow water amount measuring device 51 Blow liquid level measuring member 511 First blow liquid level electrode 512 Second Blow liquid level electrode 55 Blow water amount calculator 57 Blow water temperature sensor 60 Vapor pressure sensor 70 Controller 75 Efficiency calculator 80 Boiler 81 Can body 2 burner 85 fuel supply line 88 steam extraction line 90 water supply line 95 blowline

Claims (3)

ボイラの給水量及びブロー水量に基づいてボイラ効率を算出するボイラ効率算出装置において、
前記ボイラの給水ラインに設置され、内部に給水液位計測室が形成された給水タンクと、
前記給水タンクに設置され、前記ボイラへの給水量を計測する給水量計測装置であって、前記給水液位計測室内の第一給水液位と当該第一給水液位よりも低位の第二給水液位とを計測する給水液位計測部材を有し、前記給水液位計測室内の液位の前記第一給水液位と前記第二給水液位との間の移動回数から前記ボイラへの給水量を計測する給水量計測装置と、
前記ボイラのブローラインに設置され、内部にブロー液位計測室が形成されたブロータンクと、
前記ブロータンクに設置され、前記ボイラのブロー水量を計測するブロー水量計測装置であって、前記ブロー液位計測室内の第一ブロー液位と当該第一ブロー液位よりも低位の第二ブロー液位とを計測するブロー液位計測部材を有し、前記ブロー液位計測室内の液位の前記第一ブロー液位と前記第二ブロー液位との間の移動回数から前記ボイラのブロー水量を計測するブロー水量計測装置と、
前記給水量及びブロー水量からボイラの効率を算出する効率算出器と、
を備えることを特徴とするボイラ効率算出装置。
In the boiler efficiency calculation device that calculates the boiler efficiency based on the amount of water supplied and the amount of blow water in the boiler,
A water supply tank installed in the boiler water supply line, in which a water supply liquid level measurement chamber is formed;
A water supply amount measuring device that is installed in the water supply tank and measures the amount of water supplied to the boiler, the first water supply liquid level in the water supply liquid level measurement chamber and the second water supply lower than the first water supply liquid level A feed water level measuring member for measuring the liquid level, and water supply to the boiler from the number of movements between the first feed water level and the second feed water level of the liquid level in the feed water level measurement chamber A water supply measuring device for measuring the amount,
A blow tank installed in the blow line of the boiler, in which a blow liquid level measurement chamber is formed;
A blow water amount measuring device that is installed in the blow tank and measures the blow water amount of the boiler, the first blow liquid level in the blow liquid level measuring chamber and the second blow liquid lower than the first blow liquid level A blow liquid level measuring member for measuring the level of the boiler, and the amount of blow water in the boiler is determined from the number of movements between the first blow liquid level and the second blow liquid level of the liquid level in the blow liquid level measurement chamber. A blow water volume measuring device to measure,
An efficiency calculator for calculating the efficiency of the boiler from the water supply amount and the blow water amount;
A boiler efficiency calculating device comprising:
前記給水タンクは、直列に接続された少なくとも3つの部屋に内部が仕切られており、前記給水液位計測室は、中間の部屋であることを特徴とする請求項1記載のボイラ効率算出装置。   2. The boiler efficiency calculating apparatus according to claim 1, wherein the feed water tank is partitioned into at least three rooms connected in series, and the feed water level measuring chamber is an intermediate room. 前記給水タンクは、前記給水液位計測室の流入路に設置された給水流入路開閉部材と、前記給水液位計測室の流出路に設置された給水流出路開閉部材と、を備え、
給水量計測装置は、前記給水液位計測室内の液位が前記第一給水液位から前記第二給水液位へと下降している間は、前記給水液位計測室の給水流入路開閉部材を閉じておき、前記給水液位計測室内の液位が前記第二給水液位から前記第一給水液位へと上昇している間は、前記給水液位計測室の給水流出路開閉部材を閉じておくように制御し、
前記ブロータンクは、前記ブロー液位計測室の流入路に設置されたブロー流入路開閉部材と、前記ブロー液位計測室の流出路に設置されたブロー流出路開閉部材と、を備え、
ブロー水量計測装置は、前記ブロー液位計測室内の液位が前記第一ブロー液位から前記第二ブロー液位へと下降している間は、前記ブロー液位計測室のブロー流入路開閉部材を閉じておき、前記ブロー液位計測室内の液位が前記第二ブロー液位から前記第一ブロー液位へと上昇している間は、前記ブロー液位計測室のブロー流出路開閉部材を閉じておくように制御する、
ことを特徴とする請求項1又は2記載のボイラ効率算出装置。
The water supply tank includes a water supply inflow path opening / closing member installed in an inflow path of the water supply liquid level measurement chamber, and a water supply outflow path opening / closing member installed in an outflow path of the water supply liquid level measurement chamber,
The water supply amount measuring device is configured to provide a water supply inflow path opening / closing member of the water supply liquid level measurement chamber while the liquid level in the water supply liquid level measurement chamber is lowered from the first water supply liquid level to the second water supply liquid level. And while the liquid level in the feed water level measurement chamber rises from the second feed water level to the first feed water level, the feed water outflow path opening / closing member of the feed water level measurement chamber is Control to keep it closed,
The blow tank includes a blow inflow path opening / closing member installed in an inflow path of the blow liquid level measurement chamber, and a blow outflow path opening / closing member installed in an outflow path of the blow liquid level measurement chamber,
The blow water amount measuring device is configured to open and close the blow inflow path of the blow liquid level measuring chamber while the liquid level in the blow liquid level measuring chamber is lowered from the first blow liquid level to the second blow liquid level. Is closed, and while the liquid level in the blow liquid level measurement chamber is rising from the second blow liquid level to the first blow liquid level, the blow outflow path opening / closing member of the blow liquid level measurement chamber is Control to keep it closed,
The boiler efficiency calculation apparatus according to claim 1 or 2, characterized by the above-mentioned.
JP2013080999A 2013-04-09 2013-04-09 Boiler efficiency calculation device Pending JP2014202458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013080999A JP2014202458A (en) 2013-04-09 2013-04-09 Boiler efficiency calculation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013080999A JP2014202458A (en) 2013-04-09 2013-04-09 Boiler efficiency calculation device

Publications (1)

Publication Number Publication Date
JP2014202458A true JP2014202458A (en) 2014-10-27

Family

ID=52353049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013080999A Pending JP2014202458A (en) 2013-04-09 2013-04-09 Boiler efficiency calculation device

Country Status (1)

Country Link
JP (1) JP2014202458A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016095091A (en) * 2014-11-14 2016-05-26 株式会社サムソン Boiler with thermal management device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016095091A (en) * 2014-11-14 2016-05-26 株式会社サムソン Boiler with thermal management device

Similar Documents

Publication Publication Date Title
CN107883399B (en) Regulating turbulent flow
CN108534346B (en) Control method of gas water heater and gas water heater
CN103529869A (en) Pressure control means, flow control devices, pressure and flow control method
GB2477247A (en) Dual-mode mass flow verification and mass flow delivery system and method
CN105091959B (en) A kind of focusing orifice flowmeter and its application method
JP2016525682A5 (en)
CN104316115A (en) Method for measuring pipeline flow by use of pipeline pressure drop
US20200271312A1 (en) Boiler combustor side blockage detection system and method
CN104566929A (en) Gas water heater and control method
KR20160021674A (en) Simulation Apparatus for Boiler Tube
JP2010139207A (en) Steam generation amount calculating method for boiler
CN104019852A (en) Method for accurately testing feed water flow based on throttling element characteristic coefficient K
CN104048908B (en) A kind of heat-transfer equipment experimental apparatus for capability
JP6527950B2 (en) Control method for operating a once-through steam generator
JP2014202458A (en) Boiler efficiency calculation device
CN211015169U (en) Control system for temperature of pipeline confluence liquid
CN110908414A (en) System and method for controlling temperature of pipeline confluence liquid
JP2018059667A (en) Internal circulation type hot water system
JP5811610B2 (en) Boiler equipment
CN110940205B (en) Real-time control system and method for operation efficiency of horizontal high-pressure heater
JP5384401B2 (en) Boiler water level control method
KR20160062533A (en) Gas amount control apparatus of combustor and the method thereof
RU2596611C2 (en) Adaptive method for measuring flow rate of gas condensate well products
CN103866082B (en) A kind of converter mouth micro-pressure-difference control method and device
JP2020008508A (en) Thermal flowmeter