JP2014201606A - Slow-release compact and production method of the same - Google Patents

Slow-release compact and production method of the same Download PDF

Info

Publication number
JP2014201606A
JP2014201606A JP2013076006A JP2013076006A JP2014201606A JP 2014201606 A JP2014201606 A JP 2014201606A JP 2013076006 A JP2013076006 A JP 2013076006A JP 2013076006 A JP2013076006 A JP 2013076006A JP 2014201606 A JP2014201606 A JP 2014201606A
Authority
JP
Japan
Prior art keywords
temperature
polyglycolic acid
resin
pga
drug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013076006A
Other languages
Japanese (ja)
Other versions
JP6109622B2 (en
Inventor
裕子 松浦
yuko Matsuura
裕子 松浦
紀生 尾澤
Akio Ozawa
紀生 尾澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP2013076006A priority Critical patent/JP6109622B2/en
Publication of JP2014201606A publication Critical patent/JP2014201606A/en
Application granted granted Critical
Publication of JP6109622B2 publication Critical patent/JP6109622B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of slow-release compact that includes an agent and a polyglycolic acid based resin and expresses agent slow-release under the existence of moisture.SOLUTION: A production method of a slow-release compact includes: a pretreatment in which a polyglycolic acid based resin in which a calorie ΔHat a crystallization temperature Tc measured by a differential scan calorimeter under the nitrogen atmosphere, and in a temperature rising process of a rate of temperature rise of 20°C/minute is at least 1 J/g is prepared; a mixing process in which the polyglycolic acid based resin obtained by the pretreatment and an agent are mixed; and a molding process in which a mixture obtained from the mixing process is performed by compression molding at a temperature T that satisfies a condition represented by the following formula(1): Tg≤T<Tm (1) (in the formula, T denotes a molding temperature, Tg denotes a glass transformation temperature of the polyglycolic acid based resin, Tm denotes a melt temperature of the polyglycolic acid based resin, and units each denote [°C]).

Description

本発明は、徐放性成形体およびその製造方法に関し、より詳しくは、ポリグリコール酸系樹脂を含有する徐放性成形体およびその製造方法に関する。   The present invention relates to a sustained-release molded article and a method for producing the same, and more particularly to a sustained-release molded article containing a polyglycolic acid resin and a method for producing the same.

芳香剤や防虫剤、農薬、肥料などの薬剤成分の効果(薬効)を長く安定して発揮させる技術として、薬剤成分を徐々に放出させる技術が知られている。このような技術を利用した徐放性製剤としては、例えば、揮発性薬剤と常温で液体の脂肪酸トリグリセリドと常温で固体の疎水性物質との混練物を容器に充填した徐放性製剤が提案されている(特開2005−75762号公報(特許文献1))。   A technique for gradually releasing a drug component is known as a technique for exerting the effect (medicine effect) of a drug component such as a fragrance, insect repellent, agricultural chemical, and fertilizer stably for a long time. As a sustained-release preparation using such a technique, for example, a sustained-release preparation in which a container is filled with a kneaded product of a volatile drug, a fatty acid triglyceride that is liquid at normal temperature, and a hydrophobic substance that is solid at normal temperature is proposed. (Japanese Patent Laid-Open No. 2005-75762 (Patent Document 1)).

また、生分解性ポリマーを含有する製剤も徐放性製剤として注目されている。例えば、特開平11−286439号公報(特許文献2)には、ポリ乳酸と生物学的活性成分との混合物を特定の嵩密度に圧縮成形する生分解性ポリマー型薬剤放出システムの製造方法が開示されている。また、特開2001−187749号公報(特許文献3)には、末端カルボキシル基がアルコールによりエステル化された生体内分解性α−ヒドロキシカルボン酸ポリマーの微粒子および薬剤を含有する長期徐放性圧縮成型製剤が開示されており、前記生体内分解性α−ヒドロキシカルボン酸ポリマーとして、ポリ乳酸、ポリグリコール酸、乳酸−グリコール酸コポリマーが記載されている。さらに、特表2004−534765号公報(特許文献4)には、化学物質と溶解調節剤または可溶性ポリマーと希釈剤との混合物に潤滑剤を混合し、圧縮成形した錠剤が開示されており、可溶性の前記希釈剤として、ポリグリコリド、ポリ−L−ラクチドなどが記載されている。   Also, preparations containing biodegradable polymers have attracted attention as sustained release preparations. For example, Japanese Patent Application Laid-Open No. 11-286439 (Patent Document 2) discloses a method for producing a biodegradable polymer type drug release system in which a mixture of polylactic acid and a biologically active ingredient is compression molded to a specific bulk density. Has been. Japanese Patent Application Laid-Open No. 2001-187749 (Patent Document 3) discloses a long-term sustained-release compression molding containing biodegradable α-hydroxycarboxylic acid polymer microparticles whose terminal carboxyl group is esterified with an alcohol and a drug. A formulation is disclosed, and polylactic acid, polyglycolic acid, and lactic acid-glycolic acid copolymer are described as the biodegradable α-hydroxycarboxylic acid polymer. Furthermore, Japanese translations of PCT publication No. 2004-534765 (patent document 4) discloses a tablet in which a lubricant is mixed in a mixture of a chemical substance and a dissolution regulator or a soluble polymer and a diluent, and compression-molded. As the diluent, polyglycolide, poly-L-lactide and the like are described.

特開2005−75762号公報JP 2005-75762 A 特開平11−286439号公報Japanese Patent Laid-Open No. 11-286439 特開2001−187749号公報Japanese Patent Laid-Open No. 2001-187749 特表2004−534765号公報JP-T-2004-534765

しかしながら、従来の徐放性製剤は、必ずしも十分な薬剤徐放性を有するものではなく、例えば、ポリグリコール酸系樹脂を含有する製剤の中には、水分の存在下で薬剤がすぐに放出され、全く薬剤徐放性を示さないものもあった。   However, conventional sustained-release preparations do not necessarily have sufficient drug-releasing properties. For example, in a preparation containing a polyglycolic acid resin, the drug is released immediately in the presence of moisture. Some of them did not show sustained drug release.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、薬剤とポリグリコール酸系樹脂とを含有し、水分の存在下において優れた薬剤徐放性を示す徐放性成形体およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, contains a drug and a polyglycolic acid resin, and exhibits a sustained release molded article exhibiting excellent drug sustained release in the presence of moisture, and It aims at providing the manufacturing method.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、薬剤とポリグリコール酸系樹脂とを含有する成形体を製造する場合に、非晶性のポリグリコール酸系樹脂を使用し、さらに、特定の成形温度で成形することによって、得られる成形体が水分の存在下において優れた薬剤徐放性を示すことを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors used an amorphous polyglycolic acid resin when producing a molded product containing a drug and a polyglycolic acid resin. Furthermore, by molding at a specific molding temperature, it was found that the resulting molded product exhibits excellent drug sustained release in the presence of moisture, and the present invention has been completed.

すなわち、本発明の徐放性成形体の製造方法は、
示差走査熱量計により、窒素雰囲気下、昇温速度20℃/分の昇温過程で測定される、結晶化温度Tcにおける熱量ΔHTcが1J/g以上であるポリグリコール酸系樹脂を調製する前処理工程と、
前記前処理工程で得られたポリグリコール酸系樹脂と薬剤とを混合する混合工程と、
前記混合工程で得られた混合物を下記式(1):
Tg≦T<Tm (1)
(前記式中、Tは成形温度を表し、Tgはポリグリコール酸系樹脂のガラス転移温度を表し、Tmはポリグリコール酸系樹脂の融解温度を表し、単位はいずれも[℃]である)
で表される条件を満たす温度Tで圧縮成形する成形工程と、
を含むことを特徴とするものである。
That is, the method for producing the sustained-release molded article of the present invention includes:
Before preparing a polyglycolic acid-based resin having a calorific value ΔH Tc of 1 J / g or more at a crystallization temperature Tc measured by a differential scanning calorimeter in a nitrogen atmosphere under a temperature rising process of 20 ° C./min. Processing steps;
A mixing step in which the polyglycolic acid resin obtained in the pretreatment step and the drug are mixed;
The mixture obtained in the mixing step is represented by the following formula (1):
Tg ≦ T <Tm (1)
(In the above formula, T represents the molding temperature, Tg represents the glass transition temperature of the polyglycolic acid resin, Tm represents the melting temperature of the polyglycolic acid resin, and the unit is [° C.].)
A molding step of compression molding at a temperature T that satisfies the condition represented by
It is characterized by including.

前記前処理工程においては、前記ポリグリコール酸系樹脂として、下記式(2):
結晶化度(%)=(ΔHTm+ΔHTc)/ΔHTm0×100 (2)
(前記式中、ΔHTmおよびΔHTcはそれぞれ示差走査熱量計により昇温速度20℃/分の昇温過程で測定される、融解温度Tmおよび結晶化温度Tcおける熱量を表し、ΔHTm0は、結晶化度が100%のグリコール酸単独重合体の融解温度Tmにおける熱量を表し、単位はいずれも[J/g]である)
で求められる結晶化度が35%以下であるグリコール酸単独重合体を調製することが好ましい。
In the pretreatment step, as the polyglycolic acid resin, the following formula (2):
Crystallinity (%) = (ΔH Tm + ΔH Tc ) / ΔH Tm0 × 100 (2)
(In the above formula, ΔH Tm and ΔH Tc represent the amount of heat at the melting temperature Tm and the crystallization temperature Tc, respectively, measured by a differential scanning calorimeter in the temperature rising process at a temperature rising rate of 20 ° C./min. ΔH Tm0 is This represents the amount of heat at a melting temperature Tm 0 of a glycolic acid homopolymer having a crystallinity of 100%, and the unit is [J / g])
It is preferable to prepare a glycolic acid homopolymer having a degree of crystallinity of 35% or less obtained in (1).

また、前記混合工程においては、前記前処理工程で得られたポリグリコール酸系樹脂を、ポリグリコール酸系樹脂のガラス転移温度以下の温度に維持しながら粉砕した後、薬剤と混合することが好ましい。   In the mixing step, it is preferable that the polyglycolic acid resin obtained in the pretreatment step is pulverized while being maintained at a temperature not higher than the glass transition temperature of the polyglycolic acid resin, and then mixed with the drug. .

さらに、前記成形工程においては、下記式(1a):
Tg≦T<Tc (1a)
(前記式中、Tは成形温度を表し、Tgはポリグリコール酸系樹脂のガラス転移温度を表し、Tcはポリグリコール酸系樹脂の昇温過程における結晶化温度を表し、単位はいずれも[℃]である)
で表される条件を満たす温度Tで圧縮成形することが好ましい。
Furthermore, in the molding step, the following formula (1a):
Tg ≦ T <Tc (1a)
(In the above formula, T represents the molding temperature, Tg represents the glass transition temperature of the polyglycolic acid resin, Tc represents the crystallization temperature in the temperature rising process of the polyglycolic acid resin, and the unit is [° C. ]
It is preferable to perform compression molding at a temperature T that satisfies the condition represented by:

また、本発明の徐放性成形体は、このような本発明の製造方法により得られるものであり、水分の存在下において優れた薬剤徐放性を示すものである。   The sustained-release molded article of the present invention is obtained by the production method of the present invention, and exhibits excellent drug sustained-release in the presence of moisture.

なお、本発明の製造方法により得られる徐放性成形体が水分の存在下において優れた薬剤徐放性を示す理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明の徐放性成形体の製造方法においては、結晶化温度Tcにおける熱量ΔHTcが1J/g以上のポリグリコール酸系樹脂と薬剤とを混合し、得られた混合物をポリグリコール酸系樹脂のガラス転移温度以上融解温度未満(好ましくは結晶化温度未満)の温度で圧縮成形する。結晶化温度Tcにおける熱量ΔHTcが1J/g以上のポリグリコール酸系樹脂は、比較的結晶化度の低い非晶性のポリグリコール酸系樹脂であり、このような非晶性のポリグリコール酸系樹脂を含有する混合物を前記温度条件で圧縮成形すると、非晶部のべたつきによる樹脂のブロッキングが起こるため、空隙率の低い成形体が得られると推察される。また、このようにして得られる成形体において、薬剤はポリグリコール酸系樹脂に封入されており、水分から保護された状態となる。このような空隙率の低い成形体に水分が接触すると、成形体の内部には水分が浸透しにくいため、ポリグリコール酸系樹脂の加水分解は、成形体内部では起こりにくく、成形体の外表面および外縁部から徐々に起こると推察される。ポリグリコール酸系樹脂に封入されていた薬剤は、ポリグリコール酸系樹脂が加水分解されると解放されるため、本発明の成形体においては、内部から薬剤は放出されず、外表面および外縁部から徐々に放出され、その結果、優れた薬剤徐放性が得られると推察される。 The reason why the sustained-release molded product obtained by the production method of the present invention exhibits excellent drug sustained-release in the presence of moisture is not necessarily clear, but the present inventors speculate as follows. That is, in the method for producing a sustained-release shaped article of the present invention, a polyglycolic acid resin having a calorific value ΔH Tc at a crystallization temperature Tc of 1 J / g or more and a drug are mixed, and the resulting mixture is polyglycolic acid. Compression molding is performed at a temperature not lower than the glass transition temperature of the resin and lower than the melting temperature (preferably lower than the crystallization temperature). The polyglycolic acid resin having a calorific value ΔH Tc at the crystallization temperature Tc of 1 J / g or more is an amorphous polyglycolic acid resin having a relatively low crystallinity, and such an amorphous polyglycolic acid is used. When a mixture containing a resin is compression-molded under the above temperature conditions, the resin is blocked due to stickiness of the amorphous part, so that it is presumed that a molded article having a low porosity can be obtained. In the molded product thus obtained, the drug is sealed in a polyglycolic acid resin and is protected from moisture. When moisture comes into contact with such a molded article having a low porosity, moisture hardly penetrates into the molded body, and therefore hydrolysis of the polyglycolic acid resin hardly occurs inside the molded body. And it is assumed that it occurs gradually from the outer edge. Since the drug encapsulated in the polyglycolic acid resin is released when the polyglycolic acid resin is hydrolyzed, in the molded article of the present invention, the drug is not released from the inside, and the outer surface and the outer edge. It is assumed that excellent drug sustained-release properties can be obtained as a result.

一方、結晶化温度Tcにおける熱量ΔHTcが1J/g未満のポリグリコール酸系樹脂は、比較的結晶化度の高い結晶性のポリグリコール酸系樹脂であり、このような結晶性のポリグリコール酸系樹脂を前記温度条件で圧縮成形しても、樹脂のブロッキングが起こりにくいため、得られる成形体には多くの空隙が存在すると推察される。このような多くの空隙が存在する成形体に水分が接触すると、成形体の内部まで水分が浸透するため、成形体中の薬剤は水分と接触しやすく、速やかに放出されると推察される。このため、このような成形体においては薬剤徐放性が得られないと推察される。 On the other hand, a polyglycolic acid resin having a heat quantity ΔH Tc of less than 1 J / g at the crystallization temperature Tc is a crystalline polyglycolic acid resin having a relatively high degree of crystallinity. Even if the resin is compression-molded under the above temperature conditions, it is presumed that there are many voids in the obtained molded article because the resin is hardly blocked. When moisture comes into contact with such a molded body having many voids, moisture penetrates into the molded body. Therefore, it is assumed that the drug in the molded body easily comes into contact with moisture and is quickly released. For this reason, it is presumed that such a molded article cannot provide sustained drug release.

また、非晶性のポリグリコール酸系樹脂を含有する混合物をポリグリコール酸系樹脂のガラス転移温度未満の温度で圧縮成形した場合においても、樹脂のブロッキングが起こりにくく、得られる成形体には多くの空隙が存在するため、成形体の内部まで水分が浸透し、薬剤徐放性が得られないと推察される。   In addition, even when a mixture containing an amorphous polyglycolic acid resin is compression molded at a temperature lower than the glass transition temperature of the polyglycolic acid resin, resin blocking is unlikely to occur. Therefore, it is assumed that moisture penetrates into the molded body and the sustained drug release property cannot be obtained.

他方、非晶性のポリグリコール酸系樹脂を含有する混合物をポリグリコール酸系樹脂の融解温度以上の温度で圧縮成形した場合には、その融解温度の高さゆえに薬剤の失活や、薬剤とポリグリコール酸系樹脂との反応によりポリグリコール酸系樹脂が分解してしまう恐れがある。   On the other hand, when a mixture containing an amorphous polyglycolic acid resin is compression molded at a temperature equal to or higher than the melting temperature of the polyglycolic acid resin, the deactivation of the drug due to the high melting temperature, There is a possibility that the polyglycolic acid resin is decomposed by the reaction with the polyglycolic acid resin.

本発明によれば、薬剤とポリグリコール酸系樹脂とを含有し、水分の存在下において優れた薬剤徐放性を示す徐放性成形体を得ることが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to obtain the sustained release molded object which contains a chemical | medical agent and polyglycolic acid type-resin, and shows the chemical | medical agent sustained release in presence of a water | moisture content.

KBr徐放性に与えるポリグリコール酸樹脂の結晶化度および成形温度の影響を示すグラフである。It is a graph which shows the influence of the crystallinity degree of polyglycolic acid resin and molding temperature which give to KBr sustained release property. タートラジン徐放性に与えるポリグリコール酸樹脂の結晶化度の影響を示すグラフである。It is a graph which shows the influence of the crystallinity degree of the polyglycolic acid resin which gives to tartrazine sustained release property. 薬物徐放性に与える圧縮成形時の圧力の影響を示すグラフである。It is a graph which shows the influence of the pressure at the time of compression molding which gives to drug sustained release property.

以下、本発明をその好適な実施形態に即して詳細に説明する。先ず、本発明に用いられる成分について説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof. First, the components used in the present invention will be described.

(ポリグリコール酸系樹脂)
本発明に原料として用いられるポリグリコール酸系樹脂(以下、「PGA系樹脂」ともいう)は、下記式(1):
−[O−CH−C(=O)]− (1)
で表されるグリコール酸繰り返し単位のみからなるグリコール酸の単独重合体(以下、「PGA単独重合体」という。グリコール酸の2分子間環状エステルであるグリコリドの開環重合体を含む。)、前記グリコール酸繰り返し単位を含むポリグリコール酸共重合体(以下、「PGA共重合体」という。)などが挙げられる。このようなPGA系樹脂は、1種を単独で使用しても2種以上を併用してもよい。
(Polyglycolic acid resin)
A polyglycolic acid resin (hereinafter also referred to as “PGA resin”) used as a raw material in the present invention is represented by the following formula (1):
- [O-CH 2 -C ( = O)] - (1)
A glycolic acid homopolymer consisting only of glycolic acid repeating units represented by the formula (hereinafter referred to as “PGA homopolymer”, including a ring-opened polymer of glycolide which is a bimolecular cyclic ester of glycolic acid). And a polyglycolic acid copolymer containing glycolic acid repeating units (hereinafter referred to as “PGA copolymer”). Such PGA-type resin may be used individually by 1 type, or may use 2 or more types together.

前記PGA単独重合体は、グリコール酸の脱水重縮合、グリコール酸アルキルエステルの脱アルコール重縮合、グリコリドの開環重合などにより合成することができ、中でも、グリコリドの開環重合により合成することが好ましい。なお、このような開環重合は塊状重合および溶液重合のいずれでも行うことができる。   The PGA homopolymer can be synthesized by dehydration polycondensation of glycolic acid, dealcoholization polycondensation of glycolic acid alkyl ester, ring-opening polymerization of glycolide, etc., among which it is preferable to synthesize by ring-opening polymerization of glycolide. . Such ring-opening polymerization can be carried out by either bulk polymerization or solution polymerization.

また、前記PGA共重合体は、このような重縮合反応や開環重合反応においてコモノマーを併用することによって合成することができる。このようなコモノマーとしては、シュウ酸エチレン(すなわち、1,4−ジオキサン−2,3−ジオン)、ラクチド類、ラクトン類(例えば、β−プロピオラクトン、β−ブチロラクトン、β−ピバロラクトン、γ−ブチロラクトン、δ−バレロラクトン、β−メチル−δ−バレロラクトン、ε−カプロラクトンなど)、カーボネート類(例えば、トリメチレンカーボネートなど)、エーテル類(例えば、1,3−ジオキサンなど)、エーテルエステル類(例えば、ジオキサノンなど)、アミド類(ε−カプロラクタムなど)などの環状モノマー;乳酸、3−ヒドロキシプロパン酸、3−ヒドロキシブタン酸、4−ヒドロキシブタン酸、6−ヒドロキシカプロン酸などのヒドロキシカルボン酸またはそのアルキルエステル;エチレングリコール、1,4−ブタンジオールなどの脂肪族ジオール類と、こはく酸、アジピン酸などの脂肪族ジカルボン酸類またはそのアルキルエステル類との実質的に等モルの混合物を挙げることができる。これらのコモノマーは1種を単独で使用しても2種以上を併用してもよい。   The PGA copolymer can be synthesized by using a comonomer in combination in such a polycondensation reaction or ring-opening polymerization reaction. Such comonomers include ethylene oxalate (ie, 1,4-dioxane-2,3-dione), lactides, lactones (eg, β-propiolactone, β-butyrolactone, β-pivalolactone, γ- Butyrolactone, δ-valerolactone, β-methyl-δ-valerolactone, ε-caprolactone, etc.), carbonates (eg, trimethylene carbonate, etc.), ethers (eg, 1,3-dioxane, etc.), ether esters ( For example, cyclic monomers such as dioxanone), amides (such as ε-caprolactam); hydroxycarboxylic acids such as lactic acid, 3-hydroxypropanoic acid, 3-hydroxybutanoic acid, 4-hydroxybutanoic acid, 6-hydroxycaproic acid or Its alkyl ester; ethylene glycol, 1 Aliphatic diols such as 1,4-butanediol, succinic acid, and substantially equimolar mixture of an aliphatic dicarboxylic acid or its alkyl esters such as adipic acid. These comonomers may be used individually by 1 type, or may use 2 or more types together.

前記PGA系樹脂をグリコリドの開環重合によって製造する場合に使用する触媒としては、ハロゲン化スズ、有機カルボン酸スズなどのスズ系化合物;アルコキシチタネートなどのチタン系化合物;アルコキシアルミニウムなどのアルミニウム系化合物;ジルコニウムアセチルアセトンなどのジルコニウム系化合物;ハロゲン化アンチモン、酸化アンチモンなどのアンチモン系化合物といった公知の開環重合触媒が挙げられる。   Catalysts used when the PGA resin is produced by ring-opening polymerization of glycolide include tin compounds such as tin halides and tin organic carboxylates; titanium compounds such as alkoxy titanates; aluminum compounds such as alkoxy aluminums Known ring-opening polymerization catalysts such as zirconium compounds such as zirconium acetylacetone; antimony compounds such as antimony halides and antimony oxides;

前記PGA系樹脂は従来公知の重合方法により製造することができるが、その重合温度としては、120〜300℃が好ましく、130〜250℃がより好ましく、140〜220℃が特に好ましく、150〜200℃が最も好ましい。重合温度が前記下限未満になると、重合が十分に進行しない傾向にあり、他方、前記上限を超えると、生成した樹脂が熱分解する傾向にある。   The PGA resin can be produced by a conventionally known polymerization method, and the polymerization temperature is preferably 120 to 300 ° C, more preferably 130 to 250 ° C, particularly preferably 140 to 220 ° C, and 150 to 200. C is most preferred. When the polymerization temperature is less than the lower limit, the polymerization tends not to proceed sufficiently. On the other hand, when the polymerization temperature exceeds the upper limit, the produced resin tends to be thermally decomposed.

また、前記PGA系樹脂の重合時間としては、2分間〜50時間が好ましく、3分間〜30時間がより好ましく、5分間〜18時間が特に好ましい。重合時間が前記下限未満になると、重合が十分に進行しない傾向にあり、他方、前記上限を超えると、生成した樹脂が着色する傾向にある。   The polymerization time of the PGA resin is preferably 2 minutes to 50 hours, more preferably 3 minutes to 30 hours, and particularly preferably 5 minutes to 18 hours. When the polymerization time is less than the lower limit, the polymerization tends not to proceed sufficiently. On the other hand, when the polymerization time exceeds the upper limit, the generated resin tends to be colored.

本発明に用いるPGA系樹脂において、前記式(1)で表されるグリコール酸繰り返し
単位の含有量としては、70質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましく、100質量%が特に好ましい。グリコール酸繰り返し単位の含有量が前記下限未満になると、PGA系樹脂としての特性が損なわれる傾向にある。
In the PGA resin used in the present invention, the content of the glycolic acid repeating unit represented by the formula (1) is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more. 100 mass% is particularly preferable. When the content of the glycolic acid repeating unit is less than the lower limit, the properties as a PGA-based resin tend to be impaired.

このようなPGA系樹脂の重量平均分子量としては、3万〜80万が好ましく、5万〜50万がより好ましく、8万〜30万が特に好ましい。なお、前記重量平均分子量はゲルパーミエーションクロマトグラフィ(GPC)により測定したポリメチルメタクリレート換算値である。   The weight average molecular weight of such a PGA resin is preferably 30,000 to 800,000, more preferably 50,000 to 500,000, and particularly preferably 80,000 to 300,000. The weight average molecular weight is a polymethylmethacrylate conversion value measured by gel permeation chromatography (GPC).

(薬剤)
本発明に用いられる薬剤としては特に制限はなく、例えば、土木関連分野(例えば、バイオレメディエーション)、農業分野(例えば、殺虫・殺菌・除草剤)などの各種分野で用いられる公知の薬剤が挙げられる。
(Drug)
There is no restriction | limiting in particular as a chemical | medical agent used for this invention, For example, the well-known chemical | medical agent used in various fields, such as a civil engineering related field | area (for example, bioremediation) and an agricultural field | area (for example, insecticide / bactericidal / herbicide) is mentioned. .

土木関連分野に用いられる薬剤としては、例えば、硝酸ナトリウム、硝酸カリウム、リン酸一水素カリウム、リン酸二水素カリウムなどのアルカリ金属塩硫酸マグネシウム、酢酸カルシウムなどのアルカリ土類金属塩;硫酸第一鉄、塩化マンガンなどの遷移金属塩;;過酸化カルシウム、過酸化マグネシウムなどのアルカリ土類金属の過酸化物;硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウムなどの無機アンモニウム塩;ビタミン類、アミノ酸、核酸などが挙げられる。   Examples of chemicals used in civil engineering-related fields include alkali metal salts such as sodium nitrate, potassium nitrate, potassium monohydrogen phosphate and potassium dihydrogen phosphate, and alkaline earth metal salts such as magnesium sulfate and calcium acetate; ferrous sulfate Transition metal salts such as manganese chloride; alkaline earth metal peroxides such as calcium peroxide and magnesium peroxide; inorganic ammonium salts such as ammonium sulfate, ammonium chloride and ammonium phosphate; vitamins, amino acids, nucleic acids, etc. Can be mentioned.

農業分野に用いられる薬剤としては、例えば、有機りん系、有機塩素系、合成ピレスロイド系、カーバメート系、オキサジアゾール系、ネライストキシン系、アミジノヒドラゾン系、クロロニコチル系ネオニコチノイド、フラニコチル系ネオニコチノイド、チアニコチル系ネオニコチノイド、フェニルピラゾール系、マクラロイド系などの各種殺虫剤;無機硫黄系、有機硫黄系、無機銅系、有機銅系、有機塩素系、有機リン系、カルボキサミド系、ベンゾイミダゾール系、トリアゾール系、ストビルリン系、エルゴステロール系、グアニジン系などの各種殺菌剤;フェノキシ系、ビピリジニウム系、尿素系、スルホニル尿素系、脂肪酸系、酸アミド系、無機系、トリアジン系、ニトリル系、ウラシル系、カーバメート系、アニリン系、有機リン系、アミノ酸系などの各種除草剤が挙げられる。   Examples of drugs used in the agricultural field include organophosphorus, organochlorine, synthetic pyrethroids, carbamates, oxadiazoles, nereistoxins, amidinohydrazones, chloronicotyl neonicotinoids, and furnicotyl neonicotis. Various insecticides such as noids, thianicotyl neonicotinoids, phenylpyrazoles, and maclaroids; inorganic sulfurs, organic sulfurs, inorganic coppers, organic coppers, organic chlorines, organic phosphoruss, carboxamides, benzimidazoles , Triazoles, strobilurins, ergosterols, guanidines and other fungicides; phenoxys, bipyridiniums, ureas, sulfonylureas, fatty acids, acid amides, inorganics, triazines, nitriles, uracils , Carbamate, aniline, organic System, and a variety of herbicides, such as amino acid-based.

<徐放性成形体の製造方法>
次に、本発明の徐放性成形体の製造方法について説明する。本発明の徐放性成形体の製造方法は、原料のPGA系樹脂から非晶性のPGA系樹脂を調製する前処理工程と、この前処理工程で得られた非晶性のPGA系樹脂と薬剤とを混合する混合工程と、この混合工程で得られた混合物を所定の温度で圧縮成形する成形工程とを含む方法である。
<Method for producing sustained-release molded article>
Next, the manufacturing method of the sustained-release molded object of this invention is demonstrated. The method for producing a sustained-release molded article of the present invention comprises a pretreatment step of preparing an amorphous PGA resin from a raw PGA resin, and an amorphous PGA resin obtained in the pretreatment step. It is a method including a mixing step of mixing a drug and a molding step of compression-molding the mixture obtained in this mixing step at a predetermined temperature.

(前処理工程)
本発明の徐放性成形体の製造方法においては、先ず、原料のPGA系樹脂から非晶性のPGA系樹脂を調製する。本発明において、非晶性のPGA系樹脂とは、示差走査熱量計により、窒素雰囲気下、昇温速度20℃/分の昇温過程で測定される、結晶化温度Tc[単位:℃]における熱量ΔHTcが1J/g以上のPGA系樹脂を意味し、比較的結晶化度が低いものである。結晶化温度Tcにおける熱量ΔHTcは、示差走査熱量計(DSC)を使用し、窒素雰囲気下、昇温速度20℃/分で0℃から300℃までPGA系樹脂を加熱し、このとき得られるDSCスペクトルから求めることができる。すなわち、非晶性のPGA系樹脂のDSCスペクトルには結晶化に伴う発熱ピークが存在するため、この発熱ピークの面積から結晶化温度Tcにおける熱量ΔHTcを求めることができる。一方、高く結晶化したPGA系樹脂のDSCスペクトルには結晶化に伴う発熱ピークが見られず、結晶化温度Tcにおける熱量ΔHTcは0J/gとなる。
(Pretreatment process)
In the method for producing a sustained-release molded article of the present invention, first, an amorphous PGA-based resin is prepared from a raw material PGA-based resin. In the present invention, the amorphous PGA-based resin is a crystallization temperature Tc [unit: ° C.] measured by a differential scanning calorimeter in a temperature rising process at a temperature rising rate of 20 ° C./min in a nitrogen atmosphere. This means a PGA resin having a calorific value ΔH Tc of 1 J / g or more, and has a relatively low crystallinity. The amount of heat ΔH Tc at the crystallization temperature Tc is obtained by using a differential scanning calorimeter (DSC) and heating the PGA resin from 0 ° C. to 300 ° C. at a temperature rising rate of 20 ° C./min in a nitrogen atmosphere. It can be determined from the DSC spectrum. That is, since the DSC spectrum of the amorphous PGA-based resin has an exothermic peak accompanying crystallization, the amount of heat ΔH Tc at the crystallization temperature Tc can be obtained from the area of this exothermic peak. On the other hand, the DSC spectrum of the highly crystallized PGA resin does not show an exothermic peak due to crystallization, and the heat quantity ΔH Tc at the crystallization temperature Tc is 0 J / g.

結晶化温度Tcにおける熱量ΔHTcは、非晶性のPGA系樹脂が結晶化する際に発生する熱量であるので、熱量ΔHTcが大きいPGA系樹脂ほど、非晶な部分が多いPGA系樹脂であることを意味する。従って、前記熱量ΔHTcが1J/g未満のPGA系樹脂は非晶な部分が少ないため、PGA系樹脂のブロッキングが起こりにくく、PGA系樹脂のブロッキングによる薬剤の封入が十分に作用せず、十分な薬剤徐放性を示す成形体を形成することが困難となる。なお、本明細書においては、前記熱量ΔHTcが1J/g未満のPGA系樹脂を「結晶性のPGA系樹脂」という。他方、前記熱量ΔHTcが1J/g以上のPGA系樹脂は非晶な部分が多いため、ガラス転移温度以上での圧縮成形によりPGA系樹脂のブロッキングが多く起こり、空隙率が低い成形体が得られる。また、このような成形体においては、薬剤がPGA系樹脂に封入されており、水分から保護された状態となる。そして、このような成形体に水分が接触すると、成形体の外表面および外縁部から徐々にPGA系樹脂の加水分解が起こり、加水分解されたPGA系樹脂が封入していた薬剤を解放することにより、成形体の外表面および外縁部から薬剤が徐々に放出されるため、優れた薬剤徐放性が得られる。そして、より優れた薬剤徐放性を示す成形体を形成するには、より多くの非晶な部分を有するPGA系樹脂が好ましいことから、前記熱量ΔHTcとしては、5J/g以上が好ましく、10J/g以上がより好ましく、15J/g以上が特に好ましい。 The amount of heat ΔH Tc at the crystallization temperature Tc is the amount of heat generated when the amorphous PGA-based resin is crystallized. Therefore, the PGA-based resin with a larger amount of amorphous portion is a PGA-based resin with a larger amount of heat ΔH Tc. It means that there is. Accordingly, since the PGA resin having a calorific value ΔH Tc of less than 1 J / g has few amorphous parts, blocking of the PGA resin is difficult to occur, and the encapsulation of the drug due to blocking of the PGA resin does not sufficiently function, It is difficult to form a molded article exhibiting a good drug sustained release property. In the present specification, the PGA resin having a calorific value ΔH Tc of less than 1 J / g is referred to as “crystalline PGA resin”. On the other hand, since the PGA resin having a heat quantity ΔH Tc of 1 J / g or more has many amorphous parts, the PGA resin is often blocked by compression molding at a glass transition temperature or higher, and a molded article having a low porosity is obtained. It is done. Moreover, in such a molded body, the chemical | medical agent is enclosed with PGA-type resin, and will be in the state protected from the water | moisture content. And, when moisture comes into contact with such a molded body, hydrolysis of the PGA resin gradually occurs from the outer surface and outer edge of the molded body, and the drug contained in the hydrolyzed PGA resin is released. Thus, since the drug is gradually released from the outer surface and the outer edge of the molded article, excellent drug sustained release can be obtained. And, in order to form a molded article exhibiting more excellent drug sustained release properties, PGA-based resin having more amorphous parts is preferable. Therefore, the heat quantity ΔH Tc is preferably 5 J / g or more, 10 J / g or more is more preferable, and 15 J / g or more is particularly preferable.

具体的な前処理方法としては、例えば、原料のPGA系樹脂を加熱して溶融し、得られたPGA系樹脂の溶融物を急冷する方法が挙げられる。これにより、前記範囲の熱量ΔHTcを有する非晶性のPGA系樹脂を得ることができる。前記前処理方法において、加熱温度としては、200〜300℃が好ましく、230〜280℃がより好ましく、240〜270℃が特に好ましい。加熱温度が前記下限未満になると、原料のPGA系樹脂の溶融が不十分となり、押出急冷後に非晶性のPGA系樹脂を得にくくなる傾向にあり、他方、前記上限を超えると、生成した樹脂が熱分解する傾向にある。また、急冷時の冷却速度としては、−50℃/分以上が好ましく、−150℃/分以上がより好ましい。前記範囲よりも遅い速度で冷却すると、結晶性のPGA系樹脂が得られる傾向にある。前記冷却速度で急冷する具体的な方法としては、加熱終了後、1秒以内(より好ましくは0.5秒以内)に、PGA系樹脂の溶融物を40℃以下(より好ましくは10℃以下)の冷媒(例えば、水)に投入する方法などが挙げられる。 As a specific pretreatment method, for example, a raw material PGA-based resin is heated and melted, and the obtained PGA-based resin melt is rapidly cooled. Thereby, an amorphous PGA resin having a heat quantity ΔH Tc in the above range can be obtained. In the pretreatment method, the heating temperature is preferably 200 to 300 ° C, more preferably 230 to 280 ° C, and particularly preferably 240 to 270 ° C. When the heating temperature is less than the lower limit, the raw material PGA resin is insufficiently melted, and it tends to be difficult to obtain an amorphous PGA resin after extrusion quenching. Tend to pyrolyze. Moreover, as a cooling rate at the time of rapid cooling, -50 degreeC / min or more is preferable and -150 degreeC / min or more is more preferable. When cooled at a rate slower than the above range, a crystalline PGA resin tends to be obtained. As a specific method of rapid cooling at the cooling rate, the PGA resin melt is kept at 40 ° C. or lower (more preferably 10 ° C. or lower) within 1 second (more preferably within 0.5 second) after the end of heating. And a method of charging the refrigerant (for example, water).

また、前記前処理工程においては、前記PGA系樹脂として、結晶化度が35%以下(より好ましくは30%以下、さらに好ましくは25%以下、特に好ましくは20%以下)であるグリコール酸単独重合体(以下、「PGA樹脂」ともいう。)を調製することが好ましい。PGA樹脂の結晶化度が前記上限を超えると、PGA樹脂のブロッキングが起こりにくく、PGA樹脂のブロッキングによる薬剤の封入が十分に作用せず、十分な薬剤徐放性が得られない傾向にある。なお、前記結晶化度は、下記式(2):
結晶化度(%)=(ΔHTm+ΔHTc)/ΔHTm0×100 (2)
で求められるものである。
In the pretreatment step, the PGA-based resin has a glycolic acid weight of 35% or less (more preferably 30% or less, still more preferably 25% or less, particularly preferably 20% or less). It is preferable to prepare a coalescence (hereinafter also referred to as “PGA resin”). When the crystallinity of the PGA resin exceeds the upper limit, blocking of the PGA resin is difficult to occur, and the encapsulation of the drug due to the blocking of the PGA resin does not sufficiently act, and sufficient drug sustained release tends to be not obtained. The crystallinity is expressed by the following formula (2):
Crystallinity (%) = (ΔH Tm + ΔH Tc ) / ΔH Tm0 × 100 (2)
Is required.

前記式(2)中、ΔHTmおよびΔHTcはそれぞれ示差走査熱量計(DSC)により昇温速度20℃/分の昇温過程で測定される、融解温度Tmおよび結晶化温度Tcおける熱量[単位:J/g]を表し、ΔHTm0は、結晶化度が100%のPGA樹脂の融解温度Tmにおける熱量[単位:J/g]を表す。融解温度Tmにおける熱量ΔHTmは、DSCを使用して、窒素雰囲気下、昇温速度20℃/分で0℃から300℃までPGA系樹脂を加熱し、このとき得られるDSCスペクトルから求めることができる。すなわち、PGA系樹脂のDSCスペクトルにはPGA系樹脂の融解に伴う吸熱ピークが存在するため、この吸熱ピークの面積から融解温度Tmにおける熱量ΔHTmを求めることができる。 In the above formula (2), ΔH Tm and ΔH Tc are respectively measured by a differential scanning calorimeter (DSC) during the temperature rising process at a temperature rising rate of 20 ° C./minute, and the heat amounts at the melting temperature Tm and the crystallization temperature Tc [units] : J / g], and ΔH Tm0 represents the amount of heat [unit: J / g] at the melting temperature Tm 0 of the PGA resin having a crystallinity of 100%. The amount of heat ΔH Tm at the melting temperature Tm can be obtained from the DSC spectrum obtained by heating the PGA resin from 0 ° C. to 300 ° C. at a rate of temperature increase of 20 ° C./min in a nitrogen atmosphere using DSC. it can. That is, since an endothermic peak accompanying melting of the PGA resin exists in the DSC spectrum of the PGA resin, the amount of heat ΔH Tm at the melting temperature Tm can be obtained from the area of the endothermic peak.

前記結晶化度を有するPGA樹脂を調製する前処理方法としては、原料のPGA系樹脂を240〜270℃で加熱して溶融し、得られたPGA系樹脂の溶融物を−150℃/分以上の冷却速度で急冷する方法が好ましい。前記の冷却速度で急冷する具体的な方法としては、加熱終了後、0.5秒以内に、PGA系樹脂の溶融物を10℃以下の冷媒(例えば、水)に投入する方法などが挙げられる。   As a pretreatment method for preparing the PGA resin having the crystallinity, the raw PGA resin is melted by heating at 240 to 270 ° C., and the obtained PGA resin melt is −150 ° C./min or more. A method of quenching at a cooling rate of is preferable. As a specific method for rapidly cooling at the cooling rate, a method of charging a PGA resin melt into a refrigerant (for example, water) of 10 ° C. or less within 0.5 seconds after the completion of heating may be mentioned. .

(混合工程)
次に、前記前処理工程で得られた非晶性のPGA系樹脂と薬剤とを混合する。このとき、前記非晶性のPGA系樹脂は予め粉砕しておくことが好ましい。非晶性のPGA系樹脂粉砕物(非晶性のPGA系樹脂粒子)の平均粒子径としては、1mm以下が好ましく、500μm以下がより好ましく、250μm以下がさらに好ましく、150μm以下が特に好ましい。非晶性のPGA系樹脂粒子の平均粒子径が前記上限を超えると、非晶性のPGA系樹脂粒子と薬剤とを均一に混合することが困難となり、非晶性のPGA系樹脂粒子のブロッキングによる薬剤の封入が十分に作用せず、十分な薬剤徐放性が得られない傾向にある。なお、非晶性のPGA系樹脂粒子の平均粒子径の下限値としては特に制限はないが、平均粒子径を小さいPGA系樹脂粒子は、粉砕時にPGA系樹脂の温度が上昇して結晶化しやすいため、50μm以上が好ましい。
(Mixing process)
Next, the amorphous PGA resin obtained in the pretreatment step and the drug are mixed. At this time, the amorphous PGA resin is preferably pulverized in advance. The average particle size of the amorphous PGA resin pulverized product (amorphous PGA resin particles) is preferably 1 mm or less, more preferably 500 μm or less, further preferably 250 μm or less, and particularly preferably 150 μm or less. When the average particle diameter of the amorphous PGA resin particles exceeds the upper limit, it becomes difficult to uniformly mix the amorphous PGA resin particles and the drug, and blocking of the amorphous PGA resin particles. Encapsulation of the drug by this does not work sufficiently, and there is a tendency that sufficient drug sustained release cannot be obtained. The lower limit of the average particle diameter of the amorphous PGA resin particles is not particularly limited, but PGA resin particles having a small average particle diameter are likely to be crystallized due to an increase in the temperature of the PGA resin during pulverization. Therefore, 50 μm or more is preferable.

また、前記非晶性のPGA系樹脂は、そのガラス転移温度Tg以下の温度に維持しながら粉砕することが好ましい。PGA系樹脂の温度がそのTgを超える温度になると、樹脂が軟化して粉砕しにくくなる傾向にある。PGA系樹脂をそのガラス転移温度Tg以下の温度に維持しながら粉砕する方法としては、PGA系樹脂をドライアイスや液体窒素とともに粉砕する方法などが挙げられる。   The amorphous PGA-based resin is preferably pulverized while maintaining the glass transition temperature Tg or lower. When the temperature of the PGA resin exceeds the Tg, the resin tends to soften and become difficult to pulverize. Examples of the method of pulverizing the PGA resin while maintaining the temperature below the glass transition temperature Tg include a method of pulverizing the PGA resin with dry ice or liquid nitrogen.

非晶性のPGA系樹脂と薬剤との混合方法としては、非晶性のPGA系樹脂を加熱混合しない方法であれば特に制限はなく、例えば、ドライブレンド、ミキサーブレンド、手動によるビニール袋内での混合などが挙げられる。混合工程においてPGA系樹脂を加熱混合すると、非晶性のPGA系樹脂が結晶化しやすく、十分な薬剤徐放性を得ることが困難となる。   The mixing method of the amorphous PGA resin and the drug is not particularly limited as long as the amorphous PGA resin is not heated and mixed. For example, dry blending, mixer blending, manual plastic bag And the like. When the PGA-based resin is heated and mixed in the mixing step, the amorphous PGA-based resin is easily crystallized, and it becomes difficult to obtain sufficient drug sustained release properties.

前記非晶性のPGA系樹脂と薬剤との配合比としては特に制限はないが、非晶性のPGA系樹脂と薬剤との合計量に対して、非晶性のPGA系樹脂を99〜10質量%且つ薬剤を1〜90質量%(より好ましくは、非晶性のPGA系樹脂を99〜30質量%且つ薬剤を1〜70質量%、特に好ましくは、非晶性のPGA系樹脂を99〜50質量%且つ薬剤を1〜50質量%)混合することが好ましい。薬剤の配合量が前記下限未満になると、薬剤の放出量が少なく、薬剤による効果そのものが十分に得られない傾向にあり、他方、前記上限を超えると、非晶性のPGA系樹脂のブロッキングによる薬剤の封入が困難となり、所望の薬剤徐放性を示す成形体の作製が困難になる傾向にある。   The compounding ratio of the amorphous PGA resin and the drug is not particularly limited, but the amorphous PGA resin is 99 to 10% with respect to the total amount of the amorphous PGA resin and the drug. % By weight and 1 to 90% by weight of drug (more preferably 99 to 30% by weight of amorphous PGA resin and 1 to 70% by weight of drug, particularly preferably 99% of amorphous PGA resin). -50 mass% and 1-50 mass% of the drug) are preferably mixed. When the amount of the drug is less than the lower limit, the amount of the drug released is small and the effect of the drug itself tends not to be sufficiently obtained. On the other hand, when the upper limit is exceeded, the amorphous PGA resin is blocked. Encapsulation of the drug becomes difficult, and it tends to be difficult to produce a molded article exhibiting desired drug sustained release properties.

(成形工程)
次に、前記混合工程で得られた混合物を下記式(1):
Tg≦T<Tm (1)
で表される条件を満たす温度Tで圧縮成形する。
(Molding process)
Next, the mixture obtained in the mixing step is represented by the following formula (1):
Tg ≦ T <Tm (1)
Compression molding is performed at a temperature T that satisfies the condition expressed by:

前記式(1)中、Tは成形温度[℃]を表し、TgはPGA系樹脂のガラス転移温度[℃]を表し、TmはPGA系樹脂の融解温度[℃]を表す。TgおよびTmは、DSCを使用して、窒素雰囲気下、昇温速度20℃/分で0℃から300℃までPGA系樹脂を加熱し、このとき得られるDSCスペクトルから求めることができる。   In the formula (1), T represents the molding temperature [° C.], Tg represents the glass transition temperature [° C.] of the PGA resin, and Tm represents the melting temperature [° C.] of the PGA resin. Tg and Tm can be determined from the DSC spectrum obtained by heating the PGA resin from 0 ° C. to 300 ° C. at a temperature rising rate of 20 ° C./min in a nitrogen atmosphere using DSC.

前記式(1)で表される条件を満たす温度で非晶性のPGA系樹脂と薬剤との混合物を圧縮成形することによって、優れた薬剤徐放性を示す成形体を得ることができる。一方、T<Tgになると、PGA系樹脂のブロッキングが起こりにくく、PGA系樹脂のブロッキングによる薬剤の封入が十分に作用せず、十分な薬剤徐放性が得られず、他方、T≧Tmになると、その高温ゆえに封入する薬剤の失活や薬剤とポリグリコール酸系樹脂との反応によりポリグリコール酸系樹脂が分解してしまう恐れがある。   By molding a mixture of an amorphous PGA resin and a drug at a temperature that satisfies the condition represented by the above formula (1), a molded article exhibiting excellent drug sustained release can be obtained. On the other hand, when T <Tg, blocking of the PGA resin hardly occurs, the encapsulation of the drug due to the blocking of the PGA resin does not sufficiently act, and sufficient drug sustained release cannot be obtained, while T ≧ Tm. In this case, the polyglycolic acid resin may be decomposed due to the deactivation of the encapsulated drug or the reaction between the drug and the polyglycolic acid resin due to the high temperature.

また、前記成形温度Tは下記式(1a):
Tg≦T<Tc (1a)
で表される条件を満たすことが好ましい。
The molding temperature T is expressed by the following formula (1a):
Tg ≦ T <Tc (1a)
It is preferable that the condition represented by

前記式(1a)中、Tは成形温度[℃]を表し、TgはPGA系樹脂のガラス転移温度[℃]を表し、TcはPGA系樹脂の昇温過程における結晶化温度[℃]を表す。TgおよびTcは、DSCを使用して、窒素雰囲気下、昇温速度20℃/分で0℃から300℃までPGA系樹脂を加熱し、このとき得られるDSCスペクトルから求めることができる。   In the formula (1a), T represents a molding temperature [° C.], Tg represents a glass transition temperature [° C.] of the PGA resin, and Tc represents a crystallization temperature [° C.] in the temperature rising process of the PGA resin. . Tg and Tc can be obtained from a DSC spectrum obtained by heating a PGA resin from 0 ° C. to 300 ° C. at a temperature rising rate of 20 ° C./min using a DSC in a nitrogen atmosphere.

前記式(1a)で表される条件を満たす温度で非晶性のPGA系樹脂と薬剤との混合物を圧縮成形することによって、圧縮成形時にPGA系樹脂のブロッキングを確実に発生させ、薬剤を確実に封入することが可能となり、より優れた薬剤徐放性を示す成形体を安定して得ることができる。一方、成形温度TがT<Tgになると、非晶性のPGA系樹脂が軟化せず、ブロッキングが起こりにくくなり、薬剤の封入が不十分になるため、十分な薬剤徐放性が得られない傾向にあり、他方、T≧Tcになると、圧縮成形時に非晶性のPGA系樹脂が結晶化してブロッキングが起こりにくくなり、PGA系樹脂のブロッキングによる薬剤の封入が十分に作用せず、十分な薬剤徐放性が得られない傾向にある。   By compression molding of a mixture of an amorphous PGA resin and a drug at a temperature that satisfies the condition represented by the formula (1a), the PGA resin blocking is reliably generated during the compression molding, thereby ensuring the drug. It is possible to encapsulate the molded body in a stable manner and to obtain a molded article exhibiting more excellent drug sustained release properties. On the other hand, when the molding temperature T becomes T <Tg, the amorphous PGA-based resin is not softened, blocking is difficult to occur, and drug encapsulation is insufficient, so that sufficient drug sustained release cannot be obtained. On the other hand, when T ≧ Tc, the amorphous PGA resin is crystallized at the time of compression molding, and blocking is difficult to occur. Encapsulation of the drug due to blocking of the PGA resin does not work sufficiently, and is sufficient. There is a tendency that sustained drug release cannot be obtained.

さらに、前記成形温度Tは薬剤の分解温度未満、すなわち、T<Td(Tdは薬剤の分解温度[℃]を表す)であることが好ましい。T≧Tdになると、圧縮成形時に薬剤が分解して、薬剤の効果そのものが十分に得られない傾向にある。   Furthermore, the molding temperature T is preferably less than the decomposition temperature of the drug, that is, T <Td (Td represents the drug decomposition temperature [° C.]). When T ≧ Td, the drug is decomposed during compression molding, and the effect of the drug itself tends not to be sufficiently obtained.

圧縮成形圧力としては特に制限はないが、0.1〜100MPaが好ましく、1〜80MPaがより好ましく、5〜50MPaが特に好ましい。圧縮成形圧力が前記下限未満になると、PGA系樹脂のブロッキングが起こりにくく、PGA系樹脂のブロッキングによる薬剤の封入が十分に作用せず、十分な薬剤徐放性が得られない傾向にあり、他方、前記上限を超えると、非晶性のPGA系樹脂パウダーが逃げ、それ以上の圧力はかかりにくくなる傾向にある。   Although there is no restriction | limiting in particular as compression molding pressure, 0.1-100 Mpa is preferable, 1-80 Mpa is more preferable, and 5-50 Mpa is especially preferable. When the compression molding pressure is less than the lower limit, blocking of the PGA resin is unlikely to occur, the encapsulation of the drug due to blocking of the PGA resin does not sufficiently function, and sufficient drug sustained release tends not to be obtained, If the upper limit is exceeded, the amorphous PGA resin powder escapes, and it is difficult to apply a pressure higher than that.

圧縮成形時間としては特に制限はないが、0.5分間以上が好ましく、1分間以上が特に好ましい。圧縮成形時間が前記下限未満になると、PGA系樹脂のブロッキングによる薬剤の封入が十分に作用せず、十分な薬剤徐放性が得られない傾向にある。   Although there is no restriction | limiting in particular as compression molding time, 0.5 minute or more is preferable and 1 minute or more is especially preferable. When the compression molding time is less than the lower limit, the encapsulation of the drug due to blocking of the PGA resin does not sufficiently act, and sufficient drug sustained release tends to be not obtained.

このようにして得られる本発明の徐放性成形体は、水分の非存在下では、非晶性のPGA系樹脂が薬剤の移動を制限しているため、成形体からの薬剤の放出が起こらず、保管性に優れている。一方、水分の存在下においては、成形体の表面の非晶性のPGA系樹脂が徐々に加水分解されるため、加水分解されたPGA系樹脂が封入していた薬剤を徐々に解放し、優れた薬剤徐放性が得られる。   In the sustained-release molded article of the present invention thus obtained, in the absence of moisture, the amorphous PGA-based resin restricts the movement of the drug, so that the drug is released from the molded article. In addition, it has excellent storage properties. On the other hand, in the presence of moisture, the amorphous PGA-based resin on the surface of the molded body is gradually hydrolyzed, so that the drug encapsulated by the hydrolyzed PGA-based resin is gradually released and is excellent. Sustained drug release is obtained.

以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例および比較例で使用したPGA樹脂は以下の方法により合成した。また、粒子の平均粒子径、PGA樹脂の物性、成形体の特性は以下の方法により測定した。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example. The PGA resin used in Examples and Comparative Examples was synthesized by the following method. Moreover, the average particle diameter of particle | grains, the physical property of PGA resin, and the characteristic of the molded object were measured with the following method.

(合成例)
攪拌機を備えるスチームジャケット構造の密閉可能なSUS製容器(容量:56L)にグリコリド22500gおよび二塩化スズ2水和物0.68g(30質量ppm)を仕込み、容器内の全プロトン濃度が0.13モル%となるように水1.49gを添加した。なお、前記容器内の全プロトンは容器内の雰囲気中の水分(湿気)のプロトンを含むものであり、前記水の添加量はこの容器内の雰囲気中の水分量(0.11g)を考慮して決定した。その後、容器を密閉し、攪拌しながらジャケットにスチームを循環させて容器内の混合物の温度が100℃になるまで加熱して混合物を溶融し、均一な液状混合物を得た。
(Synthesis example)
A SUS container (capacity: 56 L) having a steam jacket structure equipped with a stirrer was charged with 22500 g of glycolide and 0.68 g (30 mass ppm) of dichloride dihydrate, and the total proton concentration in the container was 0.13. Water 1.49g was added so that it might become mol%. Note that all protons in the container include protons of moisture (humidity) in the atmosphere in the container, and the amount of water added takes into account the amount of water (0.11 g) in the atmosphere in the container. Decided. Thereafter, the container was sealed, and steam was circulated through the jacket while stirring, and the mixture was heated until the temperature of the mixture in the container reached 100 ° C. to melt the mixture to obtain a uniform liquid mixture.

次に、内径24mmの反応管(SUS304製)を備えるジャケット構造の本体部とジャケット構造の金属板(SUS304製)2枚とからなる反応装置を準備した。前記反応管の下側開口部に前記金属板の一方(以下、「下板」という。)を取り付けた後、前記反応管の上側開口部から、前記液状混合物を、その温度を100℃に保持したまま移送した。移送終了後、直ちにもう一方の金属板(以下、「上板」という。)を取り付けて反応管を密閉した。その後、本体部と2枚の金属板のジャケットに170℃の熱媒体油を循環させて7時間保持し、ポリグリコール酸樹脂(PGA樹脂)を合成した。   Next, a reactor comprising a jacket-structured main body provided with a reaction tube (made of SUS304) having an inner diameter of 24 mm and two jacket-structured metal plates (made of SUS304) was prepared. After attaching one of the metal plates (hereinafter referred to as “lower plate”) to the lower opening of the reaction tube, the temperature of the liquid mixture is maintained at 100 ° C. from the upper opening of the reaction tube. It was transferred as it was. Immediately after the transfer, the other metal plate (hereinafter referred to as “upper plate”) was attached and the reaction tube was sealed. Thereafter, a heat medium oil at 170 ° C. was circulated through the main body and a jacket of two metal plates and held for 7 hours to synthesize a polyglycolic acid resin (PGA resin).

次に、前記ジャケットを循環している熱媒体油を冷却して反応装置を室温付近まで冷却した。その後、前記下板を取り外して反応管の下側開口部から前記PGA樹脂の塊状物を取り出した。なお、この方法によりPGA樹脂を合成した場合、その収率はほぼ100%となる。得られたPGA樹脂塊状物を粉砕機により粉砕した。   Next, the heat medium oil circulating in the jacket was cooled to cool the reaction apparatus to near room temperature. Thereafter, the lower plate was removed, and the PGA resin mass was taken out from the lower opening of the reaction tube. In addition, when a PGA resin is synthesized by this method, the yield is almost 100%. The obtained PGA resin block was pulverized by a pulverizer.

<平均粒子径>
PGA樹脂組成物粒子を界面活性剤(サンノプコ(株)製「SNディスパーサント7347−c希釈溶液」)を含有する水に分散させ、この粒子分散液についてレーザー回折式粒度分布測定装置((株)島津製作所製「SALADA−3000S」)を使用して粒度分布を求め、小粒子径側から累積質量が50%となる粒子径を平均粒子径d50とした。
<Average particle size>
The PGA resin composition particles are dispersed in water containing a surfactant ("SN Dispersant 7347-c diluted solution" manufactured by San Nopco Co., Ltd.), and a laser diffraction particle size distribution analyzer (Co., Ltd.) is used for the particle dispersion. The particle size distribution was determined using “SALADA-3000S” manufactured by Shimadzu Corporation, and the particle size at which the cumulative mass was 50% from the small particle size side was defined as the average particle size d50.

<PGA樹脂の物性>
PGA樹脂10mgをアルミパンに秤量し、これを示差走査熱量計((株)島津製作所製「DSC60−A」)に装着し、窒素雰囲気中、0℃から300℃まで昇温速度20℃/分で加熱した。得られたDSCスペクトルに基づいて、ガラス状態からゴム状態への転移領域に相当する二次転移領域における熱量の二次転移開始温度からPGA樹脂のガラス転移温度Tgを求め、結晶化に伴う発熱ピークから昇温過程における結晶化温度Tcおよびその熱量ΔHTcを求め、融解に伴う吸熱ピークから融解温度Tmおよびその熱量ΔHTmを求めた。なお、昇温過程における結晶化温度Tcは、非晶のPGA樹脂のDSCスペクトルには見られるが、結晶化したPGA樹脂には見られない。
<Physical properties of PGA resin>
10 mg of PGA resin is weighed in an aluminum pan, and this is mounted on a differential scanning calorimeter (“DSC60-A” manufactured by Shimadzu Corporation), and the temperature rising rate is 20 ° C./min from 0 ° C. to 300 ° C. in a nitrogen atmosphere. And heated. Based on the obtained DSC spectrum, the glass transition temperature Tg of the PGA resin is obtained from the second-order transition start temperature of the calorie in the second-order transition region corresponding to the transition region from the glass state to the rubber state, and the exothermic peak accompanying crystallization The crystallization temperature Tc and its heat quantity ΔH Tc in the temperature rising process were obtained from the above, and the melting temperature Tm and its heat quantity ΔH Tm were obtained from the endothermic peak accompanying melting. The crystallization temperature Tc in the temperature rising process is found in the DSC spectrum of the amorphous PGA resin, but not in the crystallized PGA resin.

これらの熱量ΔHTcおよびΔHTmから、下記式(2)を用いてPGA樹脂の結晶化度を求めた。
結晶化度(%)=(ΔHTm+ΔHTc)/ΔHTm0×100 (2)
前記式中、ΔHTm0は、結晶化度が100%のPGA樹脂の融解温度Tmにおける熱量(−200J/g)である。
From these calorific values ΔH Tc and ΔH Tm , the crystallinity of the PGA resin was determined using the following formula (2).
Crystallinity (%) = (ΔH Tm + ΔH Tc ) / ΔH Tm0 × 100 (2)
In the above formula, ΔH Tm0 is the amount of heat (−200 J / g) at the melting temperature Tm 0 of a PGA resin having a crystallinity of 100%.

<成形性評価>
成形体の成形性は下記基準で判定した。
A:指で押しても成形体は崩壊せず、また、成形体は半透明であった。なお、非晶部のブロッキングによる樹脂同士の圧着が起こると、その部分は半透明になる。
B:指で押しても成形体は崩壊しなかったが、成形体には半透明な部分が存在した。
C:指で押した場合に、成形体が崩壊した。
<Formability evaluation>
The moldability of the molded body was determined according to the following criteria.
A: The molded body did not collapse even when pressed with a finger, and the molded body was translucent. In addition, when the crimping | compression-bonding of resin by blocking of an amorphous part occurs, the part will become translucent.
B: The molded body did not collapse even when pressed with a finger, but there was a translucent portion in the molded body.
C: The molded body collapsed when pressed with a finger.

<成形体の硬度>
成形体の硬度は、成形体を切り出して試験片(20mm×20mm×1mm)を作製し、この試験片を引張・圧縮試験機((株)オリエンテック製「RTC−1210A」、荷重:1kN)を用いて圧縮試験測定した。
<Hardness of molded body>
For the hardness of the molded body, the molded body was cut out to produce a test piece (20 mm × 20 mm × 1 mm), and this test piece was subjected to a tensile / compression tester (“RTC-1210A” manufactured by Orientec Co., Ltd., load: 1 kN). Was used to measure the compression test.

(実施例1−1)
前記合成例で得られたPGA樹脂粉砕物100質量部に対して、熱安定剤としてモノおよびジステアリルアシッドフォスフェートのほぼ等モル混合物((株)ADEKA製「アデカスタブAX−71」)0.030質量部を添加して混合した。この混合物を供給部から排出部までの間に設けた10個の区間およびダイの温度を供給部から順に200℃、230℃、260℃、270℃、270℃、270℃、270℃、250℃、240℃、230℃、230℃に設定した二軸混練押出機(東芝機械(株)製「TEM−41SS」)に供給して溶融混練した。この溶融混練物をストランド状に押出し、ただちに10℃の水中で急冷してPGA樹脂ストランドを作製した。このストランドをペレタイザーで粉砕してペレット状のPGA樹脂組成物を得た。得られたペレット状PGA樹脂組成物を、粉砕機を用いて温度−50℃、周速187m/sで2回粉砕し、PGA樹脂組成物粒子を得た。
(Example 1-1)
About 100 parts by mass of the PGA resin pulverized product obtained in the above synthesis example, an approximately equimolar mixture of mono and distearyl acid phosphates (“ADEKA STAB AX-71” manufactured by ADEKA) 0.030 as a heat stabilizer Part by mass was added and mixed. The temperature of the 10 sections and the die provided with the mixture from the supply unit to the discharge unit is 200 ° C, 230 ° C, 260 ° C, 270 ° C, 270 ° C, 270 ° C, 270 ° C, 250 ° C in order from the supply unit. , 240 ° C., 230 ° C., and 230 ° C., and a twin-screw kneading extruder (“TEM-41SS” manufactured by Toshiba Machine Co., Ltd.) was melt-kneaded. This melt-kneaded product was extruded into a strand shape and immediately cooled in water at 10 ° C. to produce a PGA resin strand. This strand was pulverized with a pelletizer to obtain a pellet-like PGA resin composition. The obtained pellet-like PGA resin composition was pulverized twice at a temperature of −50 ° C. and a peripheral speed of 187 m / s using a pulverizer to obtain PGA resin composition particles.

得られたPGA樹脂組成物粒子の平均粒子径d50を前記方法に従って求めたところ、100μmであった。また、このPGA樹脂組成物粒子中のPGA樹脂のガラス転移温度Tg、昇温時の結晶化温度Tcおよびその熱量ΔHTc、融解温度Tmおよびその熱量ΔHTm、結晶化度を前記方法に従って求めた。その結果を表1に示す。表1に示した結果から明らかなように、このPGA樹脂は非晶性であることが確認された。 When the average particle diameter d50 of the obtained PGA resin composition particles was determined according to the above method, it was 100 μm. Further, the glass transition temperature Tg of the PGA resin in the PGA resin composition particles, the crystallization temperature Tc at the time of temperature rise and its calorie ΔH Tc , the melting temperature Tm and its calorie ΔH Tm , and the crystallinity were determined according to the above method. . The results are shown in Table 1. As is clear from the results shown in Table 1, this PGA resin was confirmed to be amorphous.

次に、このPGA樹脂組成物粒子をシート成形用金型(設定膜厚:1mm)とともにアルミニウムシートで挟み、さらにフェロタイプ板で挟んで80℃のヒートプレス機に載せて110kgf/cm(10.8MPa)で1分間加圧した。得られたPGA樹脂シート(50mm×50mm×1mm)(成形体)の外観を目視観察し、前記基準で成形性を評価した。その結果を表1に示す。 Next, the PGA resin composition particles are sandwiched between an aluminum sheet together with a sheet molding die (set film thickness: 1 mm), further sandwiched between ferrotype plates, and placed on a heat press at 80 ° C. to 110 kgf / cm 2 (10 .8 MPa) for 1 minute. The appearance of the obtained PGA resin sheet (50 mm × 50 mm × 1 mm) (molded body) was visually observed, and the moldability was evaluated based on the above criteria. The results are shown in Table 1.

(実施例1−2)
実施例1と同様にして得たPGA樹脂組成物粒子を80℃で30秒間加熱(アニーリング)した後、このPGA樹脂組成物粒子中のPGA樹脂のガラス転移温度Tg、昇温時の結晶化温度Tcおよびその熱量ΔHTc、融解温度Tmおよび熱量ΔHTm、結晶化度を前記方法に従って求めた。その結果を表1に示す。表1に示した結果から明らかなように、このPGA樹脂は非晶性であることが確認された。次に、実施例1と同様にしてPGA樹脂シート(50mm×50mm×1mm)(成形体)を作製し、成形性を評価した。その結果を表1に示す。
(Example 1-2)
After heating (annealing) the PGA resin composition particles obtained in the same manner as in Example 1 at 80 ° C. for 30 seconds, the glass transition temperature Tg of the PGA resin in the PGA resin composition particles, the crystallization temperature at the time of temperature increase Tc and its calorific value ΔH Tc , melting temperature Tm and calorie ΔH Tm , and crystallinity were determined according to the above methods. The results are shown in Table 1. As is clear from the results shown in Table 1, this PGA resin was confirmed to be amorphous. Next, a PGA resin sheet (50 mm × 50 mm × 1 mm) (molded body) was produced in the same manner as in Example 1, and the moldability was evaluated. The results are shown in Table 1.

(比較例1−1)
実施例1と同様にして得たPGA樹脂組成物粒子を80℃で5分間加熱(アニーリング)した後、このPGA樹脂組成物粒子中のPGA樹脂のガラス転移温度Tg、昇温時の結晶化温度Tcおよびその熱量ΔHTc、融解温度Tmおよび熱量ΔHTm、結晶化度を前記方法に従って求めた。その結果を表1に示す。表1に示した結果から明らかなように、このPGA樹脂は結晶性であることが確認された。次に、実施例1と同様にしてPGA樹脂シート(50mm×50mm×1mm)(成形体)を作製し、成形性を評価した。その結果を表1に示す。
(Comparative Example 1-1)
After heating (annealing) the PGA resin composition particles obtained in the same manner as in Example 1 at 80 ° C. for 5 minutes, the glass transition temperature Tg of the PGA resin in the PGA resin composition particles, the crystallization temperature at the time of temperature increase Tc and its calorific value ΔH Tc , melting temperature Tm and calorie ΔH Tm , and crystallinity were determined according to the above methods. The results are shown in Table 1. As is clear from the results shown in Table 1, this PGA resin was confirmed to be crystalline. Next, a PGA resin sheet (50 mm × 50 mm × 1 mm) (molded body) was produced in the same manner as in Example 1, and the moldability was evaluated. The results are shown in Table 1.

(比較例1−2)
実施例1と同様にして得たPGA樹脂組成物粒子を80℃で20分間加熱(アニーリング)した後、このPGA樹脂組成物粒子中のPGA樹脂のガラス転移温度Tg、昇温時の結晶化温度Tcおよびその熱量ΔHTc、融解温度Tmおよび熱量ΔHTm、結晶化度を前記方法に従って求めた。その結果を表1に示す。表1に示した結果から明らかなように、このPGA樹脂は結晶性であることが確認された。次に、実施例1と同様にしてPGA樹脂シート(50mm×50mm×1mm)(成形体)を作製し、成形性を評価した。その結果を表1に示す。
(Comparative Example 1-2)
After heating (annealing) the PGA resin composition particles obtained in the same manner as in Example 1 at 80 ° C. for 20 minutes, the glass transition temperature Tg of the PGA resin in the PGA resin composition particles, the crystallization temperature at the time of temperature increase Tc and its calorific value ΔH Tc , melting temperature Tm and calorie ΔH Tm , and crystallinity were determined according to the above methods. The results are shown in Table 1. As is clear from the results shown in Table 1, this PGA resin was confirmed to be crystalline. Next, a PGA resin sheet (50 mm × 50 mm × 1 mm) (molded body) was produced in the same manner as in Example 1, and the moldability was evaluated. The results are shown in Table 1.

Figure 2014201606
Figure 2014201606

表1に示した結果から明らかなように、結晶化温度Tcにおける熱量ΔHTcが1J/g以上(好ましくは結晶化度が35%以下)のPGA樹脂(非晶性のPGA樹脂)を使用した場合(実施例1−1〜1−2)には、結晶化温度Tcにおける熱量ΔHTcが0J/g(結晶化度が40%以上)のPGA樹脂を使用した場合(比較例1−1〜1−2)に比べて、PGA樹脂シート(成形体)を良好に成形できることが確認された。 As is clear from the results shown in Table 1, a PGA resin (amorphous PGA resin) having a heat quantity ΔH Tc of 1 J / g or more (preferably a crystallinity of 35% or less) at the crystallization temperature Tc was used. In the case (Examples 1-1 to 1-2), a PGA resin having a heat quantity ΔH Tc of 0 J / g (crystallinity of 40% or more) at the crystallization temperature Tc was used (Comparative Examples 1-1 to 1-1). Compared with 1-2), it was confirmed that the PGA resin sheet (molded body) can be molded well.

(実施例2−1)
実施例1−1と同様にして得た非晶性のPGA樹脂を含有するPGA樹脂組成物粒子95質量部と臭化カリウム(KBr、分子量119.02、密度2.75g/cm)5質量部とをドライブレンドし、得られた混合物をシート成形用金型(設定膜厚:1mm)とともにアルミニウムシートで挟み、さらにフェロタイプ板で挟んで60℃のヒートプレス機に載せて110kgf/cm(10.8MPa)で1分間加圧した。得られた混合物シート(50mm×50mm×1mm)(成形体)の硬度を前記方法に従って測定したところ、600Nであった。
(Example 2-1)
95 mass parts of PGA resin composition particles containing amorphous PGA resin obtained in the same manner as in Example 1-1 and 5 mass of potassium bromide (KBr, molecular weight 119.02, density 2.75 g / cm 3 ) The resulting mixture was sandwiched with an aluminum sheet together with a sheet molding die (set film thickness: 1 mm), further sandwiched between ferrotype plates and placed on a heat press at 60 ° C. to 110 kgf / cm 2. Pressurization was performed at (10.8 MPa) for 1 minute. It was 600 N when the hardness of the obtained mixture sheet (50 mm x 50 mm x 1 mm) (molded article) was measured according to the above method.

(比較例2−1)
ヒートプレス機の温度を室温(25℃)に変更し、プレス圧を169kgf/cm(16.6MPa)に変更した以外は実施例2−1と同様にして混合物シート(50mm×50mm×1mm)を作製した。この混合物シート(成形体)の硬度を前記方法に従って測定したところ、77Nであった。
(Comparative Example 2-1)
A mixture sheet (50 mm × 50 mm × 1 mm) in the same manner as in Example 2-1, except that the temperature of the heat press was changed to room temperature (25 ° C.) and the press pressure was changed to 169 kgf / cm 2 (16.6 MPa). Was made. The hardness of the mixture sheet (molded product) was measured in accordance with the above method and found to be 77N.

(比較例2−2)
溶融混練物をストランド状に押出した後、急冷ではなく室温まで徐冷(冷却速度:−49℃/分に相当)した以外は、実施例1−1と同様にしてPGA樹脂組成物粒子を調製した。このPGA樹脂組成物粒子の平均粒子径d50を前記方法に従って求めたところ、96μmであった。また、このPGA樹脂組成物粒子中のPGA樹脂のガラス転移温度Tg、昇温時の結晶化温度Tcおよびその熱量ΔHTc、融解温度Tm、結晶化度を前記方法に従って求めたところ、Tg:49.7℃、Tc:検出されず、ΔHTc:0J/g、Tm:221.21℃、結晶化度:43.0%であった。従って、このPGA樹脂は結晶性であることが確認された。次に、このPGA樹脂組成物粒子95質量部を使用した以外は実施例2−1と同様にして混合物シート(50mm×50mm×1mm)を作製した。この混合物シート(成形体)を指で押したところ、崩壊は見られず、硬度が30N以上であることが確認された。
(Comparative Example 2-2)
The PGA resin composition particles were prepared in the same manner as in Example 1-1, except that the melt-kneaded product was extruded into a strand shape and then gradually cooled to room temperature instead of rapid cooling (cooling rate: equivalent to −49 ° C./min). did. It was 96 micrometers when the average particle diameter d50 of this PGA resin composition particle | grain was calculated | required according to the said method. Further, when the glass transition temperature Tg of the PGA resin in the PGA resin composition particles, the crystallization temperature Tc at the time of temperature rise and the heat quantity ΔH Tc , the melting temperature Tm, and the crystallinity were determined according to the above method, Tg: 49 0.7 ° C, Tc: not detected, ΔH Tc : 0 J / g, Tm: 221.21 ° C, crystallinity: 43.0%. Therefore, it was confirmed that this PGA resin was crystalline. Next, a mixture sheet (50 mm × 50 mm × 1 mm) was produced in the same manner as in Example 2-1, except that 95 parts by mass of the PGA resin composition particles were used. When this mixture sheet (molded body) was pressed with a finger, no collapse was observed, and it was confirmed that the hardness was 30 N or more.

(比較例2−3)
ヒートプレス機の温度を室温(25℃)に変更した以外は比較例2−2と同様にして混合物シート(50mm×50mm×1mm)を作製した。この混合物シート(成形体)を指で押したところ、崩壊が起こり、硬度が30N未満であることが確認された。
(Comparative Example 2-3)
A mixture sheet (50 mm × 50 mm × 1 mm) was produced in the same manner as in Comparative Example 2-2 except that the temperature of the heat press was changed to room temperature (25 ° C.). When this mixture sheet (molded body) was pressed with a finger, collapse occurred and it was confirmed that the hardness was less than 30N.

(比較例2−4)
ヒートプレス機の温度を250℃に変更した以外は実施例2−1と同様にして混合物シートの作製を試みたが、プレス成形中にKBrとPGA樹脂組成物が反応し、PGA樹脂組成物が分解して低分子量となり、所望の混合物シート(成形体)は得られなかった。
(Comparative Example 2-4)
Except that the temperature of the heat press machine was changed to 250 ° C., an attempt was made to prepare a mixture sheet in the same manner as in Example 2-1, but KBr and the PGA resin composition reacted during press molding, and the PGA resin composition was It decomposed to a low molecular weight, and the desired mixture sheet (molded product) could not be obtained.

(実施例3−1)
臭化カリウムの代わりに下記式:
(Example 3-1)
Instead of potassium bromide the following formula:

Figure 2014201606
Figure 2014201606

で表されるタートラジン(黄色4号、分子量:534.37)を5質量部使用し、ヒートプレス機の温度を80℃に変更した以外は実施例2−1と同様にして混合物シート(50mm×50mm×1mm)を作製した。この混合物シート(成形体)の硬度を前記方法に従って測定したところ、600Nであった。 In the same manner as in Example 2-1, except that 5 parts by mass of tartrazine represented by the formula (Yellow No. 4, molecular weight: 534.37) was used and the temperature of the heat press machine was changed to 80 ° C., a mixture sheet (50 mm × 50 mm × 1 mm). It was 600 N when the hardness of this mixture sheet (molded body) was measured according to the above method.

(実施例3−2)
プレス圧を450kgf/cm(44.1MPa)に変更した以外は実施例3−1と同様にして混合物シート(50mm×50mm×1mm)を作製した。この混合物シートの硬度を前記方法に従って測定したところ、600Nであった。
(Example 3-2)
A mixture sheet (50 mm × 50 mm × 1 mm) was produced in the same manner as in Example 3-1, except that the pressing pressure was changed to 450 kgf / cm 2 (44.1 MPa). The hardness of the mixture sheet was measured according to the above method and found to be 600N.

(比較例3−1)
比較例2−2と同様にして得た結晶性のPGA樹脂を含有するPGA樹脂組成物粒子95質量部を使用した以外は実施例3−1と同様にして混合物シート(50mm×50mm×1mm)を作製した。この混合物シート(成形体)を指で押したところ、崩壊は見られず、硬度が30N以上であることが確認された。
(Comparative Example 3-1)
A mixture sheet (50 mm × 50 mm × 1 mm) as in Example 3-1 except that 95 parts by mass of PGA resin composition particles containing a crystalline PGA resin obtained in the same manner as in Comparative Example 2-2 were used. Was made. When this mixture sheet (molded body) was pressed with a finger, no collapse was observed, and it was confirmed that the hardness was 30 N or more.

<徐放試験>
実施例2−1、実施例3−1〜3−2、比較例2−1〜2−4および比較例3−1で作製した混合物シートを切断して試験片(20mm×20mm×1mm)を作製した。この試験片を300mlの水に浸漬し、25℃の温度下に静置した。所定の時間毎に水中の薬剤(臭化カリウムまたはタートラジン)の濃度を以下の方法により測定し、混合シート(成形体)から放出された薬剤の量を求めた。その結果を図1〜図3に示す。
<Slow release test>
The test piece (20 mm × 20 mm × 1 mm) was cut by cutting the mixture sheet prepared in Example 2-1, Examples 3-1 to 3-2, Comparative Examples 2-1 to 2-4, and Comparative Example 3-1. Produced. This test piece was immersed in 300 ml of water and allowed to stand at a temperature of 25 ° C. The concentration of the drug (potassium bromide or tartrazine) in water was measured every predetermined time by the following method, and the amount of the drug released from the mixed sheet (molded body) was determined. The results are shown in FIGS.

(臭化カリウム濃度)
臭化カリウム濃度は、臭化物イオン電極((株)堀場製作所製「8005−10C」)を用いて測定した臭化物イオン濃度から算出した。
(Potassium bromide concentration)
The potassium bromide concentration was calculated from the bromide ion concentration measured using a bromide ion electrode (“8005-10C” manufactured by Horiba, Ltd.).

(タートラジン濃度)
タートラジンの濃度は、可視紫外分光光度計((株)島津製作所製「UV−260」)を用いて波長427nmにおける透過率から吸光度を測定し、予め作成した検量線から水中のタートラジン濃度を算出した。なお、検量線は、濃度を8、12、16、20、24×10−6mol/Lに調整した濃度調節タートラジン水溶液の波長427nmにおける透過率を測定し、この透過率から吸光度(−log(透過率/100))を算出し、濃度に対して吸光度をプロットして作成した。
(Tartrazine concentration)
The concentration of tartrazine was determined by measuring the absorbance from the transmittance at a wavelength of 427 nm using a visible ultraviolet spectrophotometer (“UV-260” manufactured by Shimadzu Corporation), and calculating the concentration of tartrazine in water from a calibration curve prepared in advance. . The calibration curve was obtained by measuring the transmittance at a wavelength of 427 nm of a concentration-adjusted tartrazine aqueous solution whose concentration was adjusted to 8, 12, 16, 20, 24 × 10 −6 mol / L, and calculating the absorbance (−log ( The transmittance / 100)) was calculated, and the absorbance was plotted against the concentration.

図1に示した結果から明らかなように、結晶化度が35%以下の非晶性のPGA樹脂を使用し、PGA樹脂のTg以上Tm以下の温度(60℃)で成形した場合(実施例2−1)には、優れたKBr徐放性を示す成形体が得られた。一方、前記非晶性のPGA系樹脂を使用してもPGA樹脂のTg未満の温度(室温)で成形した場合(比較例2−1)には、徐放試験開始後1日で約90%の臭化カリウムが放出され、KBr徐放性を有する成形体は得られなかった。また、結晶化度が40%の結晶性のPGA樹脂を使用した場合(比較例2−2および2−3)には、徐放試験開始後すぐに臭化カリウムが放出され、KBr徐放性を有する成形体は得られなかった。   As is clear from the results shown in FIG. 1, when an amorphous PGA resin having a crystallinity of 35% or less is used and molded at a temperature (60 ° C.) of Tg to Tm of the PGA resin (Example) In 2-1), a molded article exhibiting excellent KBr sustained release property was obtained. On the other hand, when the amorphous PGA resin is used and molded at a temperature (room temperature) lower than the Tg of the PGA resin (Comparative Example 2-1), about 90% in one day after the start of the sustained release test. Thus, a molded product having a KBr sustained release property was not obtained. When a crystalline PGA resin having a crystallinity of 40% is used (Comparative Examples 2-2 and 2-3), potassium bromide is released immediately after the start of the sustained release test, and the KBr sustained release property A molded product having the following was not obtained.

また、図2に示した結果から明らかなように、薬剤としてタートラジン(黄色4号)を使用した場合においても、前記非晶性のPGA樹脂を使用し、PGA樹脂のTg以上Tm以下の温度(80℃)で成形すると、優れたタートラジン徐放性を示す成形体が得られた(実施例3−1)が、前記結晶性のPGA樹脂を使用すると、徐放試験開始後すぐにタートラジンが放出され、タートラジン徐放性を有する成形体は得られなかった(比較例3−1)。   As is clear from the results shown in FIG. 2, even when tartrazine (Yellow No. 4) is used as a drug, the amorphous PGA resin is used, and the temperature (Tg to Tm) of the PGA resin ( When molded at 80 ° C., a molded product exhibiting excellent tartrazine sustained release was obtained (Example 3-1), but when the crystalline PGA resin was used, tartrazine was released immediately after the start of the sustained release test. Thus, a molded article having a tartrazine sustained release property was not obtained (Comparative Example 3-1).

さらに、図3に示した結果から明らかなように、成形時の圧力を高くすることによって、タートラジン徐放性が向上することがわかった。   Furthermore, as is clear from the results shown in FIG. 3, it was found that the tartrazine sustained-release property is improved by increasing the pressure during molding.

以上説明したように、本発明によれば、薬剤とポリグリコール酸系樹脂とを含有し、水分の存在下において優れた薬剤徐放性を示す成形体を得ることが可能となる。   As described above, according to the present invention, it is possible to obtain a molded article that contains a drug and a polyglycolic acid resin and exhibits excellent drug sustained release in the presence of moisture.

したがって、本発明の徐放性成形体の製造方法は、土木関連分野、農業分野などの水分が存在する環境下において使用される徐放性製剤の製造方法として有用である。   Therefore, the method for producing a sustained-release molded article of the present invention is useful as a method for producing a sustained-release preparation used in an environment where moisture exists, such as civil engineering-related fields and agricultural fields.

Claims (5)

示差走査熱量計により、窒素雰囲気下、昇温速度20℃/分の昇温過程で測定される、結晶化温度Tcにおける熱量ΔHTcが1J/g以上であるポリグリコール酸系樹脂を調製する前処理工程と、
前記前処理工程で得られたポリグリコール酸系樹脂と薬剤とを混合する混合工程と、
前記混合工程で得られた混合物を下記式(1):
Tg≦T<Tm (1)
(前記式中、Tは成形温度を表し、Tgはポリグリコール酸系樹脂のガラス転移温度を表し、Tmはポリグリコール酸系樹脂の融解温度を表し、単位はいずれも[℃]である)
で表される条件を満たす温度Tで圧縮成形する成形工程と、
を含むことを特徴とする徐放性成形体の製造方法。
Before preparing a polyglycolic acid-based resin having a calorific value ΔH Tc of 1 J / g or more at a crystallization temperature Tc measured by a differential scanning calorimeter in a nitrogen atmosphere under a temperature rising process of 20 ° C./min. Processing steps;
A mixing step in which the polyglycolic acid resin obtained in the pretreatment step and the drug are mixed;
The mixture obtained in the mixing step is represented by the following formula (1):
Tg ≦ T <Tm (1)
(In the above formula, T represents the molding temperature, Tg represents the glass transition temperature of the polyglycolic acid resin, Tm represents the melting temperature of the polyglycolic acid resin, and the unit is [° C.].)
A molding step of compression molding at a temperature T that satisfies the condition represented by
A method for producing a sustained-release shaped article comprising:
前記前処理工程において、前記ポリグリコール酸系樹脂として、下記式(2):
結晶化度(%)=(ΔHTm+ΔHTc)/ΔHTm0×100 (2)
(前記式中、ΔHTmおよびΔHTcはそれぞれ示差走査熱量計により昇温速度20℃/分の昇温過程で測定される、融解温度Tmおよび結晶化温度Tcおける熱量を表し、ΔHTm0は、結晶化度が100%のグリコール酸単独重合体の融解温度Tmにおける熱量を表し、単位はいずれも[J/g]である)
で求められる結晶化度が35%以下であるグリコール酸単独重合体を調製することを特徴とする請求項1に記載の徐放性成形体の製造方法。
In the pretreatment step, as the polyglycolic acid resin, the following formula (2):
Crystallinity (%) = (ΔH Tm + ΔH Tc ) / ΔH Tm0 × 100 (2)
(In the above formula, ΔH Tm and ΔH Tc represent the amount of heat at the melting temperature Tm and the crystallization temperature Tc, respectively, measured by a differential scanning calorimeter in the temperature rising process at a temperature rising rate of 20 ° C./min. ΔH Tm0 is This represents the amount of heat at a melting temperature Tm 0 of a glycolic acid homopolymer having a crystallinity of 100%, and the unit is [J / g])
A method for producing a sustained-release molded article according to claim 1, wherein a glycolic acid homopolymer having a crystallinity of 35% or less is prepared.
前記混合工程において、前記前処理工程で得られたポリグリコール酸系樹脂を、ポリグリコール酸系樹脂のガラス転移温度以下の温度に維持しながら粉砕した後、薬剤と混合することを特徴とする請求項1または2に記載の徐放性成形体の製造方法。   In the mixing step, the polyglycolic acid resin obtained in the pretreatment step is pulverized while being maintained at a temperature not higher than the glass transition temperature of the polyglycolic acid resin, and then mixed with the drug. Item 3. A method for producing a sustained-release molded article according to Item 1 or 2. 前記成形工程において、下記式(1a):
Tg≦T<Tc (1a)
(前記式中、Tは成形温度を表し、Tgはポリグリコール酸系樹脂のガラス転移温度を表し、Tcはポリグリコール酸系樹脂の昇温過程における結晶化温度を表し、単位はいずれも[℃]である)
で表される条件を満たす温度Tで圧縮成形することを特徴とする請求項1〜3のうちのいずれか一項に記載の徐放性成形体の製造方法。
In the molding step, the following formula (1a):
Tg ≦ T <Tc (1a)
(In the above formula, T represents the molding temperature, Tg represents the glass transition temperature of the polyglycolic acid resin, Tc represents the crystallization temperature in the temperature rising process of the polyglycolic acid resin, and the unit is [° C. ]
The method for producing a sustained-release molded article according to any one of claims 1 to 3, wherein the molding is performed at a temperature T that satisfies the condition represented by:
請求項1〜4のうちのいずれか一項に記載の製造方法により得られるものであることを特徴とする徐放性成形体。   A sustained-release shaped article obtained by the production method according to any one of claims 1 to 4.
JP2013076006A 2013-04-01 2013-04-01 Sustained release molded article and method for producing the same Expired - Fee Related JP6109622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013076006A JP6109622B2 (en) 2013-04-01 2013-04-01 Sustained release molded article and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013076006A JP6109622B2 (en) 2013-04-01 2013-04-01 Sustained release molded article and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014201606A true JP2014201606A (en) 2014-10-27
JP6109622B2 JP6109622B2 (en) 2017-04-05

Family

ID=52352360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013076006A Expired - Fee Related JP6109622B2 (en) 2013-04-01 2013-04-01 Sustained release molded article and method for producing the same

Country Status (1)

Country Link
JP (1) JP6109622B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017525B1 (en) * 1969-10-23 1975-06-21
JP2003192879A (en) * 2001-12-26 2003-07-09 Asahi Kasei Corp Glycolic acid-based resin composition
JP2005255940A (en) * 2004-03-15 2005-09-22 Asahi Kasei Chemicals Corp Hydroxycarboxylic acid-based polymer composition
WO2012133039A1 (en) * 2011-03-25 2012-10-04 株式会社クレハ Biodegradable aliphatic polyester particles, and method for producing same
WO2012133037A1 (en) * 2011-03-25 2012-10-04 株式会社クレハ Biodegradable aliphatic polyester particles and method for producing same
JP2012224809A (en) * 2011-04-22 2012-11-15 Kureha Corp Biodegradable aliphatic polyester particle, and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017525B1 (en) * 1969-10-23 1975-06-21
JP2003192879A (en) * 2001-12-26 2003-07-09 Asahi Kasei Corp Glycolic acid-based resin composition
JP2005255940A (en) * 2004-03-15 2005-09-22 Asahi Kasei Chemicals Corp Hydroxycarboxylic acid-based polymer composition
WO2012133039A1 (en) * 2011-03-25 2012-10-04 株式会社クレハ Biodegradable aliphatic polyester particles, and method for producing same
WO2012133037A1 (en) * 2011-03-25 2012-10-04 株式会社クレハ Biodegradable aliphatic polyester particles and method for producing same
JP2012224809A (en) * 2011-04-22 2012-11-15 Kureha Corp Biodegradable aliphatic polyester particle, and method for manufacturing the same

Also Published As

Publication number Publication date
JP6109622B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
JP5234585B2 (en) Method for producing polyglycolic acid resin composition
JP3776578B2 (en) Biodegradable plastic composition and method for adjusting biodegradation rate of biodegradable plastic
JP5763402B2 (en) Biodegradable aliphatic polyester particles and method for producing the same
JP2013224398A (en) Polymer product, molding, medical molding, toner and polymer composition
KR100643250B1 (en) Polylactic acid-based resin compositions, molded articles and process for producing the same
JP5224815B2 (en) Polyglycolic acid resin granular composition and method for producing the same
US7972669B2 (en) Biodegradable resin foam sheet, biodegradable resin foam article and biodegradable resin molded container
ES2386313T3 (en) Particulate catalyst and particulate catalyst / stabilizer systems for the production of high molecular weight homo- and copolyesters L-, D- or D, L-lactic acid
JP6866722B2 (en) Resin composition and resin molded products molded using it
EP2992030B1 (en) Polymer product, film, molded article, sheet, particle, fiber, and method for producing polymer
JP2003238672A (en) Method for producing poly(lactic acid) block copolymer
JP4692057B2 (en) New polyoxalate
WO2012121296A1 (en) Biodegradable aliphatic polyester resin particulate composition and method for producing same
US8802814B2 (en) Fine powder of biosourced aliphatic polyester and production method thereof
EP1502932B1 (en) Resin composition
JP5333621B2 (en) POLYMER PRODUCT, MOLDED BODY, MEDICAL MOLDED BODY, TONER, AND POLYMER COMPOSITION
JP6109622B2 (en) Sustained release molded article and method for producing the same
WO2012133037A1 (en) Biodegradable aliphatic polyester particles and method for producing same
CN108473687A (en) Method for the melt strength for enhancing the polymer composition based on propylene
JP5631865B2 (en) Method for producing polyglycolic acid resin composition
JP5333217B2 (en) Polylactic acid resin composition
JP2003286360A (en) Biodegradable polyester resin foamed material and its manufacturing method
WO2012133039A1 (en) Biodegradable aliphatic polyester particles, and method for producing same
JP4326828B2 (en) Composition of glycolic acid copolymer
JP7454097B1 (en) Powder granules of crystalline polymer and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170308

R150 Certificate of patent or registration of utility model

Ref document number: 6109622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees