JP2014199889A - Light exposure head and method of manufacturing the same - Google Patents

Light exposure head and method of manufacturing the same Download PDF

Info

Publication number
JP2014199889A
JP2014199889A JP2013075232A JP2013075232A JP2014199889A JP 2014199889 A JP2014199889 A JP 2014199889A JP 2013075232 A JP2013075232 A JP 2013075232A JP 2013075232 A JP2013075232 A JP 2013075232A JP 2014199889 A JP2014199889 A JP 2014199889A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor laser
semiconductor
laser element
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013075232A
Other languages
Japanese (ja)
Other versions
JP6143262B2 (en
Inventor
梶山 康一
Koichi Kajiyama
康一 梶山
利通 名須川
Toshimichi Nasukawa
利通 名須川
水村 通伸
Michinobu Mizumura
通伸 水村
正康 金尾
Masayasu Kanao
正康 金尾
晋 石川
Susumu Ishikawa
晋 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
V Technology Co Ltd
Original Assignee
V Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by V Technology Co Ltd filed Critical V Technology Co Ltd
Priority to JP2013075232A priority Critical patent/JP6143262B2/en
Publication of JP2014199889A publication Critical patent/JP2014199889A/en
Application granted granted Critical
Publication of JP6143262B2 publication Critical patent/JP6143262B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To set an outgoing direction of a laser beam to an arbitrary direction with respect to a substrate when a plurality of semiconductor laser elements are formed on the substrate, and to perform effective cooling of a light-emitting layer.SOLUTION: A light exposure head 1 comprises: one semiconductor substrate (a substrate 10); a plurality of semiconductor laser element parts 2, which uses the substrate 10 as a common substrate, each having a light-emitting layer 2A along a surface of the substrate 10, and a pair of resonator end surfaces 20 vertical to the surface; a recessed groove part 3 formed between the resonator end surfaces 20 of adjacent semiconductor laser element parts 2; and a reflection surface 4 facing a light emission surface of the semiconductor laser element parts 2, in the recessed groove part 3, and reflecting a laser beam Lb emitted from the light emission surface to the substrate 10 side. An exposed surface is irradiated with the laser beam Lb via the substrate 10.

Description

本発明は、半導体レーザを光源とする露光ヘッド及びその製造方法に関するものである。   The present invention relates to an exposure head using a semiconductor laser as a light source and a manufacturing method thereof.

半導体レーザを光源とする露光装置は、回路パターンの形成や画像形成を含む各種のパターン形成に用いられている。このような露光装置は、露光処理の高速化の要求を満たすためにマルチビーム化がなされており、基板上に複数の半導体レーザ素子を並列配置したマルチビーム半導体レーザアレイヘッドを備えるものが知られている(下記特許文献1参照)。   An exposure apparatus using a semiconductor laser as a light source is used for various pattern formations including circuit pattern formation and image formation. Such an exposure apparatus has been made into a multi-beam in order to meet the demand for high-speed exposure processing, and is known to have a multi-beam semiconductor laser array head in which a plurality of semiconductor laser elements are arranged in parallel on a substrate. (See Patent Document 1 below).

また、下記特許文献2に記載された従来技術には、n型GaN基板の(1−10―4)面からなる主表面上に発光層を形成した半導体レーザ素子層と、この半導体レーザ素子層の端部に形成される(1−101)面からなる光出射面と対向する領域に形成され、n型GaN基板の主表面に対して傾斜して延びる(000−1)面からなる反射面とを備える半導体レーザ素子が示されており、更には、一つのウエハ(n型GaN基板)に前述した反射面を有する半導体レーザ素子を並べて形成した面発光レーザアレイが示されている。   Further, in the conventional technique described in Patent Document 2 below, a semiconductor laser element layer in which a light emitting layer is formed on a main surface made of a (1-10-4) plane of an n-type GaN substrate, and the semiconductor laser element layer Reflective surface formed of a (000-1) plane that is formed in a region facing the light exit surface formed of the (1-101) plane formed at the end of the n-type substrate and extends at an inclination with respect to the main surface of the n-type GaN substrate. Further, there is shown a surface emitting laser array in which the semiconductor laser elements having the reflection surfaces described above are arranged side by side on one wafer (n-type GaN substrate).

特開2005−353614号公報JP 2005-353614 A 特開2009―170496号公報JP 2009-170496 A

特許文献1に記載されるような従来技術は、個別形成された半導体レーザ素子を基板上に複数配列しているので、配列ピッチの位置精度を確保することが難しく、高精細なパターン形成を行う際に配列ピッチにばらつきがあると高品質のパターン形成を行うことができない問題が生じる。また、個別に形成される半導体レーザ素子には個体差が存在するので、特許文献1に記載されるような従来技術は、複数配列された半導体レーザ素子の出力を均一化してパターン形成の品質を高めることが困難な問題がある。   In the prior art described in Patent Document 1, since a plurality of individually formed semiconductor laser elements are arranged on a substrate, it is difficult to ensure the positional accuracy of the arrangement pitch, and high-definition pattern formation is performed. However, if the arrangement pitch varies, there arises a problem that a high quality pattern cannot be formed. In addition, since there are individual differences in individually formed semiconductor laser elements, the prior art as described in Patent Document 1 makes uniform the output of a plurality of arranged semiconductor laser elements to improve the quality of pattern formation. There are problems that are difficult to raise.

これに対して、特許文献2に記載された従来技術は、一つの基板上に複数の半導体レーザ素子を形成して基板と交差する方向にレーザ光を出射することができるものであるが、一つのウエハ上に複数の半導体レーザ素子を形成することで、半導体リソグラフィー技術の高い位置精度によるアレイ化が可能になるので、配列ピッチのばらつきによるパターン形成の品質劣化を解消することができる。また、一つのウエハ上に複数同時形成される半導体レーザ素子は個体差を最小限に抑えることができるので、複数配列された半導体レーザ素子の出力を均一化してパターン形成の品質を高めることができる。   On the other hand, the prior art described in Patent Document 2 can form a plurality of semiconductor laser elements on one substrate and emit laser light in a direction intersecting with the substrate. By forming a plurality of semiconductor laser elements on one wafer, it becomes possible to form an array with high positional accuracy of the semiconductor lithography technique, so that it is possible to eliminate the deterioration in pattern formation quality due to variations in arrangement pitch. In addition, since a plurality of semiconductor laser elements formed simultaneously on one wafer can minimize individual differences, it is possible to improve the quality of pattern formation by making the outputs of a plurality of semiconductor laser elements arranged uniform. .

しかしながら、特許文献2に記載される従来技術は、結晶成長面によって主表面に傾斜した反射面を形成するので、レーザ光の出射方向を基板に対して任意の方向に設定することができない問題があり、また、基板に対して発光層側にレーザ光を出射するので、発光層側に直接冷却手段を設けることができず、基板を介しての冷却にならざるを得ないので、効果的な発光層の冷却を行うことができない問題がある。   However, since the conventional technique described in Patent Document 2 forms a reflecting surface inclined on the main surface by the crystal growth surface, there is a problem that the laser beam emission direction cannot be set to an arbitrary direction with respect to the substrate. In addition, since the laser beam is emitted to the light emitting layer side with respect to the substrate, it is not possible to provide a cooling means directly on the light emitting layer side, and it is necessary to cool through the substrate. There is a problem that the light emitting layer cannot be cooled.

本発明は、このような問題に対処することを課題の一例とするものである。すなわち、半導体レーザを光源とする露光ヘッドにおいて、一つの基板上に複数の半導体レーザ素子を作り込むことで、高い位置精度のアレイ化と個体差を抑えた素子形成を可能にし、配列ピッチのばらつきによるパターン形成の品質劣化を解消すると共に、複数配列された半導体レーザ素子の出力を均一化してパターン形成の品質を高めること、基板上に複数の半導体レーザ素子を形成するに際して、基板に対して任意の方向にレーザ光の出射方向を設定することができると共に、効果的な発光層の冷却を行うことができること、等が本発明の目的である。   This invention makes it an example of a subject to cope with such a problem. In other words, in an exposure head that uses a semiconductor laser as the light source, by creating multiple semiconductor laser elements on a single substrate, it is possible to form an array with high positional accuracy and element formation with reduced individual differences, and variations in array pitch In addition to eliminating the deterioration of pattern formation quality caused by the above, and improving the quality of pattern formation by uniformizing the output of a plurality of arrayed semiconductor laser elements, when forming a plurality of semiconductor laser elements on a substrate, any It is an object of the present invention to be able to set the emitting direction of the laser light in the direction of, and to cool the light emitting layer effectively.

このような目的を達成するために、本発明による露光ヘッド及び露光ヘッドの製造方法は、以下の構成を少なくとも具備するものである。   In order to achieve such an object, an exposure head and an exposure head manufacturing method according to the present invention include at least the following configurations.

一つの半導体基板と、前記半導体基板を共通の基板として、当該基板の表面に沿った発光層と前記表面に垂直な一対の共振器端面を有する複数の半導体レーザ素子部と、隣接する前記半導体レーザ素子部の前記共振器端面間に形成される凹溝部と、前記凹溝部内で前記半導体レーザ素子部の光出射面に対面させて当該光出射面から出射されるレーザ光を前記基板側に反射させる反射面とを備え、前記基板を介して被露光面にレーザ光を照射することを特徴とする露光ヘッド。   One semiconductor substrate, the semiconductor substrate as a common substrate, a plurality of semiconductor laser element portions having a light emitting layer along the surface of the substrate and a pair of resonator end faces perpendicular to the surface, and the adjacent semiconductor laser A concave groove formed between the resonator end faces of the element portion, and a laser beam emitted from the light emitting surface facing the light emitting surface of the semiconductor laser element portion in the concave groove portion is reflected to the substrate side An exposure head, comprising: a reflecting surface for irradiating the surface to be exposed with laser light through the substrate.

一つの半導体基板上に当該半導体基板の表面に沿った発光層を含む半導体レーザ素子層を形成する工程と、前記半導体レーザ素子層に複数並列した凹溝部を形成し、当該凹溝部における一対の壁面を共振器端面とする複数の半導体レーザ素子部を形成する工程と、前記凹溝部を光透過層で埋め込み、当該光透過層に前記半導体基板の表面に対して傾斜した加工面を形成し、前記加工面上に、前記半導体レーザ素子部の光出射面に対面させて当該光出射面から出射されるレーザ光を前記基板側に反射させる反射面を形成する工程と、前記半導体基板のレーザ光出射側の面に、複数の前記半導体レーザ素子部を駆動する共通電極を形成すると共に、前記反射面に対向する光出射開口部を形成する工程とを有することを特徴とする露光ヘッドの製造方法。   Forming a semiconductor laser element layer including a light emitting layer along a surface of the semiconductor substrate on one semiconductor substrate; forming a plurality of parallel groove portions in the semiconductor laser element layer; and a pair of wall surfaces in the groove portion Forming a plurality of semiconductor laser element portions having a cavity end face, embedding the concave groove portion with a light transmission layer, forming a processed surface inclined with respect to the surface of the semiconductor substrate in the light transmission layer, Forming a reflective surface on the processing surface that faces the light emitting surface of the semiconductor laser element portion and reflects the laser light emitted from the light emitting surface toward the substrate; and emitting the laser light from the semiconductor substrate And a step of forming a common electrode for driving the plurality of semiconductor laser element portions on a side surface and forming a light exit opening facing the reflective surface. Law.

このような特徴を有する本発明は、一つの基板上に複数の半導体レーザ素子部を作り込むことで、高い位置精度のアレイ化と個体差を抑えた素子形成を可能にし、配列ピッチのばらつきによるパターン形成の品質劣化を解消すると共に、複数配列された半導体レーザ素子部の出力を均一化してパターン形成の品質を高めることができる。また、基板上に複数の半導体レーザ素子部を形成するに際して、凹溝部に形成した光透過層の加工面上に反射面を形成することで、基板に対して任意の方向にレーザ光の出射方向を設定することができる。また、基板を介してレーザ光を出射することで、発光層に近い側から冷却することができるので、効果的な発光層の冷却が可能になる。   In the present invention having such a feature, by forming a plurality of semiconductor laser element portions on one substrate, it is possible to form an array with high positional accuracy and element formation with suppressed individual differences, and due to variations in arrangement pitch. It is possible to improve the quality of pattern formation by eliminating deterioration in quality of pattern formation and making the outputs of a plurality of arranged semiconductor laser element portions uniform. Also, when forming a plurality of semiconductor laser element portions on the substrate, a laser beam is emitted in any direction with respect to the substrate by forming a reflective surface on the processed surface of the light transmission layer formed in the groove portion. Can be set. Further, by emitting laser light through the substrate, cooling can be performed from the side close to the light emitting layer, so that the light emitting layer can be effectively cooled.

本発明の一実施形態に係る露光ヘッドの構成を示す説明図であり、(a)は要部説明図、(b)が(a)におけるA部拡大図、(c)が(a)におけるB部拡大図である。It is explanatory drawing which shows the structure of the exposure head which concerns on one Embodiment of this invention, (a) is principal part explanatory drawing, (b) is the A section enlarged view in (a), (c) is B in (a). FIG. 本発明の実施形態における半導体レーザ素子部の層構造を示した説明図である。It is explanatory drawing which showed the layer structure of the semiconductor laser element part in embodiment of this invention. 本発明の他の実施形態に係る露光ヘッドの構成を示した説明図である。It is explanatory drawing which showed the structure of the exposure head which concerns on other embodiment of this invention. 本発明の実施形態に係る露光ヘッドの製造方法の各工程を説明する説明図である。It is explanatory drawing explaining each process of the manufacturing method of the exposure head which concerns on embodiment of this invention. 本発明の実施形態に係る露光ヘッドの製造方法の各工程を説明する説明図である。It is explanatory drawing explaining each process of the manufacturing method of the exposure head which concerns on embodiment of this invention.

以下、図面を参照しながら本発明の実施形態を説明する。図1は本発明の一実施形態に係る露光ヘッドの構成を示す説明図であり、図1(a)は要部説明図、図1(b)が図1(a)におけるA部拡大図、図1(c)が図1(a)におけるB部拡大図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view showing a configuration of an exposure head according to an embodiment of the present invention, FIG. 1 (a) is an explanatory view of a main part, FIG. 1 (b) is an enlarged view of a part A in FIG. FIG.1 (c) is the B section enlarged view in Fig.1 (a).

露光ヘッド1は、一つの半導体基板(以下、単に基板という)10と、この基板10を共通基板とする複数の半導体レーザ素子部2と、凹溝部3と、反射面4とを備えている。基板10は、半導体レーザを構成することができる半導体基板であって、発生するレーザ光に対して光透過性を有する材料によって構成することができ、例えば、広い波長範囲で光透過性を有するGaN基板や長波長域で光透過性を有するα−SiC基板などを用いることができる。   The exposure head 1 includes a single semiconductor substrate (hereinafter simply referred to as a substrate) 10, a plurality of semiconductor laser element portions 2 using the substrate 10 as a common substrate, a concave groove portion 3, and a reflective surface 4. The substrate 10 is a semiconductor substrate that can constitute a semiconductor laser, and can be made of a material that is transparent to the generated laser light. For example, GaN having light transmittance in a wide wavelength range. A substrate, an α-SiC substrate having light transmittance in a long wavelength region, or the like can be used.

半導体レーザ素子部2は、基板10の表面に沿った発光層2Aと、基板10の表面に垂直な一対の共振器端面20(20A,20B)とを備えている。図2は、半導体レーザ素子部2の層構造の一例を示している。半導体レーザ素子部2の層構造Lは、半導体層L1とその外側に配置される電極層(第1電極層21,第2電極層22)とによって構成される。基板10がn型GaN基板とすると、第1電極層21はp電極となり、第2電極層22はn電極となる。半導体層L1は、基板(n型GaN基板)10上に、例えば、第1半導体層(n型GaN層)11、発光層2A、第2半導体層(p型GaN層)12などが積層される。なお、半導体レーザ素子部2の構造はこれに限らず、従来知られた各種の構造を採用することができる。   The semiconductor laser element section 2 includes a light emitting layer 2A along the surface of the substrate 10 and a pair of resonator end faces 20 (20A, 20B) perpendicular to the surface of the substrate 10. FIG. 2 shows an example of the layer structure of the semiconductor laser element portion 2. The layer structure L of the semiconductor laser element portion 2 is composed of a semiconductor layer L1 and electrode layers (first electrode layer 21 and second electrode layer 22) disposed outside the semiconductor layer L1. When the substrate 10 is an n-type GaN substrate, the first electrode layer 21 is a p-electrode and the second electrode layer 22 is an n-electrode. The semiconductor layer L1 includes, for example, a first semiconductor layer (n-type GaN layer) 11, a light emitting layer 2A, a second semiconductor layer (p-type GaN layer) 12 and the like stacked on a substrate (n-type GaN substrate) 10. . The structure of the semiconductor laser element unit 2 is not limited to this, and various conventionally known structures can be employed.

基板10を共通基板とする複数の半導体レーザ素子部2は、共通の半導体層L1を凹溝部3によって分断することで形成される。すなわち、凹溝部3の左右壁面3A,3Bが半導体レーザ素子部2における共振器端面20(20A,20B)を構成している。共振器端面20は、光出射面となる一方の共振器端面20Aが部分反射面となり、他方の共振器端面20Bには反射層20B1が形成されている。このように形成される複数の半導体レーザ素子部2は、個体差を抑えた均一性の高い素子になる。   A plurality of semiconductor laser element portions 2 having the substrate 10 as a common substrate are formed by dividing the common semiconductor layer L1 by the groove portion 3. That is, the left and right wall surfaces 3 </ b> A and 3 </ b> B of the concave groove portion 3 constitute the resonator end surface 20 (20 </ b> A and 20 </ b> B) in the semiconductor laser element portion 2. In the resonator end surface 20, one resonator end surface 20A serving as a light emitting surface is a partially reflecting surface, and a reflection layer 20B1 is formed on the other resonator end surface 20B. The plurality of semiconductor laser element portions 2 formed in this way are highly uniform elements with individual differences suppressed.

隣接する半導体レーザ素子部2の共振器端面20間に形成される凹溝部3内には反射面4が形成されている。反射面4は、半導体レーザ素子部2の光出射面(一方の共振器端面20A)に対面させて形成されており、光出射面から出射されるレーザ光Lbを基板10側に向けて反射させるものである。   A reflecting surface 4 is formed in the recessed groove portion 3 formed between the resonator end surfaces 20 of the adjacent semiconductor laser element portions 2. The reflecting surface 4 is formed so as to face the light emitting surface (one resonator end surface 20A) of the semiconductor laser element portion 2, and reflects the laser light Lb emitted from the light emitting surface toward the substrate 10 side. Is.

反射面4は、凹溝部3内に形成される光透過層5の加工面5A上に形成されている。光透過層5は、後述するように形成され、基板10の表面に対して任意の角度に傾斜した加工面5Aを有する。この加工面5A上に反射層4Aを形成することで、基板10側にレーザ光を反射する反射面4を形成している。   The reflection surface 4 is formed on the processed surface 5 </ b> A of the light transmission layer 5 formed in the groove 3. The light transmission layer 5 is formed as will be described later, and has a processed surface 5A inclined at an arbitrary angle with respect to the surface of the substrate 10. By forming the reflective layer 4A on the processed surface 5A, the reflective surface 4 for reflecting the laser beam is formed on the substrate 10 side.

光透過層5は、SiO2層などの光透過性が高く、しかも加工性の良好な材料を用いる。本発明の実施形態に係る露光ヘッドは、加工性の良好な光透過層5の加工面5A上に反射面4を形成しているので、基板10の表面に対して任意の方向に反射してレーザ光を出射させることができる。 The light transmissive layer 5 is made of a material having high light transmittance, such as a SiO 2 layer, and having good processability. In the exposure head according to the embodiment of the present invention, the reflective surface 4 is formed on the processed surface 5A of the light-transmitting layer 5 with good processability, and therefore the reflective head 4 reflects in any direction with respect to the surface of the substrate 10. Laser light can be emitted.

基板10のレーザ光出射側の面には、複数の半導体レーザ素子部2を駆動する共通電極となる第2電極層22が形成されており、また、反射面4に対向するように光出射開口部23が設けられる。光出射開口部23は、遮光機能を有する第2電極層22に開口を形成したものである。半導体レーザ素子部2から出射して反射面4で反射され基板10を透過したレーザ光は、光出射開口部23から基板10の外に出射され、マイクロレンズ6によって集光されて図示省略した被露光面に照射される。すなわち、基板10の光出射側の面に形成される光出射開口部23はマイクロレンズ6に対する開口絞りとして機能する。   A second electrode layer 22 serving as a common electrode for driving the plurality of semiconductor laser element portions 2 is formed on the surface of the substrate 10 on the laser light emitting side, and the light emitting aperture is opposed to the reflecting surface 4. A portion 23 is provided. The light emitting opening 23 is formed by forming an opening in the second electrode layer 22 having a light shielding function. The laser light emitted from the semiconductor laser element portion 2, reflected by the reflecting surface 4 and transmitted through the substrate 10 is emitted from the light emitting opening 23 to the outside of the substrate 10, condensed by the microlens 6, and not shown Irradiates the exposed surface. That is, the light exit opening 23 formed on the light exit side surface of the substrate 10 functions as an aperture stop for the microlens 6.

図3は、本発明の他の実施形態に係る露光ヘッドの構成を示した説明図である。前述した実施形態と共通する部位は同一符号を付して重複説明を省略する。この実施形態に係る露光ヘッド1(1A)は、基板10の光出射側の面に形成される第2電極層22が透明な絶縁膜24を介して放熱層25で覆われている。放熱層25はAlなどの熱伝導性の高い金属層によって形成することができる。放熱層25においても、当然ながら光出射開口部23に対応した開口が形成されている。このような放熱層25を設けることで、レーザ光が透過することによって加熱された基板10を効果的に冷却することができる。   FIG. 3 is an explanatory view showing the configuration of an exposure head according to another embodiment of the present invention. Parts common to the above-described embodiment are given the same reference numerals, and redundant description is omitted. In the exposure head 1 (1A) according to this embodiment, the second electrode layer 22 formed on the light emitting side surface of the substrate 10 is covered with a heat dissipation layer 25 via a transparent insulating film 24. The heat dissipation layer 25 can be formed of a metal layer having high thermal conductivity such as Al. In the heat dissipation layer 25, naturally, an opening corresponding to the light emitting opening 23 is formed. By providing such a heat dissipation layer 25, the substrate 10 heated by transmitting the laser beam can be effectively cooled.

また、図3に示した露光ヘッド1(1A)は、半導体レーザ素子部2上に液状冷却手段7を介在(循環)させることで、半導体レーザ素子部2に冷却手段を接触させている。液状冷却手段7は、例えば、絶縁性液体(住友スリーエム社製のフロリナート等)を用いることができる。露光ヘッド1(1A)は、基板10側からレーザ光Lbを出射することで、半導体レーザ素子部2上を冷媒で覆うことが可能になる。これよって、加熱が顕著な発光層2Aの近傍を効果的に冷却することが可能になり、半導体レーザ素子部2の発光効率を向上させることができる。液状冷却手段7で覆われる第1電極層21には、バンプボール8を介して配線(Auワイヤ)9が接続され、配線9が図示省略の駆動回路に接続される。   In the exposure head 1 (1A) shown in FIG. 3, the cooling means is brought into contact with the semiconductor laser element portion 2 by interposing (circulating) the liquid cooling means 7 on the semiconductor laser element portion 2. As the liquid cooling means 7, for example, an insulating liquid (such as Fluorinert manufactured by Sumitomo 3M) can be used. The exposure head 1 (1A) can cover the semiconductor laser element portion 2 with a coolant by emitting the laser light Lb from the substrate 10 side. Accordingly, it is possible to effectively cool the vicinity of the light emitting layer 2 </ b> A that is significantly heated, and the light emission efficiency of the semiconductor laser element portion 2 can be improved. A wiring (Au wire) 9 is connected to the first electrode layer 21 covered with the liquid cooling means 7 via a bump ball 8, and the wiring 9 is connected to a drive circuit (not shown).

図4及び図5は、本発明の実施形態に係る露光ヘッドの製造方法の各工程を説明する説明図である。   4 and 5 are explanatory views for explaining each step of the exposure head manufacturing method according to the embodiment of the present invention.

第1工程としては、図4(a)に示すように、一つの基板(半導体基板)10上に半導体基板10の表面に沿った発光層2Aを含む半導体層L1を形成する。   As the first step, as shown in FIG. 4A, a semiconductor layer L1 including a light emitting layer 2A along the surface of the semiconductor substrate 10 is formed on one substrate (semiconductor substrate) 10.

次の工程としては、図4(b)に示すように、半導体層L1に複数並列した凹溝部3を形成し、凹溝部3における一対の壁面3A,3Bを共振器端面20とする複数の半導体レーザ素子部2を形成する。凹溝部3の形成は、基板10(GaN基板)を機械加工によって削り出すことで、凹状の溝部を形成する。機械加工に換えて化学的加工技術(エッチング加工など)、物理的加工技術(イオンビーム加工など)を用いてもよい。また、これらの加工技術を組み合わせることで凹溝部3を形成することもできる。   As the next step, as shown in FIG. 4B, a plurality of semiconductors in which a plurality of recessed groove portions 3 are formed in parallel with the semiconductor layer L1 and the pair of wall surfaces 3A and 3B in the recessed groove portion 3 are the resonator end surfaces 20 are formed. The laser element portion 2 is formed. The concave groove 3 is formed by machining the substrate 10 (GaN substrate) by machining to form a concave groove. Instead of mechanical processing, chemical processing technology (such as etching processing) or physical processing technology (such as ion beam processing) may be used. Moreover, the concave groove part 3 can also be formed by combining these processing techniques.

凹溝部3の壁面3A,3Bを共振器端面20とした半導体レーザ素子部2を形成するためには、図3(c)に示すように、壁面3Bに反射層20B1を形成し、更に、壁面3Aによる共振器端面20(20A)を部分反射面とする。反射層20B1の形成は、蒸着などの成膜法により、壁面3Bに反射率の高い金属膜を成膜するか、或いは、多層膜による全反射膜を成膜する。   In order to form the semiconductor laser element portion 2 using the wall surfaces 3A and 3B of the recessed groove portion 3 as the resonator end surface 20, as shown in FIG. 3C, a reflecting layer 20B1 is formed on the wall surface 3B, and further, the wall surface The resonator end surface 20 (20A) by 3A is used as a partial reflection surface. The reflective layer 20B1 is formed by forming a metal film having a high reflectance on the wall surface 3B by a film formation method such as vapor deposition or forming a total reflection film using a multilayer film.

次の工程は、図4(d),図5(e),図5(f)に示すように、凹溝部3を光透過層5で埋め込み、光透過層5に基板(半導体基板)10の表面に対して傾斜した加工面5Aを形成する。具体的には、先ず、図4(d)に示すように、凹溝部3を完全に光透過層5(例えば、SiO2層)で埋め込む。この際には、SOG(Spin-on-Glass)法、CVD法などの層堆積法を用いることができる。その後は、図5(e)に示すように、凹溝部3からはみ出した光透過層5をCMP研磨などにより除去する。そして、図5(f)に示すように、凹溝部3内の光出射端面側を、グレースケールマスクを用いたエッチング加工により傾斜構造とし、その他の凹溝部3内の光透過層5は全て除去する。この際の傾斜構造の形成やその他の光透過層5の除去には、前述したエッチング加工に限らず機械加工やイオンビーム加工などを用いてもよい。 In the next step, as shown in FIG. 4D, FIG. 5E, and FIG. 5F, the recessed groove portion 3 is embedded with the light transmission layer 5, and the substrate (semiconductor substrate) 10 is embedded in the light transmission layer 5. A processed surface 5A inclined with respect to the surface is formed. Specifically, first, as shown in FIG. 4D, the groove 3 is completely filled with a light transmission layer 5 (for example, a SiO 2 layer). At this time, a layer deposition method such as an SOG (Spin-on-Glass) method or a CVD method can be used. Thereafter, as shown in FIG. 5E, the light transmission layer 5 protruding from the groove 3 is removed by CMP polishing or the like. Then, as shown in FIG. 5 (f), the light emitting end face side in the groove 3 is inclined by etching using a gray scale mask, and all the light transmission layers 5 in the other grooves 3 are removed. To do. At this time, the formation of the inclined structure and the removal of the other light transmission layer 5 are not limited to the above-described etching process, and a machining process or an ion beam process may be used.

次の工程は、図5(g)に示すように、形成された加工面5A上に、半導体レーザ素子部2の光出射面に対面させて光出射面から出射されるレーザ光を基板10側に反射させる反射面4を形成する。反射面4の形成には、加工面5A上に蒸着などの成膜法により反射層4Aを成膜する。反射層4Aは、反射率の高い金属膜を成膜するか、或いは、多層膜による全反射膜を形成する。   In the next step, as shown in FIG. 5G, the laser beam emitted from the light emitting surface facing the light emitting surface of the semiconductor laser element part 2 is formed on the processed surface 5A. The reflection surface 4 to be reflected is formed. In forming the reflective surface 4, the reflective layer 4A is formed on the processed surface 5A by a film formation method such as vapor deposition. As the reflective layer 4A, a metal film having a high reflectance is formed, or a total reflection film made of a multilayer film is formed.

次の工程は、図5(h)に示すように、基板(半導体基板)10のレーザ光出射側の面に、複数の半導体レーザ素子部2を駆動する共通電極となる第2電極層22を形成すると共に、反射面4に対向する光出射開口部23を形成する。また、半導体層L1の上に第1電極層21を形成する。光出射開口部23の形成は、第2電極層22を全面成膜した後に選択的なエッチングなどで必要な面積の開口を形成する。   In the next step, as shown in FIG. 5H, a second electrode layer 22 serving as a common electrode for driving the plurality of semiconductor laser element portions 2 is formed on the surface of the substrate (semiconductor substrate) 10 on the laser light emission side. At the same time, a light exit opening 23 facing the reflecting surface 4 is formed. Further, the first electrode layer 21 is formed on the semiconductor layer L1. The light emitting opening 23 is formed by forming an opening having a necessary area by selective etching after the second electrode layer 22 is formed on the entire surface.

以上説明した本発明の実施形態に係る露光ヘッド1(1A)は、一つの基板10上に複数の半導体レーザ素子部2を作り込むことで、高い位置精度のアレイ化と個体差を抑えた素子形成を可能にし、配列ピッチのばらつきによるパターン形成の品質劣化を解消すると共に、複数配列された半導体レーザ素子部2の出力を均一化してパターン形成の品質を高めることができる。   The exposure head 1 (1A) according to the embodiment of the present invention described above is an element in which a plurality of semiconductor laser element portions 2 are formed on a single substrate 10 so that an array with high positional accuracy and individual differences are suppressed. This makes it possible to eliminate the deterioration of the pattern formation quality due to the variation in the arrangement pitch, and to uniform the outputs of the plurality of semiconductor laser element portions 2 arranged to improve the quality of the pattern formation.

また、基板10上に複数の半導体レーザ素子部2を形成するに際して、凹溝部3に形成した光透過層5の加工面5A上に反射面4を形成することで、加工面5Aの加工次第で基板10に対して任意の方向にレーザ光の出射方向を設定することができる。また、基板10を介してレーザ光を出射することで、発光層2Aに近い側から冷却することができるので、効果的な発光層2Aの冷却が可能になり、半導体レーザ素子部2の発光効率を高めることができる。また、効果的な冷却によって半導体レーザ素子部2のピッチ間隔の熱歪みなどを抑えることができるので、高精細なバターン形成を高品質で実現することが可能になる。   Further, when forming the plurality of semiconductor laser element portions 2 on the substrate 10, the reflective surface 4 is formed on the processed surface 5A of the light transmission layer 5 formed in the concave groove portion 3, depending on the processing of the processed surface 5A. The emission direction of the laser beam can be set in any direction with respect to the substrate 10. Further, by emitting laser light through the substrate 10, it is possible to cool from the side close to the light emitting layer 2A, so that the light emitting layer 2A can be effectively cooled, and the light emission efficiency of the semiconductor laser element portion 2 is achieved. Can be increased. In addition, since effective cooling can suppress thermal distortion of the pitch interval of the semiconductor laser element portion 2 and the like, high-definition pattern formation can be realized with high quality.

以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。また、上述の各実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。   As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to these embodiments, and the design can be changed without departing from the scope of the present invention. Is included in the present invention. In addition, the above-described embodiments can be combined by utilizing each other's technology as long as there is no particular contradiction or problem in the purpose and configuration.

1,1A:露光ヘッド,2:半導体レーザ素子部,2A:発光層,
3:凹溝部,3A,3B:壁面,4:反射面,4A:反射層,
5:光透過層,5A:加工面,6:マイクロレンズ,7:液体冷却手段,
10:基板,20(20A,20B):共振器端面,20B1:反射層,
21:第1電極層,22:第2電極層,23:光出射開口部,24:絶縁膜,
25:放熱層,L:層構造,L1:半導体層,Lb:レーザ光
1, 1A: exposure head, 2: semiconductor laser element portion, 2A: light emitting layer,
3: groove portion, 3A, 3B: wall surface, 4: reflective surface, 4A: reflective layer,
5: light transmission layer, 5A: processed surface, 6: microlens, 7: liquid cooling means,
10: Substrate, 20 (20A, 20B): End face of resonator, 20B1: Reflective layer,
21: 1st electrode layer, 22: 2nd electrode layer, 23: Light emission opening part, 24: Insulating film,
25: heat dissipation layer, L: layer structure, L1: semiconductor layer, Lb: laser beam

Claims (6)

一つの半導体基板と、
前記半導体基板を共通の基板として、当該基板の表面に沿った発光層と前記表面に垂直な一対の共振器端面を有する複数の半導体レーザ素子部と、
隣接する前記半導体レーザ素子部の前記共振器端面間に形成される凹溝部と、
前記凹溝部内で前記半導体レーザ素子部の光出射面に対面させて当該光出射面から出射されるレーザ光を前記基板側に反射させる反射面とを備え、
前記基板を介して被露光面にレーザ光を照射することを特徴とする露光ヘッド。
One semiconductor substrate,
A plurality of semiconductor laser element portions having a light emitting layer along a surface of the substrate and a pair of resonator end faces perpendicular to the surface, wherein the semiconductor substrate is a common substrate;
A recessed groove formed between the resonator end faces of the adjacent semiconductor laser element portions;
A reflecting surface that faces the light emitting surface of the semiconductor laser element portion in the concave groove and reflects the laser light emitted from the light emitting surface toward the substrate;
An exposure head that irradiates a surface to be exposed with laser light through the substrate.
前記反射面は、前記凹溝部内に形成され且つ前記基板の表面に対して傾斜した加工面を有する光透過層の前記加工面上に形成されることを特徴とする請求項1記載の露光ヘッド。   2. The exposure head according to claim 1, wherein the reflection surface is formed on the processed surface of a light transmission layer formed in the concave groove portion and having a processed surface inclined with respect to the surface of the substrate. . 前記基板のレーザ光出射側の面には、複数の前記半導体レーザ素子部を駆動する共通電極と前記反射面に対向する光出射開口部が設けられることを特徴とする請求項1又は2記載の露光ヘッド。   3. The laser output side surface of the substrate is provided with a common electrode for driving the plurality of semiconductor laser element units and a light output opening facing the reflection surface. Exposure head. 前記共通電極は放熱層で覆われていることを特徴とする請求項3記載の露光ヘッド。   4. The exposure head according to claim 3, wherein the common electrode is covered with a heat dissipation layer. 前記半導体レーザ素子部には、冷却手段が接触していることを特徴とする請求項1〜4のいずれかに記載された露光ヘッド。   5. The exposure head according to claim 1, wherein a cooling means is in contact with the semiconductor laser element portion. 一つの半導体基板上に当該半導体基板の表面に沿った発光層を含む半導体層を形成する工程と、
前記半導体層に複数並列した凹溝部を形成し、当該凹溝部における一対の壁面を共振器端面とする複数の半導体レーザ素子部を形成する工程と、
前記凹溝部を光透過層で埋め込み、当該光透過層に前記半導体基板の表面に対して傾斜した加工面を形成し、前記加工面上に、前記半導体レーザ素子部の光出射面に対面させて当該光出射面から出射されるレーザ光を前記基板側に反射させる反射面を形成する工程と、
前記半導体基板のレーザ光出射側の面に、複数の前記半導体レーザ素子部を駆動する共通電極を形成すると共に、前記反射面に対向する光出射開口部を形成する工程とを有することを特徴とする露光ヘッドの製造方法。
Forming a semiconductor layer including a light emitting layer along a surface of the semiconductor substrate on one semiconductor substrate;
Forming a plurality of parallel groove portions in the semiconductor layer, and forming a plurality of semiconductor laser element portions having a pair of wall surfaces in the groove portions as resonator end faces;
The recessed groove is filled with a light transmission layer, a processed surface inclined with respect to the surface of the semiconductor substrate is formed in the light transmission layer, and the light emitting surface of the semiconductor laser element unit is opposed to the processed surface. Forming a reflecting surface for reflecting the laser beam emitted from the light emitting surface to the substrate side;
Forming a common electrode for driving the plurality of semiconductor laser element portions on a surface on the laser light emitting side of the semiconductor substrate, and forming a light emitting opening facing the reflecting surface. A method for manufacturing an exposure head.
JP2013075232A 2013-03-29 2013-03-29 Exposure head and manufacturing method thereof Active JP6143262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013075232A JP6143262B2 (en) 2013-03-29 2013-03-29 Exposure head and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013075232A JP6143262B2 (en) 2013-03-29 2013-03-29 Exposure head and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014199889A true JP2014199889A (en) 2014-10-23
JP6143262B2 JP6143262B2 (en) 2017-06-07

Family

ID=52356624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013075232A Active JP6143262B2 (en) 2013-03-29 2013-03-29 Exposure head and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6143262B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09216409A (en) * 1996-02-08 1997-08-19 Fuji Xerox Co Ltd Light source unit and optical scanner using end-face luminescent semiconductor laser element
JPH1022578A (en) * 1996-07-02 1998-01-23 Nichia Chem Ind Ltd Nitride semiconductor laser element
JP2009117662A (en) * 2007-11-07 2009-05-28 Sanyo Electric Co Ltd Nitride-based semiconductor light-emitting element and manufacturing method thereof
JP2010045274A (en) * 2008-08-18 2010-02-25 Seiko Epson Corp Laser light source device, projector, and monitoring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09216409A (en) * 1996-02-08 1997-08-19 Fuji Xerox Co Ltd Light source unit and optical scanner using end-face luminescent semiconductor laser element
JPH1022578A (en) * 1996-07-02 1998-01-23 Nichia Chem Ind Ltd Nitride semiconductor laser element
JP2009117662A (en) * 2007-11-07 2009-05-28 Sanyo Electric Co Ltd Nitride-based semiconductor light-emitting element and manufacturing method thereof
JP2010045274A (en) * 2008-08-18 2010-02-25 Seiko Epson Corp Laser light source device, projector, and monitoring device

Also Published As

Publication number Publication date
JP6143262B2 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
US9869453B2 (en) Light source, light source unit, and light source module using same
US7680168B2 (en) Surface emitting laser array, production process thereof, and image forming apparatus having surface emitting laser array
KR100887139B1 (en) Nitride semiconductor light emitting device and method of manufacturing the same
JP6711333B2 (en) Light emitting device
US7792173B2 (en) Semiconductor laser device
JP2018029209A (en) Light emitting device
US10544931B2 (en) Wavelength conversion member and light source device having wavelength conversion member
US10403771B2 (en) Sintered compact and light emitting device
JP2008311471A (en) Light emitting device
JP2008294252A (en) Semiconductor laser element, its manufacturing method and manufacturing method of optical semiconductor device
JP2022191293A (en) Light source device
WO2021235162A1 (en) Light-emitting device and ranging device
JP2009064961A (en) Semiconductor laser device and manufacturing method therefor
JP5259166B2 (en) Semiconductor laser device
CN1933261A (en) Semiconductor laser unit and method for manufacturing optical reflection film
JP6143262B2 (en) Exposure head and manufacturing method thereof
JP2015173213A (en) Red-color laser light source module
JP5569867B2 (en) Manufacturing method of semiconductor chip
JP2015122390A (en) Light source device
JP7032658B2 (en) Optical parts, their manufacturing methods, and light emitting devices
JP6225618B2 (en) Semiconductor laser device and manufacturing method thereof
JP2021144110A (en) Mirror device and light source device having the same
JP2007042806A (en) Light emitting module, its manufacturing method, and projective light source unit for display device
JP6037484B2 (en) Manufacturing method of semiconductor laser device
JP7245061B2 (en) Semiconductor light-emitting device and method for manufacturing semiconductor light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170501

R150 Certificate of patent or registration of utility model

Ref document number: 6143262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371