JP2014199364A - Optical element module and optical axis adjustment method of the same - Google Patents

Optical element module and optical axis adjustment method of the same Download PDF

Info

Publication number
JP2014199364A
JP2014199364A JP2013075297A JP2013075297A JP2014199364A JP 2014199364 A JP2014199364 A JP 2014199364A JP 2013075297 A JP2013075297 A JP 2013075297A JP 2013075297 A JP2013075297 A JP 2013075297A JP 2014199364 A JP2014199364 A JP 2014199364A
Authority
JP
Japan
Prior art keywords
holding means
optical fiber
optical
optical axis
lens holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013075297A
Other languages
Japanese (ja)
Other versions
JP6115259B2 (en
Inventor
孝知 伊藤
Takatomo Ito
孝知 伊藤
篠崎 稔
Minoru Shinozaki
稔 篠崎
志展 矢澤
Shinobu Yazawa
志展 矢澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2013075297A priority Critical patent/JP6115259B2/en
Publication of JP2014199364A publication Critical patent/JP2014199364A/en
Application granted granted Critical
Publication of JP6115259B2 publication Critical patent/JP6115259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical element module capable of simultaneously performing optical axis adjustment and light intensity adjustment for polarization-combining two pieces of modulation light, and an optical axis adjustment method of the same.SOLUTION: There is provided an optical axis adjustment method of an optical element module that includes: polarization-combining means 22, 23 causing polarization planes of two pieces of modulation light L1, L2 emitted from first and second optical modulation parts to orthogonally intersect with one another to thereby combine the light; collimating means 3 condensing a light wave passing through the polarization-combining means into an optical fiber 8. A junction 10 between a housing 2 and lens holding means 4 and a junction 11 between the lens holding means 4 and an optical fiber holding means 6 each have junction surfaces of planar structure. The optical axis adjustment method adjusts light intensities of the two pieces of modulation light incident into the optical fiber 8 by a bonding step of performing laser welding simultaneously at least two or more points of around the junction, and by an adjustment step of adjusting an optical axis by performing laser welding on any one of the junction 10, the junction 11 or a thin-walled portion 7 of the optical fiber holding means 6.

Description

本発明は光学素子モジュール及びその光軸調整方法に関し、特に、複数の光学素子がレーザー溶接接合されて形成される光学素子モジュール及びその光軸調整方法に関する。   The present invention relates to an optical element module and an optical axis adjusting method thereof, and more particularly to an optical element module formed by laser welding and joining a plurality of optical elements and an optical axis adjusting method thereof.

光通信分野や光計測分野においては、光変調器等の光学素子を有し、複数の光学素子から構成される光学素子モジュールが多用されている。この光学素子モジュールは、複数の光学素子同士を溶接接合することにより製造するが、その製造の際の光学素子の配置位置調整には高い精度が要求されることから、光軸ずれが生じてしまうことも多い。   In the optical communication field and the optical measurement field, an optical element module having an optical element such as an optical modulator and composed of a plurality of optical elements is frequently used. This optical element module is manufactured by welding and joining a plurality of optical elements. However, since high accuracy is required for adjusting the arrangement position of the optical elements at the time of manufacturing, an optical axis shift occurs. There are many things.

また光学素子モジュールを構成する各光学素子は、それぞれ筐体に収納されたり保持部材に保持されており、筐体や保持部材同士が溶接接合されて組み立てられることが多いが、保持部材は通常、金属で形成されており、溶接の際に加えられる熱によって熱収縮を起こし、変形してしまう。   In addition, each optical element constituting the optical element module is housed in a housing or held by a holding member, and the housing and the holding member are often assembled by welding, but the holding member is usually It is made of metal, and heat shrinks due to heat applied during welding, resulting in deformation.

すると、光軸ずれが起きないように調整しながら組み立てたとしても、溶接接合の際にモジュールが熱変形して光軸ずれが発生し、光学特性の劣化が生じ問題がある。   Then, even if it is assembled while adjusting so as not to cause an optical axis deviation, the module is thermally deformed during welding and the optical axis deviation occurs, resulting in a problem of deterioration of optical characteristics.

上記の問題に対して特許文献1では、湾曲面を有する光部品と当節面を有する光部品を互いに当接させ、2つの光部品間における光損失をモニタしながら当接部に応力を加え、光損失が最小となる箇所にYAGレーザーを照射して光学特性の劣化を補正している。   With respect to the above problem, in Patent Document 1, an optical component having a curved surface and an optical component having a nodal surface are brought into contact with each other, and stress is applied to the contact portion while monitoring optical loss between the two optical components. The deterioration of the optical characteristics is corrected by irradiating the YAG laser to the portion where the optical loss is minimized.

しかしながら特許文献1における当接部とは、当接面と湾曲面とが接する線状の部分であり、即ち両者の接触は線接触である。この線接触の部分にレーザーを照射して溶接固定するため、不安定な状態での固定となりモジュールとしての信頼性に欠けるものとなってしまう。   However, the contact portion in Patent Document 1 is a linear portion where the contact surface and the curved surface are in contact, that is, the contact between the two is a line contact. Since this line contact portion is irradiated and fixed by laser, it is fixed in an unstable state and lacks reliability as a module.

そして、修正のために溶接して熱収縮した箇所の反対側の部分には強い応力が発生してしまい、しかもモジュール全体の固定後にもこの応力は残留応力として残り、この残留応力が徐々に解放されることで経時的にモジュールが変形し、光学特性の劣化につながってしまう。   In addition, a strong stress is generated in the part opposite to the part that has been heat-shrinked by welding for correction, and this stress remains as a residual stress after the entire module is fixed, and this residual stress is gradually released. As a result, the module is deformed over time, leading to deterioration of optical characteristics.

さらに、溶接部分は線接触部分であり非常に狭い領域であるため、溶接時にYAGレーザーがモジュールを突き抜けてしまい、スプラッシュ(飛沫)が発生してしまう恐れがある。スプラッシュが発生しないように溶接しようとした場合には、十分な溶接深さが得られず、強度を確保できない。しかも、線接触の状態で溶接固定されているため、少しのレーザー照射によってもモジュールの変形量が大きくなってしまう。ゆえに修正難度も高くなり、生産性の低下につながる。   Furthermore, since the welded portion is a line contact portion and is a very narrow region, the YAG laser may penetrate through the module during welding, which may cause splash (spray). When welding is attempted so that splash does not occur, a sufficient welding depth cannot be obtained and the strength cannot be ensured. Moreover, since the welding is fixed in a line contact state, the amount of deformation of the module increases even with a slight laser irradiation. Therefore, the difficulty of correction increases, leading to a decrease in productivity.

また特許文献2では、モジュールを伝播する光波の偏波を調整するために、偏光ビームスプリッター(PBS)等の、複数の空間光学系の部品を配置している。このように内部部品点数が多くなると、モジュール全体が大型化しやすい。モジュール全体が大きくなればなるほど、上記の問題は顕著になる。さらに、特許文献2のように光波を分岐させる構造を有するモジュールにおいては、分岐光波の光強度差を補正する位置に調整するためにモジュールの光損失が拡大してしまうという問題がある。   In Patent Document 2, a plurality of components of a spatial optical system such as a polarization beam splitter (PBS) are arranged in order to adjust the polarization of the light wave propagating through the module. Thus, when the number of internal parts increases, the entire module tends to be large. The larger the module, the more pronounced the above problems. Further, in a module having a structure for branching light waves as in Patent Document 2, there is a problem that the optical loss of the module increases in order to adjust to a position for correcting the light intensity difference between the branched light waves.

特に、2つの光変調部から出射した2つの光波を偏波面が直交するように偏波合成する場合には、複数の光学部品が介在するため、合波した2つの光波に光強度差が発生し易く、光軸調整だけでなく、光強度の調整も行う必要があり、光学部品の調整作業が、より煩雑化する。また、これらの光強度の調整を光学部品の調整に頼らず、特許文献3に挙げられるような駆動電圧の振幅制御により行う方法も存在するが、この場合駆動信号側の制御が複雑化するため、光学素子モジュールと駆動装置を含んだ光変調装置全体の大型化は避けられなくなる。   In particular, when two light waves emitted from two light modulators are combined so that their planes of polarization are orthogonal, a plurality of optical components intervene, resulting in a difference in light intensity between the two combined light waves. In addition to adjusting the optical axis, it is necessary to adjust not only the optical axis but also the light intensity, and the adjustment work of the optical components becomes more complicated. In addition, there is a method of adjusting the light intensity without depending on the adjustment of the optical component and performing the drive voltage amplitude control as described in Patent Document 3, but in this case, the control on the drive signal side becomes complicated. Therefore, it is inevitable to increase the size of the entire light modulation device including the optical element module and the driving device.

特許第3938490号公報Japanese Patent No. 3938490 特開2012−203282号公報JP 2012-203282 A 特開2008−171634号公報JP 2008-171634 A

本発明が解決しようとする課題は、上記の問題を解決し、光軸ずれの修正を容易にかつ精度良く行うことができ、また修正作業中に生産性の低下や光学特性の劣化の生じない、信頼性の高い光学素子モジュールの光軸調整方法を提供することである。特に、2つの変調光を偏波合成する場合の光軸調整と光強度調整とを同時行うことが可能な光学素子モジュール及びその光軸調整方法を提供することである。   The problem to be solved by the present invention is to solve the above-mentioned problems, and to easily and accurately correct the optical axis misalignment, and to prevent a decrease in productivity and optical characteristics during the correction work. Another object of the present invention is to provide a highly reliable optical axis adjustment method for an optical element module. In particular, it is to provide an optical element module capable of simultaneously performing optical axis adjustment and light intensity adjustment when two modulated lights are polarized and combined, and an optical axis adjustment method thereof.

上記課題を解決するために、本発明の光学素子モジュール及びその光軸調整方法は以下の技術的特徴を有する。
(1) 第1及び第2の光変調部から出射する2つの変調光の偏波面を直交させて合波させる偏波合成手段と、該偏波合成手段を通過した光波を光ファイバに集光するコリメート手段とを備えた光学素子モジュールの光軸調整方法において、該第1及び第2の光変調部と該偏波合成手段とを収納する筐体と、該コリメータ手段を内蔵するレンズ保持手段と、該光ファイバの端部を保持する光ファイバ保持手段であり、該光ファイバを保持している部分の一部が肉薄となるよう設定されている光ファイバ保持手段とを備え、該筐体と該レンズ保持手段との接合部、及び該レンズ保持手段と該光ファイバ保持手段との接合部において、各接合部は接合面が平面構造となっており、両者を接合するため、当該接合部の周囲の少なくとも2つ以上の点で同時にレーザー溶接を行う接合工程と、該筐体と該レンズ保持手段との接合部、該レンズ保持手段と該光ファイバ保持手段との接合部、又は該光ファイバ保持手段の肉薄部のいずれかで、当該部分の周囲にレーザー溶接を行って光軸を調整する調整工程により、該光ファイバに入射する2つの変調光の光強度を調整することを特徴とする光学素子モジュールの光軸調整方法である。
In order to solve the above problems, an optical element module and an optical axis adjustment method thereof according to the present invention have the following technical features.
(1) Polarization combining means for orthogonally combining the polarization planes of the two modulated lights emitted from the first and second light modulation sections, and condensing the light wave that has passed through the polarization combining means on the optical fiber In the optical axis adjustment method of the optical element module comprising the collimating means, the housing for housing the first and second light modulators and the polarization beam combining means, and the lens holding means incorporating the collimator means And an optical fiber holding means for holding an end portion of the optical fiber, and an optical fiber holding means set so that a part of a portion holding the optical fiber is thin, the casing And the lens holding means, and the joint part between the lens holding means and the optical fiber holding means, each of the bonding parts has a planar structure, and the bonding parts are joined together. At least two points around At any one of a joining step of performing laser welding at the same time, a joining portion between the housing and the lens holding means, a joining portion between the lens holding means and the optical fiber holding means, or a thin portion of the optical fiber holding means. An optical axis adjustment method for an optical element module, wherein the optical intensity of two modulated lights incident on the optical fiber is adjusted by an adjustment step of adjusting the optical axis by performing laser welding around the portion. is there.

(2) 上記(1)に記載の光学素子モジュールの光軸調整方法において、該接合工程は、当該接合部の周囲の120度間隔で3点を同時にレーザー溶接を行うことを特徴とする。 (2) In the optical axis adjustment method of the optical element module according to (1), the joining step is characterized in that laser welding is simultaneously performed at three points at intervals of 120 degrees around the joint.

(3) 上記(1)又は(2)に記載の光学素子モジュールの光軸調整方法において、該調整工程は、該筐体と該レンズ保持手段との接合部、該レンズ保持手段と該光ファイバ保持手段との接合部、又は該光ファイバ保持手段の肉薄部のいずれかに、当該部分の周囲の一部に光軸調整のための応力を印加し、該応力が圧縮応力となっている点にレーザー溶接を行うことを特徴とする。 (3) In the optical axis adjustment method of the optical element module according to (1) or (2), the adjustment step includes a joint portion between the casing and the lens holding unit, the lens holding unit and the optical fiber. The stress for adjusting the optical axis is applied to a part of the periphery of the portion at either the joint with the holding means or the thin part of the optical fiber holding means, and the stress is a compressive stress. And laser welding.

(4) 第1及び第2の光変調部から出射する2つの変調光を偏波面を直交させて合波させる偏波合成手段と、該偏波合成手段を通過した光波を光ファイバに集光するコリメート手段とを備えた光学素子モジュールにおいて、該第1及び第2の光変調部と該偏波合成手段とを収納する筐体と、該コリメータ手段を内蔵するレンズ保持手段と、該光ファイバの端部を保持する光ファイバ保持手段であり、該光ファイバを保持している部分の一部が肉薄となるよう設定されている光ファイバ保持手段とを備え、該筐体と該レンズ保持手段との接合部、及び該レンズ保持手段と該光ファイバ保持手段との接合部において、各接合部は接合面が平面構造となっており、両者を接合するため、当該接合部の周囲の少なくとも2つ以上の点でレーザー溶接が行われており、該光ファイバに入射する2つの変調光の光軸が一致しておらず、該光ファイバに入射する2つの変調光の光強度を調整するため、該筐体と該レンズ保持手段との接合部、該レンズ保持手段と該光ファイバ保持手段との接合部、又は該光ファイバ保持手段の肉薄部のいずれかで、当該部分の周囲にレーザー溶接を行って光軸が調整されていることを特徴とする。 (4) Polarization combining means for combining the two modulated lights emitted from the first and second light modulation sections with orthogonal polarization planes, and condensing the light wave that has passed through the polarization combining means on the optical fiber An optical element module including a collimating unit, a housing for housing the first and second light modulating units and the polarization combining unit, a lens holding unit incorporating the collimating unit, and the optical fiber. Optical fiber holding means for holding the end of the optical fiber, and optical fiber holding means set so that a part of the part holding the optical fiber is thin, the housing and the lens holding means And the joint portion between the lens holding means and the optical fiber holding means, each joint portion has a planar structure of the joint surface, and in order to join both, at least 2 around the joint portion. Laser welding at two or more points The optical axis of the two modulated lights incident on the optical fiber is not aligned, and the casing and the lens holding unit are used to adjust the light intensity of the two modulated lights incident on the optical fiber. The optical axis is adjusted by laser welding around the part at any one of the joining part with the means, the joining part between the lens holding means and the optical fiber holding means, or the thin part of the optical fiber holding means. It is characterized by.

本発明は、第1及び第2の光変調部から出射する2つの変調光の偏波面を直交させて合波させる偏波合成手段と、該偏波合成手段を通過した光波を光ファイバに集光するコリメート手段とを備えた光学素子モジュールの光軸調整方法において、該第1及び第2の光変調部と該偏波合成手段とを収納する筐体と、該コリメータ手段を内蔵するレンズ保持手段と、該光ファイバの端部を保持する光ファイバ保持手段であり、該光ファイバを保持している部分の一部が肉薄となるよう設定されている光ファイバ保持手段とを備え、該筐体と該レンズ保持手段との接合部、及び該レンズ保持手段と該光ファイバ保持手段との接合部において、各接合部は接合面が平面構造となっており、両者を接合するため、当該接合部の周囲の少なくとも2つ以上の点で同時にレーザー溶接を行う接合工程と、該筐体と該レンズ保持手段との接合部、該レンズ保持手段と該光ファイバ保持手段との接合部、又は該光ファイバ保持手段の肉薄部のいずれかで、当該部分の周囲にレーザー溶接を行って光軸を調整する調整工程により、該光ファイバに入射する2つの変調光の光強度を調整することを特徴とする光学素子モジュールの光軸調整方法であるため、この接合面の平面構造により、従来のように、スプラッシュによる歩留まり低下や、レーザー溶接によるズレの発生が抑制され、容易に、かつ精度良く光学素子モジュールの光軸を調整することができる。しかも、平面構造で接触しているため、残留応力による経時的な変形も抑制され、光学特性の劣化を防止することが可能となる。   The present invention provides a polarization beam combining means for orthogonally combining the polarization planes of the two modulated lights emitted from the first and second light modulation sections, and collecting the light wave that has passed through the polarization wave combining means in an optical fiber. In an optical axis adjustment method of an optical element module including a collimating unit that emits light, a housing that houses the first and second light modulation units and the polarization beam combining unit, and a lens holding unit that incorporates the collimator unit And an optical fiber holding means for holding an end portion of the optical fiber, and an optical fiber holding means set so that a part of the portion holding the optical fiber is thin, In the joint portion between the body and the lens holding means, and the joint portion between the lens holding means and the optical fiber holding means, each joint portion has a planar structure, and the joint surfaces are joined together. At least two around the part Any one of a joining step of performing laser welding at the same time, a joining portion between the housing and the lens holding means, a joining portion between the lens holding means and the optical fiber holding means, or a thin portion of the optical fiber holding means An optical axis adjustment method for an optical element module, wherein the optical intensity of the two modulated lights incident on the optical fiber is adjusted by an adjustment step of adjusting the optical axis by performing laser welding around the portion. Therefore, with this planar structure of the joint surface, it is possible to easily and accurately adjust the optical axis of the optical element module by suppressing the yield reduction due to splash and the occurrence of deviation due to laser welding, as in the past. it can. In addition, since they are in contact with each other in a planar structure, deformation with time due to residual stress is suppressed, and deterioration of optical characteristics can be prevented.

しかも、当該接合部の周囲の少なくとも2つ以上の点で同時にレーザー溶接を行うため、レーザー溶接による位置ズレが発生し難い。特に、当該接合部の周囲の120度間隔で3点を同時にレーザー溶接を行う場合には、レーザー溶接で発生する応力が互いに干渉し合い、結果として位置ズレがより発生し難くなっている。   In addition, since laser welding is performed simultaneously at at least two or more points around the joint, misalignment due to laser welding is unlikely to occur. In particular, when laser welding is performed simultaneously at three points at 120 ° intervals around the joint, stresses generated by laser welding interfere with each other, and as a result, positional deviation is less likely to occur.

また、光軸の微調整に際しては、筐体とレンズ保持手段との接合部、レンズ保持手段と光ファイバ保持手段との接合部、又は光ファイバ保持手段の肉薄部のいずれかで、当該部分の周囲にレーザー溶接を行うことで、より高精度な調整が可能となる。特に、当該部分の周囲の一部に光軸調整のための応力を印加し、該応力が圧縮応力となっている点にレーザー溶接を行うことで、応力を付加した状態に各部品の形状を維持させることが可能となる。   Further, in fine adjustment of the optical axis, either the joint between the housing and the lens holding means, the joint between the lens holding means and the optical fiber holding means, or the thin portion of the optical fiber holding means, By performing laser welding on the periphery, more accurate adjustment is possible. In particular, by applying a stress for adjusting the optical axis to a part of the periphery of the part, and performing laser welding on the point where the stress is a compressive stress, the shape of each part is applied in a state where the stress is applied. It can be maintained.

しかも、これらの光軸調整を行う際に、光ファイバに入射する2つの変調光の光強度を調整しながら、光軸調整を行うため、各変調光の光強度調整を別途行う必要が無く、組み立て・調整作業を簡便に行うことが可能となる。   Moreover, when adjusting these optical axes, the optical axes are adjusted while adjusting the optical intensities of the two modulated lights incident on the optical fiber, so there is no need to separately adjust the optical intensity of each modulated light, Assembly / adjustment work can be easily performed.

本発明の光軸調整方法を適用する光学素子モジュールの一実施例について説明する概略図である。It is the schematic explaining one Example of the optical element module to which the optical axis adjustment method of this invention is applied. 本発明の光軸調整方法を適用する光学素子モジュールにおいて、各部材間を溶接する接合工程について説明する図である。It is a figure explaining the joining process which welds between each member in the optical element module to which the optical axis adjustment method of this invention is applied. 発明の光軸調整方法を適用する光学素子モジュールにおいて、光軸を調整する調整工程について説明する図である。It is a figure explaining the adjustment process which adjusts an optical axis in the optical element module to which the optical axis adjustment method of invention is applied. 2つの変調部から出力される光波を偏波合成する光学素子モジュールの例を説明する図である。It is a figure explaining the example of the optical element module which carries out polarization composition of the light wave outputted from two modulation parts. 2つの光波の光強度分布を説明する図である。It is a figure explaining the light intensity distribution of two light waves.

以下、本発明の光学素子モジュール及びその光軸調整方法について好適例を用いて詳細に説明する。図1は、光軸調整を行う部分を中心に示した図である。
光学素子1から出力された光波は、レンズ等のコリメータ手段3により光ファイバ8に導入される。光学素子モジュールは、さらに、光学素子1を収納する筐体2と、コリメータ手段3を内蔵するレンズ保持手段4と、光ファイバ8の端部を保持する光ファイバ保持手段であり、該光ファイバを保持している部分の一部(符号7で示す部分)が肉薄となるよう設定されている光ファイバ保持手段6とを備えている。
Hereinafter, the optical element module of the present invention and the optical axis adjustment method thereof will be described in detail using preferred examples. FIG. 1 is a diagram mainly showing a portion for adjusting the optical axis.
The light wave output from the optical element 1 is introduced into the optical fiber 8 by the collimator means 3 such as a lens. The optical element module further includes a housing 2 for housing the optical element 1, a lens holding means 4 incorporating the collimator means 3, and an optical fiber holding means for holding the end of the optical fiber 8. The optical fiber holding means 6 set so that one part (part shown with the code | symbol 7) of the holding | maintenance part becomes thin is provided.

本発明の第1の特徴は、筐体2とレンズ保持手段4との接合部7、及びレンズ保持手段4と光ファイバ保持手段6との接合部11とにおいて、各接合部(10,11)は接合面が平面構造となっている。   The first feature of the present invention is that each of the joint portions (10, 11) in the joint portion 7 between the housing 2 and the lens holding means 4 and the joint portion 11 between the lens holding means 4 and the optical fiber holding means 6. Has a planar structure on the joint surface.

本発明において、「接合面が平面構造」であることの意味は、互いに接触している接合面が、一定以上の面積を有する状態で接触していることを意味し、レーザー溶接した際に、モジュールを突き抜けてスプラッシュが発生しない程度の接触面積が確保されていることを意味している。   In the present invention, the meaning of “joint surface is a planar structure” means that the joint surfaces that are in contact with each other are in contact with each other in a state having a certain area or more. This means that a contact area enough to prevent splashing through the module is secured.

「接合面が平面構造」であるため、光軸調整のためのレーザーを照射しても、レーザー照射方向に対してモジュールの十分な肉厚が確保されているため、溶接部が熱収縮を起こして変形したり、スプラッシュが発生したりすることがない。また、各部材が十分な接触面積を確保しているため、レーザー溶接で発生した応力により、経時的に形状が変化することも抑制される。   Since the “joint surface is a planar structure”, even if the laser for adjusting the optical axis is irradiated, the module is sufficiently thick in the laser irradiation direction, causing the weld to shrink. Will not be deformed or splash will occur. Moreover, since each member has ensured sufficient contact area, it is suppressed that a shape changes with time by the stress which generate | occur | produced by laser welding.

次に、筐体2とレンズ保持手段4との接合部10、及びレンズ保持手段4と光ファイバ保持手段6との接合部11を、レーザー溶接により接合する接合工程を説明する。同時に照射するレーザーは、2つ以上とすることで、レーザー溶接で発生する応力が、互いに干渉して打ち消し合うように働き、結果として、接合部材の位置ズレを抑制するよう構成している。   Next, a joining process for joining the joint portion 10 between the housing 2 and the lens holding means 4 and the joint portion 11 between the lens holding means 4 and the optical fiber holding means 6 by laser welding will be described. By using two or more lasers to be irradiated at the same time, the stress generated by laser welding works to interfere with each other and cancel each other, and as a result, the positional deviation of the joining member is suppressed.

図2は、図1の接合部10や11を光軸方向に眺めた図であり、3つの点を同時にレーザー溶接する例を説明している。図2のように、3つの溶接点を120度の間隔で配置することで、レーザー溶接で発生した応力が互いに干渉し、接合部全体に均一に加わるように構成されている。レーザー溶接する点が2点や4点以上の場合でも、溶接個所を中心Oに対して対象となるように溶接する点を配置することで、接合部材の位置ズレを抑制することが可能である。   FIG. 2 is a view of the joints 10 and 11 in FIG. 1 as viewed in the optical axis direction, and illustrates an example in which three points are laser welded simultaneously. As shown in FIG. 2, by arranging the three welding points at intervals of 120 degrees, the stresses generated by laser welding interfere with each other and are uniformly applied to the entire joint. Even when the number of points to be laser welded is two or four or more, it is possible to suppress the displacement of the joining member by arranging the points to be welded so that the welding point is the target with respect to the center O. .

レーザー溶接に際しては、複数台のYAGレーザーを用いたり、一つのYAGレーザー光を分岐して使用するなど、任意の形態が利用可能である。また、レーザー溶接する場所を多くする場合には、図2に符号Aで示す3点(それぞれ周方向に等間隔に離れている)を同時に照射・溶接し、続いてYAGレーザーの照射部材と光学素子モジュールの位置を相対的にずらし、符号Bで示す3点を照射・溶接し、さらに、同様に調整し符号Cで示す3点を照射・溶接する。またこの溶接作業の間には光学素子モジュールの出射光をモニタし、光損失が最小になるように光学素子モジュールの光軸を調整しながら溶接を行うことが好ましい。   In laser welding, any form such as using a plurality of YAG lasers or branching one YAG laser beam can be used. Also, when increasing the number of laser welding locations, the three points indicated by symbol A in FIG. 2 (each separated at equal intervals in the circumferential direction) are simultaneously irradiated and welded, followed by the YAG laser irradiation member and optical The position of the element module is relatively shifted, and the three points indicated by symbol B are irradiated and welded. Further, the three points indicated by reference symbol C are adjusted and irradiated in the same manner. Further, it is preferable to perform the welding while monitoring the light emitted from the optical element module during the welding operation and adjusting the optical axis of the optical element module so that the optical loss is minimized.

接合工程では、筐体2とレンズ保持手段4との接合部7、及びレンズ保持手段4と光ファイバ保持手段6との接合部11を、レーザー溶接により接合する場合を中心に説明したが、光ファイバ8と光ファイバ保持手段6とが完全に接合されていない場合には、光ファイバ保持手段6の肉薄部7に上述したように3点のYAGレーザー照射を行って固定することが可能である。このような場合には、モニタしながらアライメント調整を行い、最初に肉薄部7を接合し、次に、接合部10、最後に接合部11を順次溶接することで、調整をより効率的に行うことができる。   In the joining process, the joining portion 7 between the housing 2 and the lens holding means 4 and the joining portion 11 between the lens holding means 4 and the optical fiber holding means 6 have been described mainly with respect to joining by laser welding. When the fiber 8 and the optical fiber holding means 6 are not completely joined, the thin portion 7 of the optical fiber holding means 6 can be fixed by irradiating three points of YAG laser as described above. . In such a case, alignment adjustment is performed while monitoring, and the thin portion 7 is first joined, then the joint portion 10 and finally the joint portion 11 are sequentially welded to perform the adjustment more efficiently. be able to.

次に、光軸を微調整する調整工程について説明する。調整工程では、筐体2とレンズ保持手段4との接合部10、レンズ保持手段4と光ファイバ保持手段6との接合部11、又は光ファイバ保持手段6の肉薄部7のいずれかで、当該部分の周囲にレーザー溶接を行って光軸を調整する。   Next, an adjustment process for finely adjusting the optical axis will be described. In the adjustment step, the bonding portion 10 between the housing 2 and the lens holding means 4, the bonding portion 11 between the lens holding means 4 and the optical fiber holding means 6, or the thin portion 7 of the optical fiber holding means 6, Laser welding is performed around the part to adjust the optical axis.

図3は、筐体2とレンズ保持手段4との接合部10、レンズ保持手段4と光ファイバ保持手段6との接合部11、又は光ファイバ保持手段6の肉薄部7を、後軸方向から見た断面図である。調整工程では、これらの接合部(10,11)や肉薄部(7)のいずれかで、当該部分の周囲の一部に押圧力Fを印加して光軸を調整する。この押圧力により接合部等に応力が印加されるが、該応力が圧縮応力となっている点である、押圧力Fを印加した点と反対側の部分にレーザーLを照射して溶接を行う。これにより、応力のバランスが取れ、押圧力Fを解除しても形状を維持することが可能となる。   FIG. 3 shows the joining portion 10 between the housing 2 and the lens holding means 4, the joining portion 11 between the lens holding means 4 and the optical fiber holding means 6, or the thin portion 7 of the optical fiber holding means 6 from the rear axis direction. FIG. In the adjustment process, the optical axis is adjusted by applying a pressing force F to a part of the periphery of the joint portion (10, 11) or the thin portion (7). Stress is applied to the joints and the like by this pressing force, and welding is performed by irradiating the laser L to the portion opposite to the point where the pressing force F is applied, which is a point where the stress is a compressive stress. . As a result, the stress can be balanced and the shape can be maintained even when the pressing force F is released.

調整工程では、透過損失を最小限にするように、光軸の微調整を何度も行うことも可能である。そのためには、各部分に複数回のレーザー溶接を行う場合もある。   In the adjustment step, the optical axis can be finely adjusted many times so as to minimize transmission loss. For this purpose, laser welding may be performed a plurality of times on each part.

次に、筐体2に入れる光学素子として、第1及び第2の光変調部から出射する2つの変調光を偏波面を直交させて合波させる偏波合成手段を備えたものについて説明する。図4に示すように、内蔵される光学素子として、例えば、同一基板上に並列したマッハツェンダー型導波路を2つ備え、2つの変調部を備えている。光ファイバ25で入射した光波を2つに分岐し、各変調部に導入する。各変調部から出射した光波L1及びL2は、偏波合成手段で一つの光波として出力される。   Next, a description will be given of an optical element provided in the housing 2 that includes a polarization beam combining unit that multiplexes two modulated lights emitted from the first and second light modulation units with their polarization planes orthogonal to each other. As shown in FIG. 4, the built-in optical element includes, for example, two Mach-Zehnder type waveguides arranged in parallel on the same substrate, and two modulation units. The light wave incident on the optical fiber 25 is branched into two and introduced into each modulation section. The light waves L1 and L2 emitted from each modulation unit are output as one light wave by the polarization beam combiner.

偏波合成手段としては、偏波面を90°回転させる半波長板などの偏波回転部22と、直交する偏波面を有する2つの光波(L1,L2)とを合波する偏光ビームスプリッター(PBS)23などで構成される。偏波合成する部分は、複屈折材料を用いて合波することも可能である。   As the polarization combining means, a polarization beam splitter (PBS) that combines a polarization rotation unit 22 such as a half-wave plate for rotating the polarization plane by 90 ° and two light waves (L1, L2) having orthogonal polarization planes. ) And the like. It is also possible to combine the polarization combining portions using a birefringent material.

変調部を備えた光学素子21や偏波合成手段(22,23)は、筐体2内に収容されて、配置固定されている。本発明の光学素子モジュールの光軸調整方法の特徴は、この2つの変調部から出射する2つの光波の光強度を調整しながら光軸調整も行うことである。   The optical element 21 and the polarization beam combining means (22, 23) provided with the modulation unit are accommodated in the housing 2 and are fixedly arranged. The optical axis adjustment method of the optical element module according to the present invention is characterized in that the optical axis is adjusted while adjusting the light intensities of the two light waves emitted from the two modulators.

偏波合成手段を出射した光波を、コリメータ手段3を用いて光ファイバ8に導入する光学系や保持手段、並びにその光軸調整方法については、図1乃至3で説明したとおりであり、図4の実施例にも同様に利用することが可能である。   The optical system and holding means for introducing the light wave emitted from the polarization beam combining means into the optical fiber 8 using the collimator means 3 and the optical axis adjusting method are as described in FIGS. This embodiment can be used in the same manner.

光軸調整で光強度調整を行うことができる原理について、図5を参照しながら説明する。2つの変調部から出射した光波(L1,L2)は、偏波合成手段の結合損や位置調整の関係から、図5(a)に示すように、若干光軸がずれて合波している。光ファイバに入射する位置において、2つの光波の光軸は完全に一致していない。この2つの合波光の光強度を、一点鎖線Xで示した部分の空間強度分布で見ると、図5(b)のように、一方のピークが他方より大きくなって現れる。2つの光波のピーク位置(各光波の光軸)P,Sは互いにずれているが、共に同じ強度となる位置もあり、このような位置に光ファイバの光軸を合わせることで、合波された2つの光強度をほぼ同じすることが可能となる。当然、光強度比を1:2や1:3など、等しくならない状態を実現することも可能である。 The principle that the light intensity can be adjusted by adjusting the optical axis will be described with reference to FIG. The light waves (L1, L2) emitted from the two modulators are combined with the optical axis slightly shifted as shown in FIG. 5A due to the coupling loss of the polarization combining means and the positional adjustment. . At the position incident on the optical fiber, the optical axes of the two light waves are not completely coincident. When the light intensities of the two combined lights are viewed in the spatial intensity distribution of the portion indicated by the alternate long and short dash line X, one peak appears larger than the other as shown in FIG. The peak positions of the two light waves (the optical axes of the light waves) P 0 and S 0 are shifted from each other, but there are also positions where both have the same intensity. By aligning the optical axis of the optical fiber at such a position, the alignment is achieved. It is possible to make the two light intensities almost the same. Of course, it is also possible to realize a state where the light intensity ratio is not equal, such as 1: 2 or 1: 3.

偏波合成手段から出射する2つの光波の光軸がずれる原因は、変調部、偏波回転部、偏光ビームスプリッター(PBS)などの光学部品(偏波回転部の前後にコリメータレンズを配置する場合もある。)の位置関係が、正規の光軸からずれているためである。本発明は、このような位置ズレが発生している場合に、特に、好適に2つの光波の光強度を調整することができる。当然、コリメータ手段や光ファイバの位置を調整するのと同様に、筐体側の光学部品の位置を調整することで、2つの光波の光強度が変化することは言うまでもない。   The cause of the deviation of the optical axes of the two light waves emitted from the polarization beam combining means is that optical components such as a modulation unit, a polarization rotation unit, and a polarization beam splitter (PBS) (when collimator lenses are arranged before and after the polarization rotation unit) This is because the positional relationship is deviated from the normal optical axis. The present invention can suitably adjust the light intensities of the two light waves particularly when such a positional deviation occurs. Of course, as in the case of adjusting the position of the collimator means and the optical fiber, it goes without saying that the light intensity of the two light waves changes by adjusting the position of the optical component on the housing side.

光軸調整に際しては、2つの光波(L1,L2)を切り替えて出射させ、個別に光強度をモニタして光軸を設定することも可能であるが、モニタ光を偏波分離し、2つの受光素子で同時に検出して、光強度比率が所定の条件を満たすように、光軸調整を行うことも可能である。   When adjusting the optical axis, the two light waves (L1, L2) can be switched and emitted, and the optical intensity can be set by individually monitoring the light intensity. It is also possible to adjust the optical axis so that the light intensity ratio satisfies a predetermined condition by simultaneously detecting with the light receiving element.

以上、実施例に基づき本発明を説明したが、本発明は上述した内容に限定されず、本発明の趣旨を逸脱しない範囲で適宜設計変更可能であることはいうまでもない。   The present invention has been described above based on the embodiments. However, the present invention is not limited to the above-described contents, and it is needless to say that the design can be changed as appropriate without departing from the gist of the present invention.

本発明によれば、光軸ずれの修正を容易にかつ精度良く行うことができ、また修正作業中に生産性の低下や光学特性の劣化の生じない、信頼性の高い光学素子モジュールの光軸調整方法を提供することができる。特に、2つの変調光を偏波合成する場合の光軸調整と光強度調整とを同時行うことが可能な光学素子モジュールの光軸調整方法を提供することが可能となる。   According to the present invention, the optical axis deviation of the optical element module can be easily and accurately corrected, and the optical axis of the highly reliable optical element module does not cause a reduction in productivity or optical characteristics during the correction operation. An adjustment method can be provided. In particular, it is possible to provide an optical axis adjustment method for an optical element module capable of simultaneously performing optical axis adjustment and light intensity adjustment in the case of combining two modulated lights with polarization.

1 光学素子
2 筐体
3 レンズ
4 レンズ保持手段
5 光ファイバ保持パイプ
6 光ファイバ保持手段
7 肉薄部
8 光ファイバ
10,11 接合部
21 光学素子
22 偏波回転部
23 偏波合成部
25 入力用光ファイバ
DESCRIPTION OF SYMBOLS 1 Optical element 2 Housing | casing 3 Lens 4 Lens holding means 5 Optical fiber holding pipe 6 Optical fiber holding means 7 Thin part 8 Optical fibers 10 and 11 Joint part 21 Optical element 22 Polarization rotation part 23 Polarization composition part 25 Input light fiber

Claims (4)

第1及び第2の光変調部から出射する2つの変調光の偏波面を直交させて合波させる偏波合成手段と、該偏波合成手段を通過した光波を光ファイバに集光するコリメート手段とを備えた光学素子モジュールの光軸調整方法において、
該第1及び第2の光変調部と該偏波合成手段とを収納する筐体と、
該コリメータ手段を内蔵するレンズ保持手段と、
該光ファイバの端部を保持する光ファイバ保持手段であり、該光ファイバを保持している部分の一部が肉薄となるよう設定されている光ファイバ保持手段とを備え、
該筐体と該レンズ保持手段との接合部、及び該レンズ保持手段と該光ファイバ保持手段との接合部において、各接合部は接合面が平面構造となっており、両者を接合するため、当該接合部の周囲の少なくとも2つ以上の点で同時にレーザー溶接を行う接合工程と、
該筐体と該レンズ保持手段との接合部、該レンズ保持手段と該光ファイバ保持手段との接合部、又は該光ファイバ保持手段の肉薄部のいずれかで、当該部分の周囲にレーザー溶接を行って光軸を調整する調整工程により、
該光ファイバに入射する2つの変調光の光強度を調整することを特徴とする光学素子モジュールの光軸調整方法。
Polarization combining means for orthogonally combining the polarization planes of the two modulated lights emitted from the first and second light modulation sections, and collimating means for condensing the light wave that has passed through the polarization combining means on the optical fiber In an optical axis adjustment method of an optical element module comprising:
A housing that houses the first and second light modulators and the polarization beam combining means;
Lens holding means incorporating the collimator means;
An optical fiber holding means for holding an end of the optical fiber, and an optical fiber holding means set so that a part of a portion holding the optical fiber is thin;
In the joint portion between the housing and the lens holding means, and the joint portion between the lens holding means and the optical fiber holding means, each joint portion has a planar structure, and both are joined together. A joining step in which laser welding is simultaneously performed at at least two or more points around the joint;
Laser welding is performed around the portion at either the joint between the housing and the lens holding means, the joint between the lens holding means and the optical fiber holding means, or the thin portion of the optical fiber holding means. By the adjustment process to go and adjust the optical axis,
An optical axis adjustment method for an optical element module, comprising adjusting the light intensities of two modulated lights incident on the optical fiber.
請求項1に記載の光学素子モジュールの光軸調整方法において、該接合工程は、当該接合部の周囲の120度間隔で3点を同時にレーザー溶接を行うことを特徴とする光学素子モジュールの光軸調整方法。   2. The optical axis adjustment method for an optical element module according to claim 1, wherein in the joining step, laser welding is simultaneously performed at three points at intervals of 120 degrees around the joint portion. 3. Adjustment method. 請求項1又は2に記載の光学素子モジュールの光軸調整方法において、該調整工程は、該筐体と該レンズ保持手段との接合部、該レンズ保持手段と該光ファイバ保持手段との接合部、又は該光ファイバ保持手段の肉薄部のいずれかに、当該部分の周囲の一部に光軸調整のための応力を印加し、該応力が圧縮応力となっている点にレーザー溶接を行うことを特徴とする光学素子モジュールの光軸調整方法。   3. The optical axis adjustment method for an optical element module according to claim 1, wherein the adjustment step includes a joint portion between the housing and the lens holding means, and a joint portion between the lens holding means and the optical fiber holding means. Or applying a stress for adjusting the optical axis to a part of the circumference of the thin portion of the optical fiber holding means, and performing laser welding at a point where the stress is a compressive stress. An optical axis adjustment method for an optical element module. 第1及び第2の光変調部から出射する2つの変調光を偏波面を直交させて合波させる偏波合成手段と、該偏波合成手段を通過した光波を光ファイバに集光するコリメート手段とを備えた光学素子モジュールにおいて、
該第1及び第2の光変調部と該偏波合成手段とを収納する筐体と、
該コリメータ手段を内蔵するレンズ保持手段と、
該光ファイバの端部を保持する光ファイバ保持手段であり、該光ファイバを保持している部分の一部が肉薄となるよう設定されている光ファイバ保持手段とを備え、
該筐体と該レンズ保持手段との接合部、及び該レンズ保持手段と該光ファイバ保持手段との接合部において、各接合部は接合面が平面構造となっており、両者を接合するため、当該接合部の周囲の少なくとも2つ以上の点でレーザー溶接が行われており、
該光ファイバに入射する2つの変調光の光軸が一致しておらず、該光ファイバに入射する2つの変調光の光強度を調整するため、該筐体と該レンズ保持手段との接合部、該レンズ保持手段と該光ファイバ保持手段との接合部、又は該光ファイバ保持手段の肉薄部のいずれかで、当該部分の周囲にレーザー溶接を行って光軸が調整されていることを特徴とする光学素子モジュール。
Polarization combining means for combining two modulated lights emitted from the first and second light modulation sections with orthogonal polarization planes, and collimating means for condensing the light wave that has passed through the polarization combining means on an optical fiber In an optical element module comprising:
A housing that houses the first and second light modulators and the polarization beam combining means;
Lens holding means incorporating the collimator means;
An optical fiber holding means for holding an end of the optical fiber, and an optical fiber holding means set so that a part of a portion holding the optical fiber is thin;
In the joint portion between the housing and the lens holding means, and the joint portion between the lens holding means and the optical fiber holding means, each joint portion has a planar structure, and both are joined together. Laser welding is performed at at least two points around the joint,
The optical axis of the two modulated lights incident on the optical fiber does not coincide with each other, and the junction between the casing and the lens holding means is used to adjust the light intensity of the two modulated lights incident on the optical fiber. The optical axis is adjusted by laser welding around the portion of either the joint between the lens holding means and the optical fiber holding means or the thin portion of the optical fiber holding means. An optical element module.
JP2013075297A 2013-03-29 2013-03-29 Optical element module and optical axis adjustment method thereof Active JP6115259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013075297A JP6115259B2 (en) 2013-03-29 2013-03-29 Optical element module and optical axis adjustment method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013075297A JP6115259B2 (en) 2013-03-29 2013-03-29 Optical element module and optical axis adjustment method thereof

Publications (2)

Publication Number Publication Date
JP2014199364A true JP2014199364A (en) 2014-10-23
JP6115259B2 JP6115259B2 (en) 2017-04-19

Family

ID=52356303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013075297A Active JP6115259B2 (en) 2013-03-29 2013-03-29 Optical element module and optical axis adjustment method thereof

Country Status (1)

Country Link
JP (1) JP6115259B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175288A1 (en) * 2015-04-28 2016-11-03 住友大阪セメント株式会社 Polarization synthesis module
CN108693613A (en) * 2017-03-30 2018-10-23 住友大阪水泥股份有限公司 Optical element module
CN111805082A (en) * 2020-07-14 2020-10-23 大连藏龙光电子科技有限公司 Surface mounting and welding method for controlling tracking error of coaxial optical device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03216606A (en) * 1990-01-22 1991-09-24 Hitachi Ltd Method for fixing optical parts by laser welding
JP2003167160A (en) * 2001-12-03 2003-06-13 Furukawa Electric Co Ltd:The Method for correcting optical axis of optical module
JP2003266188A (en) * 2002-03-14 2003-09-24 Fujitsu Ltd Laser welding equipment and method of welding component
JP2012211971A (en) * 2011-03-31 2012-11-01 Sumitomo Osaka Cement Co Ltd Polarized wave synthesizer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03216606A (en) * 1990-01-22 1991-09-24 Hitachi Ltd Method for fixing optical parts by laser welding
JP2003167160A (en) * 2001-12-03 2003-06-13 Furukawa Electric Co Ltd:The Method for correcting optical axis of optical module
JP2003266188A (en) * 2002-03-14 2003-09-24 Fujitsu Ltd Laser welding equipment and method of welding component
JP2012211971A (en) * 2011-03-31 2012-11-01 Sumitomo Osaka Cement Co Ltd Polarized wave synthesizer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175288A1 (en) * 2015-04-28 2016-11-03 住友大阪セメント株式会社 Polarization synthesis module
JP2016212127A (en) * 2015-04-28 2016-12-15 住友大阪セメント株式会社 Polarization beam combination module
CN106662711A (en) * 2015-04-28 2017-05-10 住友大阪水泥股份有限公司 Polarization synthesis module
US10001602B2 (en) 2015-04-28 2018-06-19 Sumitomo Osaka Cement Co., Ltd. Polarization-combining module
CN106662711B (en) * 2015-04-28 2020-11-27 住友大阪水泥股份有限公司 Polarization synthesis module
CN108693613A (en) * 2017-03-30 2018-10-23 住友大阪水泥股份有限公司 Optical element module
JP2018169542A (en) * 2017-03-30 2018-11-01 住友大阪セメント株式会社 Optical element module
US10126505B2 (en) 2017-03-30 2018-11-13 Sumitomo Osaka Cement Co., Ltd. Optical element module
CN111805082A (en) * 2020-07-14 2020-10-23 大连藏龙光电子科技有限公司 Surface mounting and welding method for controlling tracking error of coaxial optical device
CN111805082B (en) * 2020-07-14 2022-07-08 大连藏龙光电子科技有限公司 Surface mounting and welding method for controlling tracking error of coaxial optical device

Also Published As

Publication number Publication date
JP6115259B2 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
WO2014119450A1 (en) Optical modulator
JP6115259B2 (en) Optical element module and optical axis adjustment method thereof
WO2014129506A1 (en) Optical device
JP2015169795A (en) Optical transmission device
JP2015045875A (en) Weld joining method and device having weld-joined component
US10001602B2 (en) Polarization-combining module
WO2016143725A1 (en) Coherent receiver
JP6769378B2 (en) Light modulator
US20190099993A1 (en) Apparatus and method for cutting multilayer material
EP3335825A1 (en) Invisible laser system and light path visualization method therefor
US11204507B2 (en) Positioning member having cutout portion and polarization beam combining module using positioning member
WO2013058143A1 (en) Bonding method
US10921606B2 (en) Optical multiplexer
JP6587109B2 (en) Optical element module and manufacturing method thereof
JP6597427B2 (en) Manufacturing method of optical module
US7991254B2 (en) Optical package with multi-component mounting frame
JP2018010036A (en) Optical coupling method
JP2012211971A (en) Polarized wave synthesizer
JP6349792B2 (en) Optical transmitter
JP6226428B2 (en) A method of manufacturing a polarization maintaining fiber with an optical isolator.
JP4694526B2 (en) Optically controlled phased array antenna device
WO2022118790A1 (en) Optical module
WO2022215214A1 (en) Optical module, alignment system, and optical measurement method
JP6491980B2 (en) Manufacturing method of optical module
JP2017098335A (en) Wavelength multiplexed laser diode module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160506

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170306

R150 Certificate of patent or registration of utility model

Ref document number: 6115259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150