JP2014201659A - Pultrusion method for fiber-reinforced plastic and molding - Google Patents

Pultrusion method for fiber-reinforced plastic and molding Download PDF

Info

Publication number
JP2014201659A
JP2014201659A JP2013078887A JP2013078887A JP2014201659A JP 2014201659 A JP2014201659 A JP 2014201659A JP 2013078887 A JP2013078887 A JP 2013078887A JP 2013078887 A JP2013078887 A JP 2013078887A JP 2014201659 A JP2014201659 A JP 2014201659A
Authority
JP
Japan
Prior art keywords
fiber
epoxy resin
reinforced plastic
reinforcing fiber
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013078887A
Other languages
Japanese (ja)
Inventor
麻衣子 福島
Maiko Fukushima
麻衣子 福島
靖則 村野
Yasunori Murano
靖則 村野
伊藤 彰浩
Akihiro Ito
彰浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2013078887A priority Critical patent/JP2014201659A/en
Publication of JP2014201659A publication Critical patent/JP2014201659A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fiber-reinforced plastic which uses carbon fiber large tow and allows an irregular-shape pultrusion molding.SOLUTION: A fiber-reinforced plastic consists of a fiber bundle of reinforcing fibers having a number of filaments of 25,000-80,000 and a hardened product of an epoxy resin composition containing an epoxy resin and an epoxy resin hardening agent, has a strength development rate of the reinforcing fiber of 90% or higher and is capable of suppressing meander of fibers and exerting good mechanical characteristics not only when the cross sectional shape of the filament is perfectly circular but also when it is, e.g., elliptical, ovoid, horse-bean-shaped or three-leafed.

Description

本発明は炭素繊維ラージトウを用いた引抜成形品、繊維強化プラスチック、及び引抜成形法に関する。   The present invention relates to a pultruded product, a fiber reinforced plastic, and a pultrusion method using a carbon fiber large tow.

繊維強化プラスチックの引抜成形方法では、樹脂粘度や金型壁面の摩擦抵抗に起因して補強繊維が蛇行し、得られた引抜成形品の繊維方向の強度が低下してしまう場合がある。補強繊維の直進性を保ちつつ成形する方法としては、樹脂含浸から成形金型(ダイス)にいたる補強繊維の張力を高くしたり、成形スピードを遅くしたりする等の方法が知られている。また、低粘度の樹脂を使用することにより金型進入時の繊維に対する抵抗を抑制することで、繊維蛇行を抑制する方法が知られている(特許文献1)。   In the fiber reinforced plastic pultrusion method, the reinforcing fibers meander due to the resin viscosity and the frictional resistance of the mold wall surface, and the strength of the obtained pultruded product in the fiber direction may decrease. As a method of molding while maintaining the straightness of the reinforcing fiber, a method of increasing the tension of the reinforcing fiber from the resin impregnation to the molding die (die) or slowing the molding speed is known. Moreover, the method of suppressing a fiber meander is known by suppressing the resistance with respect to the fiber at the time of mold | die approaching by using low-viscosity resin (patent document 1).

特開2008−38082号公報JP 2008-38082 A

しかしながら、上記特許に開示されたの方法は、引抜成形品としての良好な引張強度を得る為に炭素繊維のフィラメントの断面形状がほぼ真円の場合は好適に適用されるが、断面形状が異形であったり表面に皺を有したりするフィラメントに対してはフィラメント間の擦過による糸切れに起因する毛羽や糸の破断等の工程内トラブルや引抜成形品の強度の低下が懸念され、適用は容易ではなかった。更に、皺を有するフィラメントからなる繊維束は樹脂を包含しやすく、金型進入時に引き込まれる樹脂の余剰分が金型からバックフローする際に繊維蛇行を引き起こし、複合材料の機械的特性が低下するという問題があり、強度発現性の良好な複合材料を得ることが困難であった。一方、フィラメント数が25000本以上のラージトウ炭素繊維を用いた引抜成形は工程セットアップが簡易化されることによるコストダウンというメリットが期待されているが、従来技術による限りでは、生産性と性能の高いラージトウの引抜成形は実現されていない。   However, the method disclosed in the above patent is preferably applied when the cross-sectional shape of the filament of carbon fiber is almost perfect circle in order to obtain good tensile strength as a pultruded product, but the cross-sectional shape is irregular. For filaments that have wrinkles or have wrinkles on the surface, there are concerns about in-process troubles such as fuzz and thread breakage due to thread breakage due to rubbing between filaments, and reduction in strength of pultruded products, It was not easy. Furthermore, fiber bundles made of filaments having wrinkles tend to contain resin, causing excess of the resin drawn when entering the mold to cause fiber meandering when backflowing from the mold, thus reducing the mechanical properties of the composite material. Thus, it was difficult to obtain a composite material having good strength development. On the other hand, pultrusion using large tow carbon fibers with 25,000 filaments or more is expected to have a merit of cost reduction due to simplified process setup, but as long as the conventional technology is used, productivity and performance are high. Large tow pultrusion has not been realized.

上記課題を解決するために鋭意検討を行った結果、本発明者は本発明に至った。   As a result of intensive studies to solve the above problems, the present inventor has reached the present invention.

即ち、本発明は、フィラメント数25000〜80000本の補強繊維の繊維束と、エポキシ樹脂とエポキシ樹脂硬化剤を含むエポキシ樹脂組成物の硬化物からなる繊維強化プラスチックであり、補強繊維の強度発現率が90%以上である繊維強化プラスチックである。   That is, the present invention is a fiber reinforced plastic comprising a fiber bundle of reinforcing fibers having 25000 to 80000 filaments and a cured product of an epoxy resin composition containing an epoxy resin and an epoxy resin curing agent, and the strength expression rate of the reinforcing fibers. Is a fiber reinforced plastic having 90% or more.

本発明の引抜成形方法によれば、フィラメントの繊維方向に垂直な断面における断面形状(以下、単に「断面形状」という。)がほぼ真円である場合だけでなく、楕円、卵形、空豆形、三葉形等の断面形状であって、皺を有するフィラメントからなる繊維束を用いた場合にも、金型進入時の樹脂のバックフローとそれに起因する繊維の蛇行を抑制し、高い機械的特性を発現性する繊維強化プラスチックを得ることが出来る。本発明は、幅広い種類の補強繊維に適用可能な技術である。さらに、ラージトウ炭素繊維を用いた場合でも繊維蛇行と含浸不良の問題を回避出来るため、ラージトウの採用による成形セットアップの簡易化により、低コストでの生産が可能となる。   According to the pultrusion method of the present invention, not only when the cross-sectional shape in the cross-section perpendicular to the fiber direction of the filament (hereinafter simply referred to as “cross-sectional shape”) is almost a perfect circle, but also an ellipse, egg shape, and empty bean shape. Even when using a fiber bundle made of filaments having ridges and having a cross-sectional shape such as a trilobal shape, the back flow of the resin and the resulting meandering of the fiber when entering the mold are suppressed, and high mechanical A fiber reinforced plastic exhibiting properties can be obtained. The present invention is a technique applicable to a wide variety of reinforcing fibers. Furthermore, since the problem of fiber meandering and impregnation failure can be avoided even when large tow carbon fibers are used, production at a low cost is possible by simplifying the molding setup by employing large tows.

本発明の引抜成形の概要を説明する図である。It is a figure explaining the outline | summary of the pultrusion molding of this invention.

本発明は、フィラメント数25000〜80000本の補強繊維の繊維束と、エポキシ樹脂とエポキシ樹脂硬化剤を含むエポキシ樹脂組成物の硬化物とからなる繊維強化プラスチックであり、補強繊維の強度発現率が90%以上である繊維強化プラスチックにより、実現される。   The present invention is a fiber reinforced plastic comprising a fiber bundle of reinforcing fibers having 25,000 to 80000 filaments and a cured product of an epoxy resin composition containing an epoxy resin and an epoxy resin curing agent, and the strength expression rate of the reinforcing fibers is Realized by fiber reinforced plastic that is 90% or more.

(補強繊維)
本発明で使用する補強繊維は、ガラス繊維、アラミド繊維、炭素繊維、ボロン繊維等の繊維が好ましいが、強度に優れた炭素繊維を使用するのが好ましい。さらに、炭素繊維は引張強度が3000〜6000MPaのものを用いることが一般産業用途用の繊維強化プラスチックとして好ましい。本発明において、炭素繊維の引張強度とは、JIS R 7601に準拠して測定したストランド強度を指す。
(Reinforcing fiber)
The reinforcing fiber used in the present invention is preferably a fiber such as a glass fiber, an aramid fiber, a carbon fiber, or a boron fiber, but it is preferable to use a carbon fiber having excellent strength. Further, it is preferable to use carbon fiber having a tensile strength of 3000 to 6000 MPa as a fiber reinforced plastic for general industrial use. In the present invention, the tensile strength of carbon fiber refers to the strand strength measured according to JIS R7601.

本発明に用いる補強繊維には、エポキシ基、水酸基、アミノ基、カルボキシル基、カルボン酸無水物基、アクリレート基およびメタクリレート基から選ばれる1種類以上の官能基を持つ物質を0.01〜5質量%付着させ、繊維束の収束性や、繊維強化プラスチックとしたときの補強繊維とマトリックス樹脂との接着性を改善するためのサイズ剤として用いることができる。   The reinforcing fiber used in the present invention contains 0.01 to 5 mass of a substance having one or more functional groups selected from an epoxy group, a hydroxyl group, an amino group, a carboxyl group, a carboxylic anhydride group, an acrylate group, and a methacrylate group. %, And can be used as a sizing agent for improving the convergence of the fiber bundle and the adhesion between the reinforcing fiber and the matrix resin when the fiber reinforced plastic is used.

本発明に用いる補強繊維は、ラージトウと呼ばれる、フィラメント数25000〜80000本の補強繊維束の形態で好適に用いることができる。ラージトウを用いることにより、工程セットアップが簡易化され、コストダウンが図れる。   The reinforcing fiber used in the present invention can be suitably used in the form of a reinforcing fiber bundle called a large tow and having 25,000 to 80,000 filaments. By using large tow, process setup can be simplified and cost can be reduced.

本発明に用いる補強繊維は、フィラメントの断面形状が真円であっても、楕円、卵形、空豆形、三葉形等の異形の断面形状であってもよい。また、繊維表面皺の有無に関してもいずれであってもよい。   The reinforcing fiber used in the present invention may have a perfect cross-sectional shape of the filament, or may have an elliptical shape, an oval shape, an empty bean shape, a trilobal shape or the like. Moreover, any may be sufficient also about the presence or absence of a fiber surface wrinkle.

本発明に用いる補強繊維は、フィラメントの断面形状の真円度が1以上3以下のものを好適に用いることができる。本発明でいう真円度は、フィラメントの最大径/最小径の比で表わされる。ここで最大径とは1本のフィラメントを繊維軸の周りに1回転させる間の、繊維軸に平行な平面上への投影の幅が最大となる回転角における幅であり、最小径とは同じく投影の幅が最小となる回転角における幅であり、補強繊維の最大径と最小径は、繊維の断面形状を光学顕微鏡または走査型電子顕微鏡(SEM)で観察することにより容易に得ることができる。本発明の引抜成形方法によればではフィラメントの断面形状が真円であっても、真円度が1.1より大きい、所謂、異形断面であっても高い生産性を維持することが可能である。   As the reinforcing fibers used in the present invention, those having a roundness of 1 to 3 in the cross-sectional shape of the filament can be suitably used. The roundness referred to in the present invention is represented by the ratio of the maximum diameter / minimum diameter of the filament. Here, the maximum diameter is a width at a rotation angle at which the width of projection onto a plane parallel to the fiber axis is maximum during one rotation of one filament around the fiber axis. The width at the rotation angle at which the projection width is minimized, and the maximum diameter and the minimum diameter of the reinforcing fiber can be easily obtained by observing the cross-sectional shape of the fiber with an optical microscope or a scanning electron microscope (SEM). . According to the pultrusion method of the present invention, even if the cross-sectional shape of the filament is a perfect circle, even if the roundness is greater than 1.1, it is possible to maintain high productivity even if it is a so-called irregular cross-section. is there.

本発明で用いるエポキシ樹脂としては、室温で液状のエポキシ樹脂が用いられる。ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂などのグリシジルエーテル型のエポキシ樹脂や、グリシジルアニリンやテトラグリジジルメチレンジアニリン等のグリシジルアミン型エポキシ樹脂や、アミノフェノール骨格のグリシジルエーテル及びグリシジルアミン型等のエポキシ樹脂が使用可能であり、目的に応じて適宜使用できる。本発明のエポキシ樹脂は1種類でも構わないが、必要に応じて2種類以上のエポキシ樹脂を混合して使用しても構わない。また、室温で粘稠もしくは固形のエポキシ樹脂を室温で液状のエポキシ樹脂に分散もしくは溶解して用いることも可能である。   An epoxy resin that is liquid at room temperature is used as the epoxy resin used in the present invention. Glycidyl ether type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin and phenol novolac type epoxy resin, glycidyl amine type epoxy resins such as glycidyl aniline and tetraglycidyl methylene dianiline, and glycidyl of aminophenol skeleton Epoxy resins such as ether and glycidylamine type can be used and can be appropriately used according to the purpose. The epoxy resin of the present invention may be one kind, but two or more kinds of epoxy resins may be mixed and used as necessary. It is also possible to use a viscous or solid epoxy resin dispersed or dissolved in a liquid epoxy resin at room temperature.

本発明で用いるエポキシ樹脂として、所謂、反応性希釈剤等を上記のエポキシ樹脂とともに好適に用いることができる。反応性希釈剤とは分子内に1個以上のエポキシ基を有する低粘度の化合物で、例えば、エチレングリコール類、プロピレングリコール類、ブチレングリコール類、ネオペンチルグリコール類、1,6−ヘキサンジオール類、ジ(6−ヒドロキシヘキシル)エーテル、1,8−オクタンジオール、ジ(8−ヒドロキシヘキシル)エーテル、1,10−デカンジオール、ジ(10−ヒドロキシデシル)エーテル、フェニレンエチレングリコール、ジ(フェニルエチレングリコール)などの炭素数2〜15のジオール類のジグリシジルエーテル化物の他、グリセロールトリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、トリメチロールプロパングリシジルエーテルなどや、トリメチロールプロパンのプロピレンオキサイド付加物のトリグリシジルエーテル化物、ペンタエリスリトールのプロピレンオキサイド付加物のトリグリシジルエーテル化物、水添ビスフェノール類のジグリシジルエーテル化物、さらには、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、ダイマー酸、安息香酸等のカルボン酸のグリシジルエステルなどを挙げることができる。
本発明に用いる反応性希釈剤は室温における粘度が低い物が好ましい。低粘度であることで、樹脂のバックフローによる抵抗が少なくなり、繊維蛇行の抑制に効果的である。
As the epoxy resin used in the present invention, a so-called reactive diluent or the like can be suitably used together with the above epoxy resin. A reactive diluent is a low-viscosity compound having one or more epoxy groups in the molecule. For example, ethylene glycols, propylene glycols, butylene glycols, neopentyl glycols, 1,6-hexanediols, Di (6-hydroxyhexyl) ether, 1,8-octanediol, di (8-hydroxyhexyl) ether, 1,10-decanediol, di (10-hydroxydecyl) ether, phenyleneethylene glycol, di (phenylethyleneglycol) In addition to diglycidyl etherified products of diols having 2 to 15 carbon atoms such as glycerol), glycerol triglycidyl ether, polyglycerol polyglycidyl ether, trimethylolpropane glycidyl ether, etc., and propylene oxide adducts of trimethylolpropane Triglycidyl ethers, triglycidyl ethers of propylene oxide adducts of pentaerythritol, diglycidyl ethers of hydrogenated bisphenols, and carboxylic acids such as hexahydrophthalic anhydride, tetrahydrophthalic anhydride, dimer acid, benzoic acid, etc. And glycidyl ester.
The reactive diluent used in the present invention preferably has a low viscosity at room temperature. Due to the low viscosity, the resistance due to the back flow of the resin is reduced, which is effective in suppressing fiber meandering.

(エポキシ樹脂硬化剤 ルイス酸)
本発明に用いられるエポキシ樹脂硬化剤として、ルイス酸と塩基の錯体を用いることができる。ルイス酸と塩基の錯体としては、高温で解離してルイス酸を生成するものが挙げられる。ルイス酸としては、三フッ化ホウ素や三塩化ホウ素等のハロゲン化ホウ素、五フッ化リン、五フッ化アンチモンなどが好ましい。また、塩基としては有機アミンが好ましい。具体的には三フッ化ホウ素・アニリン錯体、三フッ化ホウ素・p−クロロアニリン錯体、三フッ化ホウ素・エチルアミン錯体、三フッ化ホウ素・イソプロピルアミン錯体、三フッ化ホウ素・ベンジルアミン錯体、三フッ化ホウ素・ジメチルアミン錯体、三フッ化ホウ素ジエチルアミン錯体、三フッ化ホウ素・ジブチルアミン錯体、三フッ化ホウ素・ピペリジン錯体、三フッ化ホウ素・ジベンジルアミン錯体、三塩化ホウ素・ジメチルオクチルアミン錯体等が挙げられる。
エポキシ樹脂硬化剤としてルイス酸と塩基の錯体を用いる場合、エポキシ樹脂組成物に含まれる反応性希釈剤を含む全てのエポキシ樹脂に対して、硬化剤は0.1−15質量%であることが好ましい。更に好ましくは2−10質量%である。
ルイス酸と塩基の錯体は1種類を単独で用いても2種類以上を併用して用いても構わない。2種類以上を用いる場合は、その合計が上記配合量であることが好ましい。
(Epoxy resin curing agent Lewis acid)
As the epoxy resin curing agent used in the present invention, a complex of Lewis acid and base can be used. Examples of the complex of Lewis acid and base include those that dissociate at a high temperature to produce a Lewis acid. As the Lewis acid, boron halides such as boron trifluoride and boron trichloride, phosphorus pentafluoride, antimony pentafluoride and the like are preferable. The base is preferably an organic amine. Specifically, boron trifluoride / aniline complex, boron trifluoride / p-chloroaniline complex, boron trifluoride / ethylamine complex, boron trifluoride / isopropylamine complex, boron trifluoride / benzylamine complex, three Boron fluoride / dimethylamine complex, boron trifluoride diethylamine complex, boron trifluoride / dibutylamine complex, boron trifluoride / piperidine complex, boron trifluoride / dibenzylamine complex, boron trichloride / dimethyloctylamine complex Etc.
When a complex of Lewis acid and base is used as the epoxy resin curing agent, the curing agent may be 0.1-15% by mass with respect to all epoxy resins including the reactive diluent contained in the epoxy resin composition. preferable. More preferably, it is 2-10 mass%.
A Lewis acid and base complex may be used alone or in combination of two or more. When using 2 or more types, it is preferable that the sum total is the said compounding quantity.

(エポキシ樹脂硬化剤 酸無水物系硬化剤)
本発明に用いられるエポキシ樹脂硬化剤として酸無水物系硬化剤を用いることができる。用いることのできる酸無水物系硬化剤は特に制限はないが、テトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水メチルナジック酸、ドデシル無水コハク酸、ヘキサヒドロ無水フタル酸等の環状脂肪族酸の無水物や、無水フタル酸、無水トリメリット酸、無水ピロメリット酸等の芳香族脂肪酸の無水物が好適に用いられる。酸無水物系硬化剤硬化剤は、1種類を単独で用いても2種類以上を併用して用いてもかまわない。酸無水物系硬化剤の添加量は、エポキシ樹脂組成物中に含まれる全てのエポキシ基のモル数に対して、酸無水物基のモル数が50〜120%であることが好ましく、70〜100%であることがさらに好ましい。
(Epoxy resin curing agent, acid anhydride curing agent)
As the epoxy resin curing agent used in the present invention, an acid anhydride curing agent can be used. There are no particular restrictions on the acid anhydride curing agent that can be used, but there are no restrictions on cyclic aliphatic acids such as tetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyl nadic anhydride, dodecyl succinic anhydride, hexahydrophthalic anhydride, etc. Anhydrides and anhydrides of aromatic fatty acids such as phthalic anhydride, trimellitic anhydride and pyromellitic anhydride are preferably used. The acid anhydride type curing agent curing agent may be used alone or in combination of two or more. The addition amount of the acid anhydride curing agent is preferably such that the number of moles of acid anhydride groups is 50 to 120% with respect to the number of moles of all epoxy groups contained in the epoxy resin composition, More preferably, it is 100%.

(エポキシ樹脂硬化剤 ポリアミン系硬化剤)
本発明に用いられるエポキシ樹脂硬化剤としてポリアミン系硬化剤を用いることができる。用いることのできるポリアミン系硬化剤は特に制限はないが、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジエチルアミノプロピルアミン等の脂肪族ポリアミン、メンセンジアミン、イソホロンジアミン、N−アミノエチルピペラジン等の脂環族ポリアミン、ジエチルトルエンジアミン、メタフェニレンジアミン、ジアミノジフェニルスルホン、メタキシレンジアミン等の芳香族ポリアミン、ジシアンジアミド、アジピン酸ジヒドラジト、ダイマー酸と脂肪族ポリアミンを反応させたポリアミドアミンが好適に用いられる。ポリアミン系硬化剤は、1種類を単独で用いても2種類以上を併用して用いてもかまわない。ポリアミン系硬化剤の添加量は、エポキシ樹脂組成物中に含まれる全てのエポキシ基のモル数に対して、アミノ基の活性水素のモル数が80〜120%であることが好ましく、90〜110%であることがさらに好ましい。
(Epoxy resin curing agent Polyamine curing agent)
As the epoxy resin curing agent used in the present invention, a polyamine curing agent can be used. The polyamine curing agent that can be used is not particularly limited, but aliphatic polyamines such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and diethylaminopropylamine, and fats such as mensendiamine, isophoronediamine, and N-aminoethylpiperazine. Aromatic polyamines such as cyclic polyamines, diethyltoluenediamine, metaphenylenediamine, diaminodiphenylsulfone, metaxylenediamine, dicyandiamide, adipic acid dihydrazite, and polyamidoamines obtained by reacting dimer acid with aliphatic polyamines are preferably used. The polyamine curing agent may be used alone or in combination of two or more. The addition amount of the polyamine-based curing agent is preferably such that the number of moles of active hydrogen of the amino group is 80 to 120% with respect to the number of moles of all epoxy groups contained in the epoxy resin composition, % Is more preferable.

(その他のエポキシ樹脂硬化剤)
本発明に用いられるエポキシ樹脂硬化剤として第三アミン化合物、イミダゾール化合物、ポリフェノールを用いることができる。用いることのできる第三アミン化合物は特に制限はないが、ベンジルジエチルアミン、2−(ジメチルアミノメチル)フェノール、2,4,6−トリス(ジアミノメチル)フェノールが好適に用いられる。用いることのできるイミダゾール化合物は特に制限ないが、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール等が好適に用いられる。用いることのできるポリフェノールは特に制限はないが、ビスフェノールA、ビスフェノールF、フェノールノボラックが好適に用いられる。
(Other epoxy resin curing agents)
Tertiary amine compounds, imidazole compounds, and polyphenols can be used as the epoxy resin curing agent used in the present invention. The tertiary amine compound that can be used is not particularly limited, but benzyldiethylamine, 2- (dimethylaminomethyl) phenol, and 2,4,6-tris (diaminomethyl) phenol are preferably used. The imidazole compound that can be used is not particularly limited, but 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1-benzyl-2-methylimidazole, and the like are preferably used. The polyphenol that can be used is not particularly limited, but bisphenol A, bisphenol F, and phenol novolac are preferably used.

(硬化促進剤)
エポキシ樹脂硬化剤として酸無水物類を用いる場合は、硬化反応を促進する目的でエポキシ樹脂組成物に硬化促進剤を加えても構わない。硬化促進剤の例としては、イミダゾール類、3級アミン類、有機ホスフィン化合物類またはこれらの塩類が挙げられる。ここで、好適に使用可能な硬化促進剤は常温で液状、或いは、融点が引抜成形の硬化温度以下であるもの、エポキシ樹脂組に容易に溶解するものが好ましい。融点が60℃以下であるとさらに好ましい。
硬化剤促進剤の添加量としてはエポキシ樹脂組成物に含まれる反応性希釈剤を含む全てのエポキシ樹脂に対して0.5〜5質量%の範囲であることが好ましく、0.5〜3質量%であることが更に好ましい。
(Curing accelerator)
When acid anhydrides are used as the epoxy resin curing agent, a curing accelerator may be added to the epoxy resin composition for the purpose of accelerating the curing reaction. Examples of the curing accelerator include imidazoles, tertiary amines, organic phosphine compounds, or salts thereof. Here, a suitably usable curing accelerator is preferably liquid at room temperature, one having a melting point equal to or lower than the curing temperature of pultrusion molding, or one easily dissolved in an epoxy resin group. More preferably, the melting point is 60 ° C. or lower.
The addition amount of the curing agent accelerator is preferably in the range of 0.5 to 5% by mass with respect to all epoxy resins including the reactive diluent contained in the epoxy resin composition, and 0.5 to 3% by mass. % Is more preferable.

(添加剤)
本発明で使用するエポキシ樹脂組成物には引抜成形物の物性を著しく低下させない範囲で添加剤を配合しても構わない。たとえば、エポキシ樹脂組成物の粘度調整のためのポリビニルフォルマールやフェノキシ樹脂、ナイロンなどの熱可塑性樹脂の粉体を分散もしくは溶解しても構わない。また、難燃性を向上するため水酸化アルミニウムなどの金属水酸化物、アルミナ、酸化チタンや酸化マグネシウムなどの金属酸化物、リン化合物、三酸化アンチモンなどの難燃剤を加えることもできる。また、引抜成形時に発生するダイス内壁への樹脂の付着を抑制し引抜成形品の外観を向上したり、引抜成形運転時の抵抗を低減したり、安定して連続運転可能な時間を延長したりするために内部離型剤を適宜添加しても構わない。併せて顔料や色素等を添加しても構わない。
(Additive)
An additive may be blended in the epoxy resin composition used in the present invention as long as the physical properties of the pultruded product are not significantly lowered. For example, you may disperse | distribute or melt | dissolve the powder of thermoplastic resins, such as polyvinyl formal for adjusting the viscosity of an epoxy resin composition, a phenoxy resin, and nylon. In addition, in order to improve flame retardancy, a metal hydroxide such as aluminum hydroxide, a metal oxide such as alumina, titanium oxide or magnesium oxide, a flame retardant such as phosphorus compound or antimony trioxide can be added. In addition, the resin adhesion to the die inner wall that occurs during pultrusion can be suppressed to improve the appearance of pultruded products, the resistance during pultrusion operation can be reduced, and the time for stable and continuous operation can be extended. Therefore, an internal mold release agent may be added as appropriate. In addition, pigments, pigments and the like may be added.

(エポキシ樹脂組成物の粘度)
本発明で使用するエポキシ樹脂組成物の粘度は通常のレジンバス温度である28℃において、300〜1000mPa・sであることが好ましい。28℃における粘度が300mPa・sより小さすぎると、補強繊維への樹脂付着量が少なすぎて成形品にボイドが見られたり、成型品の表面に繊維の形状に起因する凹凸が発生するなどの外観不良となる可能性がある。また、1000mPa・sを超えるとラージトウを用いた場合では含浸不良が発生する可能性があり、また金型内部の壁面と繊維に働くせん断力による繊維蛇行の発生も顕著となることが懸念される。エポキシ樹脂組成物の28℃における粘度は400〜600mPa・sがより好ましい。
(Viscosity of epoxy resin composition)
The viscosity of the epoxy resin composition used in the present invention is preferably 300 to 1000 mPa · s at 28 ° C. which is a normal resin bath temperature. If the viscosity at 28 ° C. is less than 300 mPa · s, the amount of resin adhering to the reinforcing fiber is too small and voids are observed in the molded product, or irregularities due to the shape of the fiber are generated on the surface of the molded product. There is a possibility of appearance failure. Also, if it exceeds 1000 mPa · s, impregnation failure may occur when large tow is used, and there is a concern that the occurrence of fiber meandering due to the shearing force acting on the inner wall surface of the mold and the fibers may be significant. . The viscosity at 28 ° C. of the epoxy resin composition is more preferably 400 to 600 mPa · s.

(粘度測定)
平板―平板型回転粘度計を使用し、エポキシ樹脂組成物の昇温粘度を温度25〜130℃の範囲で、2℃/分の昇温速度で測定した。測定装置はティー・エイ・インスツルメント・ジャパン(株)製のAR−G2を用いた。測定にはφ34のパラレルプレートを使用し、プレート間ギャップは0.5mmとした。
(Viscosity measurement)
A flat plate-flat plate viscometer was used, and the temperature rising viscosity of the epoxy resin composition was measured at a temperature rising rate of 2 ° C./min in the temperature range of 25 to 130 ° C. AR-G2 made by TA Instruments Japan Co., Ltd. was used as a measuring device. For the measurement, a φ34 parallel plate was used, and the gap between the plates was 0.5 mm.

(レジンバックフロー量、バックフロー率)
引抜成形を実施中に、エポキシ樹脂組成物を含浸した補強繊維束が金型に進入する際に金型入り口から溢れてくる樹脂の引抜成形品長さ1m当たりの質量をレジンバックフロー量と呼ぶ。レジンバックフロー量を長さ1mの引抜成形品中の樹脂の質量で除すことで算出される値(バックフロー率)が4.5倍以下であることが好ましい。それより多すぎると、バックフローによる繊維蛇行が顕著となってしまう。バックフロー率は0以上で小さいほど引抜成形で廃棄される樹脂組成物が少なく有利であるが、1.0以下の場合は成形品中にボイド等の欠陥を含む恐れがある。
(Resin backflow volume, backflow rate)
During the pultrusion, the mass per 1 m of the pultruded product length of the resin overflowing from the mold entrance when the reinforcing fiber bundle impregnated with the epoxy resin composition enters the mold is called the resin back flow amount. . The value (backflow rate) calculated by dividing the resin backflow amount by the mass of the resin in the pultruded product having a length of 1 m is preferably 4.5 times or less. If it is more than that, fiber meandering due to backflow becomes prominent. The smaller the backflow rate is 0 or more, the fewer resin compositions discarded by pultrusion molding are advantageous. However, when the backflow rate is 1.0 or less, there is a possibility that defects such as voids are included in the molded product.

(強度発現率)
本発明において強度発現率とは、JIS R 7601等に準拠して測定して得られる補強繊維の引張強度に対する、繊維強化プラスチックの引張強度から推定される補強繊維の破壊応力の割合を指す。
補強繊維の体積含有率(Vf)がx%である一方向強化繊維強化プラスチックの引張強度(破壊応力)がσUDであり、その補強繊維の引張強度がσSTであれば、強度発現率(%)は次式で表される。
(σUD/(x/100))/σST×100
(Strength rate)
In the present invention, the strength expression rate refers to the ratio of the breaking stress of the reinforcing fiber estimated from the tensile strength of the fiber reinforced plastic to the tensile strength of the reinforcing fiber obtained by measurement according to JIS R7601 and the like.
If the tensile strength (fracture stress) of the unidirectional reinforcing fiber reinforced plastic whose volume content (Vf) of the reinforcing fiber is x% is σ UD and the tensile strength of the reinforcing fiber is σ ST , the strength expression rate ( %) Is expressed by the following equation.
UD / (x / 100)) / σ ST × 100

(引抜成形工程)
引抜成形の工程の概略を図1に示す。補強繊維束がスプール(1)から引き出され、ガイドロール(2)を介して、補強繊維束をレジンバス(3)に導入し、エポキシ樹脂組成物を付着させてからガイドバー(4)にて擦過してエポキシ樹脂組成物を補強繊維束に含浸させとともに余剰なエポキシ樹脂組成物を一部除去する。更にガイド(5)により補強繊維の位置を一本ずつ決めることにより、所望の断面形状を持つ引抜成形金型(ダイス)(6)へバランス良く進入させる。補強繊維とともにダイスを通過できない、最終的に余剰になる樹脂は金型からバックフローしてダイス入り口から垂れ落ちて除去される。
一般的な引抜成形の条件は、レジンバスに到る補強繊維束の張力が補強繊維束の長さ1mあたりの質量1gに対して約0.2N、金型温度は約100〜250℃で金型入り口を低くして金型後方に向かって硬化温度まで段階的に上げるのが好ましい。引抜成形の速度は0.1〜1.0m/分が一般的で、0.2〜0.3m/分が好ましい。補強繊維と樹脂組成物が金型を通過するのに好適な時間は0.5〜10分で、金型長さが一定の場合、速度が速すぎると硬化不良が発生し易く、遅すぎると生産性が悪く、型内部での固着が発生し易くなる。引抜成形においては、金型を通過する間に樹脂が完全に硬化しなくとも、130〜150℃で2時間程度アフターキュアをすることは、最終製品である繊維強化プラスチックのマトリックス樹脂の硬化不足を解消し、かつ、引抜成形の速度を上げることができるのでより好ましい。
(Pulling process)
An outline of the pultrusion process is shown in FIG. The reinforcing fiber bundle is pulled out from the spool (1), introduced into the resin bath (3) through the guide roll (2), adhered with the epoxy resin composition, and then rubbed with the guide bar (4). Then, the reinforcing fiber bundle is impregnated with the epoxy resin composition and a part of the excess epoxy resin composition is removed. Furthermore, the position of the reinforcing fiber is determined one by one with the guide (5), thereby allowing it to enter the pultrusion mold (die) (6) having a desired cross-sectional shape with good balance. Resin that cannot pass through the die together with the reinforcing fiber and eventually becomes surplus is backflowed from the mold and dropped from the die entrance to be removed.
The general pultrusion conditions are that the tension of the reinforcing fiber bundle reaching the resin bath is about 0.2 N with respect to 1 g of mass per 1 m of the length of the reinforcing fiber bundle, and the mold temperature is about 100 to 250 ° C. It is preferable to lower the entrance and gradually increase the curing temperature toward the rear of the mold. The pultrusion speed is generally 0.1 to 1.0 m / min, preferably 0.2 to 0.3 m / min. A suitable time for the reinforcing fiber and the resin composition to pass through the mold is 0.5 to 10 minutes. When the mold length is constant, if the speed is too high, poor curing tends to occur, and if it is too slow, Productivity is poor, and sticking inside the mold tends to occur. In pultrusion molding, even if the resin is not completely cured while passing through the mold, after-curing at 130-150 ° C for about 2 hours may cause insufficient curing of the matrix resin of the fiber reinforced plastic that is the final product. This is more preferable because it can be eliminated and the speed of pultrusion can be increased.

以下本発明について実施例及び比較例を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are demonstrated concretely about this invention, this invention is not limited to these Examples.

樹脂材料は以下のエポキシ樹脂とエポキシ樹脂硬化剤を使用し、表1に記載の配合比により調製してエポキシ樹脂組成物として用いた。
(エポキシ樹脂)
jER828
「製品名」jER828
「成分」ビスフェノールA型エポキシ樹脂
「メーカー」三菱化学株式会社
CY184
「製品名」CY184
「成分」脂環式エポキシ樹脂
「メーカー」ハンツマン・ジャパン株式会社
(エポキシ樹脂硬化剤)
LS−81K
「製品名」LS−81K
「成分」酸無水物系硬化剤
「メーカー」Lindau Chemical
DY9577
「製品名」DY9577
「成分」三塩化ホウ素アミン錯体(ルイス酸)
「メーカー」ハンツマン・ジャパン株式会社
As the resin material, the following epoxy resin and epoxy resin curing agent were used and prepared according to the blending ratio shown in Table 1 and used as an epoxy resin composition.
(Epoxy resin)
jER828
“Product Name” jER828
"Ingredients" Bisphenol A epoxy resin "Manufacturer" Mitsubishi Chemical Corporation CY184
“Product Name” CY184
"Components" Alicyclic epoxy resin "Manufacturer" Huntsman Japan Co., Ltd. (Epoxy resin curing agent)
LS-81K
"Product name" LS-81K
“Component” Acid anhydride curing agent “Manufacturer” Lindau Chemical
DY9577
"Product name" DY9577
"Components" Boron trichloride amine complex (Lewis acid)
"Manufacturer" Huntsman Japan Co., Ltd.

補強繊維束は以下の炭素繊維束を用いた。
(炭素繊維束)
TRH50−60M
「製品名」TRH50−60M
フィラメント数60000本、引張強度4700MPa
「メーカー」三菱レイヨン株式会社
TRW40−50L
「製品名」TRW40−50L
フィラメント数50000本、引張強度4100MPa
「メーカー」三菱レイヨン株式会社
TR50S−12L
「製品名」TR50S−12L
フィラメント数12000本、引張強度4900MPa
「メーカー」三菱レイヨン株式会社
The following carbon fiber bundle was used as the reinforcing fiber bundle.
(Carbon fiber bundle)
TRH50-60M
"Product name" TRH50-60M
60000 filaments, tensile strength 4700 MPa
"Manufacturer" Mitsubishi Rayon Co., Ltd. TRW40-50L
"Product name" TRW40-50L
Number of filaments 50000, tensile strength 4100 MPa
"Manufacturer" Mitsubishi Rayon Co., Ltd. TR50S-12L
"Product name" TR50S-12L
12,000 filaments, tensile strength 4900 MPa
"Manufacturer" Mitsubishi Rayon Co., Ltd.

(樹脂包含率の測定方法)
補強繊維束を張力約0.7Nに保持した状態でスプールから引出しつつ、28℃のレジンバス中のφ10のガイドバーにより樹脂に浸漬して補強繊維束を開繊して樹脂を含浸させた後、樹脂液面から出た補強繊維束を張力を維持したまま片側1mの枷に隙間をあけて巻き取り、補強繊維束の繊維方向を垂直に保持して5分間放置し、余剰な樹脂を吐出させる。その後、補強繊維束を定長で切断し、樹脂を包含した状態の補強繊維束の質量を測定し、補強繊維束1m当たりの質量を求め、それを補強繊維束の目付(補強繊維束1m当たりの補強繊維の質量)で除して得られる値を樹脂包含率とした。尚、測定に使用する樹脂は製品名:jER807(三菱化学製、ビスフェノールF型液状エポキシ樹脂)である。
(Measurement method of resin coverage)
After pulling out the reinforcing fiber bundle from the spool while maintaining a tension of about 0.7 N, the reinforcing fiber bundle is opened by impregnating the resin by immersing in the resin with a φ10 guide bar in a resin bath at 28 ° C. The reinforcing fiber bundle coming out of the resin liquid surface is wound up with a gap in a ridge on one side while maintaining the tension, and the fiber direction of the reinforcing fiber bundle is kept vertical for 5 minutes to discharge excess resin. . Thereafter, the reinforcing fiber bundle is cut at a constant length, the mass of the reinforcing fiber bundle including the resin is measured, the mass per 1 m of the reinforcing fiber bundle is obtained, and the mass per unit area of the reinforcing fiber bundle (per 1 m of reinforcing fiber bundle) is obtained. The value obtained by dividing by the mass of the reinforcing fiber) was taken as the resin coverage. The resin used for the measurement is product name: jER807 (Mitsubishi Chemical, bisphenol F type liquid epoxy resin).

(繊維蛇行割合の測定)
引抜成形して得た繊維強化プラスチックの補強繊維の方向に平行な断面(縦断面)を研磨して、倍率50倍で反射像を光学顕微鏡観察することで、補強繊維の蛇行を評価する。引抜成形によって得られた繊維強化プラスチックの縦断面の観察においては、一般的に、補強繊維の蛇行は繊維強化プラスチックの外周表面付近に観察され、補強繊維が蛇行している部分は補強繊維の方向に延在するほぼ一定の幅の帯状の領域として特定される。いくつかの縦断面を観察することにより、引抜成形して得た繊維強化プラスチックの補強繊維に垂直な断面(横断面)における補強繊維が蛇行している部分(蛇行領域)の位置・面積・形状・分布を推定し、該横断面の面積に対する該蛇行領域の面積の合計の割合を算出し、引抜成形して得た繊維強化プラスチックの繊維蛇行割合(%)とする。
なお、繊維強化プラスチックが円形のダイスを用いた引抜成形により得た丸棒の場合は、丸棒の中心軸を通る任意の縦断面を顕微鏡観察して、円筒対称を仮定することにより、繊維蛇行割合を推算することができる。
(Measurement of fiber meander ratio)
The meandering of the reinforcing fiber is evaluated by polishing a cross section (longitudinal section) parallel to the direction of the reinforcing fiber of the fiber reinforced plastic obtained by pultrusion and observing the reflected image with an optical microscope at a magnification of 50 times. In the observation of the longitudinal section of the fiber-reinforced plastic obtained by pultrusion, generally, the meandering of the reinforcing fiber is observed near the outer peripheral surface of the fiber-reinforced plastic, and the portion where the reinforcing fiber meanders is the direction of the reinforcing fiber. Is specified as a band-like region having a substantially constant width. By observing several longitudinal sections, the position, area, and shape of the portion (meandering area) where the reinforcing fibers meander in the cross section (cross section) perpendicular to the reinforcing fibers of the fiber reinforced plastic obtained by pultrusion The distribution is estimated, the ratio of the total area of the meandering region to the area of the cross section is calculated, and the meandering ratio (%) of the fiber reinforced plastic obtained by pultrusion molding.
When the fiber reinforced plastic is a round bar obtained by pultrusion using a circular die, the fiber meandering is performed by observing an arbitrary longitudinal section passing through the central axis of the round bar under a microscope and assuming cylindrical symmetry. Percentage can be estimated.

(実施例1)
炭素繊維束TRH50−60Mを10本使用し、エポキシ樹脂組成物にはDY9577(三塩化ホウ素アミン錯体)7質量部とCY184(脂環式エポキシ樹脂)100質量部の混合物を使用した。引抜成形工程は引抜金型(ダイス)直径6mm、金型温度190℃、引抜速度0.25m/分とし、アフターキュアを135℃、2時間実施した。得られた繊維強化プラスチック中の補強繊維の体積含有率Vfは64.3%、成型品の長さ1m当たりの樹脂質量は11.9gであった。また、金型入り口から流れ出たバックフロー樹脂質量は繊維強化プラスチック長さ1m当たり48.6gであり、バックフロー率は4.1倍であった。なおTRH50−60Mの樹脂包含率は、3.2倍であった。
Example 1
Ten carbon fiber bundles TRH50-60M were used, and a mixture of 7 parts by mass of DY9577 (boron trichloride amine complex) and 100 parts by mass of CY184 (alicyclic epoxy resin) was used for the epoxy resin composition. The pultrusion process was performed with a drawing die (die) diameter of 6 mm, a mold temperature of 190 ° C., a drawing speed of 0.25 m / min, and after-curing at 135 ° C. for 2 hours. The volume content Vf of the reinforcing fiber in the obtained fiber reinforced plastic was 64.3%, and the resin mass per 1 m length of the molded product was 11.9 g. The mass of the backflow resin that flowed out from the mold entrance was 48.6 g per 1 m of fiber reinforced plastic, and the backflow rate was 4.1 times. The resin coverage of TRH50-60M was 3.2 times.

引抜成形して得た繊維強化プラスチックの引張強度をASTMD3039引張特性の試験方法に従い引張試験を実施したところ、引張強度は2718MPaであった。TRH50−60Mのストランド強度は4700MPaであるので、強度発現率は90%であった。   When the tensile strength of the fiber reinforced plastic obtained by pultrusion was subjected to a tensile test according to the test method of ASTM D3039 tensile properties, the tensile strength was 2718 MPa. Since the strand strength of TRH50-60M is 4700 MPa, the strength expression rate was 90%.

他実施例及び比較例も樹脂配合比は表1に従い、実施例1と同じ引抜成形工程により得た繊維強化プラスチックの各種測定を実施例と同様に行なった。結果を表1にまとめて示す。   In other examples and comparative examples, the resin compounding ratio was in accordance with Table 1, and various measurements of the fiber reinforced plastic obtained by the same pultrusion process as in Example 1 were performed in the same manner as in the examples. The results are summarized in Table 1.

実施例1と比較例1及び2の比較は、フィラメント数60000本の補強繊維束を用いた引抜成形においては、バックフロー率を4.5倍以下に調整さすることで高い強度発現率が得られ、バックフロー率が高くなる傾向と共に強度発現率が低くなる傾向を示している。また、実施例1及び2と比較例3の比較から、実施例1及び2のフィラメント数60000本の補強繊維束を用いた引抜成形においても強度発現率が90%以上であり、比較例3のフィラメント数12000本の補強繊維束を用いた場合と同等の強度発現率を得ることが出来た。同等の強度発現率を得られるので、フィラメント数60000本の補強繊維束を用いる方がより効率的な引抜成形が可能となり、より高い生産性を得られる。 Comparison between Example 1 and Comparative Examples 1 and 2 shows that in pultrusion using a reinforcing fiber bundle having 60000 filaments, a high strength expression rate is obtained by adjusting the backflow rate to 4.5 times or less. As a result, the strength development rate tends to decrease as the backflow rate increases. Further, from the comparison between Examples 1 and 2 and Comparative Example 3, the strength expression rate is 90% or more even in the pultrusion molding using the reinforcing fiber bundle of 60000 filaments of Examples 1 and 2, and Comparative Example 3 A strength development rate equivalent to that obtained when a reinforcing fiber bundle having 12,000 filaments was used could be obtained. Since an equivalent strength expression rate can be obtained, more efficient pultrusion can be performed by using a reinforcing fiber bundle having 60000 filaments, and higher productivity can be obtained.

Claims (2)

フィラメント数25000〜80000本の補強繊維の繊維束と、エポキシ樹脂とエポキシ樹脂硬化剤を含むエポキシ樹脂組成物の硬化物とからなる繊維強化プラスチックであり、補強繊維の強度発現率が90%以上である繊維強化プラスチック。 It is a fiber reinforced plastic comprising a fiber bundle of reinforcing fibers having 25000 to 80000 filaments and a cured product of an epoxy resin composition containing an epoxy resin and an epoxy resin curing agent, and the strength expression rate of the reinforcing fibers is 90% or more. A fiber reinforced plastic. 一方向強化繊維強化プラスチック複合材料であって、補強繊維の方向に対して垂直な断面内における、該断面の面積に対する繊維が蛇行している部分の面積の割合が25%以下である事を特徴とする一方向強化繊維強化プラスチック。 A unidirectional reinforcing fiber reinforced plastic composite material, characterized in that the ratio of the area of the meandering portion of the fiber to the area of the cross section in a cross section perpendicular to the direction of the reinforcing fiber is 25% or less And unidirectional reinforced fiber reinforced plastic.
JP2013078887A 2013-04-04 2013-04-04 Pultrusion method for fiber-reinforced plastic and molding Pending JP2014201659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013078887A JP2014201659A (en) 2013-04-04 2013-04-04 Pultrusion method for fiber-reinforced plastic and molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013078887A JP2014201659A (en) 2013-04-04 2013-04-04 Pultrusion method for fiber-reinforced plastic and molding

Publications (1)

Publication Number Publication Date
JP2014201659A true JP2014201659A (en) 2014-10-27

Family

ID=52352407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013078887A Pending JP2014201659A (en) 2013-04-04 2013-04-04 Pultrusion method for fiber-reinforced plastic and molding

Country Status (1)

Country Link
JP (1) JP2014201659A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151174A1 (en) * 2018-01-31 2019-08-08 東レ株式会社 Fiber-reinforced molded article and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001253952A (en) * 2000-03-09 2001-09-18 Mitsubishi Rayon Co Ltd Multifilament for fiber-reinforced plastic (frp) and frp molded by using the same
JP2002160303A (en) * 2000-11-24 2002-06-04 Mitsubishi Rayon Co Ltd Unidirectionally fiber-reinforced plastic, its pultrusion method and die for pultrusion
JP2005343112A (en) * 2004-06-07 2005-12-15 Kyocera Chemical Corp Epoxy resin molded article by pultrusion molding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001253952A (en) * 2000-03-09 2001-09-18 Mitsubishi Rayon Co Ltd Multifilament for fiber-reinforced plastic (frp) and frp molded by using the same
JP2002160303A (en) * 2000-11-24 2002-06-04 Mitsubishi Rayon Co Ltd Unidirectionally fiber-reinforced plastic, its pultrusion method and die for pultrusion
JP2005343112A (en) * 2004-06-07 2005-12-15 Kyocera Chemical Corp Epoxy resin molded article by pultrusion molding

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151174A1 (en) * 2018-01-31 2019-08-08 東レ株式会社 Fiber-reinforced molded article and method for producing same
KR20200107936A (en) 2018-01-31 2020-09-16 도레이 카부시키가이샤 Fiber-reinforced molded article and its manufacturing method
JPWO2019151174A1 (en) * 2018-01-31 2020-11-26 東レ株式会社 Fiber reinforced molded products and their manufacturing methods
JP7205464B2 (en) 2018-01-31 2023-01-17 東レ株式会社 Fiber-reinforced molded product and manufacturing method thereof
US11827759B2 (en) 2018-01-31 2023-11-28 Toray Industries, Inc. Fiber-reinforced molded article and method of producing same

Similar Documents

Publication Publication Date Title
JP5028903B2 (en) Pultruded fiber reinforced composite material
JP6222387B1 (en) Toe prepreg, composite material reinforced pressure vessel, and method for manufacturing composite material reinforced pressure vessel
JP7205464B2 (en) Fiber-reinforced molded product and manufacturing method thereof
JP5263120B2 (en) Fiber reinforced composite material
EP2810987B1 (en) Epoxy resin composition and fiber-reinforced composite material
US10233324B2 (en) Epoxy resin composition
JP2017101227A (en) Epoxy resin composition, and molding, prepreg and fiber-reinforced plastic prepared therewith
JPWO2007060833A1 (en) Carbon fiber bundles, prepregs and carbon fiber reinforced composite materials
WO2019208242A1 (en) Prepreg and carbon-fiber-reinforced composite material
JP6202978B2 (en) Fiber-reinforced composite material and pressure vessel using the same
JP2017538002A (en) Curable epoxy resin composition and curing agent therefor
JP2015048453A (en) Epoxy resin composition, tow prepreg and pressure container
JP2016160549A (en) Sizing agent for carbon fiber, carbon fiber bundle, sheet-like substrate and carbon fiber reinforced composite material
US20180291161A1 (en) Fiber reinforced thermoset composites and methods of making
JP7255493B2 (en) Fiber reinforced composite material and cured product using the same
US20150162110A1 (en) Insulating composites for power transmission and distribution
JP2015127386A (en) Tow prepreg, composite material reinforcing pressure container and method of producing the same
JP2016190920A (en) Epoxy resin composition for tow prepreg and tow prepreg
JP4882949B2 (en) Epoxy resin-containing glass fiber sizing agent
JP2015098584A (en) Tow prepreg
JP2014201659A (en) Pultrusion method for fiber-reinforced plastic and molding
JP2018158963A (en) Tow prepreg, and composite material reinforcement pressure container
JP2019089951A (en) Tow prepreg, fiber-reinforced composite material and composite material reinforcement pressure container, and method for producing the same
JP3480769B2 (en) Epoxy resin composition for tow prepreg
JP2018118440A (en) Pultrusion molded body, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170801