JP2014201496A - Method of manufacturing semiconductor device and hydride vapor-phase growth apparatus - Google Patents

Method of manufacturing semiconductor device and hydride vapor-phase growth apparatus Download PDF

Info

Publication number
JP2014201496A
JP2014201496A JP2013079921A JP2013079921A JP2014201496A JP 2014201496 A JP2014201496 A JP 2014201496A JP 2013079921 A JP2013079921 A JP 2013079921A JP 2013079921 A JP2013079921 A JP 2013079921A JP 2014201496 A JP2014201496 A JP 2014201496A
Authority
JP
Japan
Prior art keywords
substrate
airflow
distance
changing member
deposit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013079921A
Other languages
Japanese (ja)
Other versions
JP6158564B2 (en
Inventor
裕次郎 石原
Yujiro Ishihara
裕次郎 石原
泰治 藤山
Taiji Fujiyama
泰治 藤山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP2013079921A priority Critical patent/JP6158564B2/en
Publication of JP2014201496A publication Critical patent/JP2014201496A/en
Application granted granted Critical
Publication of JP6158564B2 publication Critical patent/JP6158564B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To make deposits formed on a substrate uniform in film thickness.SOLUTION: A method of manufacturing a semiconductor device includes a step of supplying reaction gas to a substrate 133 so as to form deposits (for example, a GaN layer 160) on the substrate 133 by a hydride vapor-phase growth method. In the step of forming the deposits, the deposits are formed in a state in which an air current change member 170 which changes a flow of the reaction gas is arranged in an area upstream from a peripheral edge part of the substrate 133 or an area nearby it in the flow direction of the reaction gas to face the peripheral edge part or the area nearby it.

Description

本発明は、半導体装置の製造方法及びハイドライド気相成長装置に関する。   The present invention relates to a semiconductor device manufacturing method and a hydride vapor phase growth apparatus.

窒化ガリウム(GaN)などの窒化物系半導体は、バンドギャップが大きく、またバンド間遷移が直接遷移型であることから、短波長発光素子や電子素子への展開が大いに期待されている。こうした素子を得る手法として、基板上に窒化物系半導体をエピタキシャル成長させて素子構造を作製する方法がある(特許文献1)。   Nitride-based semiconductors such as gallium nitride (GaN) have a large band gap and a direct transition type between band transitions, and thus are expected to be developed into short wavelength light emitting devices and electronic devices. As a method for obtaining such an element, there is a method for producing an element structure by epitaxially growing a nitride-based semiconductor on a substrate (Patent Document 1).

ところが、窒化ガリウム(GaN)と格子定数の整合する下地基板が存在しないことから、サファイアやSiCなどの異種基板上に、ハイドライド気相成長法(HVPE:Hydride Vapor Phase Epitaxy)や有機金属化学気相成長法(MOCVD)等の気相成長法を用いて数μm〜数百μmのGaN結晶を予め成長させ、この上にデバイス構造を作製することが行われている。こうした成長法のうち、特にHVPEは、成長速度が速く、窒化物系半導体層を厚膜に成長させたり、GaN基板を作製したりするのに好適に用いられる。   However, since there is no base substrate having a lattice constant matching that of gallium nitride (GaN), a hydride vapor phase epitaxy (HVPE) or organometallic chemical vapor phase is formed on a heterogeneous substrate such as sapphire or SiC. A GaN crystal of several μm to several hundred μm is grown in advance by using a vapor phase growth method such as a growth method (MOCVD), and a device structure is produced thereon. Among these growth methods, HVPE, in particular, has a high growth rate and is suitably used for growing a nitride-based semiconductor layer into a thick film or producing a GaN substrate.

特開2001−181097号公報JP 2001-181097 A

各種の気相成長法においては、基板上に形成される堆積物の膜厚を均一化することが常に要求されており、ハイドライド気相成長法もその例外ではない。   In various vapor deposition methods, it is always required to make the thickness of the deposit formed on the substrate uniform, and the hydride vapor deposition method is no exception.

本発明者の知見によれば、ハイドライド気相成長法により基板上に堆積物を形成する場合、基板の周縁部における堆積物の膜厚が、それ以外の領域における堆積物の膜厚よりも厚くなる現象が生じる場合がある。   According to the inventor's knowledge, when deposits are formed on a substrate by hydride vapor phase epitaxy, the thickness of the deposits on the peripheral edge of the substrate is thicker than the thickness of the deposits in the other regions. May occur.

本発明は、上記の課題に鑑みなされたものであり、基板上に形成される堆積物の膜厚を均一化することが可能な半導体装置の製造方法及びハイドライド気相成長装置を提供する。   The present invention has been made in view of the above problems, and provides a method for manufacturing a semiconductor device and a hydride vapor phase growth apparatus capable of making the thickness of a deposit formed on a substrate uniform.

本発明は、基板に反応ガスを供給して、前記基板上にハイドライド気相成長法により堆積物を形成する工程を有し、
前記堆積物を形成する工程では、前記反応ガスの流れを変化させる気流変化部材を、前記基板の周縁部又はその近傍の領域と対向するように、当該周縁部又は当該近傍の領域よりも前記反応ガスの上流側に配置した状態で、前記堆積物を形成する、半導体装置の製造方法を提供する。
The present invention includes a step of supplying a reactive gas to a substrate and forming a deposit on the substrate by a hydride vapor phase growth method,
In the step of forming the deposit, the air flow changing member that changes the flow of the reaction gas is more reactive than the peripheral portion or the region near the peripheral portion or the region near the peripheral portion of the substrate. Provided is a method for manufacturing a semiconductor device, wherein the deposit is formed in a state of being disposed on the upstream side of a gas.

この製造方法によれば、反応ガスの流れを変化させる気流変化部材を、基板の周縁部と対向する領域、又は基板の周縁部の近傍の領域と対向する領域に配置した状態で、堆積物を形成する。これにより、基板の周縁部における堆積物の成長を適度に抑制でき、その結果、基板上における堆積物の膜厚を全面に亘って均一化することができる。   According to this manufacturing method, in the state where the airflow changing member that changes the flow of the reaction gas is disposed in a region facing the peripheral portion of the substrate or a region facing the peripheral portion of the substrate, Form. Thereby, the growth of the deposit on the peripheral portion of the substrate can be moderately suppressed, and as a result, the thickness of the deposit on the substrate can be made uniform over the entire surface.

また、本発明は、ハイドライド気相成長法により基板上に堆積物を形成可能なように前記基板を保持する保持部と、
前記保持部により保持された前記基板に反応ガスを供給するガス供給部と、
前記反応ガスの流れを変化させる気流変化部材と、
を有し、
前記気流変化部材は、前記基板の周縁部又はその近傍の領域と対向するように、当該周縁部又は当該近傍の領域よりも前記反応ガスの上流側に配置されているハイドライド気相成長装置を提供する。
The present invention also includes a holding unit for holding the substrate so that a deposit can be formed on the substrate by a hydride vapor phase growth method.
A gas supply unit for supplying a reactive gas to the substrate held by the holding unit;
An airflow changing member for changing the flow of the reaction gas;
Have
Provided is a hydride vapor phase growth apparatus in which the airflow changing member is arranged on the upstream side of the reactive gas with respect to the peripheral edge or the vicinity thereof so as to face the peripheral edge of the substrate or the vicinity thereof. To do.

本発明によれば、基板上に形成される堆積物の膜厚を均一化することができる。   According to the present invention, the thickness of the deposit formed on the substrate can be made uniform.

第1の実施形態に係る半導体装置の製造方法を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on 1st Embodiment. 第1の実施形態に係るハイドライド気相成長装置を示す模式的な断面図である。1 is a schematic cross-sectional view showing a hydride vapor phase growth apparatus according to a first embodiment. 気流変化部材を示す図であり、このうち(a)は基板に対して面直方向に気流変化部材を見た図、(b)は基板の面方向に対して平行な方向に気流変化部材を見た図である。It is a figure which shows an airflow change member, Among these, (a) is the figure which looked at the airflow change member in the direction perpendicular to a board | substrate, (b) is an airflow change member in a direction parallel to the surface direction of a board | substrate. FIG. 基板に対して面直方向に気流変化部材及び基板を見たときの気流変化部材と基板との位置関係の一例を示す図である。It is a figure which shows an example of the positional relationship of an airflow change member and a board | substrate when seeing an airflow change member and a board | substrate in a surface orthogonal direction with respect to a board | substrate. 基板に対して面直方向に気流変化部材及び基板を見たときの気流変化部材と基板との位置関係の一例を示す図である。It is a figure which shows an example of the positional relationship of an airflow change member and a board | substrate when seeing an airflow change member and a board | substrate in a surface orthogonal direction with respect to a board | substrate. 基板に対して面直方向に気流変化部材及び基板を見たときの気流変化部材と基板との位置関係の一例を示す図である。It is a figure which shows an example of the positional relationship of an airflow change member and a board | substrate when seeing an airflow change member and a board | substrate in a surface orthogonal direction with respect to a board | substrate. 基板に対して面直方向に気流変化部材及び基板を見たときの気流変化部材と基板との位置関係の一例を示す図である。It is a figure which shows an example of the positional relationship of an airflow change member and a board | substrate when seeing an airflow change member and a board | substrate in a surface orthogonal direction with respect to a board | substrate. 第1の実施形態に係る半導体装置の製造方法により製造されたGaN基板の模式的な側面図である。It is a typical side view of the GaN substrate manufactured by the manufacturing method of the semiconductor device concerning a 1st embodiment. 第2の実施形態に係る半導体装置の製造方法を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the manufacturing method of the semiconductor device which concerns on 2nd Embodiment. 第2の実施形態に係るハイドライド気相成長装置を示す模式的な断面図である。It is typical sectional drawing which shows the hydride vapor phase growth apparatus which concerns on 2nd Embodiment. 気流変化部材の変形例1を示す図であり、基板に対して面直方向に気流変化部材及び基板を見たときの気流変化部材と基板との位置関係を示す。It is a figure which shows the modification 1 of an airflow change member, and shows the positional relationship of an airflow change member and a board | substrate when seeing an airflow change member and a board | substrate in a surface orthogonal direction with respect to a board | substrate. 気流変化部材の変形例2を示す図であり、基板に対して面直方向に気流変化部材及び基板を見たときの気流変化部材と基板との位置関係を示す。It is a figure which shows the modification 2 of an airflow change member, and shows the positional relationship of an airflow change member and a board | substrate when seeing an airflow change member and a board | substrate in a surface orthogonal direction with respect to a board | substrate. 比較形態に係る半導体装置の製造方法により製造されたGaN基板の模式的な側面図である。It is a typical side view of the GaN substrate manufactured by the manufacturing method of the semiconductor device concerning a comparison form. 基板の中心付近と基板上の各位置との堆積物の成長速度比を示す図である。It is a figure which shows the growth rate ratio of the deposit of the center vicinity of a board | substrate and each position on a board | substrate. 基板の中心付近と基板上の各位置との堆積物の成長速度比を示す図である。It is a figure which shows the growth rate ratio of the deposit of the center vicinity of a board | substrate and each position on a board | substrate. 基板の外周端からの距離と堆積物の成長厚さとの関係を示す図である。It is a figure which shows the relationship between the distance from the outer periphery end of a board | substrate, and the growth thickness of a deposit.

以下、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様の構成要素には同一の符号を付し、適宜に説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same components are denoted by the same reference numerals, and description thereof will be omitted as appropriate.

〔第1の実施形態〕
図1は第1の実施形態に係る半導体装置の製造方法を説明するための模式的な断面図である。図2は第1の実施形態に係るハイドライド気相成長装置(以下、HVPE装置)120を示す模式的な断面図である。図8は第1の実施形態に係る半導体装置の製造方法により作製されたGaN基板180の模式的な側面図である。
[First Embodiment]
FIG. 1 is a schematic cross-sectional view for explaining the method for manufacturing the semiconductor device according to the first embodiment. FIG. 2 is a schematic cross-sectional view showing a hydride vapor phase growth apparatus (hereinafter referred to as HVPE apparatus) 120 according to the first embodiment. FIG. 8 is a schematic side view of a GaN substrate 180 manufactured by the semiconductor device manufacturing method according to the first embodiment.

図1に示すように、本実施形態に係る半導体装置の製造方法は、基板133に反応ガスを供給して、基板133上にハイドライド気相成長法により堆積物(例えばGaN層160)を形成する工程を有する。この工程では、反応ガスの流れを変化させる気流変化部材170を、基板133の周縁部又は基板133の周縁部の近傍の領域と対向するように、基板133の周縁部又はその近傍の領域よりも反応ガスの上流側に配置した状態で、堆積物を形成する。これにより、半導体装置としてのGaN基板180を製造する。   As shown in FIG. 1, in the method for manufacturing a semiconductor device according to the present embodiment, a reactive gas is supplied to a substrate 133, and a deposit (eg, GaN layer 160) is formed on the substrate 133 by hydride vapor phase epitaxy. Process. In this step, the airflow changing member 170 that changes the flow of the reactive gas is positioned more than the peripheral portion of the substrate 133 or the region in the vicinity thereof so as to face the peripheral portion of the substrate 133 or the region in the vicinity of the peripheral portion of the substrate 133. A deposit is formed in a state of being disposed upstream of the reaction gas. Thereby, a GaN substrate 180 as a semiconductor device is manufactured.

この製造方法は、例えば、図2に示すようなHVPE装置120を用いて行われる。本実施形態に係るHVPE装置120は、ハイドライド気相成長法により基板133上に堆積物(例えばGaN層160)を形成可能なように基板133を保持する保持部(基板ホルダ123)と、保持部により保持された基板133に反応ガスを供給するガス供給部と、反応ガスの流れを変化させる気流変化部材170と、を有する。気流変化部材170は、基板133の周縁部又は基板133の周縁部の近傍の領域と対向するように、基板133の周縁部又はその近傍の領域よりも反応ガスの上流側に配置されている。なお、ガス供給部は、例えば、III族原料ガス供給部139及び窒素原料ガス供給部137を備えて構成される。   This manufacturing method is performed using, for example, an HVPE apparatus 120 as shown in FIG. The HVPE apparatus 120 according to the present embodiment includes a holding unit (substrate holder 123) that holds the substrate 133 so that a deposit (for example, the GaN layer 160) can be formed on the substrate 133 by a hydride vapor phase growth method, and a holding unit. A gas supply unit that supplies the reaction gas to the substrate 133 held by the gas flow, and an airflow changing member 170 that changes the flow of the reaction gas. The airflow changing member 170 is arranged on the upstream side of the reaction gas with respect to the peripheral portion of the substrate 133 or the region in the vicinity thereof so as to face the peripheral portion of the substrate 133 or the region in the vicinity of the peripheral portion of the substrate 133. The gas supply unit includes, for example, a group III source gas supply unit 139 and a nitrogen source gas supply unit 137.

HVPE装置120は、内部に成長領域122を有する反応管121と、反応管121内に設けられている基板ホルダ123と、III族原料ガスを成長領域122へ供給するIII族原料ガス供給部139と、窒素原料ガスを成長領域122へ供給する窒素原料ガス供給部137と、ドーピングガスを成長領域122へ供給するガス供給管125と、反応管121から外部にガスを排出するガス排出管135と、ヒータ129、130とを備える。   The HVPE apparatus 120 includes a reaction tube 121 having a growth region 122 therein, a substrate holder 123 provided in the reaction tube 121, a group III source gas supply unit 139 for supplying a group III source gas to the growth region 122, A nitrogen source gas supply unit 137 for supplying nitrogen source gas to the growth region 122, a gas supply pipe 125 for supplying doping gas to the growth region 122, a gas exhaust pipe 135 for exhausting gas from the reaction tube 121 to the outside, Heaters 129 and 130.

反応ガスは、III族原料ガスと、窒素原料ガスと、ドーピングガスと、を含んで構成される。反応ガスは、概ね図1における左側から右側へ向けて流れる。以下、反応ガスのガス流における上流側を、単に上流側といい、反応ガスのガス流における下流側を、単に下流側という。   The reaction gas includes a group III source gas, a nitrogen source gas, and a doping gas. The reaction gas flows from the left side to the right side in FIG. Hereinafter, the upstream side in the reaction gas flow is simply referred to as the upstream side, and the downstream side in the reaction gas flow is simply referred to as the downstream side.

成長領域122は、反応管121内における下流側すなわち図1における右側部分に位置している。基板ホルダ123は、反応管121内における下流側の部分(以下、単に下流部)に回転軸132により回転自在に設けられている。この回転軸132は、図示しないモータ等の回転アクチュエータにより軸周りに回転駆動され、回転軸132とともに基板ホルダ123が回転する。基板ホルダ123は、当該基板ホルダ123における上流側の面にて基板133を保持する。したがって、基板133に対して供給される反応ガスの気流の方向は、基板133に対する面直方向成分を含む。具体的には、気流変化部材170の影響を除外すれば、基板133に対してほぼ垂直に反応ガスが供給される。基板ホルダ123により保持された基板133は、成長領域122に位置する。基板ホルダ123が回転するのに伴い、基板133はその板面方向において回転する。   The growth region 122 is located on the downstream side in the reaction tube 121, that is, on the right side portion in FIG. The substrate holder 123 is rotatably provided by a rotating shaft 132 in a downstream portion (hereinafter simply referred to as a downstream portion) in the reaction tube 121. The rotating shaft 132 is rotationally driven around a shaft by a rotary actuator such as a motor (not shown), and the substrate holder 123 rotates together with the rotating shaft 132. The substrate holder 123 holds the substrate 133 on the upstream surface of the substrate holder 123. Therefore, the direction of the reactive gas flow supplied to the substrate 133 includes a perpendicular direction component with respect to the substrate 133. Specifically, if the influence of the airflow changing member 170 is excluded, the reaction gas is supplied substantially perpendicular to the substrate 133. The substrate 133 held by the substrate holder 123 is located in the growth region 122. As the substrate holder 123 rotates, the substrate 133 rotates in the plate surface direction.

ガス排出管135は、基板ホルダ123よりも下流側に配置され、反応管121内からガスを外部に排出する。   The gas discharge pipe 135 is disposed on the downstream side of the substrate holder 123 and discharges the gas from the reaction pipe 121 to the outside.

反応管121内における上流側の部分(以下、単に上流部)は、仕切板136により上下2つの層に区画されている。   The upstream portion (hereinafter simply referred to as the upstream portion) in the reaction tube 121 is divided into two layers by a partition plate 136.

III族原料ガス供給部139は、ガス供給管126と、反応管121内における仕切板136よりも下側の層であるIII族原料ガス供給管139aと、III族原料ガス供給管139a内に配置されたソースボート128と、Ga原料127と、を含む。ソースボート128は、Ga原料127を収容している。   The group III source gas supply unit 139 is disposed in the gas supply pipe 126, a group III source gas supply pipe 139a that is a lower layer than the partition plate 136 in the reaction pipe 121, and a group III source gas supply pipe 139a. The source boat 128 and the Ga material 127 are included. The source boat 128 contains a Ga raw material 127.

ガス供給管126は、HClガス等のハロゲン含有ガスを、III族原料ガス供給管139aへ供給する。ガス供給管126の供給口(下流端)は、ソースボート128よりも上流側に配置されている。   The gas supply pipe 126 supplies a halogen-containing gas such as HCl gas to the group III source gas supply pipe 139a. The supply port (downstream end) of the gas supply pipe 126 is disposed upstream of the source boat 128.

ガス供給管126から供給されるハロゲン含有ガスは、III族原料ガス供給部139内において、ソースボート128中のGa原料127の表面または揮発したGaと接触し、Gaを塩化してGa塩化物を含むIII族原料ガス(GaCl等)を生成する。なお、III族原料ガス供給部139の周囲にはヒータ129が配置され、III族原料ガス供給部139内は、ハイドライド気相成長中において、たとえば800〜900℃程度の温度に維持される。   The halogen-containing gas supplied from the gas supply pipe 126 comes into contact with the surface of the Ga raw material 127 in the source boat 128 or volatilized Ga in the group III raw material gas supply unit 139, and chlorinates Ga to form Ga chloride. A group III source gas (such as GaCl) is generated. A heater 129 is disposed around the group III source gas supply unit 139, and the group III source gas supply unit 139 is maintained at a temperature of, for example, about 800 to 900 ° C. during hydride vapor phase growth.

III族原料ガス供給部139は、このように生成されたGaCl等のIII族原料ガスを成長領域122へ供給する。すなわち、III族原料ガスを基板ホルダ123により保持された基板133の表面に供給する。   The group III source gas supply unit 139 supplies the group III source gas such as GaCl thus generated to the growth region 122. That is, the group III source gas is supplied to the surface of the substrate 133 held by the substrate holder 123.

窒素原料ガス供給部137は、ガス供給管124と、反応管121内における仕切板136よりも上側の層(ガス供給管125およびその内部は除く)である窒素原料ガス供給部管137aと、を含む。   The nitrogen source gas supply unit 137 includes a gas supply tube 124 and a nitrogen source gas supply unit tube 137a that is a layer (excluding the gas supply tube 125 and its interior) above the partition plate 136 in the reaction tube 121. Including.

ガス供給管124は、アンモニアガスを、窒素原料ガス供給部管137aへ供給する。このアンモニアガスは、窒素原料ガス供給部管137a中を通過する過程で、熱により分解される。なお、窒素原料ガス供給部137の周囲にはヒータ129が配置され、窒素原料ガス供給部137内は、ハイドライド気相成長中において、たとえば800〜900℃程度の温度に維持される。   The gas supply pipe 124 supplies ammonia gas to the nitrogen source gas supply section pipe 137a. This ammonia gas is decomposed by heat in the process of passing through the nitrogen source gas supply pipe 137a. A heater 129 is disposed around the nitrogen source gas supply unit 137, and the nitrogen source gas supply unit 137 is maintained at a temperature of, for example, about 800 to 900 ° C. during hydride vapor phase growth.

窒素原料ガス供給部137は、アンモニアを成長領域122へ供給する。すなわち、アンモニアを基板ホルダ123により保持された基板133の表面に供給する。   The nitrogen source gas supply unit 137 supplies ammonia to the growth region 122. That is, ammonia is supplied to the surface of the substrate 133 held by the substrate holder 123.

ガス供給管125は、ジクロロシラン(SiHCl)ガスなどのドーピングガスを成長領域122へ供給する。すなわち、ドーピングガスを基板ホルダ123により保持された基板133の表面に供給する。 The gas supply pipe 125 supplies a doping gas such as dichlorosilane (SiH 2 Cl 2 ) gas to the growth region 122. That is, the doping gas is supplied to the surface of the substrate 133 held by the substrate holder 123.

成長領域122内で、基板133の表面(図1における左側の面)上に、GaNの成長が行われる。成長領域122の周囲にはヒータ130が配置され、成長領域122内は、ハイドライド気相成長中において、たとえば1000〜1200℃程度の温度に維持される。   In the growth region 122, GaN is grown on the surface of the substrate 133 (the left surface in FIG. 1). A heater 130 is disposed around the growth region 122, and the inside of the growth region 122 is maintained at a temperature of, for example, about 1000 to 1200 ° C. during hydride vapor phase growth.

図2に示すように、本実施形態に係るHVPE装置120は、反応ガスの流れを変化させる気流変化部材170を有している。気流変化部材170は、基板133の周縁部又はその近傍の領域と対向するように、基板133の周縁部又はその近傍の領域よりも上流側に配置されている。気流変化部材170は、例えば、板状のものであり、その板面が反応ガスの流れに対して直交するように配置される。   As shown in FIG. 2, the HVPE apparatus 120 according to the present embodiment includes an airflow changing member 170 that changes the flow of the reaction gas. The airflow changing member 170 is arranged on the upstream side of the peripheral edge portion of the substrate 133 or the vicinity thereof so as to face the peripheral portion of the substrate 133 or the vicinity thereof. The airflow changing member 170 is, for example, a plate-like member, and is arranged so that the plate surface is orthogonal to the flow of the reaction gas.

図3は気流変化部材170を示す図であり、このうち(a)は基板133に対して面直方向に気流変化部材170を見た図、(b)は基板133の面方向に対して平行な方向に気流変化部材170を見た図である。   3A and 3B are views showing the airflow changing member 170, in which FIG. 3A is a view of the airflow changing member 170 in a direction perpendicular to the substrate 133, and FIG. 3B is parallel to the surface direction of the substrate 133. It is the figure which looked at the airflow change member 170 in various directions.

気流変化部材170には、例えば、気流変化部材170を反応管121に対して固定するための固定部材173が一体的に設けられている。気流変化部材170は、固定部材173を介して、反応管121の内面に固定されている。なお、図1および図2においては、固定部材173の図示を省略している。   For example, the airflow changing member 170 is integrally provided with a fixing member 173 for fixing the airflow changing member 170 to the reaction tube 121. The airflow changing member 170 is fixed to the inner surface of the reaction tube 121 via a fixing member 173. 1 and 2, the illustration of the fixing member 173 is omitted.

気流変化部材170は、気流変化部材170を用いない場合と比べて、基板133の周縁部への反応ガスの供給量が抑制されるように、基板133へ供給される反応ガスの気流を変化させる。換言すれば、気流変化部材170は、基板133の周縁部を反応ガス流から遮蔽する遮蔽部材(或いは遮蔽板)として機能する。図1の左半部には、気流変化部材170による気流の変化の仕方の例を模式的に矢印で示している。   Compared with the case where the airflow changing member 170 is not used, the airflow changing member 170 changes the airflow of the reaction gas supplied to the substrate 133 so that the supply amount of the reaction gas to the peripheral portion of the substrate 133 is suppressed. . In other words, the airflow changing member 170 functions as a shielding member (or shielding plate) that shields the peripheral portion of the substrate 133 from the reactive gas flow. In the left half of FIG. 1, an example of how airflow is changed by the airflow changing member 170 is schematically indicated by arrows.

図4乃至図7の各々は、基板133に対して面直方向に気流変化部材170及び基板133を見たときの気流変化部材170と基板133との位置関係の一例を示す図である。なお、図4、図5及び図7においては、気流変化部材170の形状を分かりやすくするために、気流変化部材170にハッチングを付している。また、図4乃至図7において、固定部材173の図示を省略している。   Each of FIGS. 4 to 7 is a diagram illustrating an example of a positional relationship between the airflow change member 170 and the substrate 133 when the airflow change member 170 and the substrate 133 are viewed in a direction perpendicular to the substrate 133. In FIGS. 4, 5, and 7, the airflow changing member 170 is hatched to make the shape of the airflow changing member 170 easier to understand. 4 to 7, the illustration of the fixing member 173 is omitted.

基板133は、基板ホルダ123の一方の面(図2において左側の面)に対して接着剤123aにより固定されることによって、基板ホルダ123により保持される。   The substrate 133 is held by the substrate holder 123 by being fixed to one surface (the left surface in FIG. 2) of the substrate holder 123 by an adhesive 123a.

気流変化部材170は、例えば、基板133の周縁部に沿う枠状の形状(ドーナツ状の形状など)に形成されている。すなわち、気流変化部材170の中央には開口170aが形成されている。   The airflow changing member 170 is formed in, for example, a frame shape (such as a donut shape) along the peripheral edge of the substrate 133. That is, an opening 170 a is formed at the center of the airflow changing member 170.

基板133は、例えば、図4に示すように複数の個片133aを互いに隣接させてマトリクス状に配置することにより構成されていても良いし、図5乃至図7に示すように一枚の基板であっても良い。また、基板133の形状(平面形状)は、図4及び図5に示すように矩形であっても良いし、図6及び図7に示すように円形であっても良い。   The substrate 133 may be configured, for example, by arranging a plurality of pieces 133a adjacent to each other in a matrix as shown in FIG. 4, or a single substrate as shown in FIGS. It may be. Further, the shape (planar shape) of the substrate 133 may be rectangular as shown in FIGS. 4 and 5, or may be circular as shown in FIGS.

気流変化部材170は、例えば、図4乃至図6に示すように、基板133の周縁部と対向する領域に配置されている。
この場合、基板133に対して面直方向に気流変化部材170及び基板133を見たときに、気流変化部材170と基板133とが相互に重なり合う(オーバーラップする)領域の、基板133の径方向における寸法L(図6)は、基板133の直径(あるいは基板133の外形寸法)の20%以下とすることが好ましい。一例として、寸法Lは、4mm程度とすることができる。
For example, as shown in FIGS. 4 to 6, the airflow changing member 170 is disposed in a region facing the peripheral portion of the substrate 133.
In this case, when the airflow change member 170 and the substrate 133 are viewed in a direction perpendicular to the substrate 133, the radial direction of the substrate 133 is a region where the airflow change member 170 and the substrate 133 overlap (overlap) each other. The dimension L in FIG. 6 (FIG. 6) is preferably 20% or less of the diameter of the substrate 133 (or the outer dimension of the substrate 133). As an example, the dimension L can be about 4 mm.

ただし、気流変化部材170は、図7に示すように、基板133の周縁部の近傍の領域と対向する領域(基板133の外側近傍の領域と対向する領域)に配置されていても良い。この場合、気流変化部材170は、基板133の外周に隣接する領域と対向する領域に配置することが好ましい。   However, as shown in FIG. 7, the airflow changing member 170 may be disposed in a region facing a region near the peripheral portion of the substrate 133 (a region facing a region near the outside of the substrate 133). In this case, the airflow changing member 170 is preferably arranged in a region facing the region adjacent to the outer periphery of the substrate 133.

ただし、基板133に対して面直方向に気流変化部材170及び基板133を見たときに、気流変化部材170と基板133との間には、間隙が存在していても良い。つまり、基板133に対して面直方向に気流変化部材170及び基板133を見たときに、気流変化部材170と基板133とがオーバーラップしなくても良い。すなわち、気流変化部材170の内径が、基板133の外径より大きくても良い。この場合、気流変化部材170と基板133との間の間隙の、基板133の径方向における寸法は、例えば、基板133の直径(あるいは基板133の外形寸法)の10%以下とすることが好ましい。   However, when the airflow change member 170 and the substrate 133 are viewed in the direction perpendicular to the substrate 133, a gap may exist between the airflow change member 170 and the substrate 133. That is, when the airflow change member 170 and the substrate 133 are viewed in the direction perpendicular to the substrate 133, the airflow change member 170 and the substrate 133 do not need to overlap. That is, the inner diameter of the airflow changing member 170 may be larger than the outer diameter of the substrate 133. In this case, the dimension of the gap between the airflow changing member 170 and the substrate 133 in the radial direction of the substrate 133 is preferably, for example, 10% or less of the diameter of the substrate 133 (or the outer dimension of the substrate 133).

気流変化部材170と基板133との間の距離d1(図1)は、例えば、0mm以上10mm以下程度であることが好ましい。また、気流変化部材170と、基板133上に形成されるGaN層160(堆積物)との間の距離d2(図1)は、例えば、0mm以上10mm以下程度となることが好ましい。したがって、気流変化部材170は、基板133或いはGaN層160に接するように配置されていても良いし、基板133或いはGaN層160から離間して配置されていても良い。   The distance d1 (FIG. 1) between the airflow changing member 170 and the substrate 133 is preferably, for example, about 0 mm to 10 mm. Further, the distance d2 (FIG. 1) between the airflow changing member 170 and the GaN layer 160 (deposit) formed on the substrate 133 is preferably about 0 mm or more and 10 mm or less, for example. Therefore, the airflow changing member 170 may be disposed so as to be in contact with the substrate 133 or the GaN layer 160 or may be disposed apart from the substrate 133 or the GaN layer 160.

以下、本実施形態に係る半導体装置の製造方法の工程について、詳細に説明する。   Hereinafter, the steps of the semiconductor device manufacturing method according to the present embodiment will be described in detail.

先ず、基板133を準備する。基板は、例えば、GaN基板又はGaN層が形成されたサファイアなどの異種基板である。基板としてGaN基板を用いる場合、GaN基板の複数の小片を用いても良い。   First, the substrate 133 is prepared. The substrate is, for example, a heterogeneous substrate such as a GaN substrate or sapphire on which a GaN layer is formed. When a GaN substrate is used as the substrate, a plurality of small pieces of the GaN substrate may be used.

次に、基板133を反応管121内の基板ホルダ123にセットする。   Next, the substrate 133 is set on the substrate holder 123 in the reaction tube 121.

そして、ガス供給管125、126よりNガスをパージガスとして供給して反応管121内を十分にパージする。その後、ガス供給管125、126から導入するガスを、Hガス(キャリアガス)に切替えて、ヒータ129およびヒータ130により反応管121を昇温する。 Then, the inside of the reaction tube 121 is sufficiently purged by supplying N 2 gas as a purge gas from the gas supply tubes 125 and 126. Thereafter, the gas introduced from the gas supply pipes 125 and 126 is switched to H 2 gas (carrier gas), and the temperature of the reaction tube 121 is increased by the heater 129 and the heater 130.

成長領域122の温度が所定の温度(例えば500℃)に到達した時点で、ガス供給管125より供給するガスにNH3ガスを追加する。引き続き、Ga原料127の温度が所定の温度(例えば850℃)、成長領域122の温度が所定の温度(例えば1040℃)になるまで昇温を続ける。それぞれの温度が安定してから、ガス供給管126より供給するガスにHClガスを追加し、このガスをGa原料127と反応させ、塩化ガリウム(GaCl)を生成し、成長領域122に輸送する。 When the temperature of the growth region 122 reaches a predetermined temperature (for example, 500 ° C.), NH 3 gas is added to the gas supplied from the gas supply pipe 125. Subsequently, the temperature rise is continued until the temperature of the Ga material 127 reaches a predetermined temperature (for example, 850 ° C.) and the temperature of the growth region 122 reaches a predetermined temperature (for example, 1040 ° C.). After each temperature is stabilized, HCl gas is added to the gas supplied from the gas supply pipe 126, this gas is reacted with the Ga raw material 127, gallium chloride (GaCl) is generated, and transported to the growth region 122.

この際、ガス供給管126からSiHClガス(ドーピングガス)を供給する。成長領域122では、NHガスとGaClとSiHClガスとが反応して、SiがドープされたGaN層160(図1)が基板133上に成長する。 At this time, SiH 2 Cl 2 gas (doping gas) is supplied from the gas supply pipe 126. In the growth region 122, NH 3 gas, GaCl, and SiH 2 Cl 2 gas react to grow a Si-doped GaN layer 160 (FIG. 1) on the substrate 133.

GaN層160の厚さが所定の膜厚となった時点で、ガス供給管126からのSiHClガスの供給と、ガス供給管126からのHClガスの供給と、を停止し、ヒータ129、130の電源を遮断して、反応管121を降温する。 When the thickness of the GaN layer 160 reaches a predetermined thickness, the supply of SiH 2 Cl 2 gas from the gas supply pipe 126 and the supply of HCl gas from the gas supply pipe 126 are stopped, and the heater 129 is stopped. , 130 and the temperature of the reaction tube 121 is lowered.

そして、成長領域122の温度が500℃前後に低下するまで、ガス供給管124からNHガスの供給を続け、200℃前後まで低下後、ガス供給管124から供給するガスをNHガスからNガスなどのパージガスに切替える。 Then, the NH 3 gas is continuously supplied from the gas supply pipe 124 until the temperature of the growth region 122 decreases to around 500 ° C., and after the temperature decreases to around 200 ° C., the gas supplied from the gas supply pipe 124 is changed from NH 3 gas to N Switch to purge gas such as 2 gas.

こうして、ハイドライド気相成長法によって基板133上にGaN層160が形成されたGaN基板180を得ることができる。なお、ハイドライド気相成長中、基板133はその板面方向において回転する。   Thus, the GaN substrate 180 in which the GaN layer 160 is formed on the substrate 133 can be obtained by hydride vapor phase epitaxy. Note that the substrate 133 rotates in the plate surface direction during hydride vapor phase growth.

なお、ハイドライド気相成長の初期段階においては、必要に応じてマスク成長を行っても良い。   In the initial stage of hydride vapor phase growth, mask growth may be performed as necessary.

図13は比較形態に係る半導体装置の製造方法により作製されたGaN基板の模式的な側面図である。比較形態に係る製造方法は、気流変化部材170を用いない点でのみ、本実施形態に係る半導体装置の製造方法と相違し、その他の点では、本実施形態に係る半導体装置の製造方法と同じである。   FIG. 13 is a schematic side view of a GaN substrate manufactured by the semiconductor device manufacturing method according to the comparative embodiment. The manufacturing method according to the comparative embodiment is different from the manufacturing method of the semiconductor device according to the present embodiment only in that the airflow changing member 170 is not used, and is otherwise the same as the manufacturing method of the semiconductor device according to the present embodiment. It is.

本発明者の知見によれば、気流変化部材170を用いずにハイドライド気相成長法により基板133上にGaN層160等の堆積物を形成する場合、図13に示すように、基板133の周縁部における堆積物の膜厚が、それ以外の領域における堆積物の膜厚よりも厚くなる現象が生じる場合がある。すなわち、堆積物に、基板133の周縁部に沿うドーナツ状の隆起部が生じる場合がある。この隆起部が生じることは、基板133上の堆積物の膜厚が不均一となることすなわち堆積物の平坦性が悪化することを意味する。更に、この隆起部において、多結晶や極性反転結晶が成長してしまったりするといった成長不良が発生し、堆積物の膜質が不均一になることもある。   According to the knowledge of the present inventor, when deposits such as the GaN layer 160 are formed on the substrate 133 by the hydride vapor phase growth method without using the airflow changing member 170, as shown in FIG. In some cases, the film thickness of the deposit in the portion becomes thicker than the film thickness of the deposit in the other region. That is, a doughnut-shaped ridge along the peripheral edge of the substrate 133 may be generated in the deposit. The occurrence of the raised portions means that the film thickness of the deposit on the substrate 133 is not uniform, that is, the flatness of the deposit is deteriorated. Further, in this raised portion, a growth failure such as the growth of polycrystals or polarity inversion crystals may occur, and the film quality of the deposit may become non-uniform.

このような事情に対し、本実施形態では、反応ガスの流れを変化させる気流変化部材170を、基板133の周縁部又はその近傍の領域と対向するように配置した状態で、ハイドライド気相成長法を行う。このため、基板133の周縁部におけるGaN層160等の堆積物の成長を適度に抑制できる。その結果、例えば図8に示すように、基板133上におけるGaN層160等の堆積物の膜厚を全面に亘って均一化することができる。これにより堆積物の平坦性を良好にできるとともに、堆積物に多結晶や極性反転結晶などが生じるといった成長不良の発生を抑制できるので堆積物の膜質を均一にできる。   In view of such circumstances, in the present embodiment, the hydride vapor phase growth method is performed in a state where the airflow changing member 170 that changes the flow of the reaction gas is disposed so as to face the peripheral portion of the substrate 133 or a region in the vicinity thereof. I do. For this reason, it is possible to moderately suppress the growth of deposits such as the GaN layer 160 in the peripheral portion of the substrate 133. As a result, for example, as shown in FIG. 8, the film thickness of the deposit such as the GaN layer 160 on the substrate 133 can be made uniform over the entire surface. As a result, the flatness of the deposit can be improved, and the occurrence of growth failure such as the occurrence of polycrystals or polarity reversal crystals in the deposit can be suppressed, so that the film quality of the deposit can be made uniform.

以上のような第1の実施形態によれば、反応ガスの流れを変化させる気流変化部材170を、基板133の周縁部と対向する領域、又は基板133の周縁部の近傍の領域と対向する領域に配置した状態で、堆積物を形成する。これにより、基板133の周縁部における堆積物の成長を適度に抑制でき、その結果、基板133上における堆積物の膜厚を全面に亘って均一化することができる。   According to the first embodiment as described above, the airflow changing member 170 that changes the flow of the reaction gas is a region facing the peripheral portion of the substrate 133 or a region facing the peripheral portion of the substrate 133. A deposit is formed in the state of being arranged in the above. Thereby, the growth of the deposit on the peripheral portion of the substrate 133 can be moderately suppressed, and as a result, the thickness of the deposit on the substrate 133 can be made uniform over the entire surface.

気流変化部材170として、基板133の周縁部に沿う枠状の形状に形成されたものを用いることにより、基板133の周縁部における堆積物の成長を、より確実に抑制することができる。   By using the airflow changing member 170 formed in a frame shape along the peripheral edge of the substrate 133, the growth of deposits on the peripheral edge of the substrate 133 can be more reliably suppressed.

図11は気流変化部材170の変形例1を示す図であり、図12は気流変化部材170の変形例2を示す図である。図11、図12は、それぞれ、基板133に対して面直方向に気流変化部材170及び基板133を見たときの気流変化部材170と基板133との位置関係を示す。   FIG. 11 is a diagram showing a first modification of the airflow changing member 170, and FIG. 12 is a diagram showing a second modification of the airflow changing member 170. 11 and 12 show the positional relationship between the airflow change member 170 and the substrate 133 when the airflow change member 170 and the substrate 133 are viewed in the direction perpendicular to the substrate 133, respectively.

図11に示すように、変形例1では、気流変化部材170が一体の枠状の部材ではなく、複数の部分171からなる分割構造をなしている。複数の部分171は、例えば、それぞれ弧状の形状に形成されている。例えば、これら複数の部分171が、基板133の周縁部又はその近傍の領域と対向する領域に沿って配置されている。なお、部分171は、個別に、固定部材173(図3参照:図11では図示略)を介して反応管121の内面に固定されている。このような変形例1に係る気流変化部材170を用いた場合にも、上記と同様の効果が得られる。特に、ハイドライド気相成長中に基板133をその板面方向に回転させることにより、上記と実質的に同じ効果が得られる。   As shown in FIG. 11, in the first modification, the airflow changing member 170 is not an integral frame-shaped member, but has a divided structure including a plurality of portions 171. The plurality of portions 171 are each formed in an arc shape, for example. For example, the plurality of portions 171 are arranged along a region facing the peripheral portion of the substrate 133 or a region in the vicinity thereof. The portions 171 are individually fixed to the inner surface of the reaction tube 121 via a fixing member 173 (see FIG. 3; not shown in FIG. 11). Even when the airflow changing member 170 according to Modification 1 is used, the same effect as described above can be obtained. In particular, substantially the same effect as described above can be obtained by rotating the substrate 133 in the plate surface direction during hydride vapor phase growth.

図12に示すように、変形例2では、気流変化部材170が枠状の部材ではなく、基板の周縁部又はその近傍の領域と対向する領域の少なくとも一部分に配置されている。気流変化部材170は、例えば、図12に示すような1個の弧状の形状の部分とすることができる。ただし、気流変化部材170の形状は任意であり、例えば、矩形状や円形状であっても良い。なお、図12においては、固定部材173(図3参照)の図示を省略している。このような変形例2に係る気流変化部材170を用いた場合にも、ハイドライド気相成長中に基板133をその板面方向に回転させることにより、上記と実質的に同じ効果が得られる。   As shown in FIG. 12, in the second modification, the airflow changing member 170 is not a frame-shaped member, but is arranged in at least a part of a region facing the peripheral portion of the substrate or a region in the vicinity thereof. The airflow changing member 170 can be, for example, a single arc-shaped portion as shown in FIG. However, the shape of the airflow changing member 170 is arbitrary, and may be, for example, a rectangular shape or a circular shape. In FIG. 12, the illustration of the fixing member 173 (see FIG. 3) is omitted. Even when the airflow changing member 170 according to Modification 2 is used, substantially the same effect as described above can be obtained by rotating the substrate 133 in the plate surface direction during hydride vapor phase growth.

〔第2の実施形態〕
図9(a)及び図9(b)は第2の実施形態に係る半導体装置の製造方法を説明するための模式的な断面図である。この製造方法は、以下に説明する点で、上記の第1の実施形態に係る半導体装置の製造方法と相違し、その他の点では、第1の実施形態に係る半導体装置の製造方法と同様に構成されている。なお、図9においては、固定部材173(図3参照)の図示を省略している。
[Second Embodiment]
FIG. 9A and FIG. 9B are schematic cross-sectional views for explaining the method for manufacturing a semiconductor device according to the second embodiment. This manufacturing method differs from the manufacturing method of the semiconductor device according to the first embodiment in the points described below, and is otherwise the same as the manufacturing method of the semiconductor device according to the first embodiment. It is configured. In FIG. 9, illustration of the fixing member 173 (see FIG. 3) is omitted.

本実施形態の場合、基板133上にGaN層160等の堆積物を形成する工程は、基板133の周縁部と気流変化部材170との距離d1を変化させる工程を含む。   In the present embodiment, the step of forming a deposit such as the GaN layer 160 on the substrate 133 includes a step of changing the distance d1 between the peripheral edge of the substrate 133 and the airflow changing member 170.

基板133の周縁部と気流変化部材170との距離d1を変化させる工程では、例えば、図9(a)及び図9(b)に示すように、基板133上のGaN層160の膜厚が増加するにつれて、基板133と気流変化部材170との間の距離d1を増大させる。   In the step of changing the distance d1 between the peripheral edge of the substrate 133 and the airflow changing member 170, for example, as shown in FIGS. 9A and 9B, the film thickness of the GaN layer 160 on the substrate 133 is increased. As the distance increases, the distance d1 between the substrate 133 and the airflow changing member 170 is increased.

より具体的には、例えば、図9(a)及び図9(b)に示すように、基板133上のGaN層160の表面と気流変化部材170との間の距離d2が一定に維持されるように、基板133の周縁部と気流変化部材170との距離d1を変化させる工程を行う。すなわち、基板133上のGaN層160の膜厚がT1の状態(図9(a))から、膜厚がΔTだけ増加してT2となる過程で(図9(b)の状態になる過程で)、基板133の表面と気流変化部材170との間の距離d1をΔTだけ増加させる。   More specifically, for example, as shown in FIGS. 9A and 9B, the distance d2 between the surface of the GaN layer 160 on the substrate 133 and the airflow changing member 170 is kept constant. As described above, the step of changing the distance d1 between the peripheral portion of the substrate 133 and the airflow changing member 170 is performed. That is, from the state where the film thickness of the GaN layer 160 on the substrate 133 is T1 (FIG. 9A) to the state where the film thickness is increased by ΔT to T2 (in the process of becoming the state of FIG. 9B). ) Increase the distance d1 between the surface of the substrate 133 and the airflow changing member 170 by ΔT.

図10は第2の実施形態に係るHVPE装置220を示す模式的な断面図である。このHVPE装置220は、以下に説明する点で、上記の第1の実施形態に係るHVPE装置120と相違し、その他の点では、第1の実施形態に係るHVPE装置120と同様に構成されている。なお、図10においては、固定部材173(図3参照)の図示を省略している。   FIG. 10 is a schematic cross-sectional view showing an HVPE apparatus 220 according to the second embodiment. The HVPE device 220 differs from the HVPE device 120 according to the first embodiment in the points described below, and is otherwise configured in the same manner as the HVPE device 120 according to the first embodiment. Yes. In FIG. 10, the illustration of the fixing member 173 (see FIG. 3) is omitted.

図10に示すように、HVPE装置220は、気流変化部材170と基板133の周縁部との間の距離d1を変化させる距離変化機構150と、距離変化機構150の動作制御を行う制御部155と、を有する。   As shown in FIG. 10, the HVPE apparatus 220 includes a distance changing mechanism 150 that changes the distance d1 between the airflow changing member 170 and the peripheral portion of the substrate 133, and a control unit 155 that controls the operation of the distance changing mechanism 150. Have.

距離変化機構150は、例えば、基板ホルダ123(保持部)を気流変化部材170に対して相対的に移動させることによって、距離d1を変化させる。距離変化機構150は、モータ等の図示しないアクチュエータを有している。制御部155は、このアクチュエータの動作制御を行うことによって、基板133の周縁部との間の距離d1を変化させる。すなわち、例えば、基板133上のGaN層160の膜厚がT1の状態(図9(a))から、膜厚がΔTだけ増加してT2となる過程で(図9(b)の状態になる過程で)、基板ホルダ123をΔTだけ気流変化部材170から遠ざける。距離変化機構150は、例えば、回転軸132において反応管121の外部に突出した突出部132aを保持し、突出部132aをその軸方向に移動させることによって、回転軸132と、回転軸132により支持された基板ホルダ123と、基板ホルダ123により保持された基板133とを、気流変化部材170に対して相対的に移動させる。なお、図10において、回転軸132を回転駆動させる回転機構(回転アクチュエータ等を含む)については、図示を省略している。   The distance changing mechanism 150 changes the distance d1 by moving the substrate holder 123 (holding unit) relative to the airflow changing member 170, for example. The distance changing mechanism 150 has an actuator (not shown) such as a motor. The control unit 155 changes the distance d1 between the peripheral portion of the substrate 133 and the operation of the actuator. That is, for example, from the state where the film thickness of the GaN layer 160 on the substrate 133 is T1 (FIG. 9A) to the state where the film thickness is increased by ΔT and becomes T2 (state of FIG. 9B). In the process), the substrate holder 123 is moved away from the airflow changing member 170 by ΔT. The distance changing mechanism 150 is supported by the rotating shaft 132 and the rotating shaft 132 by, for example, holding the protruding portion 132a protruding to the outside of the reaction tube 121 on the rotating shaft 132 and moving the protruding portion 132a in the axial direction. The substrate holder 123 thus moved and the substrate 133 held by the substrate holder 123 are moved relative to the airflow changing member 170. In FIG. 10, the illustration of a rotation mechanism (including a rotation actuator) that rotates the rotation shaft 132 is omitted.

なお、距離変化機構150は、距離d1を連続的に徐々に変化させても良いし、段階的に変化させても良い。   Note that the distance changing mechanism 150 may change the distance d1 gradually and gradually, or may change it stepwise.

以上のような第2の実施形態によれば、基板133上にGaN層160などの堆積物を形成する工程は、基板133の周縁部と気流変化部材170との距離d1を変化させる工程を含む。これにより、距離d1を適切な距離に設定し、基板133上に良好にGaN層160などの堆積物を形成することができる。   According to the second embodiment as described above, the step of forming the deposit such as the GaN layer 160 on the substrate 133 includes the step of changing the distance d1 between the peripheral portion of the substrate 133 and the airflow changing member 170. . Thereby, the distance d1 can be set to an appropriate distance, and the deposit such as the GaN layer 160 can be favorably formed on the substrate 133.

より具体的には、例えば、基板133上の堆積物の膜厚が増加するにつれて、距離d1を増大させることにより、距離d2の変化量を抑制できる。よって、堆積物の表面における反応ガス流の状態の経時変化を抑制できるので、基板133上に良好にGaN層160などの堆積物を形成することができる。   More specifically, for example, the amount of change in the distance d2 can be suppressed by increasing the distance d1 as the thickness of the deposit on the substrate 133 increases. Therefore, since the change with time of the state of the reactive gas flow on the surface of the deposit can be suppressed, the deposit such as the GaN layer 160 can be favorably formed on the substrate 133.

より具体的には、例えば、距離d2が一定に維持されるように、距離d1を変化させる工程を行うことにより、堆積物の表面における反応ガス流の状態の経時変化を一層抑制できる。よって、基板133上に一層良好にGaN層160などの堆積物を形成することができる。   More specifically, for example, by performing the step of changing the distance d1 so that the distance d2 is kept constant, it is possible to further suppress the temporal change in the state of the reactive gas flow on the surface of the deposit. Therefore, a deposit such as the GaN layer 160 can be formed on the substrate 133 more satisfactorily.

なお、上記においては、HVPE装置が横型の例を説明したが、HVPE装置は縦型であってもよい。   In the above description, the HVPE apparatus is a horizontal type, but the HVPE apparatus may be a vertical type.

また、上記においては、ハイドライド気相成長法により基板133上にGaN層160を成長させる例を説明したが、GaN層以外のGaN系半導体層(AlGaN層、InGaN層等)を成長させても良い。   Further, in the above description, an example in which the GaN layer 160 is grown on the substrate 133 by the hydride vapor phase growth method has been described. However, a GaN-based semiconductor layer (AlGaN layer, InGaN layer, etc.) other than the GaN layer may be grown. .

また、上記においては、基板133に対して面直方向に気流変化部材170及び基板133を見たときに、基板133と開口170aとが互いに同心円状となるように、基板133および気流変化部材170を配置する例を説明した。ただし、基板133および気流変化部材170の中心を互いにオフセットさせて、基板133の周方向における一部分のみが気流変化部材170と重なるように、基板133および気流変化部材170の配置を調整しても良い。   In the above description, the substrate 133 and the airflow change member 170 are arranged so that the substrate 133 and the opening 170a are concentric with each other when the airflow change member 170 and the substrate 133 are viewed in a direction perpendicular to the substrate 133. An example of arranging the above has been described. However, the centers of the substrate 133 and the airflow change member 170 may be offset from each other, and the arrangement of the substrate 133 and the airflow change member 170 may be adjusted so that only a part of the substrate 133 in the circumferential direction overlaps the airflow change member 170. .

また、上記においては、基板ホルダ123が1個の例を説明したが、基板ホルダ123は2個以上であり、各基板ホルダ123にそれぞれ基板133を保持して、各基板133上にハイドライド気相成長法により堆積物を形成しても良い。なお、各基板133(各基板ホルダ123)に対応して、それぞれ気流変化部材170を設ける。   In the above description, an example in which the number of substrate holders 123 is one has been described. However, the number of substrate holders 123 is two or more. Each substrate holder 123 holds a substrate 133, and a hydride vapor phase is formed on each substrate 133. A deposit may be formed by a growth method. An airflow changing member 170 is provided for each substrate 133 (each substrate holder 123).

また、上記の第2の実施形態においては、基板ホルダ123を移動させる代わりに、気流変化部材170を移動させることによって、距離d1を変化させても良い。また、基板ホルダ123と気流変化部材170との双方を移動させることによって、距離d1を変化させても良い。   In the second embodiment, the distance d1 may be changed by moving the airflow changing member 170 instead of moving the substrate holder 123. Further, the distance d1 may be changed by moving both the substrate holder 123 and the airflow changing member 170.

また、上記の第2の実施形態においては、気流変化部材170への多結晶堆積による見かけ上の厚さ増加や開口170aの見かけ上の口径縮小などの外形形状変化に応じて、距離d1を変化させてもよい。この場合の距離d1の変化は、第2の実施形態と同様に、連続的に徐々に行っても良いし、段階的に行っても良い。
具体的には、例えば、気流変化部材170における基板133側の面に付着した堆積物と、基板133上のGaN層160の表面と、の間の距離が一定に維持されるように、距離d1を変化させることができる。
In the second embodiment, the distance d1 is changed in accordance with a change in outer shape such as an apparent thickness increase due to polycrystalline deposition on the airflow change member 170 or an apparent diameter reduction of the opening 170a. You may let them. The change of the distance d1 in this case may be performed gradually and gradually as in the second embodiment.
Specifically, for example, the distance d1 is maintained so that the distance between the deposit attached to the surface of the airflow change member 170 on the substrate 133 side and the surface of the GaN layer 160 on the substrate 133 is kept constant. Can be changed.

基板133として、直径54mmのGaN基板を準備した。その基板133を、アルミナ系接着剤を用いて基板ホルダ123に貼り付け、自然乾燥および150℃で1時間の電気炉内乾燥を行なった。
次に、基板ホルダ123に貼り付けた基板133と、内径が各種の設定値(後述)とされ、外径が67mm、厚さが3mmの気流変化部材170を、基板133と気流変化部材170の間隔が所定の距離(後述)となるように、HVPE装置120内に配置した。
成長条件は、成長温度1075℃、ガス供給管125を介してドーピングガスとしてのジクロロシランとともに供給するキャリアガスの流量比(N/(N+H))を0.25、ガス供給管126を介してGa原料127上に供給するHClの流量を200cc/min、ガス供給管124を介して供給するNHの流量を3000cc/minとした。
A GaN substrate having a diameter of 54 mm was prepared as the substrate 133. The substrate 133 was attached to the substrate holder 123 using an alumina-based adhesive, and was naturally dried and dried in an electric furnace at 150 ° C. for 1 hour.
Next, the substrate 133 affixed to the substrate holder 123 and the airflow changing member 170 having an inner diameter of various set values (described later), an outer diameter of 67 mm, and a thickness of 3 mm are connected to the substrate 133 and the airflow changing member 170. It arrange | positioned in the HVPE apparatus 120 so that a space | interval might become predetermined distance (after-mentioned).
The growth conditions are a growth temperature of 1075 ° C., a carrier gas flow rate ratio (N 2 / (N 2 + H 2 )) supplied with dichlorosilane as a doping gas via a gas supply pipe 125 0.25, and a gas supply pipe 126. The flow rate of HCl supplied onto the Ga raw material 127 via 200 was 200 cc / min, and the flow rate of NH 3 supplied via the gas supply pipe 124 was 3000 cc / min.

各成長条件は以下の通りである。   Each growth condition is as follows.

比較例1:気流変化部材170無し、成長時間15min   Comparative Example 1: No airflow change member 170, growth time 15 min

実施例1:気流変化部材170の内径54mm(L=0mm、オーバーラップ面積比率0%)、基板133との間隔(距離d1):5mm、成長時間15min   Example 1: Inner diameter 54 mm (L = 0 mm, overlap area ratio 0%) of airflow changing member 170, distance from substrate 133 (distance d1): 5 mm, growth time 15 min

実施例2:気流変化部材170の内径54mm(L=0mm、オーバーラップ面積比率0%)、基板133との間隔(距離d1):2mm、成長時間15min   Example 2: The inner diameter of the airflow changing member 170 is 54 mm (L = 0 mm, the overlap area ratio is 0%), the distance from the substrate 133 (distance d1): 2 mm, and the growth time is 15 min.

実施例3:気流変化部材170の内径54mm(L=0mm、オーバーラップ面積比率0%)、基板133との間隔(距離d1):1mm、成長時間15min   Example 3: The inner diameter of the airflow changing member 170 is 54 mm (L = 0 mm, the overlap area ratio is 0%), the distance from the substrate 133 (distance d1): 1 mm, and the growth time is 15 min.

実施例4:気流変化部材170の内径50mm(L=2mm、オーバーラップ面積比率14.3%)、基板133との間隔(距離d1):5mm、成長時間15min   Example 4: The inner diameter of the airflow changing member 170 is 50 mm (L = 2 mm, the overlap area ratio is 14.3%), the distance from the substrate 133 (distance d1): 5 mm, and the growth time is 15 min.

実施例5:気流変化部材170の内径50mm(L=2mm、オーバーラップ面積比率14.3%)、基板133との間隔(距離d1):2mm、成長時間15min   Example 5: The inner diameter of the airflow changing member 170 is 50 mm (L = 2 mm, the overlap area ratio is 14.3%), the distance from the substrate 133 (distance d1): 2 mm, and the growth time is 15 min.

実施例6:気流変化部材170の内径50mm(L=2mm、オーバーラップ面積比率14.3%)、基板133との間隔(距離d1):1mm、成長時間15min   Example 6: The inner diameter of the airflow changing member 170 is 50 mm (L = 2 mm, the overlap area ratio is 14.3%), the distance from the substrate 133 (distance d1): 1 mm, and the growth time is 15 min.

比較例2:気流変化部材170無し、成長時間5h、基板133の位置は一定   Comparative Example 2: No airflow change member 170, growth time 5h, position of substrate 133 is constant

実施例7:気流変化部材170の内径50mm(L=2mm、オーバーラップ面積比率14.3%)、基板133との間隔(距離d1)の初期値:2.5mm、成長時間18h、d1を0.5mm/hの割合で増加   Example 7: Internal diameter of airflow changing member 170 50 mm (L = 2 mm, overlap area ratio 14.3%), initial value of distance (distance d1) from substrate 133: 2.5 mm, growth time 18 h, d1 is 0 Increased at a rate of 5 mm / h

オーバーラップ面積比率とは、基板133に対して面直方向に気流変化部材170及び基板133を見たときに気流変化部材170と基板133とが相互に重なり合う(オーバーラップする)領域の面積をS2、基板133の面積をS1とすると、(S2/S1)×100(%)で求まる比率である。   The overlap area ratio is the area of the region where the airflow change member 170 and the substrate 133 overlap (overlap) each other when the airflow change member 170 and the substrate 133 are viewed in a direction perpendicular to the substrate 133. When the area of the substrate 133 is S1, the ratio is obtained by (S2 / S1) × 100 (%).

比較例1、および、実施例1から3について、基板133に成長した堆積物(GaN層160)の膜厚を測定し、基板133の中心付近での成長速度を基準とした、基板133上の各位置での成長速度比(各位置の成長速度/中心付近の成長速度)を求めた。その結果を図14に示す。すなわち、図14は、比較例1と実施例1から3のそれぞれにおいて、基板133の中心付近と基板133上の各位置との堆積物の成長速度比を示す図である。図14において、横軸は基板133の外周端からの距離(mm)であり、縦軸は成長速度比である。
図14に示すように、比較例1の場合(気流変化部材170が無い場合)、基板133の外周端での成長速度が突出して速く、基板133の外周端での成長速度は、基板133の中心付近での成長速度の2.3倍となっている。
これに対し、内径54mmの気流変化部材170を用いた実施例1から3では、基板133の外周端付近の急激な成長速度増加が抑えられ、基板133の外周端での成長速度は、基板133の中心付近の成長速度の0.7倍から1.7倍の範囲であることが分かる。
また、基板133と気流変化部材170との距離d1を近づけると、基板133の外周端付近での成長速度が減少し、遠ざけると基板133の外周端付近での成長速度が増加する傾向があることが分かる。このため、距離d1を適度に調整することによって、成長速度分布の最適化が可能であることが分かった。
For Comparative Example 1 and Examples 1 to 3, the film thickness of the deposit (GaN layer 160) grown on the substrate 133 was measured, and the growth rate near the center of the substrate 133 was used as a reference. The growth rate ratio (growth rate at each location / growth rate near the center) at each location was determined. The result is shown in FIG. That is, FIG. 14 is a graph showing the growth rate ratio of the deposit between the vicinity of the center of the substrate 133 and each position on the substrate 133 in each of Comparative Example 1 and Examples 1 to 3. In FIG. 14, the horizontal axis is the distance (mm) from the outer peripheral edge of the substrate 133, and the vertical axis is the growth rate ratio.
As shown in FIG. 14, in the case of Comparative Example 1 (when there is no airflow changing member 170), the growth rate at the outer peripheral edge of the substrate 133 protrudes faster and the growth rate at the outer peripheral edge of the substrate 133 is higher than that of the substrate 133. It is 2.3 times the growth rate near the center.
On the other hand, in Examples 1 to 3 using the airflow changing member 170 having an inner diameter of 54 mm, the rapid growth rate increase near the outer peripheral edge of the substrate 133 is suppressed, and the growth speed at the outer peripheral edge of the substrate 133 is It can be seen that the growth rate is in the range of 0.7 to 1.7 times the growth rate in the vicinity of the center.
Further, when the distance d1 between the substrate 133 and the airflow changing member 170 is reduced, the growth rate near the outer peripheral edge of the substrate 133 decreases, and when the distance is increased, the growth rate near the outer peripheral edge of the substrate 133 tends to increase. I understand. For this reason, it was found that the growth rate distribution can be optimized by appropriately adjusting the distance d1.

内径50mmの気流変化部材170を用いた実施例4から6について、実施例1から3と同様に基板133に成長した堆積物(GaN層160)の膜厚を測定し、基板133の中心付近を基準とした成長速度比(各位置の成長速度/中心付近の成長速度)を求めた。その結果を図15に示す。すなわち、図15は、実施例4から6のそれぞれにおいて、基板133の中心付近と基板133上の各位置との堆積物の成長速度比を示す図である。図15において、横軸は基板133の外周端からの距離(mm)であり、縦軸は成長速度比である。
図15に示すように、内径50mmの気流変化部材170を用いた場合、内径54mmの気流変化部材170を用いる場合(実施例1から3)と比べて、基板133の外周端付近での成長速度増加がさらに抑えられ、基板133の外周端での成長速度は、基板133の中心付近の成長速度の0.5倍から1.4倍の範囲であることが分かる。
気流変化部材170の内径が50mmの場合も、気流変化部材170の内径が54mmの場合と同様に、基板133と気流変化部材170との距離d1を近づけると、基板133の外周端付近での成長速度が減少し、遠ざけると基板133の外周端付近での成長速度が増加する傾向が確認された。
For Examples 4 to 6 using the airflow changing member 170 having an inner diameter of 50 mm, the film thickness of the deposit (GaN layer 160) grown on the substrate 133 was measured in the same manner as in Examples 1 to 3, and the vicinity of the center of the substrate 133 was measured. A reference growth rate ratio (growth rate at each position / growth rate near the center) was determined. The result is shown in FIG. That is, FIG. 15 is a diagram showing the growth rate ratio of the deposit between the vicinity of the center of the substrate 133 and each position on the substrate 133 in each of Examples 4 to 6. In FIG. 15, the horizontal axis represents the distance (mm) from the outer peripheral edge of the substrate 133, and the vertical axis represents the growth rate ratio.
As shown in FIG. 15, when the airflow changing member 170 having an inner diameter of 50 mm is used, the growth rate near the outer peripheral edge of the substrate 133 is compared with the case where the airflow changing member 170 having an inner diameter of 54 mm is used (Examples 1 to 3). The increase is further suppressed, and it can be seen that the growth rate at the outer peripheral edge of the substrate 133 is in the range of 0.5 to 1.4 times the growth rate near the center of the substrate 133.
In the case where the inner diameter of the airflow changing member 170 is 50 mm, as in the case where the inner diameter of the airflow changing member 170 is 54 mm, if the distance d1 between the substrate 133 and the airflow changing member 170 is reduced, the growth near the outer peripheral edge of the substrate 133 is performed. It was confirmed that the growth rate in the vicinity of the outer peripheral edge of the substrate 133 increased as the rate decreased and moved away.

図14および図15の結果から、気流変化部材170の内径を小さくするか、気流変化部材170と基板133との距離d1を短くすることが成長速度分布の凸化(基板133の周縁部での成長速度の鈍化)につながることが確かめられた。   From the results of FIGS. 14 and 15, the growth rate distribution becomes convex (in the periphery of the substrate 133) by reducing the inner diameter of the airflow changing member 170 or shortening the distance d1 between the airflow changing member 170 and the substrate 133. It was confirmed that this led to a slowdown in growth rate.

図16は、比較例2、および実施例7のそれぞれにおいて、基板133の外周端からの距離と、堆積物の成長厚さと、の関係を示す図である。図16において、横軸は基板133の外周端からの距離(mm)であり、縦軸は成長厚さ(成長膜厚)である。
比較例2では、気流変化部材170を用いずに、基板133の位置を一定にして成長を行なった。図16に示すように、比較例2では、基板133の中心付近では平坦にGaN層160が成長しているものの、基板133の周縁部(基板133の外周弧に沿った部分)では幅1mm程度、高さ1mm程度の先鋭化した(高さ方向の先端が先鋭化した)GaN層160が形成された。また先鋭化したGaN層160の先端に、多結晶が生成されている箇所も確認された。GaN層160の成長厚さを測定したところ、中心付近の成長厚さが0.89mm、周縁部での最大成長厚さ(界面から先鋭部頂点までの高さ)は1.85mmであり、基板133の中心付近と周縁部との成長速度比の最大値は1.85/0.89=2.08であった。
一方、実施例7では、成長表面の外周端部に先鋭形状は無く、平坦に成長した。成長厚さを測定したところ、中心付近の成長厚さが3.21mm、外周端部の成長厚さは3.27mmであり、成長速度比は3.27/3.21=1.02であった。また、成長厚さが最も厚い点でも3.53mmであり、成長速度比の最大値は3.53/3.21=1.10である。つまり、GaN層160が実質的に平坦であることが確かめられた。
基板133上のGaN層160の厚みが増すにつれて、気流変化部材170と基板133との距離d1が短くなるだけでなく、気流変化部材170へのGaN多結晶の堆積により該気流変化部材170の見かけ上の内径も小さくなる。実施例7のように、0.5mm/hの割合で気流変化部材170と基板133との距離d1を遠ざけることにより、平坦なGaN層160を成長することができた。
FIG. 16 is a diagram illustrating the relationship between the distance from the outer peripheral edge of the substrate 133 and the growth thickness of the deposit in each of Comparative Example 2 and Example 7. In FIG. 16, the horizontal axis is the distance (mm) from the outer peripheral edge of the substrate 133, and the vertical axis is the growth thickness (growth film thickness).
In Comparative Example 2, the substrate 133 was grown at a constant position without using the airflow changing member 170. As shown in FIG. 16, in Comparative Example 2, the GaN layer 160 grows flat near the center of the substrate 133, but the peripheral portion of the substrate 133 (the portion along the outer peripheral arc of the substrate 133) has a width of about 1 mm. A sharpened GaN layer 160 having a height of about 1 mm (having a sharpened tip in the height direction) was formed. Moreover, the location where the polycrystal was produced | generated at the front-end | tip of the sharpened GaN layer 160 was also confirmed. When the growth thickness of the GaN layer 160 was measured, the growth thickness near the center was 0.89 mm, the maximum growth thickness at the peripheral edge (height from the interface to the apex of the sharp edge) was 1.85 mm, and the substrate The maximum value of the growth rate ratio between the vicinity of the center of 133 and the peripheral portion was 1.85 / 0.89 = 2.08.
On the other hand, in Example 7, there was no sharp shape in the outer peripheral edge part of the growth surface, and it grew flat. When the growth thickness was measured, the growth thickness near the center was 3.21 mm, the growth thickness at the outer peripheral edge was 3.27 mm, and the growth rate ratio was 3.27 / 3.21 = 1.02. It was. Further, even at the thickest growth thickness, it is 3.53 mm, and the maximum value of the growth rate ratio is 3.53 / 3.21 = 1.10. That is, it was confirmed that the GaN layer 160 is substantially flat.
As the thickness of the GaN layer 160 on the substrate 133 increases, not only the distance d1 between the airflow changing member 170 and the substrate 133 decreases, but also the appearance of the airflow changing member 170 due to the deposition of GaN polycrystals on the airflow changing member 170. The upper inner diameter is also smaller. As in Example 7, the flat GaN layer 160 could be grown by increasing the distance d1 between the airflow changing member 170 and the substrate 133 at a rate of 0.5 mm / h.

120 ハイドライド気相成長装置(HVPE装置)
121 反応管
122 成長領域
123 基板ホルダ
123a 接着剤
124 ガス供給管
125 ガス供給管
126 ガス供給管
127 Ga原料
128 ソースボート
129 ヒータ
130 ヒータ
132 回転軸
132a 突出部
133 基板
133a 個片
135 ガス排出管
136 仕切板
137 窒素原料ガス供給部
137a 窒素原料ガス供給部管
139 III族原料ガス供給部
139a III族原料ガス供給管
150 距離変化機構
155 制御部
160 GaN層
170 気流変化部材
170a 開口
171 部分
173 固定部材
180 GaN基板
220 ハイドライド気相成長装置(HVPE装置)
120 Hydride vapor phase growth equipment (HVPE equipment)
121 Reaction tube 122 Growth region 123 Substrate holder 123a Adhesive 124 Gas supply tube 125 Gas supply tube 126 Gas supply tube 127 Ga raw material 128 Source boat 129 Heater 130 Heater 132 Rotating shaft 132a Protrusion 133 Substrate 133a Piece 135 Gas discharge tube 136 Partition plate 137 Nitrogen source gas supply unit 137a Nitrogen source gas supply unit tube 139 Group III source gas supply unit 139a Group III source gas supply tube 150 Distance change mechanism 155 Control unit 160 GaN layer 170 Airflow change member 170a Opening 171 Portion 173 Fixed member 180 GaN substrate 220 Hydride vapor phase growth equipment (HVPE equipment)

Claims (11)

基板に反応ガスを供給して、前記基板上にハイドライド気相成長法により堆積物を形成する工程を有し、
前記堆積物を形成する工程では、前記反応ガスの流れを変化させる気流変化部材を、前記基板の周縁部又はその近傍の領域と対向するように、当該周縁部又は当該近傍の領域よりも前記反応ガスの上流側に配置した状態で、前記堆積物を形成する、半導体装置の製造方法。
Supplying a reaction gas to the substrate, and forming a deposit on the substrate by a hydride vapor phase growth method;
In the step of forming the deposit, the air flow changing member that changes the flow of the reaction gas is more reactive than the peripheral portion or the region near the peripheral portion or the region near the peripheral portion of the substrate. A method for manufacturing a semiconductor device, wherein the deposit is formed in a state of being disposed upstream of a gas.
前記気流変化部材は、前記基板の周縁部に沿う枠状の形状に形成されている請求項1に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 1, wherein the airflow change member is formed in a frame shape along a peripheral edge portion of the substrate. 前記堆積物を形成する工程は、前記基板の周縁部と前記気流変化部材との距離を変化させる工程を含む請求項1又は2に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 1, wherein the step of forming the deposit includes a step of changing a distance between a peripheral edge portion of the substrate and the airflow change member. 前記基板の周縁部と前記気流変化部材との距離を変化させる工程では、前記基板上の前記堆積物の膜厚が増加するにつれて、前記基板と前記気流変化部材との間の距離を増大させる請求項3に記載の半導体装置の製造方法。   The step of changing the distance between the peripheral portion of the substrate and the airflow changing member increases the distance between the substrate and the airflow changing member as the film thickness of the deposit on the substrate increases. Item 4. A method for manufacturing a semiconductor device according to Item 3. 前記基板上の前記堆積物の表面と前記気流変化部材との間の距離が一定に維持されるように、前記基板の周縁部と前記気流変化部材との距離を変化させる工程を行う請求項4に記載の半導体装置の製造方法。   5. The step of changing the distance between the peripheral portion of the substrate and the airflow change member so that the distance between the surface of the deposit on the substrate and the airflow change member is kept constant. The manufacturing method of the semiconductor device as described in any one of. 前記基板に対して供給される反応ガスの気流の方向は、前記基板に対する面直方向成分を含む請求項1乃至5の何れか一項に記載の半導体装置の製造方法。   6. The method of manufacturing a semiconductor device according to claim 1, wherein a direction of an air flow of a reactive gas supplied to the substrate includes a perpendicular direction component with respect to the substrate. ハイドライド気相成長法により基板上に堆積物を形成可能なように前記基板を保持する保持部と、
前記保持部により保持された前記基板に反応ガスを供給するガス供給部と、
前記反応ガスの流れを変化させる気流変化部材と、
を有し、
前記気流変化部材は、前記基板の周縁部又はその近傍の領域と対向するように、当該周縁部又は当該近傍の領域よりも前記反応ガスの上流側に配置されているハイドライド気相成長装置。
A holding unit for holding the substrate so that a deposit can be formed on the substrate by a hydride vapor phase growth method;
A gas supply unit for supplying a reactive gas to the substrate held by the holding unit;
An airflow changing member for changing the flow of the reaction gas;
Have
The hydride vapor phase growth apparatus, wherein the airflow changing member is disposed on the upstream side of the reactive gas with respect to the peripheral edge or the vicinity thereof so as to face the peripheral edge of the substrate or the vicinity thereof.
前記気流変化部材は、前記基板の周縁部に沿う枠状の形状に形成されている請求項7に記載のハイドライド気相成長装置。   The hydride vapor phase growth apparatus according to claim 7, wherein the airflow changing member is formed in a frame shape along the peripheral edge of the substrate. 前記気流変化部材と前記基板の周縁部との間の距離を変化させる距離変化機構を有する請求項7又は8に記載のハイドライド気相成長装置。   The hydride vapor phase growth apparatus according to claim 7 or 8, further comprising a distance changing mechanism that changes a distance between the airflow changing member and a peripheral portion of the substrate. 前記距離変化機構は、前記気流変化部材を前記保持部に対して相対的に移動させることによって、前記距離を変化させる請求項9に記載のハイドライド気相成長装置。   The hydride vapor phase growth apparatus according to claim 9, wherein the distance changing mechanism changes the distance by moving the airflow changing member relative to the holding unit. 前記ガス供給部によって前記基板に対して供給される反応ガスの気流の方向は、前記基板に対する面直方向成分を含む請求項7乃至10の何れか一項に記載のハイドライド気相成長装置。   The hydride vapor phase growth apparatus according to any one of claims 7 to 10, wherein a direction of a flow of a reactive gas supplied to the substrate by the gas supply unit includes a perpendicular direction component with respect to the substrate.
JP2013079921A 2013-04-05 2013-04-05 Semiconductor device manufacturing method and hydride vapor phase growth apparatus Expired - Fee Related JP6158564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013079921A JP6158564B2 (en) 2013-04-05 2013-04-05 Semiconductor device manufacturing method and hydride vapor phase growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013079921A JP6158564B2 (en) 2013-04-05 2013-04-05 Semiconductor device manufacturing method and hydride vapor phase growth apparatus

Publications (2)

Publication Number Publication Date
JP2014201496A true JP2014201496A (en) 2014-10-27
JP6158564B2 JP6158564B2 (en) 2017-07-05

Family

ID=52352269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013079921A Expired - Fee Related JP6158564B2 (en) 2013-04-05 2013-04-05 Semiconductor device manufacturing method and hydride vapor phase growth apparatus

Country Status (1)

Country Link
JP (1) JP6158564B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059009A1 (en) * 2017-09-25 2019-03-28 国立大学法人名古屋大学 Vapor deposition apparatus
JP2019196292A (en) * 2018-05-11 2019-11-14 国立大学法人名古屋大学 Vapor phase growth apparatus
JP2019196293A (en) * 2018-05-11 2019-11-14 国立大学法人名古屋大学 Vapor growth apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11219918A (en) * 1998-01-30 1999-08-10 Anelva Corp Chemical vapor deposition device
JP2007042846A (en) * 2005-08-03 2007-02-15 Furukawa Co Ltd Hydride vapor phase epitaxy apparatus, method of manufacturing group iii nitride semiconductor substrate, and group iii nitride semiconductor substrate
JP2009107900A (en) * 2007-10-31 2009-05-21 Denso Corp Device for manufacturing silicon carbide single crystal and method for manufacturing the same
JP2012246195A (en) * 2011-05-30 2012-12-13 Hitachi Cable Ltd Semi-insulating nitride semiconductor wafer, semi-insulating nitride semiconductor self-supporting substrate and transistor, and method and apparatus for growing semi-insulating nitride semiconductor layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11219918A (en) * 1998-01-30 1999-08-10 Anelva Corp Chemical vapor deposition device
JP2007042846A (en) * 2005-08-03 2007-02-15 Furukawa Co Ltd Hydride vapor phase epitaxy apparatus, method of manufacturing group iii nitride semiconductor substrate, and group iii nitride semiconductor substrate
JP2009107900A (en) * 2007-10-31 2009-05-21 Denso Corp Device for manufacturing silicon carbide single crystal and method for manufacturing the same
JP2012246195A (en) * 2011-05-30 2012-12-13 Hitachi Cable Ltd Semi-insulating nitride semiconductor wafer, semi-insulating nitride semiconductor self-supporting substrate and transistor, and method and apparatus for growing semi-insulating nitride semiconductor layer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059009A1 (en) * 2017-09-25 2019-03-28 国立大学法人名古屋大学 Vapor deposition apparatus
CN111133133A (en) * 2017-09-25 2020-05-08 国立大学法人名古屋大学 Vapor phase growth apparatus
CN111133133B (en) * 2017-09-25 2022-03-18 国立大学法人名古屋大学 Vapor phase growth apparatus and control method thereof
US11591717B2 (en) 2017-09-25 2023-02-28 National University Corporation Nagoya University Vapor phase epitaxial growth device
US12009206B2 (en) 2017-09-25 2024-06-11 National University Corporation Nagoya University Vapor phase epitaxial growth device
JP2019196292A (en) * 2018-05-11 2019-11-14 国立大学法人名古屋大学 Vapor phase growth apparatus
JP2019196293A (en) * 2018-05-11 2019-11-14 国立大学法人名古屋大学 Vapor growth apparatus
JP7002731B2 (en) 2018-05-11 2022-01-20 国立大学法人東海国立大学機構 Vapor deposition equipment
JP7002730B2 (en) 2018-05-11 2022-01-20 国立大学法人東海国立大学機構 Vapor deposition equipment

Also Published As

Publication number Publication date
JP6158564B2 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
US20110259879A1 (en) Multi-Zone Induction Heating for Improved Temperature Uniformity in MOCVD and HVPE Chambers
JP2007311558A (en) Vapor phase deposition apparatus and method of manufacturing vapor phase deposition substrate
US20130005118A1 (en) Formation of iii-v materials using mocvd with chlorine cleans operations
JP6704386B2 (en) Nitride semiconductor template, manufacturing method thereof, and epitaxial wafer
JP6158564B2 (en) Semiconductor device manufacturing method and hydride vapor phase growth apparatus
JP7419779B2 (en) Susceptor and chemical vapor deposition equipment
CN111261548B (en) SiC chemical vapor deposition apparatus and method for manufacturing SiC epitaxial wafer
JP2012243861A (en) Film growth device and light-emitting diode
JP5045955B2 (en) Group III nitride semiconductor free-standing substrate
JP5045032B2 (en) Vapor phase growth apparatus and compound semiconductor film growth method
CN111349908A (en) SiC chemical vapor deposition device
US11591717B2 (en) Vapor phase epitaxial growth device
JP2013229554A (en) Method of manufacturing group xiii metal nitride semiconductor crystal in periodic table, nozzle for use in the same, and manufacturing apparatus
JP5040708B2 (en) Method for manufacturing nitride semiconductor crystal
JP4334370B2 (en) Vapor growth apparatus and vapor growth method
JP5045033B2 (en) Vapor phase growth apparatus and compound semiconductor film growth method
JP2017139263A (en) Semiconductor device manufacturing method
JP2006287256A (en) Chemical vapor deposition equipment
JP2021031336A (en) SiC CHEMICAL VAPOR DEPOSITION APPARATUS
JP6115212B2 (en) Periodic table group 13 metal nitride semiconductor crystal manufacturing method and manufacturing apparatus used therefor
JP6707676B2 (en) Method of manufacturing semiconductor device
JP2019151518A (en) GaN LAMINATE AND METHOD FOR MANUFACTURING THE SAME
JP7002722B2 (en) Vapor deposition equipment
JP2010129587A (en) Apparatus for manufacturing compound semiconductor epitaxial wafer
JP2010267702A (en) Device and method for forming chemical vapor deposition semiconductor film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170608

R150 Certificate of patent or registration of utility model

Ref document number: 6158564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees