JP2014201278A - Vehicle power consumption controller - Google Patents

Vehicle power consumption controller Download PDF

Info

Publication number
JP2014201278A
JP2014201278A JP2013081277A JP2013081277A JP2014201278A JP 2014201278 A JP2014201278 A JP 2014201278A JP 2013081277 A JP2013081277 A JP 2013081277A JP 2013081277 A JP2013081277 A JP 2013081277A JP 2014201278 A JP2014201278 A JP 2014201278A
Authority
JP
Japan
Prior art keywords
motor
power consumption
vehicle
grill
grill opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013081277A
Other languages
Japanese (ja)
Other versions
JP6040847B2 (en
Inventor
隆哉 犬飼
Takaya Inukai
隆哉 犬飼
稲田 英二
Eiji Inada
英二 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2013081277A priority Critical patent/JP6040847B2/en
Publication of JP2014201278A publication Critical patent/JP2014201278A/en
Application granted granted Critical
Publication of JP6040847B2 publication Critical patent/JP6040847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle power consumption controller capable of controlling a vehicle using a motor that includes a grille device and an air conditioner as a traveling power source to consume electric power with optimum power consumption.SOLUTION: A total sum ΔWg+ΔWm-ΔWa of a fluctuation ΔWg in motor power consumption depending on a fluctuation in an air resistance Fa of a vehicle resulting from closing of a grill opening portion 302, a fluctuation ΔWm in motor power consumption depending on a fluctuation in motor efficiency of a motor resulting from the closing of the grill opening portion 302, and a fluctuation ΔWa in power consumption of an air conditioner 1 depending on a fluctuation in cooling capability of an outdoor heat exchanger 104 resulting from the closing of the grill opening portion 302 is determined. If this value is positive, the grill opening portion 302 is closed. If this value is either zero or negative, the grill opening portion 302 is opened.

Description

本発明は、グリル装置と空気調和装置を備えたモータを走行動力源とする車両の消費電力を制御する車両用消費電力制御装置に関するものである。   The present invention relates to a vehicle power consumption control device that controls power consumption of a vehicle using a motor including a grill device and an air conditioner as a travel power source.

車両先端部に形成されたグリル開口部を閉じた状態での熱交換器へ導入される空気量が減少することによる消費動力の増加量と、グリル開口部を閉じた状態での空気抵抗の低減による車速に応じた消費動力の減少量とに基づいて、グリル開口部を閉じたときの消費動力の増加が許容範囲内となる動作車速を求め、この動作車速と実際の車速とに基づいてグリル開口部の開閉を制御する車両用グリル装置が知られている(特許文献1)。   Increase in power consumption due to reduction in the amount of air introduced into the heat exchanger when the grille opening formed at the vehicle front end is closed, and reduction in air resistance when the grille opening is closed Based on the decrease in power consumption according to the vehicle speed, the operating vehicle speed is determined so that the increase in power consumption when the grille opening is closed is within an allowable range, and the grill is determined based on the operating vehicle speed and the actual vehicle speed. A vehicular grill device that controls opening and closing of an opening is known (Patent Document 1).

特開2011−31842号公報JP 2011-31842 A

しかしながら、上記従来技術では、熱交換器へ導入される空気量の減少による消費動力の増加量と、空気抵抗の低減による消費動力の減少量のみを考慮するだけであるため、モータを走行動力源とする電気自動車やハイブリッド車両に対しては、最適な消費電力となるグリル開閉状態ではないという問題がある。   However, in the above prior art, since only the increase in power consumption due to the reduction in the amount of air introduced into the heat exchanger and the decrease in power consumption due to the reduction in air resistance are taken into account, the motor is connected to the driving power source. However, there is a problem that the grille is not in an open / closed state for optimal power consumption.

本発明が解決しようとする課題は、グリル装置と空気調和装置を備えたモータを走行動力源とする車両に対し、最適な消費電力に制御できる車両用消費電力制御装置を提供することである。   The problem to be solved by the present invention is to provide a vehicle power consumption control device capable of controlling the power consumption to be optimal for a vehicle using a motor including a grill device and an air conditioner as a travel power source.

本発明は、グリル開口部の閉塞に起因する、車両の空気抵抗の変動によるモータ消費電力の変化量と、モータ効率の変動によるモータ消費電力の変化量と、冷媒冷却能力の変動によるエアコンの消費電力の変化量とを検出し、これらの総和が正の値の場合にグリル開口部を閉塞することによって上記課題を解決する。   The present invention relates to an amount of change in motor power consumption due to a change in air resistance of a vehicle, a change in motor power consumption due to a change in motor efficiency, and a consumption of an air conditioner due to a change in refrigerant cooling capacity due to blockage of the grill opening. The above problem is solved by detecting the amount of change in power and closing the grill opening when the sum of these values is a positive value.

グリル開口部を閉塞すると車両の空気抵抗が小さくなりモータ消費電力は減少する。またグリル開口部を閉塞してモータ温度が低下するとモータ効率が向上してモータ消費電力は減少する。一方において、グリル開口部を閉塞すると冷媒の冷却能力が小さくなり、エアコンのコンプレッサの消費電力が増加するが、本発明によれば、これらの総和が正の値になる場合にグリル開口部を閉塞するので、トータルの電力消費量を最適な値にすることができる。   When the grill opening is closed, the air resistance of the vehicle is reduced and the motor power consumption is reduced. Further, when the grill opening is closed and the motor temperature is lowered, the motor efficiency is improved and the motor power consumption is reduced. On the other hand, if the grill opening is closed, the cooling capacity of the refrigerant is reduced and the power consumption of the compressor of the air conditioner is increased. However, according to the present invention, the grill opening is closed when the sum of these becomes a positive value. Therefore, the total power consumption can be set to an optimum value.

本発明の一実施の形態に係る車両用消費電力制御装置を適用した電気自動車の要部を示すブロック図である。It is a block diagram which shows the principal part of the electric vehicle to which the vehicle power consumption control apparatus which concerns on one embodiment of this invention is applied. 図1の電気自動車の制御装置の一例を示すブロック図である。It is a block diagram which shows an example of the control apparatus of the electric vehicle of FIG. 図2の制御装置の主たる動作を示すフローチャートである。It is a flowchart which shows the main operation | movement of the control apparatus of FIG. 図1のヒートポンプにおける、室外熱交換器の通過空気の温度とコンプレッサの消費電力との関係を示すグラフである。It is a graph which shows the relationship between the temperature of the passing air of an outdoor heat exchanger, and the power consumption of a compressor in the heat pump of FIG. グリル開口部を全閉した状態における、車速とモータの消費電力減少量との関係を示すグラフである。It is a graph which shows the relationship between the vehicle speed and the amount of power consumption reduction of a motor in the state which closed the grill opening part. 図1のモータユニット4の温度と磁束との関係を示すグラフである。It is a graph which shows the relationship between the temperature of the motor unit 4 of FIG. 1, and magnetic flux. 図3のステップS9における制御マップの一例を示す図である。It is a figure which shows an example of the control map in step S9 of FIG. 図3のステップS9における制御マップの他例を示す図である。It is a figure which shows the other example of the control map in step S9 of FIG. 外気温度と空気密度との関係を示すグラフである。It is a graph which shows the relationship between outside temperature and air density. グリル開口部を全閉した状態及び半閉した状態における、車速とモータの消費電力減少量との関係を示すグラフである。It is a graph which shows the relationship between the vehicle speed and the amount of power consumption reduction of a motor in the state which closed the grill opening part and the half-closed state.

図1は、本発明の車両用消費電力制御装置を適用した電気自動車のブロック図であり、本例の電気自動車は、車室内を空調する空気調和装置1と、走行駆動源であるモータユニット4を冷却するモータ冷却装置2と、車体前端部に形成されたグリル開口部302を開閉するグリルシャッタ301を有するグリル装置3と、を備える。   FIG. 1 is a block diagram of an electric vehicle to which a vehicle power consumption control device of the present invention is applied. The electric vehicle of this example includes an air conditioner 1 that air-conditions a vehicle interior and a motor unit 4 that is a travel drive source. And a grill device 3 having a grill shutter 301 for opening and closing a grill opening 302 formed at the front end of the vehicle body.

図1に示す空気調和装置1は、コンプレッサ101、室内熱交換器102、第1膨張弁103、室外熱交換器(凝縮器)104、冷房機能と暖房機能を切り替えるための切換弁105、冷房として使用する場合に用いる第2膨張弁106、エバポレータ(蒸発器)107、アキュムレータ108が、この順序で冷媒配管109により接続されてなるヒートポンプサイクルを備える。コンプレッサ101は図示しないモータにより駆動するため、本例の消費電力制御装置の制御対象となる。   An air conditioner 1 shown in FIG. 1 includes a compressor 101, an indoor heat exchanger 102, a first expansion valve 103, an outdoor heat exchanger (condenser) 104, a switching valve 105 for switching between a cooling function and a heating function, and cooling. A second expansion valve 106, an evaporator (evaporator) 107, and an accumulator 108 used when used are provided with a heat pump cycle in which the refrigerant pipe 109 is connected in this order. Since the compressor 101 is driven by a motor (not shown), it is a control target of the power consumption control device of this example.

車室内には空調ユニットケース110が、たとえばダッシュパネルの左右方向に沿って設けられ、空調ユニットケース110内に、ファンモータ111Mにより回転する送風機111と、エバポレータ107と、室内熱交換器102が設けられている。送風機111の空気の吸込み口には、室外の空気と室内の空気とを切り換えるインテークドア112が回動自在に設けられ、内気導入と外気導入のモードが切り換えられる。   An air conditioning unit case 110 is provided in the passenger compartment along the left-right direction of the dash panel, for example, and a blower 111 rotated by a fan motor 111M, an evaporator 107, and an indoor heat exchanger 102 are provided in the air conditioning unit case 110. It has been. An intake door 112 for switching between outdoor air and indoor air is rotatably provided at the air suction port of the blower 111, so that the mode of introduction of the inside air and the introduction of the outside air are switched.

空調ユニットケース110の送風機111の下流にはエバポレータ107が設けられ、送風機111により導入された外気又は内気は全てエバポレータ107を通過する。ただし、後述するように本例の空気調和装置1を暖房装置として使用する場合にはエバポレータ107には冷媒が循環しないので、吸引された空気は熱交換されることなくそのまま通過することになる。   An evaporator 107 is provided downstream of the blower 111 of the air conditioning unit case 110, and all the outside air or the inside air introduced by the blower 111 passes through the evaporator 107. However, as will be described later, when the air-conditioning apparatus 1 of this example is used as a heating apparatus, the refrigerant does not circulate in the evaporator 107, so that the sucked air passes as it is without heat exchange.

空調ユニットケース110のエバポレータ107の下流には室内熱交換器102が設けられ、その前面には温調用ドア113が回動自在に設けられている。また、室内熱交換器102の側部には、流下した空気が当該室内熱交換器102を迂回する迂回路114が設けられ、温調用ドア113の開度を調節することで、室内熱交換器102を通過する空気量と迂回路114を通過する空気量との比率が調節され、これにより車室内へ供給する調和空気の温度が調節される。   An indoor heat exchanger 102 is provided downstream of the evaporator 107 of the air conditioning unit case 110, and a temperature adjustment door 113 is rotatably provided on the front surface thereof. Further, a bypass 114 is provided on the side of the indoor heat exchanger 102 so that the air flowing down bypasses the indoor heat exchanger 102, and the indoor heat exchanger is adjusted by adjusting the opening degree of the temperature adjustment door 113. The ratio of the amount of air passing through 102 and the amount of air passing through detour 114 is adjusted, thereby adjusting the temperature of the conditioned air supplied into the passenger compartment.

一方、コンプレッサ101、第1膨張弁103、室外熱交換器104、切換弁105、第2膨張弁106、アキュムレータ108及び冷媒配管109の主要部は、車両前方のモータルーム内に配置されている。このうち、室外熱交換器104は、後述するグリル装置3のグリルシャッタ301の後部に配置され、さらにその後部には後述するモータ冷却装置2のラジエータ203が配置されている。   On the other hand, the main parts of the compressor 101, the first expansion valve 103, the outdoor heat exchanger 104, the switching valve 105, the second expansion valve 106, the accumulator 108 and the refrigerant pipe 109 are arranged in a motor room in front of the vehicle. Among these, the outdoor heat exchanger 104 is disposed at a rear portion of a grill shutter 301 of the grill device 3 described later, and a radiator 203 of the motor cooling device 2 described later is disposed at a rear portion thereof.

本例の空気調和装置1を暖房装置として使用する場合は、切換弁105を開き、室外熱交換器104からの冷媒を、エバポレータ107を迂回させてアキュムレータ108に導く。アキュムレータ108は、余剰冷媒の貯留と気液分離を行いガス冷媒のみをコンプレッサ101へ戻すので、コンプレッサ101の回転駆動により圧縮されて高温高圧となったガス冷媒は、室内熱交換器102へ送られる。   When the air conditioner 1 of this example is used as a heating device, the switching valve 105 is opened, and the refrigerant from the outdoor heat exchanger 104 is guided to the accumulator 108 by bypassing the evaporator 107. The accumulator 108 stores excess refrigerant and gas-liquid separation and returns only the gas refrigerant to the compressor 101. Therefore, the gas refrigerant compressed to high temperature and high pressure by the rotation of the compressor 101 is sent to the indoor heat exchanger 102. .

室内熱交換器102では、この高温高圧のガス冷媒と、送風機111によって室内熱交換器102に導入された空気との間で熱交換が行われ、車室内を空調する空調風が生成される。これと同時にガス冷媒が冷却されて液化する。この液化した冷媒は、第1膨張弁103によって急激に減圧されて低圧霧状冷媒となって室外熱交換器104へ送られ、室外熱交換器104で走行風等と熱交換することで気化されたのち、アキュムレータ108を介してガス冷媒のみが再びコンプレッサ108に戻される。図1に、暖房装置として使用する場合の冷媒の流れを黒矢印で示す。   In the indoor heat exchanger 102, heat exchange is performed between the high-temperature and high-pressure gas refrigerant and the air introduced into the indoor heat exchanger 102 by the blower 111, and conditioned air for air-conditioning the vehicle interior is generated. At the same time, the gas refrigerant is cooled and liquefied. The liquefied refrigerant is rapidly decompressed by the first expansion valve 103 to be converted into a low-pressure mist refrigerant and sent to the outdoor heat exchanger 104, and is vaporized by exchanging heat with traveling wind or the like in the outdoor heat exchanger 104. After that, only the gas refrigerant is returned to the compressor 108 via the accumulator 108. In FIG. 1, the flow of the refrigerant | coolant in the case of using it as a heating apparatus is shown by the black arrow.

また、本例の空気調和装置1を冷房装置として使用する場合は、切換弁105を閉じ、室外熱交換器104からの冷媒をエバポレータ107に導く。そして、コンプレッサ101の回転駆動により圧縮されて高温高圧となったガス冷媒は、室内熱交換器102、第1膨張弁103を通過して室外熱交換器104へ送られる。ただし、温調用ドア113を閉じることにより送風機111による吸入空気を迂回路114へ導くなどして、低温の目標温度となるよう調節する。   Moreover, when using the air conditioning apparatus 1 of this example as a cooling device, the switching valve 105 is closed and the refrigerant | coolant from the outdoor heat exchanger 104 is guide | induced to the evaporator 107. FIG. Then, the gas refrigerant that has been compressed by the rotational drive of the compressor 101 to become high temperature and pressure passes through the indoor heat exchanger 102 and the first expansion valve 103 and is sent to the outdoor heat exchanger 104. However, by adjusting the temperature adjustment door 113, the intake air from the blower 111 is guided to the detour 114, and the temperature is adjusted to be a low target temperature.

室外熱交換器104では、第1膨張弁103を通過した低圧霧状冷媒と、室外熱交換器104に導入される空気(走行風又はファン204による吸引空気)との間で熱交換が行われることにより、霧状冷媒が冷却されて液化される。この液化した冷媒は、第2膨張弁112によって急激に減圧されて低温低圧霧状冷媒となってエバポレータ107へ送られ、このエバポレータ107を通過する低温低圧霧状冷媒と、送風機111によってエバポレータ107に導入された空気との間で熱交換が行われ、エバポレータ107を通過する空気が冷却及び除湿される。なお、エバポレータ107を通過した低温低圧霧状冷媒は、一部または全部が気化されてガス冷媒となり、アキュムレータ108に戻される。図1に、冷房装置として使用する場合の冷媒の流れを白抜き矢印で示す。   In the outdoor heat exchanger 104, heat exchange is performed between the low-pressure mist refrigerant that has passed through the first expansion valve 103 and the air (running wind or suction air from the fan 204) introduced into the outdoor heat exchanger 104. As a result, the mist refrigerant is cooled and liquefied. The liquefied refrigerant is abruptly reduced in pressure by the second expansion valve 112 to be sent to the evaporator 107 as a low-temperature and low-pressure mist refrigerant. The low-temperature and low-pressure mist refrigerant passing through the evaporator 107 and the blower 111 are passed to the evaporator 107. Heat exchange is performed with the introduced air, and the air passing through the evaporator 107 is cooled and dehumidified. The low-temperature and low-pressure mist refrigerant that has passed through the evaporator 107 is partially or entirely vaporized to become a gas refrigerant, and is returned to the accumulator 108. In FIG. 1, the flow of the refrigerant | coolant at the time of using it as a cooling device is shown by the white arrow.

一方、本例のモータ冷却装置2は、車両の走行駆動源として使用されるモータ及び当該モータに電力を供給するインバータ(これらをモータユニット4と称する)を冷却するものであり、モータユニット4の発熱部に接触するウォータジャケット201、当該ウォータジャケット201に冷却水を循環させるポンプ202、冷却水を冷却するラジエータ203が冷却水配管205により接続された冷却サイクルを備える。また、当該冷却サイクルは、ラジエータ203の熱交換を促進させるファン204をさらに備える。ポンプ202及びファン204は図示しないモータによりそれぞれ駆動する。   On the other hand, the motor cooling device 2 of this example cools a motor used as a driving source of a vehicle and an inverter (referred to as a motor unit 4) that supplies electric power to the motor. There is provided a cooling cycle in which a water jacket 201 in contact with the heat generating portion, a pump 202 for circulating cooling water through the water jacket 201, and a radiator 203 for cooling the cooling water are connected by a cooling water pipe 205. The cooling cycle further includes a fan 204 that promotes heat exchange of the radiator 203. The pump 202 and the fan 204 are each driven by a motor (not shown).

本例のモータ冷却装置2では、ラジエータ203により冷却された冷却水をモータ及びインバータを収容したモータユニット4の発熱部に接触するウォータジャケット201に循環させることで、モータ及びインバータを含むモータユニット4を冷却するが、モータユニット4で発生した熱と熱交換することにより温められた冷却水は、ポンプ202によってラジエータ203に送り、走行風及び/又はファン204によってラジエータ203を通過する空気との間で熱交換を行うことで冷却水を冷却し、冷却された冷却水を再びモータユニット4のウォータジャケット201に戻す。   In the motor cooling device 2 of the present example, the cooling water cooled by the radiator 203 is circulated through the water jacket 201 that contacts the heat generating part of the motor unit 4 that houses the motor and the inverter, so that the motor unit 4 that includes the motor and the inverter. The cooling water heated by exchanging heat with the heat generated in the motor unit 4 is sent to the radiator 203 by the pump 202, and between the running wind and / or the air passing through the radiator 203 by the fan 204. The cooling water is cooled by exchanging heat in step S3, and the cooled cooling water is returned to the water jacket 201 of the motor unit 4 again.

車両用グリル装置3は、車体前端のグリル開口部302に設けられたグリルシャッタ301を有し、車体の左右方向に延在する平板状のフィンが車体の上下方向に配置され、モータアクチュエータなどで構成されるグリルシャッタ駆動部303(図2参照)を駆動することにより、図1の上図に示す全開位置と、下図に示す全閉位置との間の所定開度に駆動する。   The vehicle grill device 3 has a grill shutter 301 provided in a grill opening 302 at the front end of the vehicle body, and plate-like fins extending in the left-right direction of the vehicle body are arranged in the vertical direction of the vehicle body. By driving the configured grill shutter driving unit 303 (see FIG. 2), the grill shutter driving unit 303 is driven to a predetermined opening degree between the fully open position shown in the upper diagram of FIG. 1 and the fully closed position shown in the lower diagram.

グリルシャッタ301を開いた状態では、走行風又はファン204の駆動による吸引空気によって、グリル開口部302から車体後方に空気が流れ、室外熱交換器104及びラジエータ203を通過する。これにより、空気調和装置1(ヒートポンプサイクル)の冷媒及びモータ冷却装置2(冷却サイクル)の冷却水が冷却されるが、グリルシャッタ301を閉じるとこの冷却作用が減少する。その代わりに、グリルシャッタ301を閉じた分だけ車両走行時の空気抵抗が小さくなり、モータユニット4の電費(電力消費率)が向上する。   In a state where the grill shutter 301 is opened, air flows from the grill opening 302 to the rear of the vehicle body by running wind or suction air generated by driving the fan 204, and passes through the outdoor heat exchanger 104 and the radiator 203. Thereby, the refrigerant of the air conditioner 1 (heat pump cycle) and the cooling water of the motor cooling device 2 (cooling cycle) are cooled. However, when the grill shutter 301 is closed, this cooling action is reduced. Instead, the air resistance during vehicle travel is reduced by the amount of closing the grill shutter 301, and the power consumption (power consumption rate) of the motor unit 4 is improved.

図2は、本例の電気自動車の制御装置の要部を示すブロック図である。本例の電気自動車は、車両の走行状態を制御する車両コントローラ5と、空気調和装置1による室内の空調状態を制御するエアコンコントローラ115とを備え、これら車両コントローラ5とエアコンコントローラ115は相互に通信を行い、一方で計算および読み込んだ値はもう一方にも通信される。   FIG. 2 is a block diagram showing a main part of the control device for the electric vehicle of this example. The electric vehicle of this example includes a vehicle controller 5 that controls the running state of the vehicle, and an air conditioner controller 115 that controls the air conditioning state of the room by the air conditioner 1. The vehicle controller 5 and the air conditioner controller 115 communicate with each other. While the calculated and read values are communicated to the other.

車両コントローラ5は、電気自動車の車速を検出する車速センサ501と、アクセル開度を検出するアクセル開度センサ502を備え、実際の車速及びアクセル開度に応じた目標負荷が入力される。また、アクセル開度に応じた目標負荷に対するモータユニット4の予測動力を演算する予測動力演算部503と、モータユニット4の実際の動力を演算する動力演算部504と、これら予測動力演算部503と動力演算部504の演算結果に基づいて、モータユニット4とグリル装置3を制御する動作制御部505と、を備える。動作制御部505の演算結果は、モータユニット4のモータコントローラ506と、グリル装置3のグリルシャッタ駆動部303に出力される。   The vehicle controller 5 includes a vehicle speed sensor 501 that detects the vehicle speed of the electric vehicle and an accelerator opening sensor 502 that detects the accelerator opening, and a target load corresponding to the actual vehicle speed and the accelerator opening is input. In addition, a predicted power calculation unit 503 that calculates the predicted power of the motor unit 4 with respect to a target load corresponding to the accelerator opening, a power calculation unit 504 that calculates the actual power of the motor unit 4, and the predicted power calculation unit 503, An operation control unit 505 that controls the motor unit 4 and the grill device 3 based on the calculation result of the power calculation unit 504 is provided. The calculation result of the operation control unit 505 is output to the motor controller 506 of the motor unit 4 and the grill shutter driving unit 303 of the grill device 3.

一方、エアコンコントローラ115は、車両の外部(室外及びモータルーム外)の温度を検出する外気温センサ116と、モータルーム内の温度を検出するモータルーム内温度センサ117と、室内のインストルメントパネルなどに設けられた操作スイッチ118と、を備え、外気温度、モータルーム内の温度および目標室内温度などの動作指令が入力される。エアコンコントローラ115は、これらの入力信号にしたがって所定の演算を実行し、その演算結果をコンプレッサ101、ファンモータ111M、第1膨張弁103、第2膨張弁106及びファン204の駆動部205へ出力する。   On the other hand, the air conditioner controller 115 includes an outside air temperature sensor 116 that detects the temperature outside the vehicle (outside the room and outside the motor room), a temperature sensor 117 that detects the temperature inside the motor room, an indoor instrument panel, and the like. And an operation command such as the outside air temperature, the temperature in the motor room, and the target room temperature is input. The air conditioner controller 115 executes a predetermined calculation according to these input signals, and outputs the calculation result to the compressor 101, the fan motor 111M, the first expansion valve 103, the second expansion valve 106, and the drive unit 205 of the fan 204. .

次に、図3のフローチャートを参照して、本例の制御動作を説明する。
ステップS1では、車両が走行可能状態であり、グリルシャッタ301が閉じているものとする。
Next, the control operation of this example will be described with reference to the flowchart of FIG.
In step S1, it is assumed that the vehicle is ready to travel and the grille shutter 301 is closed.

ステップS2では、外気温センサ116により外気温Toを検出し、エアコンコントローラ115へ出力する。ステップS3では、モータルーム内温度センサ117によりモータルーム内温度Tmrを検出し、エアコンコントローラ115へ出力する。ステップS4では、車速センサ501により車速Vを検出するとともに、アクセル開度センサ502によりアクセル開度を検出し、車両コントローラ5へ出力する。   In step S <b> 2, the outside air temperature To is detected by the outside air temperature sensor 116 and output to the air conditioner controller 115. In step S <b> 3, the motor room temperature sensor 117 detects the motor room temperature Tmr and outputs it to the air conditioner controller 115. In step S <b> 4, the vehicle speed V is detected by the vehicle speed sensor 501, the accelerator opening is detected by the accelerator opening sensor 502, and is output to the vehicle controller 5.

ステップS5では、予測動力演算部503が、車両コントローラ501に読み込まれた車速Vおよびアクセル開度から要求モータトルクTmを演算し、この要求モータトルクTmの指令信号をモータコントローラ506に出力する。また、モータコントローラ506にて検出された実際のモータ回転数Nmを車両コントローラ5に出力する。   In step S <b> 5, the predicted power calculation unit 503 calculates the requested motor torque Tm from the vehicle speed V and the accelerator opening read into the vehicle controller 501, and outputs a command signal for the requested motor torque Tm to the motor controller 506. Further, the actual motor rotation speed Nm detected by the motor controller 506 is output to the vehicle controller 5.

ステップS6では、エアコンコントローラ115は、空気調和装置1の操作スイッチ118の入力操作によって設定温度などの運転条件が設定されて空調運転の開始が指示されると、室温、外気温Toなどの環境条件を検出し、検出した環境条件と運転条件とに基づいて空調運転を行う。エアコンコントローラ115は、車室内を設定温度に維持するための空調風の目標吹出し温度を演算し、演算した目標吹出し温度及び運転条件の設定等に基づいて車室内を空調する。   In step S6, the air conditioner controller 115 sets the operating conditions such as the set temperature by an input operation of the operation switch 118 of the air conditioner 1 and instructs the start of the air conditioning operation. And air conditioning operation is performed based on the detected environmental conditions and operating conditions. The air conditioner controller 115 calculates a target blowing temperature of the conditioned air for maintaining the passenger compartment at a set temperature, and air-conditions the passenger compartment based on the calculated target blowing temperature and setting of operating conditions.

空気調和装置1が暖房装置として運転する場合に、室外熱交換器104を通過する空気温度と、コンプレッサ101を駆動するコンプレッサモータの消費電力(エアコン消費電力)との間に図4に示す関係がある。すなわち、空気温度が高いほどコンプレッサ101を駆動するコンプレッサモータの消費電力が小さくなり、空気温度が低いほどコンプレッサの消費電力が大きくなる。したがって、エアコンコントローラ115に読み込まれた外気温Toに対応するエアコン消費電力Waoと、同じくエアコンコントローラ115に読み込まれたモータルーム内温度Tmrに対応するエアコン消費電力Wamrを図4に示す制御マップを用いて算出する。そして、これらの差、すなわちグリルシャッタ301を閉じたことによるエアコン消費電力の増加量ΔWa=Wamr−Waoを算出する。外気温度がモータルーム内温度よりも高い場合には、ΔWaが正の値、すなわち消費電力が増加し、外気温度がモータルーム内温度よりも低い場合には、ΔWaが負の値、すなわち消費電力が減少することになる。   When the air conditioner 1 operates as a heating device, there is a relationship shown in FIG. 4 between the air temperature passing through the outdoor heat exchanger 104 and the power consumption (air conditioner power consumption) of the compressor motor that drives the compressor 101. is there. That is, the higher the air temperature, the lower the power consumption of the compressor motor that drives the compressor 101, and the lower the air temperature, the higher the power consumption of the compressor. Therefore, the air conditioner power consumption Wao corresponding to the outside air temperature To read into the air conditioner controller 115 and the air conditioner power consumption Wamr corresponding to the motor room temperature Tmr similarly read into the air conditioner controller 115 are used using the control map shown in FIG. To calculate. Then, the difference ΔWa = Wamr−Wao of the air conditioner power consumption due to the difference between them, that is, the grille shutter 301 is closed is calculated. When the outside air temperature is higher than the temperature inside the motor room, ΔWa is a positive value, that is, power consumption increases. When the outside air temperature is lower than the temperature inside the motor room, ΔWa is a negative value, that is, power consumption. Will decrease.

ステップS7では、グリルシャッタ301を閉じることによる、モータユニット4の消費電力の減少電力ΔWgを算出する。ここで、車両の空気抵抗力Faは車速Vによって変化し、空気密度ρ、空気抵抗係数Cd、車両前面の投影面積Aとした場合に、下記式(1)によって表される。
[数1]
空気抵抗力Fa=(1/2)・ρ・Cd・A・V…(1)
In step S7, the reduction power ΔWg of the power consumption of the motor unit 4 by closing the grill shutter 301 is calculated. Here, the air resistance force Fa of the vehicle varies depending on the vehicle speed V, and is expressed by the following formula (1) when the air density ρ, the air resistance coefficient Cd, and the projected area A on the front surface of the vehicle are used.
[Equation 1]
Air resistance Fa = (1/2) · ρ · Cd · A · V 2 (1)

グリルシャッタ301を閉じることにより、空気抵抗係数CdがCd’(Cd’<Cd)となり、車速とグリルシャッタ301を閉じることによるモータユニット4の減少電力との関係は図5のようになる。すなわち、グリルシャッタ301を閉じるほど車両の空気抵抗が小さくなり、モータユニット4の消費電力が小さくなるが、車速Vが大きくなればなるほどモータユニット4の消費電力の減少量が大きくなる。したがって、図5を参照し、車速Vで走行している車両において、上記のようにグリルシャッタ301を閉じることによる消費電力の減少量ΔWgを算出する。なお、上記式(1)の空気密度ρは、図9に示されるように外気温によって変化するので、外気温センサ116により検出した外気温度を図9に代入して空気密度を求め、この外気温度による変化量を加味して計算してもよい。   By closing the grille shutter 301, the air resistance coefficient Cd becomes Cd ′ (Cd ′ <Cd), and the relationship between the vehicle speed and the reduced power of the motor unit 4 due to closing the grille shutter 301 is as shown in FIG. That is, as the grille shutter 301 is closed, the air resistance of the vehicle decreases and the power consumption of the motor unit 4 decreases. However, as the vehicle speed V increases, the amount of power consumption reduction of the motor unit 4 increases. Therefore, referring to FIG. 5, in a vehicle traveling at vehicle speed V, power consumption reduction amount ΔWg due to closing grille shutter 301 is calculated as described above. Since the air density ρ in the above formula (1) varies depending on the outside air temperature as shown in FIG. 9, the outside air temperature detected by the outside air temperature sensor 116 is substituted into FIG. It may be calculated by taking into account the amount of change due to temperature.

ステップS8では、モータ効率の変化による損失仕事量ΔWmを算出する。モータに使用されている磁石には図6に示されるような温度特性がある。すなわち、モータユニット4(本例の場合はモータルーム内温度に相関する)が低いほど磁束Ψmが大きくなる。また、モータトルクTmと磁束Ψmには、極対数Pn、電機子電流のd軸及びq軸成分id,iq、d軸及びq軸のインダクタンスLd,Lqとした場合に、次の式(2)の関係がある。
[数2]
Tm=Pn・Ψm・iq+Pn(Ld−Lq)id・iq…(2)
In step S8, a lost work amount ΔWm due to a change in motor efficiency is calculated. The magnet used in the motor has a temperature characteristic as shown in FIG. That is, the magnetic flux Ψm increases as the motor unit 4 (correlated to the temperature in the motor room in this example) is lower. Further, when the motor torque Tm and the magnetic flux Ψm are the number of pole pairs Pn, the d-axis and q-axis components id and iq of the armature current, and the inductances Ld and Lq of the d-axis and q-axis, the following equation (2) There is a relationship.
[Equation 2]
Tm = Pn · Ψm · iq + Pn (Ld−Lq) id · iq (2)

上記式(2)において、極対数Pn,インダクタンスLd、Lqはモータにより定数となるから、式(2)と図6から、モータユニット4の温度が低いほど磁束Ψmが大きくなり、磁束Ψmが大きくなれば、同じモータトルクTmが要求された場合に、電流id,iqを小さくすることができる。そして、モータ消費電力Wmは、モータトルクTm、モータ回転数Nmとした場合に、下記式(3)の関係があるから、同じトルク、同じ回転数が要求された場合に、モータユニット4の温度が低いほどモータ消費電力Wmを下げることができることになる。
[数3]
Wm=Tm・Nm・(2π/60)…(3)
In the above equation (2), the number of pole pairs Pn and the inductances Ld and Lq are constants depending on the motor. Therefore, from equation (2) and FIG. 6, the magnetic flux Ψm increases and the magnetic flux Ψm increases as the temperature of the motor unit 4 decreases. If so, the currents id and iq can be reduced when the same motor torque Tm is required. The motor power consumption Wm has the relationship of the following formula (3) when the motor torque Tm and the motor rotation speed Nm are used. Therefore, when the same torque and the same rotation speed are requested, the temperature of the motor unit 4 The lower the value, the lower the motor power consumption Wm.
[Equation 3]
Wm = Tm · Nm · (2π / 60) (3)

このため、外気温Toとモータルーム内温度Tmrに温度差が生じた場合には、ラジエータ203における熱交換量の変化によるモータ消費電力が変化するので、このモータ効率変化による損失仕事量ΔWmを算出する。なお、モータユニット4の温度はモータルーム内温度センサ117により検出されるが、モータユニット4内に温度センサを設け、この温度センサから読み込んでもよい。   For this reason, when there is a temperature difference between the outside air temperature To and the motor room internal temperature Tmr, the motor power consumption changes due to the change in the heat exchange amount in the radiator 203, so the loss work amount ΔWm due to this motor efficiency change is calculated. To do. The temperature of the motor unit 4 is detected by the temperature sensor 117 in the motor room, but a temperature sensor may be provided in the motor unit 4 and read from this temperature sensor.

ステップS9では、ステップS6,S7,S8にて算出されたエアコン消費電力の増加量ΔWa、グリルシャッタ301によるモータユニット4の消費電力の減少量ΔWg、モータ効率変化による損失仕事量ΔWmの関係において、以下の式(4)で判定を行う。
[数4]
ΔWg+ΔWm−ΔWa>0…(4)
In step S9, the relationship between the increase amount ΔWa of the air conditioner power consumption calculated in steps S6, S7, and S8, the decrease amount ΔWg of the power consumption of the motor unit 4 by the grille shutter 301, and the lost work amount ΔWm due to the motor efficiency change, The determination is made by the following equation (4).
[Equation 4]
ΔWg + ΔWm−ΔWa> 0 (4)

式(4)の左辺が0であれば、2つの減少量ΔWg,ΔWmの和が1つの増加量ΔWaと等しくなるので、車両全体として消費電力を下げることができる。基本的には0でよいが、状況に応じて変えることもできる。ステップS9において、ΔWg+ΔWm−ΔWa>0の場合はステップS10へ進み、ΔWg+ΔWm−ΔWa≦0の場合はステップS11へ進む。   If the left side of Expression (4) is 0, the sum of the two reduction amounts ΔWg and ΔWm becomes equal to one increase amount ΔWa, so that the power consumption of the entire vehicle can be reduced. Basically it may be 0, but can be changed according to the situation. In step S9, if ΔWg + ΔWm−ΔWa> 0, the process proceeds to step S10, and if ΔWg + ΔWm−ΔWa ≦ 0, the process proceeds to step S11.

図7は、横軸をモータ回転数Nm、縦軸をモータトルクTmとして、外気温とモータルーム内温度に温度差が生じ、モータルーム内温度が外気温よりある温度を下回った場合(この場合、To=5℃、Tmr=−5℃)に、To,Tmr,Tm,Nmからモータ効率変化による損失仕事量ΔWmを算出し、車速によってグリルシャッタ301による空気抵抗減少による消費電力の減少量ΔWgを加算した全体の減少量を濃淡表示したグラフであり、グラフの右側及び上側ほどΔWm+ΔWgの値が大きくなる。一方、外気温度Toとモータルーム内温度Tmrとの差によるエアコン消費電力の増加量ΔWaは、同図のA線にて示すことができるので、両者を比較してグリルシャッタ301の開閉を判定する。すなわち、エアコン消費電力の増加量ΔWaを示すA線より右上側の領域ではΔWg+ΔWm>ΔWaとなるため、グリルシャッタ301を閉じる方が全体の電力消費量が減少する一方で、A線より左下側の領域ではΔWg+ΔWm<ΔWaとなるため、グリルシャッタ301を開く方が全体の電力消費量が減少することになる。   FIG. 7 shows a case where the horizontal axis represents the motor rotation speed Nm, the vertical axis represents the motor torque Tm, and a temperature difference occurs between the outside air temperature and the motor room temperature, and the motor room temperature falls below a certain temperature from the outside air temperature (in this case) , To = 5 ° C., Tmr = −5 ° C.), a loss work amount ΔWm due to a change in motor efficiency is calculated from To, Tmr, Tm, Nm, and a reduction amount ΔWg of power consumption due to a decrease in air resistance by the grille shutter 301 according to the vehicle speed. Is a graph in which the total reduction amount obtained by adding is shaded, and the value of ΔWm + ΔWg increases toward the right and upper sides of the graph. On the other hand, the increase amount ΔWa of the air-conditioner power consumption due to the difference between the outside air temperature To and the motor room internal temperature Tmr can be shown by line A in FIG. . That is, since ΔWg + ΔWm> ΔWa in the area on the upper right side of the A line indicating the increase amount ΔWa of the air conditioner power consumption, closing the grille shutter 301 reduces the overall power consumption, while the lower left side of the A line. Since ΔWg + ΔWm <ΔWa in the region, opening the grille shutter 301 reduces the overall power consumption.

ステップS10では、ステップS9によってΔWg+ΔWm−ΔWa>0となったので、グリルシャッタ301を閉じるように車両コントローラ5の動作制御部505からグリルシャッタ駆動部303へ指令信号を出力する。これに対して、ステップS11では、ステップS9によってΔWg+ΔWm−ΔWa≦0となったので、グリルシャッタ301を開くように車両コントローラ5の動作制御部505からグリルシャッタ駆動部303へ指令信号を出力する。   In step S10, since ΔWg + ΔWm−ΔWa> 0 in step S9, a command signal is output from the operation control unit 505 of the vehicle controller 5 to the grill shutter driving unit 303 so as to close the grill shutter 301. On the other hand, in step S11, since ΔWg + ΔWm−ΔWa ≦ 0 in step S9, a command signal is output from the operation control unit 505 of the vehicle controller 5 to the grill shutter driving unit 303 so as to open the grill shutter 301.

本発明の電気自動車において、走行駆動源であるモータと駆動輪との間に減速機(動力伝達装置)を有する場合に、減速機の消費電力をも考慮してもよい。減速機には潤滑オイルが循環し、このオイルの循環アクチュエータに電力が消費されるが、潤滑オイルは温度の低下により粘度が上昇するので、温度が低下すると循環アクチュエータの消費電力が増加する。   In the electric vehicle of the present invention, when a reduction gear (power transmission device) is provided between a motor that is a driving source for driving and a drive wheel, the power consumption of the reduction gear may be taken into consideration. Lubricating oil circulates in the reduction gear, and power is consumed by the circulating actuator of this oil. However, since the lubricating oil increases in viscosity due to a decrease in temperature, the power consumption of the circulating actuator increases as the temperature decreases.

図8は、減速機内の温度が低下することによって、減速機に供給されるオイルの粘度が上昇し、減速機の消費電力の増加量ΔWfgを図7のΔWaに加算したものである。B線は、ΔWa+ΔWfgとなり、図7に示すA線(ΔWaのみ)よりも消費電力の増加量が増加するので、グリルシャッタ301を開閉制御する閾値が右上にシフトした場合である。そして、図3のステップS9において、この線Bと消費電力の減少量の和ΔWm+ΔWgを比較して、すなわち、ΔWg+ΔWm−ΔWa−ΔWfg>0の式によりグリルシャッタ301の開閉を判定してもよい。   FIG. 8 is a graph in which the viscosity of oil supplied to the speed reducer increases as the temperature in the speed reducer decreases, and the increase amount ΔWfg of the power consumption of the speed reducer is added to ΔWa in FIG. The B line is ΔWa + ΔWfg, and the amount of increase in power consumption is greater than that of the A line (only ΔWa) shown in FIG. 7, so that the threshold value for controlling the opening and closing of the grille shutter 301 is shifted to the upper right. In step S9 in FIG. 3, the line B may be compared with the sum of the power consumption reduction amounts ΔWm + ΔWg, that is, the opening / closing of the grille shutter 301 may be determined by the equation ΔWg + ΔWm−ΔWa−ΔWfg> 0.

上述した実施形態では、グリルシャッタ301を全閉状態にした場合の消費電力の増減量を判定したが、本発明では必ずしもグリルシャッタ301によりグリル開口部302を全閉にしなくてもよい。すなわち、図10に示すように、グリルシャッタ301がわずかに開いている状態でも空気抵抗は小さくなり、これによりモータユニット4の消費電力は減少する。さらに、モータルーム内に外気が導入されることによりモータルーム内温度Tmrを外気温Toに近づけることができる。そして、たとえば全閉時のモータ消費電力の減少量ΔWgに、開口率Xに対する空気抵抗減少代k(X)(ただし0<x<1)を乗算することで、グリル開口部302による消費電力の減少量ΔWg’を下記式(5)により算出することができる。
[数5]
ΔWg’=ΔWg×k(x)…(5)
In the embodiment described above, the increase / decrease amount of the power consumption when the grill shutter 301 is fully closed is determined. However, in the present invention, the grill opening 302 is not necessarily fully closed by the grill shutter 301. That is, as shown in FIG. 10, even when the grill shutter 301 is slightly opened, the air resistance is reduced, and the power consumption of the motor unit 4 is thereby reduced. Furthermore, by introducing outside air into the motor room, it is possible to bring the motor room temperature Tmr closer to the outside temperature To. Then, for example, by multiplying the reduction amount ΔWg of the motor power consumption when fully closed by an air resistance reduction allowance k 0 (X) (where 0 <x <1) with respect to the aperture ratio X, power consumption by the grill opening 302 is obtained. Can be calculated by the following equation (5).
[Equation 5]
ΔWg ′ = ΔWg × k 0 (x) (5)

(1)以上のとおり、本例の車両用消費電力制御装置によれば、グリル開口部302の閉塞に起因する車両の空気抵抗Faの変動によるモータ消費電力の変化量ΔWgと、グリル開口部302の閉塞に起因するモータのモータ効率の変動によるモータ消費電力の変化量ΔWmと、グリル開口部302の閉塞に起因する室外熱交換器104の冷却能力の変動による空気調和装置1の消費電力の変化量ΔWaと、の総和ΔWg+ΔWm−ΔWaを求め、この値が正の値になる場合にはグリル開口部302を閉塞し、0又は負の値になる場合にはグリル開口部302を開放する。したがって、モータユニット4の温度変化にともなうモータ効率の変動をも考慮した最適な消費電力に設定することができ、バッテリが延命し航続距離を延ばすことができる。   (1) As described above, according to the vehicle power consumption control device of this example, the amount of change ΔWg in the motor power consumption due to the variation in the air resistance Fa of the vehicle due to the blockage of the grill opening 302 and the grill opening 302. Change in power consumption of the air-conditioning apparatus 1 due to change in the cooling power of the outdoor heat exchanger 104 caused by blockage of the grille opening 302 and change amount ΔWm of the motor power consumption due to change in motor efficiency of the motor due to blockage of the motor The sum ΔWg + ΔWm−ΔWa of the amount ΔWa is obtained, and when this value becomes a positive value, the grill opening 302 is closed, and when it becomes 0 or a negative value, the grill opening 302 is opened. Therefore, it is possible to set the optimum power consumption in consideration of the fluctuation of the motor efficiency accompanying the temperature change of the motor unit 4, and the battery can be extended in life and the cruising distance can be extended.

(2)また本例の車両用消費電力制御装置によれば、外気温度センサによって外気温度を検出し、当該温度に応じた空気密度から車両の空気抵抗を求めるので、グリル開口部302の閉塞に起因する車両の空気抵抗の変動によるモータ消費電力の変化量ΔWgをより正確に求めることができる。   (2) Further, according to the vehicle power consumption control device of this example, the outside air temperature is detected by the outside air temperature sensor, and the air resistance of the vehicle is obtained from the air density corresponding to the temperature, so that the grill opening 302 is blocked. The change amount ΔWg of the motor power consumption due to the variation in the air resistance of the vehicle can be obtained more accurately.

(3)また本例の車両用消費電力制御装置によれば、車両の空気抵抗Faの変動によるモータ消費電力の変化量ΔWgと、モータのモータ効率の変動によるモータ消費電力の変化量ΔWmと、室外熱交換器104の冷却能力の変動による空気調和装置1の消費電力の変化量ΔWaに、減速機の消費電力の変化量ΔWfgを加えた総和ΔWg+ΔWm−ΔWa−ΔWfgを演算し、この値が正の値になる場合にはグリル開口部302を閉塞し、0又は負の値になる場合にはグリル開口部302を開放する。したがって、モータユニット4の温度変化にともなうモータ効率の変動に減速機の潤滑オイルの粘度の変動を加えた、より最適な消費電力に設定することができ、バッテリが延命し航続距離を延ばすことができる。   (3) Further, according to the vehicle power consumption control device of this example, the change amount ΔWg of the motor power consumption due to the fluctuation of the air resistance Fa of the vehicle, the change amount ΔWm of the motor power consumption due to the fluctuation of the motor efficiency of the motor, The sum ΔWg + ΔWm−ΔWa−ΔWfg is calculated by adding the amount of change ΔWfg of the power consumption of the speed reducer to the amount of change ΔWf of the power consumption of the air conditioner 1 due to the change in the cooling capacity of the outdoor heat exchanger 104, and this value is positive. When the value becomes, the grill opening 302 is closed, and when the value becomes 0 or negative, the grill opening 302 is opened. Therefore, it is possible to set the power consumption more optimally by adding the fluctuation of the viscosity of the lubricating oil of the speed reducer to the fluctuation of the motor efficiency due to the temperature change of the motor unit 4, and the battery can be extended in life and the cruising distance can be extended. it can.

(4)また本例の車両用消費電力制御装置によれば、グリル装置に対して全閉又は全開以外にも開口率が0〜100%となる制御信号を出力するので、最適な消費電力となるように、よりきめ細かい制御を実行することができる。   (4) Moreover, according to the vehicle power consumption control device of this example, since the control signal with an opening ratio of 0 to 100% is output to the grill device in addition to the fully closed or fully opened state, As a result, finer control can be executed.

上記室外熱交換器104は本発明に係る熱交換器に相当し、上記車両コントローラ5は本発明に係る制御手段に相当する。   The outdoor heat exchanger 104 corresponds to a heat exchanger according to the present invention, and the vehicle controller 5 corresponds to a control unit according to the present invention.

1…空気調和装置
101…コンプレッサ
102…室内熱交換器
103…第1膨張弁
104…室外熱交換器
105…切換弁
106…第2膨張弁
107…エバポレータ
108…アキュムレータ
109…冷媒配管
110…空調ユニットケース
111…送風機
111M…ファンモータ
112…インテークドア
113…温調用ドア
114…迂回路
115…エアコンコントローラ
116…外気温センサ
117…モータルーム内温度センサ
118…操作スイッチ
2…モータ冷却装置
201…ウォータジャケット
202…ポンプ
203…ラジエータ
204…ファン
205…ファン駆動部
3…グリル装置
301…グリルシャッタ
302…グリル開口部
303…グリルシャッタ駆動部
4…モータユニット
5…車両コントローラ
501…車速センサ
502…アクセル開度センサ
503…予測動力演算部
504…動力演算部
505…動作制御部
506…モータコントローラ
DESCRIPTION OF SYMBOLS 1 ... Air conditioning apparatus 101 ... Compressor 102 ... Indoor heat exchanger 103 ... 1st expansion valve 104 ... Outdoor heat exchanger 105 ... Switching valve 106 ... 2nd expansion valve 107 ... Evaporator 108 ... Accumulator 109 ... Refrigerant piping 110 ... Air conditioning unit Case 111 ... Blower 111M ... Fan motor 112 ... Intake door 113 ... Temperature adjustment door 114 ... Bypass 115 ... Air conditioner controller 116 ... Outside air temperature sensor 117 ... Temperature sensor in motor room 118 ... Operation switch 2 ... Motor cooling device 201 ... Water jacket DESCRIPTION OF SYMBOLS 202 ... Pump 203 ... Radiator 204 ... Fan 205 ... Fan drive part 3 ... Grill apparatus 301 ... Grille shutter 302 ... Grille opening part 303 ... Grille shutter drive part 4 ... Motor unit 5 ... Vehicle controller 501 ... Vehicle speed sensor S502 ... Accelerator opening sensor 503 ... Predictive power calculation unit 504 ... Power calculation unit 505 ... Operation control unit 506 ... Motor controller

Claims (8)

モータを走行駆動源とし、
前記車両の前端部のグリル開口部に配置された熱交換器を含む空気調和装置と、
前記グリル開口部を開閉し、前記グリル開口部を開いた状態で前記熱交換器を通過する空気を導入し、前記グリル開口部を閉じた状態で車両の空気抵抗を減少させるグリル装置と、
前記モータを冷却するモータ冷却装置と、を備えた車両において、
当該車両にて消費される電力を制御する車両用消費電力制御装置であって、
前記グリル開口部の閉塞に起因する前記車両の空気抵抗の変動によるモータ消費電力の変化量と、前記グリル開口部の閉塞に起因する前記モータのモータ効率の変動によるモータ消費電力の変化量と、前記グリル開口部の閉塞に起因する前記第1熱交換器の冷却能力の変動による前記空気調和装置の消費電力の変化量と、の総和に基づいて、前記グリル装置による前記グリル開口部の開閉を制御する制御手段を備える車両用消費電力制御装置。
Using a motor as a driving source,
An air conditioner including a heat exchanger disposed in a grill opening at a front end of the vehicle;
A grill device that opens and closes the grill opening, introduces air passing through the heat exchanger with the grill opening open, and reduces the air resistance of the vehicle with the grill opening closed;
In a vehicle provided with a motor cooling device for cooling the motor,
A vehicle power consumption control device for controlling power consumed in the vehicle,
The amount of change in motor power consumption due to fluctuations in the air resistance of the vehicle due to blockage of the grill opening, and the amount of change in motor power consumption due to fluctuations in motor efficiency of the motor due to blockage of the grill opening, Based on the sum total of the amount of change in power consumption of the air conditioner due to the change in the cooling capacity of the first heat exchanger due to the blockage of the grill opening, the grill apparatus opens and closes the grill opening. A vehicle power consumption control device comprising a control means for controlling.
前記空気調和装置は、ヒートポンプサイクルによる暖房機能と、前記モータが配置されたモータルームの温度を検出するモータルーム内温度センサとを有する請求項1に記載の車両用消費電力制御装置。   2. The vehicle power consumption control device according to claim 1, wherein the air conditioner includes a heating function based on a heat pump cycle, and a motor room temperature sensor that detects a temperature of a motor room in which the motor is disposed. 前記制御手段は、少なくとも、前記総和が正の値の場合に前記グリル開口部を閉塞し、前記総和が負の値の場合に前記グリル開口部を開放する請求項1又は2に記載の車両用消費電力制御装置。   The vehicle control device according to claim 1, wherein the control unit closes the grill opening when the sum is a positive value and opens the grill opening when the sum is a negative value. Power consumption control device. 前記車両の走行速度を検出する車速センサを有し、
前記制御手段は、前記グリル開口部の閉塞に起因する、前記車両の空気抵抗の変動によるモータ消費電力の変化量を、前記車速センサにより検出した走行速度に基づいて演算する請求項1〜3のいずれか一項に記載の車両用消費電力制御装置。
A vehicle speed sensor for detecting a traveling speed of the vehicle;
The said control means calculates the variation | change_quantity of the motor power consumption by the fluctuation | variation of the air resistance of the said vehicle resulting from obstruction | occlusion of the said grill opening part based on the running speed detected by the said vehicle speed sensor. The vehicle power consumption control device according to any one of the above.
前記車両の外気温度を検出する外気温センサを有し、
前記制御手段は、前記外気温度センサにより検出した外気温度に基づいて空気密度を演算し、当該空気密度に基づいて前記車両の空気抵抗を演算する請求項4に記載の車両用消費電力制御装置。
An outside air temperature sensor for detecting the outside air temperature of the vehicle;
The vehicle power consumption control device according to claim 4, wherein the control means calculates an air density based on an outside air temperature detected by the outside air temperature sensor, and calculates an air resistance of the vehicle based on the air density.
前記モータの温度を直接または間接的に検出するモータ温度センサを有し、
前記制御手段は、前記グリル開口部の閉塞に起因する、前記モータのモータ効率の変動によるモータ消費電力の変化量を、前記モータ温度センサにより検出した前記モータの温度に基づいて演算する請求項1〜5のいずれか一項に記載の車両用消費電力制御装置。
A motor temperature sensor for directly or indirectly detecting the temperature of the motor;
The said control means calculates the variation | change_quantity of the motor power consumption by the fluctuation | variation of the motor efficiency of the said motor resulting from obstruction | occlusion of the said grill opening part based on the temperature of the said motor detected by the said motor temperature sensor. The power consumption control apparatus for vehicles as described in any one of -5.
前記車両は、前記モータの出力軸に接続された減速機と、前記減速機に潤滑オイルを供給する電動アクチュエータと、前記潤滑オイルの温度を直接または間接的に検出するオイル温度センサとを備え、
前記制御手段は、
前記オイル温度センサにより検出されたオイル温度に基づいて前記減速機の消費電力の変化量を演算し、
前記グリル開口部の閉塞に起因する前記車両の空気抵抗の変動によるモータ消費電力の変化量と、前記グリル開口部の閉塞に起因する前記モータのモータ効率の変動によるモータ消費電力の変化量と、前記グリル開口部の閉塞に起因する前記第1熱交換器の冷却能力の変動による前記空気調和装置の消費電力の変化量に、前記減速機の消費電力の変化量を加えた総和に基づいて、前記グリル装置による前記グリル開口部の開閉を制御する請求項1〜6のいずれか一項に記載の車両用消費電力制御装置。
The vehicle includes a reduction gear connected to the output shaft of the motor, an electric actuator that supplies lubricating oil to the reduction gear, and an oil temperature sensor that directly or indirectly detects the temperature of the lubricating oil,
The control means includes
Based on the oil temperature detected by the oil temperature sensor, the amount of change in power consumption of the speed reducer is calculated,
The amount of change in motor power consumption due to fluctuations in the air resistance of the vehicle due to blockage of the grill opening, and the amount of change in motor power consumption due to fluctuations in motor efficiency of the motor due to blockage of the grill opening, Based on the sum of the amount of change in the power consumption of the air conditioner due to the change in the cooling capacity of the first heat exchanger due to the blockage of the grill opening, plus the amount of change in the power consumption of the speed reducer, The vehicular power consumption control device according to any one of claims 1 to 6, wherein opening and closing of the grill opening by the grill device is controlled.
前記制御手段は、前記グリル装置に対し、前記グリル開口部の開口率を0〜100%に設定する制御信号を出力する請求項1〜7のいずれか一項に記載の車両用消費電力制御装置。   The vehicle power consumption control device according to any one of claims 1 to 7, wherein the control means outputs a control signal for setting an opening ratio of the grill opening to 0 to 100% to the grill device. .
JP2013081277A 2013-04-09 2013-04-09 Vehicle power consumption control device Active JP6040847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013081277A JP6040847B2 (en) 2013-04-09 2013-04-09 Vehicle power consumption control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013081277A JP6040847B2 (en) 2013-04-09 2013-04-09 Vehicle power consumption control device

Publications (2)

Publication Number Publication Date
JP2014201278A true JP2014201278A (en) 2014-10-27
JP6040847B2 JP6040847B2 (en) 2016-12-07

Family

ID=52352093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013081277A Active JP6040847B2 (en) 2013-04-09 2013-04-09 Vehicle power consumption control device

Country Status (1)

Country Link
JP (1) JP6040847B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017136899A (en) * 2016-02-02 2017-08-10 トヨタ自動車株式会社 Hybrid vehicle
KR20180029611A (en) * 2016-09-13 2018-03-21 현대자동차주식회사 Method for Improving Fuel Efficiency Air Conditioning Based On Energy and Vehicle thereof
KR101856360B1 (en) 2016-09-19 2018-05-09 현대자동차주식회사 Method for Controlling Active Air Flap Based On Aerodynamic Force Gain and Eco Vehicle thereby
JP2018170843A (en) * 2017-03-29 2018-11-01 株式会社Subaru Automobile
WO2019035159A1 (en) * 2017-08-14 2019-02-21 日産自動車株式会社 Mobile body
JP2019176689A (en) * 2018-03-29 2019-10-10 トヨタ自動車株式会社 Electric automobile
US20220250464A1 (en) * 2019-07-12 2022-08-11 Jaguar Land Rover Limited Active vane control system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011031842A (en) * 2009-08-05 2011-02-17 Toyota Motor Corp Vehicular grille device, vehicular cooling device, vehicular air conditioner and vehicle
JP2011143913A (en) * 2009-12-18 2011-07-28 Honda Motor Co Ltd Vehicle body front ventilation structure
US20130036991A1 (en) * 2011-08-09 2013-02-14 Ford Global Technologies, Llc Control Method for a Vehicle Air Intake System

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011031842A (en) * 2009-08-05 2011-02-17 Toyota Motor Corp Vehicular grille device, vehicular cooling device, vehicular air conditioner and vehicle
JP2011143913A (en) * 2009-12-18 2011-07-28 Honda Motor Co Ltd Vehicle body front ventilation structure
US20130036991A1 (en) * 2011-08-09 2013-02-14 Ford Global Technologies, Llc Control Method for a Vehicle Air Intake System

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017136899A (en) * 2016-02-02 2017-08-10 トヨタ自動車株式会社 Hybrid vehicle
KR20180029611A (en) * 2016-09-13 2018-03-21 현대자동차주식회사 Method for Improving Fuel Efficiency Air Conditioning Based On Energy and Vehicle thereof
KR101856357B1 (en) 2016-09-13 2018-06-20 현대자동차주식회사 Method for Improving Fuel Efficiency Air Conditioning Based On Energy and Vehicle thereof
KR101856360B1 (en) 2016-09-19 2018-05-09 현대자동차주식회사 Method for Controlling Active Air Flap Based On Aerodynamic Force Gain and Eco Vehicle thereby
US10549625B2 (en) 2016-09-19 2020-02-04 Hyundai Motor Company Method for controlling active air flap based on aerodynamic force gain and eco vehicle thereof
JP2018170843A (en) * 2017-03-29 2018-11-01 株式会社Subaru Automobile
WO2019035159A1 (en) * 2017-08-14 2019-02-21 日産自動車株式会社 Mobile body
JPWO2019035159A1 (en) * 2017-08-14 2020-09-17 日産自動車株式会社 Moving body
JP2019176689A (en) * 2018-03-29 2019-10-10 トヨタ自動車株式会社 Electric automobile
US20220250464A1 (en) * 2019-07-12 2022-08-11 Jaguar Land Rover Limited Active vane control system and method

Also Published As

Publication number Publication date
JP6040847B2 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP6040847B2 (en) Vehicle power consumption control device
JP6791052B2 (en) Air conditioner
KR101534708B1 (en) Air conditioner system control method for vehicle
US10371419B2 (en) Vehicle air conditioner with programmed flow controller
JP5391912B2 (en) Vehicle grill device, vehicle cooling device, vehicle air conditioner, and vehicle
JP6590551B2 (en) Air conditioner for vehicles
WO2017056867A1 (en) Vehicular heat management device
WO2013157214A1 (en) Onboard device temperature adjusting apparatus
JP2014160594A (en) Cooling system
JP2007139269A (en) Supercritical refrigerating cycle
JP2013001387A (en) Heat pump system for vehicle and method for controlling the same
WO2017150593A1 (en) Vehicle air conditioning device
JP6488994B2 (en) Vehicle heat transfer circuit
JP6673294B2 (en) Refrigeration cycle device
JP2018184104A (en) Shutter grill device
CN112424006B (en) Air conditioner for vehicle
JP2019034587A (en) Air conditioner
JP2019209937A (en) Air conditioner
JP6203490B2 (en) Air-conditioner for electric vehicle and operation method thereof
JP6939575B2 (en) Vehicle cooling system
JP2012081870A (en) Vehicle air conditioning device
JP2008185021A (en) Cooling system for vehicle
JP2015163499A (en) Air conditioner for vehicle
JP2008521668A (en) Air conditioner for vehicles with prime mover
JP5118441B2 (en) Air conditioner for vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161024

R151 Written notification of patent or utility model registration

Ref document number: 6040847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151