JP2014200736A - Low frequency sound reduction device by vibrational screening machine - Google Patents

Low frequency sound reduction device by vibrational screening machine Download PDF

Info

Publication number
JP2014200736A
JP2014200736A JP2013078469A JP2013078469A JP2014200736A JP 2014200736 A JP2014200736 A JP 2014200736A JP 2013078469 A JP2013078469 A JP 2013078469A JP 2013078469 A JP2013078469 A JP 2013078469A JP 2014200736 A JP2014200736 A JP 2014200736A
Authority
JP
Japan
Prior art keywords
vibration
frequency
vibrating
phase difference
vibrating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013078469A
Other languages
Japanese (ja)
Other versions
JP6088327B2 (en
Inventor
陽 小林
Akira Kobayashi
陽 小林
鈴木 俊太郎
Shuntaro Suzuki
俊太郎 鈴木
智也 大西
Tomoya Onishi
智也 大西
哲也 宮崎
Tetsuya Miyazaki
哲也 宮崎
孝 東川
Takashi Tokawa
孝 東川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
INC Engineering Co Ltd
Original Assignee
IHI Corp
INC Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, INC Engineering Co Ltd filed Critical IHI Corp
Priority to JP2013078469A priority Critical patent/JP6088327B2/en
Publication of JP2014200736A publication Critical patent/JP2014200736A/en
Application granted granted Critical
Publication of JP6088327B2 publication Critical patent/JP6088327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To properly reduce a low frequency sound generated by vibration of a vibration body, by accurately detecting the vibration of the vibration body of a vibrational screening machine, even if dust is generated.SOLUTION: The vibration body of the respective vibrational screening machines 1 and 3 is detected by non-optical proximity sensors 5a and 5b arranged in the vicinity of its vibration range, and a frequency phase difference detection part 11 detects vibration frequencies f1 and f2 of the respective vibration bodies and a phase difference θ of the vibration from its detection signal. A phase difference control part 15 calculates a control volume alpha for approaching the phase difference θ to a target phase difference based on a difference u2 between the phase difference θ of the vibration of the detected respective vibration bodies and a predetermined target phase difference. The calculated control volume alpha is added to the difference between the vibration frequencies f1 and f2 of the respective vibration bodies by an adder 17, and is inputted to a frequency control part 13. The frequency control part 13 outputs motor speed command voltage for reducing the difference between the vibration frequencies f1 and f2 of the respective vibration bodies detected by the frequency phase difference detection part 11.

Description

本発明は、振動ふるい機が発生する低周波音を低減する装置に関するものである。   The present invention relates to an apparatus for reducing low-frequency sound generated by a vibration sieving machine.

従来から、ふるい網等の振動体を振動装置により一定の周波数で振動させて、振動体上の材料等をふるい分けする振動ふるい機が提供されている。この振動ふるい機では、振動体の振動によって発生する低周波音を低減することが課題となっている。   2. Description of the Related Art Conventionally, there has been provided a vibration sieving machine that vibrates a vibrating body such as a sieve screen at a constant frequency by a vibration device and screens materials and the like on the vibrating body. In this vibration sieving machine, it has been a problem to reduce low-frequency sound generated by vibration of the vibrating body.

低周波音を低減する提案として有効なものの一つに、ある振動ふるい機の振動体が発生する低周波音を、他の振動ふるい機の振動体が発生する異位相の低周波音により減衰させるというものがある。そのためにこの提案では、それぞれの振動ふるい機の振動体の振動を公知の振動センサで検出するようにしている(例えば、特許文献1,2,3)。   One effective proposal for reducing low-frequency sound is to attenuate the low-frequency sound generated by the vibrating body of one vibrating screen machine by the low-frequency sound of a different phase generated by the vibrating body of another vibrating screen machine. There is something to let you. Therefore, in this proposal, the vibration of the vibrating body of each vibration sieving machine is detected by a known vibration sensor (for example, Patent Documents 1, 2, and 3).

特許第2925540号公報Japanese Patent No. 2925540 特許第3371209号公報Japanese Patent No. 3371209 特開昭59−69548号公報JP 59-69548 A

ところで、振動ふるい機は、特許文献1,2に記載されているような、泥水加圧式のシールドマシンを用いた掘削工事における泥水と固形物とのふるい分けだけでなく、例えば石炭や木材チップ等のふるい分けにも利用される。このような材料のふるい分けでは粉塵の発生が避けられないため、レーザ距離計等の公知の振動センサで振動体の振動を正確に検出するには、センサヘッドの頻繁なクリーニング等のメンテナンスが欠かせない。   By the way, the vibration sieving machine is not only screened between muddy water and solid matter in excavation work using a muddy water pressurization type shield machine as described in Patent Documents 1 and 2, but also, for example, coal and wood chips, etc. It is also used for sieving. Since the generation of dust is inevitable with such material sieving, maintenance such as frequent cleaning of the sensor head is indispensable in order to accurately detect the vibration of the vibrating body with a known vibration sensor such as a laser distance meter. Absent.

本発明は前記事情に鑑みなされたもので、本発明の目的は、粉塵が発生するような環境であっても振動ふるい機の振動体の振動を正確に検出して、振動体の振動により発生する低周波音を適切に低減することができる振動ふるい機による低周波音低減装置を提供することにある。   The present invention has been made in view of the above circumstances, and the object of the present invention is to accurately detect the vibration of the vibrating body of the vibrating screen even in an environment where dust is generated, and to generate the vibration by the vibration of the vibrating body. An object of the present invention is to provide a low-frequency sound reduction device using a vibration sieve that can appropriately reduce low-frequency sound.

上記目的を達成するため、請求項1に記載した本発明の振動ふるい機による低周波音低減装置は、
複数台の振動ふるい機がそれぞれの振動体の振動により発生させる低周波音を相互の干渉によって低減させる装置であって、
前記各振動ふるい機の前記振動体の振動範囲の近傍にそれぞれ配置され、検出可能距離以内に接近した対応する前記振動体を検出する非光学式の近接センサ、もしくは、前記振動体の振動源と共に密封状態で配置され、検出可能距離以内に接近した前記振動源の振動子を検出する近接センサと、
前記各近接センサによる前記振動体の検出信号の波形から、前記振動体の振動周波数及び位相を前記各振動ふるい機毎に検出する検出手段と、
前記検出手段が検出した一の前記振動ふるい機の前記振動体の振動に対して、前記検出手段が検出した他の前記振動ふるい機の前記振動体の振動が、同一周波数で、かつ、前記低周波音の低減目標地点に対する相対位置差により定まる所定の位相差となるように、前記検出手段が検出した前記各振動ふるい機毎の前記振動体の振動周波数及び位相に基づいて、前記他の振動ふるい機における前記振動体の振動を制御する制御手段と、
を備えることを特徴とする。
In order to achieve the above object, a low-frequency sound reducing device using a vibrating screen according to the present invention described in claim 1 is:
A device that reduces the low-frequency sound generated by the vibration of each vibrating body by a plurality of vibrating screens by mutual interference,
A non-optical proximity sensor for detecting the corresponding vibrating body, which is disposed in the vicinity of the vibrating range of the vibrating body of each vibrating screen machine and approaches within a detectable distance, or together with a vibration source of the vibrating body A proximity sensor that is arranged in a sealed state and detects a vibrator of the vibration source that is approached within a detectable distance; and
From the waveform of the detection signal of the vibrating body by each proximity sensor, detection means for detecting the vibration frequency and phase of the vibrating body for each of the vibrating screeners,
With respect to the vibration of the vibrating body of the one vibrating screen detected by the detecting means, the vibration of the vibrating body of the other vibrating screen detected by the detecting means has the same frequency and the low frequency. Based on the vibration frequency and phase of the vibrating body for each of the vibration sieves detected by the detection means so that a predetermined phase difference determined by the relative position difference with respect to the target point of frequency sound reduction is obtained, the other vibrations Control means for controlling the vibration of the vibrating body in the sieve machine;
It is characterized by providing.

請求項1に記載した本発明の振動ふるい機による低周波音低減装置によれば、振動範囲内で振動する振動体が検出可能距離以内に存在するときに、非光学式の近接センサで振動体を検出する。あるいは、振動体の振動源と共に密封状態で配置された近接センサで、検出可能距離以内に接近した振動源の振動子を検出する。このため、振動体又は振動子の検出に際して、粉塵により検出光路が遮断されたり検出光が屈折する、あるいは、粉塵により振動子の検出が妨げられる等の影響を受けることがない。   According to the low frequency sound reduction device using the vibration sieve of the present invention described in claim 1, when the vibration body that vibrates within the vibration range exists within the detectable distance, the vibration body is detected by the non-optical proximity sensor. Is detected. Alternatively, the proximity sensor disposed in a sealed state together with the vibration source of the vibrating body detects the vibrator of the vibration source that has approached within the detectable distance. For this reason, when detecting the vibrating body or the vibrator, the detection optical path is not blocked by the dust, the detection light is refracted, or the detection of the vibrator is prevented by the dust.

したがって、例えば石炭や木材チップ等の粉塵の発生が避けられないふるい分けを行う振動ふるい機の振動体の振動周波数や位相を制御する際にも、振動体の振動周波数や位相を正確に把握してそれらの制御量を精度よく決定し、目標地点における低周波音を効率よく低減することができる。   Therefore, when controlling the vibration frequency and phase of the vibrating body of a vibrating sieve machine that performs sieving where generation of dust such as coal and wood chips is unavoidable, the vibration frequency and phase of the vibrating body must be accurately grasped. These control amounts can be accurately determined, and low frequency sound at the target point can be efficiently reduced.

また、請求項2に記載した本発明の振動ふるい機による低周波音低減装置は、請求項1に記載した本発明の振動ふるい機による低周波音低減装置において、
前記制御手段が、
前記一の振動ふるい機の前記振動体の振動周波数に対して前記他の振動ふるい機の前記振動体の振動周波数が所定値より大きいときに、当該振動周波数のずれを前記所定値より小さくするための前記振動体の振動周波数制御を前記他の振動ふるい機について行い、
前記一の振動ふるい機の前記振動体の振動周波数に対する前記他の振動ふるい機の前記振動体の振動周波数のずれが前記所定値より小さく、かつ、前記一の振動ふるい機の前記振動体の振動に対する前記他の振動ふるい機の前記振動体の振動の位相差が前記所定の位相差に対して所定量より大きくずれているときに、当該位相差のずれを前記所定量より小さくするための前記振動体の振動の位相制御を前記他の振動ふるい機について行い、
前記一の振動ふるい機の前記振動体の振動周波数に対する前記他の振動ふるい機の前記振動体の振動周波数のずれが前記所定値より小さく、かつ、前記一の振動ふるい機の前記振動体の振動に対する前記他の振動ふるい機の前記振動体の振動の位相差と前記所定の位相差とのずれが前記所定量より小さいときに、前記一の振動ふるい機の前記振動体の振動周波数に前記他の振動ふるい機の前記振動体の振動周波数を近づけるための振動周波数制御を前記他の振動ふるい機について行う、
ことを特徴とする。
Moreover, the low frequency sound reduction device by the vibration screener of the present invention described in claim 2 is the low frequency sound reduction device by the vibration screener of the present invention described in claim 1,
The control means is
When the vibration frequency of the vibration body of the other vibration screener is larger than a predetermined value with respect to the vibration frequency of the vibration body of the one vibration screener, the deviation of the vibration frequency is made smaller than the predetermined value. The vibration frequency control of the vibrating body is performed for the other vibration sieving machine,
The deviation of the vibration frequency of the vibration body of the other vibration screener with respect to the vibration frequency of the vibration body of the one vibration screener is smaller than the predetermined value, and the vibration of the vibration body of the one vibration screener When the phase difference of the vibration of the vibrating body of the other vibration sieving machine is more than a predetermined amount with respect to the predetermined phase difference, the phase difference is less than the predetermined amount. Perform the phase control of the vibration of the vibrating body for the other vibration sieving machine,
The deviation of the vibration frequency of the vibration body of the other vibration screener with respect to the vibration frequency of the vibration body of the one vibration screener is smaller than the predetermined value, and the vibration of the vibration body of the one vibration screener When the deviation between the vibration phase difference of the vibrating body of the other vibrating screener and the predetermined phase difference is smaller than the predetermined amount, the vibration frequency of the vibrating body of the one vibrating screener is set to the other frequency. The vibration frequency control for bringing the vibration frequency of the vibration body of the vibration sieve machine close to the other vibration sieve machine is performed.
It is characterized by that.

請求項2に記載した本発明の振動ふるい機による低周波音低減装置によれば、請求項1に記載した本発明の振動ふるい機による低周波音低減装置において、一の振動ふるい機の振動体に対する他の振動ふるい機の振動体の振動周波数ずれの大きさと、振動の位相差の大きさとの組み合わせによって、振動周波数制御を優先するか振動の位相制御を優先するかを適切に選択することで、両振動ふるい機の振動体の振動位相差を位相制御によって目標とする位相差に近づけるのが容易な状況を作ることができる。   According to the low-frequency sound reducing device by the vibrating screen of the present invention described in claim 2, in the low-frequency sound reducing device by the vibrating screen of the present invention described in claim 1, the vibrating body of one vibrating screen By appropriately selecting whether to give priority to vibration frequency control or vibration phase control according to the combination of the magnitude of the vibration frequency deviation of the vibrating body of the other vibration sieve machine and the magnitude of the phase difference of vibration In addition, it is possible to create a situation in which it is easy to bring the vibration phase difference between the vibrating bodies of both vibratory sieve machines close to the target phase difference by phase control.

本発明の振動ふるい機による低周波音低減装置によれば、粉塵が発生するような環境であってもふるい網の振動を正確に検出して振動ふるい機が発生する低周波音を適切に低減することができる。   According to the low-frequency sound reduction device using the vibration sieve machine of the present invention, even in an environment where dust is generated, the vibration of the sieve screen is accurately detected and the low-frequency sound generated by the vibration sieve machine is appropriately reduced. can do.

本発明に係る低周波音低減装置を用いて低周波音を低減する振動ふるい機の使用環境の位置例を示す説明図である。It is explanatory drawing which shows the example of a position of the use environment of the vibration sieve which reduces a low frequency sound using the low frequency sound reduction apparatus which concerns on this invention. 図1の振動ふるい機の振動体を検出する近接センサの配置例を示す説明図である。It is explanatory drawing which shows the example of arrangement | positioning of the proximity sensor which detects the vibrating body of the vibration sieve machine of FIG. 図1の振動ふるい機の使用環境において用いられる本発明の一実施形態に係る低周波音低減装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the low frequency sound reduction apparatus which concerns on one Embodiment of this invention used in the use environment of the vibration sieve machine of FIG. (a),(b)は図1の各振動ふるい機における振動体の変位の変化例を示すグラフである。(A), (b) is a graph which shows the example of a change of the displacement of the vibrating body in each vibration sieve machine of FIG. (a),(b)は図4(a),(b)に示す各振動体の変位に対して対応する図2の近接センサが出力する信号波形を示すグラフである。(A), (b) is a graph which shows the signal waveform which the proximity sensor of FIG. 2 corresponding to the displacement of each vibrating body shown to FIG. 4 (a), (b) outputs. (a)は振動ふるい機の振動体の変位の変化例を示すグラフ、(b)は図2の近接センサの設置場所を変えた場合に近接センサが(a)に示す振動体の変位の変化に対して出力する信号波形を示すグラフである。(A) is a graph showing a change example of the displacement of the vibrating body of the vibration sieve machine, (b) is a change in the displacement of the vibrating body shown in (a) by the proximity sensor when the installation location of the proximity sensor in FIG. 2 is changed. It is a graph which shows the signal waveform output with respect to. (a)は振動ふるい機の振動体の変位の変化例を示すグラフ、(b)は図2の近接センサの設置場所を変えた場合に近接センサが(a)に示す振動体の変位の変化に対して出力する信号波形を示すグラフである。(A) is a graph showing a change example of the displacement of the vibrating body of the vibration sieve machine, (b) is a change in the displacement of the vibrating body shown in (a) by the proximity sensor when the installation location of the proximity sensor in FIG. 2 is changed. It is a graph which shows the signal waveform output with respect to. 図3のコントローラが行う処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process which the controller of FIG. 3 performs. 図2の振動源の偏心錘を検出する近接センサの配置例を示す説明図である。It is explanatory drawing which shows the example of arrangement | positioning of the proximity sensor which detects the eccentric weight of the vibration source of FIG. 図9の偏心錘の詳細な構成を示す斜視図である。It is a perspective view which shows the detailed structure of the eccentric weight of FIG.

以下、本発明の実施形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明に係る低周波音低減装置を用いて低周波音を低減する振動ふるい機の使用環境の位置例を示す説明図、図1の振動ふるい機の振動体を検出する近接センサの配置例を示す説明図である。   FIG. 1 is an explanatory diagram showing an example of the position of a use environment of a vibration sieve machine that reduces low frequency sound using the low frequency sound reduction device according to the present invention, and a proximity sensor that detects a vibrating body of the vibration sieve machine of FIG. It is explanatory drawing which shows the example of arrangement | positioning.

本発明に係る低周波音低減装置は、例えば、図1に示すように、2台の振動ふるい機1,3の振動体1a,3aがそれぞれ発生する低周波音を、振動ふるい機1,3からそれぞれ距離1,2ずつ離れた低減目標地点Aにおいて低減するのに用いられる。   The low-frequency sound reduction device according to the present invention, for example, as shown in FIG. 1, generates low-frequency sounds generated by the vibrating bodies 1a and 3a of the two vibrating screeners 1 and 3, respectively. Is used for reduction at a reduction target point A which is 1 or 2 away from each other.

各振動ふるい機1,3の振動体1a,3aの振動周波数と位相を検出するために、各振動体1a,3aの振動範囲の近傍には、図2に示すように、非光学式の近接センサ5が配置される。この近接センサ5は、振動範囲内で振動する振動体1a,3aが近接センサ5の検出可能距離以内に接近しているときに、出力をローレベル(例えば0V)からハイレベル(例えば1V)に変化させる。   In order to detect the vibration frequency and phase of the vibrating bodies 1a and 3a of the vibrating screens 1 and 3, near the vibration range of the vibrating bodies 1a and 3a, as shown in FIG. A sensor 5 is arranged. The proximity sensor 5 changes its output from a low level (for example, 0 V) to a high level (for example, 1 V) when the vibrating bodies 1 a and 3 a that vibrate within the vibration range are approaching within the detectable distance of the proximity sensor 5. Change.

具体的には、誘導形、静電容量形、磁気式等の近接センサを用いることができる。但し、誘導形を用いる場合は振動体1a,3aが金属部分を含んでいることが必要となる。また、磁気式を用いる場合は振動体1a,3aが磁性体を含んでいることが必要となる。   Specifically, an inductive sensor, a capacitive sensor, a magnetic sensor, or the like can be used. However, when the induction type is used, it is necessary that the vibrating bodies 1a and 3a include a metal portion. Moreover, when using a magnetic system, it is necessary for the vibrating bodies 1a and 3a to contain a magnetic body.

振動ふるい機1,3の振動体1a,3aは、モータ等の駆動源により偏心錘を回転駆動されて振動を発生する振動源1b,3bを用いて加振される。したがって、振動体1a,3aが振動するときの軌道は直線状とは限らず、例えば楕円状の軌道となることもある。そこで、近接センサ5の配置は、例えば、図2中実線で示すように、振動体1a,3aの相対的にストロークが大きい上下変位の下死点付近とすることもできる。また、反対に、図2中破線で示すように、振動時の速度が相対的に遅く検出可能距離以内の振動体1a,3aをより長い時間に亘って検出できる、水平変位の一方の死点付近に近接センサ5を配置することもできる。   The vibrating bodies 1a and 3a of the vibration sieves 1 and 3 are vibrated using vibration sources 1b and 3b that generate vibrations by rotating the eccentric weight by a driving source such as a motor. Therefore, the trajectory when the vibrating bodies 1a and 3a vibrate is not necessarily linear, and may be an elliptical trajectory, for example. Therefore, the proximity sensor 5 can be arranged near the bottom dead center of the vertical displacement with a relatively large stroke of the vibrating bodies 1a and 3a, for example, as shown by the solid line in FIG. On the other hand, as indicated by a broken line in FIG. 2, one dead center of horizontal displacement that can detect the vibrating bodies 1a and 3a within a detectable distance within a relatively slow detection speed over a longer period of time. The proximity sensor 5 can also be arranged in the vicinity.

次に、本発明の一実施形態に係る低周波音低減装置の概略構成を、図3のブロック図を参照して説明する。本実施形態の低周波音低減装置は、図3中点線の枠で囲んだコントローラ10を有している。このコントローラ10は、各振動体1a,3aに対応する各近接センサ5a,5b(図2に示す近接センサ5)からの出力信号が入力される周波数位相差検出部11と、その検出結果に基づいて振動体3aの振動周波数を制御する周波数制御部13及び振動の位相を制御する位相差制御部15とを有している。   Next, a schematic configuration of the low-frequency sound reduction device according to an embodiment of the present invention will be described with reference to the block diagram of FIG. The low-frequency sound reduction device of this embodiment has a controller 10 surrounded by a dotted line frame in FIG. This controller 10 is based on a frequency phase difference detector 11 to which an output signal from each proximity sensor 5a, 5b (proximity sensor 5 shown in FIG. 2) corresponding to each vibrating body 1a, 3a is input, and the detection result. The frequency control unit 13 for controlling the vibration frequency of the vibrating body 3a and the phase difference control unit 15 for controlling the phase of vibration are provided.

周波数位相差検出部11は、各近接センサ5a,5bの検出信号から振動体1a,3aの振動周波数f1,f2と振動の位相差θとを検出する。周波数制御部13は、基本的に、周波数位相差検出部11が検出した振動体1a,3aの振動周波数f1,f2の差分(f1−f2)を減らすための制御量を出力する。位相差制御部15は、周波数位相差検出部11が検出した振動体1a,3aの振動の位相差θと、予め定められた目標位相差との差分u2(=θ−目標位相差)に基づいて、位相差θを目標位相差に近づけるための制御量alphaを算出する。算出した制御量alphaは、加算器17において、周波数制御部13に入力される振動体1a,3aの振動周波数f1,f2の差分(f1−f2)に加算される。   The frequency phase difference detector 11 detects the vibration frequencies f1 and f2 of the vibrating bodies 1a and 3a and the vibration phase difference θ from the detection signals of the proximity sensors 5a and 5b. The frequency control unit 13 basically outputs a control amount for reducing the difference (f1-f2) between the vibration frequencies f1, f2 of the vibrating bodies 1a, 3a detected by the frequency phase difference detection unit 11. The phase difference control unit 15 is based on a difference u2 (= θ−target phase difference) between a vibration phase difference θ detected by the frequency phase difference detection unit 11 and a predetermined target phase difference. Thus, the control amount alpha for bringing the phase difference θ close to the target phase difference is calculated. The calculated control amount alpha is added in the adder 17 to the difference (f1-f2) between the vibration frequencies f1, f2 of the vibrators 1a, 3a input to the frequency control unit 13.

周波数制御部13が出力する制御量は、振動ふるい機3の振動体3aを振動させる不図示の駆動源中のモータに対する速度指令電圧として、インバータ20に入力される。インバータ20は、入力された速度指令電圧を不図示のモータの駆動パルスに変換して、振動ふるい機3(の不図示のモータ)に出力される。   The control amount output by the frequency control unit 13 is input to the inverter 20 as a speed command voltage for a motor in a drive source (not shown) that vibrates the vibrating body 3 a of the vibration sieve machine 3. The inverter 20 converts the input speed command voltage into a drive pulse for a motor (not shown) and outputs it to the vibration sieve machine 3 (a motor (not shown)).

図1の各振動ふるい機1,3における振動体1a,3aの変位が図4(a),(b)のグラフにそれぞれ示すようなものであり、各近接センサ5a,5bが振動範囲の一方の死点に振動体1a,3aが位置するときにこれを検出する感度を有している場合、各近接センサ5a,5bの出力信号の波形は、図5(a),(b)のグラフにそれぞれ示すようになる。   The displacements of the vibrating bodies 1a and 3a in the vibrating screens 1 and 3 of FIG. 1 are as shown in the graphs of FIGS. 4A and 4B, respectively, and each proximity sensor 5a and 5b has one of the vibration ranges. 5A and 5B, the waveforms of the output signals of the proximity sensors 5a and 5b are shown in the graphs of FIGS. 5A and 5B. As shown respectively.

そこで、周波数位相差検出部11は、各近接センサ5a,5bの出力信号中の連続する2つのパルスの立ち上がり間の周期T1,T2をそれぞれ測定し、測定した周期T1,T2の逆数を、各振動体1a,3aの振動周波数f1,f2として検出する。また、周波数位相差検出部11は、近接センサ5aの出力信号中のパルスの立ち上がりから、その直後に近接センサ5bの出力信号中のパルスが立ち上がる時点までの時間差Tdを測定し、測定した時間差Tdと周期T2とから、各振動体1a,3aの振動周波数f1,f2の位相差θを検出する。   Therefore, the frequency phase difference detecting unit 11 measures the periods T1 and T2 between the rising edges of two consecutive pulses in the output signals of the proximity sensors 5a and 5b, respectively, and calculates the reciprocal of the measured periods T1 and T2 respectively. Detection is performed as vibration frequencies f1 and f2 of the vibrating bodies 1a and 3a. The frequency phase difference detector 11 measures the time difference Td from the rising edge of the pulse in the output signal of the proximity sensor 5a to the time point immediately after that when the pulse in the output signal of the proximity sensor 5b rises, and the measured time difference Td. The phase difference θ between the vibration frequencies f1 and f2 of the vibrating bodies 1a and 3a is detected from the period T2.

なお、各近接センサ5a,5bの配置によっては、各近接センサ5a,5bの出力信号の波形は、図5(a),(b)のグラフにそれぞれ示す波形とは異なるものとなる。例えば、各近接センサ5a,5bの感度によって各振動体1a,3aを検出できる範囲が、振動範囲の両死点間における一部の範囲である場合は、図6(a)に示す振動体1a,3aの変位の変化に対して、各近接センサ5a,5bの出力信号の波形は図6(b)に示すようになる。つまり、振動体1a,3aが振動範囲の一方の死点に近づくときの一部の期間と、一方の死点から離れるときの一部の期間とに、出力信号がローレベルからハイレベルにそれぞれ変化する。この場合に周波数位相差検出部11は、例えば、振動体1a,3aが振動範囲の一方の死点に近づくときの一部の期間に対応するパルスの立ち上がりの周期を測定して振動周波数を検出することになる。   Depending on the arrangement of the proximity sensors 5a and 5b, the waveforms of the output signals of the proximity sensors 5a and 5b are different from the waveforms shown in the graphs of FIGS. For example, when the range in which the vibrating bodies 1a and 3a can be detected by the sensitivity of the proximity sensors 5a and 5b is a partial range between both dead points of the vibrating range, the vibrating body 1a shown in FIG. , 3a, the waveforms of the output signals of the proximity sensors 5a, 5b are as shown in FIG. 6 (b). That is, the output signal changes from a low level to a high level during a part of the period when the vibrating bodies 1a and 3a approach one dead center of the vibration range and a part of the period when the vibrators 1a and 3a move away from one dead center. Change. In this case, for example, the frequency phase difference detection unit 11 detects the vibration frequency by measuring the pulse rising period corresponding to a part of the period when the vibrating bodies 1a and 3a approach one dead center of the vibration range. Will do.

また、各近接センサ5a,5bの感度によって各振動体1a,3aを検出できる範囲が、振動範囲の両死点間の中間地点から一方の死点までの範囲である場合は、図7(a)に示す振動体1a,3aの変位の変化に対して、各近接センサ5a,5bの出力信号の波形は図7(b)に示すようになる。つまり、振動体1a,3aが振動範囲の両死点間の中間地点から一方の死点までの範囲で、出力信号がローレベルからハイレベルにそれぞれ変化する。この場合に周波数位相差検出部11は、例えば、連続する2つのパルスの立ち上がり間の時間差を周期として測定し、振動周波数を検出することになる。   Further, when the range in which each vibrator 1a, 3a can be detected by the sensitivity of each proximity sensor 5a, 5b is a range from an intermediate point between both dead points of the vibration range to one dead point, FIG. 7), the waveforms of the output signals of the proximity sensors 5a and 5b are as shown in FIG. 7B. In other words, the output signals of the vibrating bodies 1a and 3a change from the low level to the high level in the range from the middle point between both dead points in the vibration range to one dead point. In this case, for example, the frequency phase difference detection unit 11 measures the time difference between the rising edges of two consecutive pulses as a period, and detects the vibration frequency.

次に、図3のコントローラ10により振動ふるい機3の振動体3aの振動周波数f2及び振動の位相を制御する際の手順について、図8のフローチャートを参照して説明する。   Next, a procedure for controlling the vibration frequency f2 and the vibration phase of the vibrating body 3a of the vibration sieve machine 3 by the controller 10 of FIG. 3 will be described with reference to the flowchart of FIG.

まず、周波数位相差検出部11が、近接センサ5a,5bからの出力信号(出力値)を取得し、内蔵する不図示のメモリに蓄積する(ステップS1)。次に、蓄積した近接センサ5a,5bからの出力信号(出力値)を用いて、近接センサ5a,5bに対応する各振動ふるい機1,3における振動体1a,3aの振動の周期T1,T2とその時間差Tdとを演算する(ステップS3)。   First, the frequency phase difference detection unit 11 acquires output signals (output values) from the proximity sensors 5a and 5b and accumulates them in a built-in memory (not shown) (step S1). Next, using the accumulated output signals (output values) from the proximity sensors 5a and 5b, the vibration periods T1 and T2 of the vibration bodies 1a and 3a in the vibration sieves 1 and 3 corresponding to the proximity sensors 5a and 5b. And its time difference Td are calculated (step S3).

続いて、演算した周期T1,T2とその時間差Tdとから、振動体1a,3aの振動周波数f1,f2とその位相差θを算出する(ステップS5,7,9)。なお、振動周波数f1,f2は周期T1,T2の逆数を求めることで算出できる。また、位相差θは、時間差Tdに(360°/T2)を乗じることで算出できる。   Subsequently, the vibration frequencies f1, f2 of the vibrating bodies 1a, 3a and the phase difference θ are calculated from the calculated cycles T1, T2 and the time difference Td (steps S5, 7, 9). The vibration frequencies f1 and f2 can be calculated by obtaining the reciprocals of the periods T1 and T2. Further, the phase difference θ can be calculated by multiplying the time difference Td by (360 ° / T2).

次に、算出した振動体1a,3aの振動周波数f1,f2の差分(f2−f1)が周波数差のしきい値ft(請求項中の所定値に相当)以上である(f2−f1≦−ft又はf2−f1≧ft)か否かを確認する(ステップS11)。差分(f2−f1)がしきい値ft以上でない場合は(ステップS11でNO)、位相差制御部15が加算器17に出力する制御量alphaをゼロ(α=0)とする(ステップS13)。差分(f2−f1)がしきい値ft以上である場合は(ステップS11でYES)、振動体1a,3aの振動の位相差θと目標位相差との差分u2(=θ−目標位相差)が位相差のしきい値ut(請求項中の所定量に相当)の反数−ut未満(u2<−ut)であるか否かを確認する(ステップS15)。   Next, the calculated difference (f2−f1) between the vibration frequencies f1 and f2 of the vibrators 1a and 3a is equal to or greater than a frequency difference threshold value ft (corresponding to a predetermined value in the claims) (f2−f1 ≦ −). It is confirmed whether or not ft or f2-f1 ≧ ft) (step S11). When the difference (f2−f1) is not equal to or greater than the threshold value ft (NO in step S11), the control amount alpha output from the phase difference control unit 15 to the adder 17 is set to zero (α = 0) (step S13). . When the difference (f2−f1) is equal to or greater than the threshold value ft (YES in step S11), the difference u2 between the vibration phase difference θ of the vibrating bodies 1a and 3a and the target phase difference (= θ−target phase difference). Is less than the reciprocal -ut (u2 <-ut) of the phase difference threshold value ut (corresponding to a predetermined amount in the claims) (step S15).

差分u2がしきい値utの反数−ut未満である場合は(ステップS15でYES)、位相差制御部15が加算器17に出力する制御量alphaを基準量x(但し、x>0)とする(ステップS17)。この基準量xは、位相差θを目標位相差に近づける度合いを示す変数である。   When the difference u2 is less than the reciprocal of the threshold value ut (YES in step S15), the control amount alpha output from the phase difference control unit 15 to the adder 17 is the reference amount x (where x> 0). (Step S17). This reference amount x is a variable indicating the degree of approaching the phase difference θ to the target phase difference.

一方、差分u2がしきい値utの反数−ut未満でない場合は(ステップS15でNO)、振動体1a,3aの振動の位相差θと目標位相差との差分u2(=θ−目標位相差)が位相差のしきい値utより大きい(u2>ut)であるか否かを確認する(ステップS19)。   On the other hand, when the difference u2 is not less than the reciprocal -ut of the threshold value ut (NO in step S15), the difference u2 between the vibration phase difference θ of the vibrating bodies 1a and 3a and the target phase difference (= θ−target position). It is confirmed whether or not (phase difference) is larger than the phase difference threshold value ut (u2> ut) (step S19).

差分u2がしきい値utより大きい場合は(ステップS19でYES)、位相差制御部15が加算器17に出力する制御量alphaを基準量xの反数−xとする(ステップS21)。一方、差分u2がしきい値utより大きくない場合は(ステップS19でNO)、ステップS13に処理を移行する。   When the difference u2 is larger than the threshold value ut (YES in step S19), the control amount alpha output from the phase difference control unit 15 to the adder 17 is set to the reciprocal -x of the reference amount x (step S21). On the other hand, if the difference u2 is not greater than the threshold value ut (NO in step S19), the process proceeds to step S13.

なお、上述した目標位相差は、図1に示す低減目標地点Aに対する各振動ふるい機1,3の相対位置によって定まる。即ち、図1に示すケースでは、低減目標地点Aに対して各振動ふるい機1,3が等距離の位置にない。そのため、各振動ふるい機1,3の振動体1a,3aがそれぞれ発生する低周波音を単に同一周波数逆位相にするだけでは、両者の干渉により低周波音を低減、相殺することができない。そこで、振動体1a,3aの振動周波数(=低周波音の周波数)を同じにした上で、低減目標地点Aから各振動体1a,3aまでの距離1,2に応じて、目標位相差を決定することになる。具体的には、図1中に示すように、
目標位相差=180+360×{(距離1−距離2)/振動体3aの振動波長(周期T2×音速)}
の式によって、目標位相差を決定することができる。
Note that the above-described target phase difference is determined by the relative position of each of the vibrating screeners 1 and 3 with respect to the reduction target point A shown in FIG. That is, in the case shown in FIG. 1, the vibration sieving machines 1 and 3 are not equidistant from the reduction target point A. Therefore, if the low frequency sound generated by the vibrating bodies 1a and 3a of the vibrating screens 1 and 3 is simply set to the same frequency opposite phase, the low frequency sound cannot be reduced or canceled by the interference between the two. Therefore, with the same vibration frequency (= low frequency sound frequency) of the vibrating bodies 1a and 3a, the target phase difference is set according to the distances 1 and 2 from the reduction target point A to the vibrating bodies 1a and 3a. Will be determined. Specifically, as shown in FIG.
Target phase difference = 180 + 360 × {(distance 1−distance 2) / vibration wavelength of the vibrating body 3a (period T2 × sound speed)}
The target phase difference can be determined by the following equation.

ステップS13、ステップS17、及び、ステップS21で位相差制御部15が加算器17に出力する制御量alphaを決定したならば、周波数制御部13が、振動体1a,3aの振動周波数f1,f2の差分(f2−f1)に制御量alphaを加えたfsを、PID制御における比例要素Kpや積分要素Kiの偏差(fs−f1)を定義するための変数として定義する(ステップS23)。   If the phase difference control unit 15 determines the control amount alpha to be output to the adder 17 in step S13, step S17, and step S21, the frequency control unit 13 sets the vibration frequencies f1 and f2 of the vibrating bodies 1a and 3a. The fs obtained by adding the control amount alpha to the difference (f2-f1) is defined as a variable for defining the deviation (fs-f1) of the proportional element Kp and the integral element Ki in the PID control (step S23).

そして、周波数制御部13が、前回の制御時と今回との偏差の差に相当する変数をfrとして、モータ速度指令値fmを、fm=fr+Kp(fs−f1)+∫Ki(fs−f1)の式に基づいて決定し(ステップS25)、モータ速度指令電圧にアナログ換算してインバータ20に出力する(ステップS27)。そして、一連の手順を終了する。   The frequency control unit 13 sets the motor speed command value fm to fm = fr + Kp (fs−f1) + ∫Ki (fs−f1), where fr is a variable corresponding to the difference between the previous control and the current control. (Step S25), converted into an analog motor speed command voltage and output to the inverter 20 (step S27). And a series of procedures are complete | finished.

なお、上述した周波数差のしきい値ftや位相差のしきい値ut、制御量alphaの基準量x等の値は、振動ふるい機1,3のスペック等によって異なる調整パラメータである。そして、本実施形態では、周波数位相差検出部11が請求項中の検出手段に相当し、周波数制御部13及び位相差制御部15が請求項中の制御手段に相当している。   The above-described values such as the frequency difference threshold value ft, the phase difference threshold value ut, and the reference amount x of the control amount alpha are adjustment parameters that differ depending on the specifications of the vibration sieves 1 and 3. In this embodiment, the frequency phase difference detection unit 11 corresponds to the detection unit in the claims, and the frequency control unit 13 and the phase difference control unit 15 correspond to the control unit in the claims.

以上の手順を実行することで、低減目標地点Aにおいて、振動ふるい機1の振動体1aによって発生する低周波音が、コントローラ10により周波数及び位相制御された振動ふるい機3の振動体3aによって発生する低周波音との干渉により低減、相殺されて、低減目標地点Aにおける低周波音のレベルが低減する。   By executing the above procedure, the low frequency sound generated by the vibrating body 1a of the vibrating screen 1 at the reduction target point A is generated by the vibrating body 3a of the vibrating screen 3 whose frequency and phase are controlled by the controller 10. The level of the low frequency sound at the reduction target point A is reduced by being reduced and offset by the interference with the low frequency sound.

このように構成されたコントローラ10を有する本実施形態の低周波音低減装置によれば、各振動ふるい機1,3の振動体1a,3aをその振動範囲の近傍に配置した非光学式の近接センサ5a,5bで検出する。このため、振動ふるい機1,3が石炭や木材チップ等の粉塵の発生が避けられない物品のふるい分けに用いられた場合に、振動体1a,3aの検出に際して粉塵により検出光路が遮断されたり検出光が屈折する等の影響を受けることがない。   According to the low-frequency sound reduction device of the present embodiment having the controller 10 configured as described above, the non-optical proximity in which the vibrating bodies 1a and 3a of the vibrating screens 1 and 3 are arranged in the vicinity of the vibration range. Detected by sensors 5a and 5b. For this reason, when the vibration sieving machines 1 and 3 are used for sieving articles that cannot avoid the generation of dust such as coal and wood chips, the detection light path is blocked or detected by the dust when detecting the vibrating bodies 1a and 3a. It is not affected by light being refracted.

したがって、粉塵の発生が避けられないふるい分けを行う振動ふるい機1,3についても、振動体1a,3aの振動周波数や位相を正確に把握してそれらの制御量を精度よく決定し、低減目標地点Aにおける低周波音を効率よく低減することができる。   Therefore, for the vibration sieving machines 1 and 3 that perform sieving in which generation of dust is unavoidable, the vibration frequency and phase of the vibrating bodies 1a and 3a are accurately grasped and their control amounts are accurately determined, and the reduction target point The low frequency sound in A can be efficiently reduced.

なお、位相差に関する制御量alphaをゼロにするかそれ以外の値にするかを、本実施形態で行った図8のフローチャートにおけるステップS11乃至ステップS23の手順とは異なる手順で決定するようにしてもよい。即ち、各振動ふるい機1,3における振動体1a,3aの振動周波数f1,f2の差分を小さくする制御を優先するか、位相差θを目標位相差に近づける制御を優先するかを、図8のフローチャートにおけるステップS11乃至ステップS23の手順とは異なる手順で決定するようにしてもよい。   Whether the control amount alpha relating to the phase difference is set to zero or any other value is determined by a procedure different from the procedure of steps S11 to S23 in the flowchart of FIG. 8 performed in this embodiment. Also good. That is, whether priority is given to control for reducing the difference between the vibration frequencies f1 and f2 of the vibrating bodies 1a and 3a in the respective vibration sieving machines 1 and 3, or priority is given to control for bringing the phase difference θ closer to the target phase difference. The procedure may be determined by a procedure different from the procedure of steps S11 to S23 in the flowchart.

ちなみに、本実施形態のように、振動周波数f1,f2の差分が周波数差のしきい値ftよりも大きい場合はその差分を小さくする制御を優先することで、位相差θと目標位相差との差を小さくする制御を優先するよりも、位相差θと目標位相差との差を効率よく減らすことができる。   Incidentally, as in the present embodiment, when the difference between the vibration frequencies f1 and f2 is larger than the frequency difference threshold value ft, priority is given to the control for reducing the difference between the phase difference θ and the target phase difference. The difference between the phase difference θ and the target phase difference can be efficiently reduced rather than giving priority to the control for reducing the difference.

また、本実施形態のように、振動周波数f1,f2の差分が周波数差のしきい値ftよりも小さく、かつ、位相差θの絶対値が位相差のしきい値utよりも大きい場合は、位相差θと目標位相差との差を小さくする制御を優先し、位相差θの絶対値が位相差のしきい値utよりも小さくなったならば、振動周波数f1,f2の差分がなくなるようにする制御を行うことでも、位相差θと目標位相差との差を効率よく減らすことができる。   Further, as in the present embodiment, when the difference between the vibration frequencies f1 and f2 is smaller than the frequency difference threshold ft and the absolute value of the phase difference θ is larger than the phase difference threshold ut, If priority is given to control for reducing the difference between the phase difference θ and the target phase difference, and the absolute value of the phase difference θ is smaller than the threshold value ut of the phase difference, the difference between the vibration frequencies f1 and f2 is eliminated. Also by performing the control, the difference between the phase difference θ and the target phase difference can be efficiently reduced.

さらに、本実施形態では、近接センサ5(5a,5b)が振動体1a,3aを検出するものとしたが、例えば、図2の振動源1b,3bの内部で振動体1a,3aと同期して動作する要素を近接センサ5a,5bで検出するようにしてもよい。   Further, in the present embodiment, the proximity sensor 5 (5a, 5b) detects the vibrating bodies 1a, 3a. For example, the proximity sensor 5 (5a, 5b) is synchronized with the vibrating bodies 1a, 3a inside the vibration sources 1b, 3b in FIG. The elements that operate in this manner may be detected by the proximity sensors 5a and 5b.

図2の振動源1b,3bは、図9の説明図に示すように、モータ4と、モータ4の出力軸に角度調整可能に取り付けられた2つの扇形の偏心錘4a,4bとを有している。   As shown in the explanatory view of FIG. 9, the vibration sources 1b and 3b of FIG. 2 have a motor 4 and two fan-shaped eccentric weights 4a and 4b attached to the output shaft of the motor 4 so as to be adjustable in angle. ing.

図10の斜視図に示すように、各偏心錘4a,4bは、ボルト4dの締め付けによりモータ4の出力軸に固定するためのスリット4cをそれぞれ有している。したがって、モータ4の出力軸の回転方向における各偏心錘4a,4bの位置を、ボルト4dの締め付けにより変更することができる。   As shown in the perspective view of FIG. 10, each of the eccentric weights 4a and 4b has a slit 4c for fixing to the output shaft of the motor 4 by tightening a bolt 4d. Therefore, the positions of the eccentric weights 4a and 4b in the rotation direction of the output shaft of the motor 4 can be changed by tightening the bolts 4d.

このように、モータ4の出力軸に対する各偏心錘4a,4bの取付位置を、モータ4の出力軸の回転方向において適宜調整し、両偏心錘4a,4bが発生する遠心力を調整することで、振動体1a,3aの振動源1b,3bによる振動周波数を調整することができる。   As described above, by appropriately adjusting the mounting positions of the eccentric weights 4a and 4b with respect to the output shaft of the motor 4 in the rotation direction of the output shaft of the motor 4, the centrifugal force generated by both the eccentric weights 4a and 4b is adjusted. The vibration frequency by the vibration sources 1b and 3b of the vibrating bodies 1a and 3a can be adjusted.

そこで、図2に示すように振動体1a,3aの振動範囲の近傍に配置した近接センサ5a,5bに代えて、偏心錘4bの回転軌跡の外側に、振動源1b,3bのハウジングにより外部から密閉された状態で、近接センサ5a,5bを配置してもよい。   Therefore, in place of the proximity sensors 5a and 5b arranged in the vicinity of the vibration range of the vibrating bodies 1a and 3a as shown in FIG. 2, the housing of the vibration sources 1b and 3b is externally provided outside the rotation locus of the eccentric weight 4b. The proximity sensors 5a and 5b may be arranged in a sealed state.

この場合には、近接センサ5a,5bの出力信号が偏心錘4bの通過により変化するパルス間隔から、周波数位相差検出部11(図3参照)が振動体1a,3aの振動周波数f1,f2と振動の位相差θとを検出することができる。なお、図9の近接センサ5a,5bは振動源1b,3bのハウジングにより外部から密閉されるので、塵埃等の影響を考慮して非光学式のものに限る必要はなく、光学式のものも用いることができる。このように構成しても、上述した実施形態と同様の効果を得ることができる。   In this case, the frequency phase difference detector 11 (see FIG. 3) determines the vibration frequencies f1, f2 of the vibrating bodies 1a, 3a from the pulse interval in which the output signals of the proximity sensors 5a, 5b change as the eccentric weight 4b passes. The phase difference θ of vibration can be detected. The proximity sensors 5a and 5b in FIG. 9 are sealed from the outside by the housings of the vibration sources 1b and 3b. Therefore, the proximity sensors 5a and 5b need not be limited to the non-optical type in consideration of the influence of dust and the like. Can be used. Even if comprised in this way, the effect similar to embodiment mentioned above can be acquired.

以上の実施形態では、2台の振動ふるい機1,3を対象に本発明を実施する場合を例に取って説明した。しかし、本発明は、3台目以降の振動ふるい機がさらに存在し、そのうちの1台の振動ふるい機における振動体の振動周波数及び位相を基準に、他の振動ふるい機における振動体の振動周波数及び位相を制御する際にも、適用可能である。   In the above embodiment, the case where the present invention is implemented for two vibrating sieve machines 1 and 3 has been described as an example. However, the present invention further includes the third and subsequent vibratory sieves, and the vibration frequency of the vibrator in another vibratory sieve is based on the vibration frequency and phase of the vibrator in one of the vibratory sieves. It is also applicable when controlling the phase.

1 振動ふるい機
1a 振動体
1b 振動源
3 振動ふるい機
3a 振動体
3b 振動源
4a 偏心錘
4b 偏心錘
5 近接センサ
5a 近接センサ
5b 近接センサ
10 コントローラ
11 周波数位相差検出部
13 周波数制御部
15 位相差制御部
17 加算器
20 インバータ
A 低減目標地点
DESCRIPTION OF SYMBOLS 1 Vibrating screen machine 1a Vibrating body 1b Vibrating source 3 Vibrating sieve machine 3a Vibrating body 3b Vibrating source 4a Eccentric weight 4b Eccentric weight 5 Proximity sensor 5a Proximity sensor 5b Proximity sensor 10 Controller 11 Frequency phase difference detection part 13 Frequency control part 15 Phase difference Control unit 17 Adder 20 Inverter A Reduction target point

Claims (2)

複数台の振動ふるい機がそれぞれの振動体の振動により発生させる低周波音を相互の干渉によって低減させる装置であって、
前記各振動ふるい機の前記振動体の振動範囲の近傍にそれぞれ配置され、検出可能距離以内に接近した対応する前記振動体を検出する非光学式の近接センサ、もしくは、前記振動体の振動源と共に密封状態で配置され、検出可能距離以内に接近した前記振動源の振動子を検出する近接センサと、
前記各近接センサによる前記振動体の検出信号の波形から、前記振動体の振動周波数及び位相を前記各振動ふるい機毎に検出する検出手段と、
前記検出手段が検出した一の前記振動ふるい機の前記振動体の振動に対して、前記検出手段が検出した他の前記振動ふるい機の前記振動体の振動が、同一周波数で、かつ、前記低周波音の低減目標地点に対する相対位置差により定まる所定の位相差となるように、前記検出手段が検出した前記各振動ふるい機毎の前記振動体の振動周波数及び位相に基づいて、前記他の振動ふるい機における前記振動体の振動を制御する制御手段と、
を備えることを特徴とする振動ふるい機による低周波音低減装置。
A device that reduces the low-frequency sound generated by the vibration of each vibrating body by a plurality of vibrating screens by mutual interference,
A non-optical proximity sensor for detecting the corresponding vibrating body, which is disposed in the vicinity of the vibrating range of the vibrating body of each vibrating screen machine and approaches within a detectable distance, or together with a vibration source of the vibrating body A proximity sensor that is arranged in a sealed state and detects a vibrator of the vibration source that is approached within a detectable distance; and
From the waveform of the detection signal of the vibrating body by each proximity sensor, detection means for detecting the vibration frequency and phase of the vibrating body for each of the vibrating screeners,
With respect to the vibration of the vibrating body of the one vibrating screen detected by the detecting means, the vibration of the vibrating body of the other vibrating screen detected by the detecting means has the same frequency and the low frequency. Based on the vibration frequency and phase of the vibrating body for each of the vibration sieves detected by the detection means so that a predetermined phase difference determined by the relative position difference with respect to the target point of frequency sound reduction is obtained, the other vibrations Control means for controlling the vibration of the vibrating body in the sieve machine;
A low-frequency sound reduction device using a vibration sieve.
前記制御手段は、
前記一の振動ふるい機の前記振動体の振動周波数に対して前記他の振動ふるい機の前記振動体の振動周波数が所定値より大きいときに、当該振動周波数のずれを前記所定値より小さくするための前記振動体の振動周波数制御を前記他の振動ふるい機について行い、
前記一の振動ふるい機の前記振動体の振動周波数に対する前記他の振動ふるい機の前記振動体の振動周波数のずれが前記所定値より小さく、かつ、前記一の振動ふるい機の前記振動体の振動に対する前記他の振動ふるい機の前記振動体の振動の位相差が前記所定の位相差に対して所定量より大きくずれているときに、当該位相差のずれを前記所定量より小さくするための前記振動体の振動の位相制御を前記他の振動ふるい機について行い、
前記一の振動ふるい機の前記振動体の振動周波数に対する前記他の振動ふるい機の前記振動体の振動周波数のずれが前記所定値より小さく、かつ、前記一の振動ふるい機の前記振動体の振動に対する前記他の振動ふるい機の前記振動体の振動の位相差と前記所定の位相差とのずれが前記所定量より小さいときに、前記一の振動ふるい機の前記振動体の振動周波数に前記他の振動ふるい機の前記振動体の振動周波数を近づけるための振動周波数制御を前記他の振動ふるい機について行う、
ことを特徴とする請求項1記載の振動ふるい機による低周波音低減装置。
The control means includes
When the vibration frequency of the vibration body of the other vibration screener is larger than a predetermined value with respect to the vibration frequency of the vibration body of the one vibration screener, the deviation of the vibration frequency is made smaller than the predetermined value. The vibration frequency control of the vibrating body is performed for the other vibration sieving machine,
The deviation of the vibration frequency of the vibration body of the other vibration screener with respect to the vibration frequency of the vibration body of the one vibration screener is smaller than the predetermined value, and the vibration of the vibration body of the one vibration screener When the phase difference of the vibration of the vibrating body of the other vibration sieving machine is more than a predetermined amount with respect to the predetermined phase difference, the phase difference is less than the predetermined amount. Perform the phase control of the vibration of the vibrating body for the other vibration sieving machine,
The deviation of the vibration frequency of the vibration body of the other vibration screener with respect to the vibration frequency of the vibration body of the one vibration screener is smaller than the predetermined value, and the vibration of the vibration body of the one vibration screener When the deviation between the vibration phase difference of the vibrating body of the other vibrating screener and the predetermined phase difference is smaller than the predetermined amount, the vibration frequency of the vibrating body of the one vibrating screener is set to the other frequency. The vibration frequency control for bringing the vibration frequency of the vibration body of the vibration sieve machine close to the other vibration sieve machine is performed.
The low-frequency sound reduction device by the vibration sieve according to claim 1.
JP2013078469A 2013-04-04 2013-04-04 Low-frequency sound reduction device using a vibration sieve Active JP6088327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013078469A JP6088327B2 (en) 2013-04-04 2013-04-04 Low-frequency sound reduction device using a vibration sieve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013078469A JP6088327B2 (en) 2013-04-04 2013-04-04 Low-frequency sound reduction device using a vibration sieve

Publications (2)

Publication Number Publication Date
JP2014200736A true JP2014200736A (en) 2014-10-27
JP6088327B2 JP6088327B2 (en) 2017-03-01

Family

ID=52351690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013078469A Active JP6088327B2 (en) 2013-04-04 2013-04-04 Low-frequency sound reduction device using a vibration sieve

Country Status (1)

Country Link
JP (1) JP6088327B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4489441A (en) * 1979-11-21 1984-12-18 Sound Attenuators Limited Method and apparatus for cancelling vibration
JPH05188978A (en) * 1992-01-08 1993-07-30 Tobishima Corp Method and device for preventing noise sound of vibrating equipment
JPH06221083A (en) * 1993-01-22 1994-08-09 Kajima Corp Low frequency aerial vibration reducing device for vibrating screen
JPH07104771A (en) * 1993-08-10 1995-04-21 Shinko Electric Co Ltd Silencer
JPH086574A (en) * 1994-06-22 1996-01-12 Kajima Corp Noise reducing device for mechanism having plural units
JP2000047670A (en) * 1998-07-28 2000-02-18 Sano:Kk Noise reducing system for mechanism

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4489441A (en) * 1979-11-21 1984-12-18 Sound Attenuators Limited Method and apparatus for cancelling vibration
JPH05188978A (en) * 1992-01-08 1993-07-30 Tobishima Corp Method and device for preventing noise sound of vibrating equipment
JPH06221083A (en) * 1993-01-22 1994-08-09 Kajima Corp Low frequency aerial vibration reducing device for vibrating screen
JPH07104771A (en) * 1993-08-10 1995-04-21 Shinko Electric Co Ltd Silencer
JPH086574A (en) * 1994-06-22 1996-01-12 Kajima Corp Noise reducing device for mechanism having plural units
JP2000047670A (en) * 1998-07-28 2000-02-18 Sano:Kk Noise reducing system for mechanism

Also Published As

Publication number Publication date
JP6088327B2 (en) 2017-03-01

Similar Documents

Publication Publication Date Title
US6543620B2 (en) Smart screening machine
MX2013014863A (en) Vibratory meter and method for determining resonant frequency.
JP2011259559A5 (en)
EP2278188A1 (en) Vibration control device and vehicle
CN103032517A (en) Active oscillation damper without direct acceleration detection
JP2019531994A5 (en)
JP2011259618A5 (en)
US9065359B2 (en) Unnecessary vibration detection apparatus and driving control apparatus of vibration type actuator
KR20150131955A (en) Vibration sensor
JP6088327B2 (en) Low-frequency sound reduction device using a vibration sieve
JP7101088B2 (en) Devices for ground compaction and methods for operating and monitoring them
EP2081403A1 (en) Method and device for detecting a displacement and movement of a sound producing unit of a woofer
KR101514147B1 (en) Chatter vibration control method of machine tool using destructive interference effects and apparatus thereof
JP6265718B2 (en) Vibration control device
CN108972176A (en) The centerless grinding machine and method for grinding of dynamic antivibration
JP6226555B2 (en) Noise reduction device and noise reduction method
JP6326274B2 (en) Angular velocity detector
JP3371209B2 (en) Ultra-low frequency vibration noise prevention device for vibration equipment
JP6588009B2 (en) Method for operating a plurality of machines with movable members arranged together on one support
JP2925540B1 (en) Noise reduction system for machinery
CA3135456A1 (en) Method and device for controlling/regulating a rotatory drive of a working unit of a track maintenance machine
JP6222808B2 (en) Noise reduction device and noise reduction method
JP2006504601A (en) Device for monitoring the phase angle of multiple vibratory machines
Mizuno Development of mass measurement devices for zero-gravity experiments
JP3992006B2 (en) Vibration type micro gyro sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170203

R150 Certificate of patent or registration of utility model

Ref document number: 6088327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250