JP2014197462A - Electrode active material for lithium secondary batteries, lithium secondary battery, and method for manufacturing electrode active material for lithium secondary batteries - Google Patents

Electrode active material for lithium secondary batteries, lithium secondary battery, and method for manufacturing electrode active material for lithium secondary batteries Download PDF

Info

Publication number
JP2014197462A
JP2014197462A JP2013071762A JP2013071762A JP2014197462A JP 2014197462 A JP2014197462 A JP 2014197462A JP 2013071762 A JP2013071762 A JP 2013071762A JP 2013071762 A JP2013071762 A JP 2013071762A JP 2014197462 A JP2014197462 A JP 2014197462A
Authority
JP
Japan
Prior art keywords
active material
electrode active
lithium secondary
secondary battery
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013071762A
Other languages
Japanese (ja)
Other versions
JP6111118B2 (en
Inventor
羊一郎 河野
Yoichiro Kono
羊一郎 河野
藤井 信三
Shinzo Fujii
信三 藤井
彰彦 加藤
Akihiko Kato
彰彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2013071762A priority Critical patent/JP6111118B2/en
Publication of JP2014197462A publication Critical patent/JP2014197462A/en
Application granted granted Critical
Publication of JP6111118B2 publication Critical patent/JP6111118B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a practical electrode active material for lithium secondary batteries arranged by use of LFPO-based active material.SOLUTION: A electrode active material for lithium secondary batteries comprises: a powdery compound expressed by the chemical formula, LiFeMPO, where M is Ni or Co, or both; and a coating film of carbon formed thereon. More preferably, 1.0-10.0 wt% of the carbon is included to the compound. The electrode active material for lithium secondary batteries may be arranged so that the compound has an average particle diameter of 2.0 μm or smaller.

Description

本発明は、リチウム二次電池用電極活物質の特性改良技術に関する。   The present invention relates to a technique for improving characteristics of an electrode active material for a lithium secondary battery.

実用化されているリチウム二次電池用の電極活物質としては、LiCoOやLiMnがあり、これらの電極活物質は正極材料に用いられている。LiCoOはエネルギー密度が高く、実質容量は140mAh/gである。しかし、高価なCoが必須の組成として含まれ、リチウム二次電池の低価格化が難しい。またCoは毒性を有し、環境問題の観点からもより安全な活物質に代替していくことが望ましい。一方、LiMnは実質容量が110mAh/gとLiCoOよりも低い。また60℃以上でMnが溶出して容量特性が劣化するという問題もある。そのため、より高い容量とより高い安全性を有し、さらにはより安価なリチウム二次電池用の電極活物質を実現させる必要がある。 Examples of electrode active materials for lithium secondary batteries that have been put into practical use include LiCoO 2 and LiMn 2 O 4 , and these electrode active materials are used as positive electrode materials. LiCoO 2 has a high energy density and a real capacity of 140 mAh / g. However, expensive Co is included as an essential composition, and it is difficult to reduce the price of the lithium secondary battery. Co is toxic, and it is desirable to replace it with a safer active material from the viewpoint of environmental problems. On the other hand, LiMn 2 O 4 has a substantial capacity of 110 mAh / g, which is lower than LiCoO 2 . There is also a problem that Mn elutes at 60 ° C. or higher and capacity characteristics deteriorate. Therefore, it is necessary to realize an electrode active material for a lithium secondary battery that has a higher capacity, higher safety, and more inexpensive.

ところで近年、リチウム二次電池用の電極活物質として、LiFe(1−x)の化学式で表される物質が注目されている(MはNiとCoのいずれか、あるいは両方)。この物質(以下、「LFPO系活物質」と称することもある)は、結晶構造が安定したリン酸骨格であり高温下での特性劣化が少ない。また、組成中の主要な遷移金属がFeであり、LiCoOのように高価で毒性のあるCoを多量に必要としない。上記化学式にCoが含まれなければ毒性を考慮する必要がない。上記化学式においてx=0としたピロリン酸鉄リチウム(以下、LFPO)では、リチウム以外は、安価で安全な鉄(Fe)とリン(P)で構成することができる。 By the way, in recent years, a material represented by a chemical formula of Li 2 Fe (1-x) M x P 2 O 7 has attracted attention as an electrode active material for a lithium secondary battery (M is one of Ni and Co, Or both). This material (hereinafter sometimes referred to as “LFPO-based active material”) has a phosphoric acid skeleton with a stable crystal structure and little deterioration in properties at high temperatures. In addition, the main transition metal in the composition is Fe and does not require a large amount of expensive and toxic Co like LiCoO 2 . If Co is not included in the above chemical formula, it is not necessary to consider toxicity. Lithium iron pyrophosphate (hereinafter referred to as LFPO) in which x = 0 in the above chemical formula can be composed of inexpensive and safe iron (Fe) and phosphorus (P) other than lithium.

そして、LFPOを含むLFPO系活物質は、化学式当たり2個のリチウムイオンが充放電に寄与でき、理論上は220mAh/gの高い容量が得られる。そして現在、このLFPO系活物質を実用化すべく各方面で研究がなされている。なお、LFPO系活物質の概要については以下の非特許文献1や2などに記載されている。   In the LFPO-based active material containing LFPO, two lithium ions per chemical formula can contribute to charging / discharging, and a high capacity of 220 mAh / g is theoretically obtained. Currently, research is being conducted in various directions to put this LFPO-based active material into practical use. The outline of the LFPO-based active material is described in Non-Patent Documents 1 and 2 below.

最先端研究開発支援プログラム、”高性能蓄電デバイス創製に向けた革新的基盤研究 平成22年度 実施状況の詳細”、[online]、[平成25年3月5日検索]、インターネット<URL:http://www.first-mizuno.com/pdf/2010_situation_of_execution.pdf>State-of-the-art R & D support program, “Innovative basic research for the creation of high-performance power storage devices, details of implementation in FY2010”, [online], [Search March 5, 2013], Internet <URL: http: //www.first-mizuno.com/pdf/2010_situation_of_execution.pdf> 東京大学、”プレスリリース「リチウムイオン電池、東大が鉄系新電極材料を発見、容量2倍の可能性も」”、[online]、[平成25年3月6日検索]、インターネット<URL:http://www.t.u-tokyo.ac.jp/tpage/public/pdf/release_20100929.pdf>The University of Tokyo, “Press release“ Lithium-ion battery, the University of Tokyo discovers a new iron-based electrode material, double the capacity ””, [online], [Search March 6, 2013], Internet <URL: http://www.tu-tokyo.ac.jp/tpage/public/pdf/release_20100929.pdf>

上述したように、LFPO系活物質は、組成中の主成分が安価で安全なFeやPであるとともに、安定した結晶構造と高い容量を有し、現在実用化されているリチウム二次電池用電極活物質に代替できる可能性を秘めている。しかしながら、LFPO系活物質は電子伝導性が悪く、そのまま電極材としてリチウムイオン電池に組み込んでも過電圧が大きく電池として十分な性能を得ることができない。また、LFPO系活物質は、従来のリチウム二次電池用と同様の方法で電極材にするとイオン電導性が悪く十分な容量が得られないという問題もある。すなわち理論上の容量が高くてもその容量を効率よく発現させることができないのが現状である。   As described above, the LFPO-based active material is composed of inexpensive and safe Fe and P as a main component, and has a stable crystal structure and a high capacity, and is currently in practical use for lithium secondary batteries. It has the potential to replace electrode active materials. However, the LFPO-based active material has poor electronic conductivity, and even if incorporated in a lithium ion battery as an electrode material as it is, the overvoltage is large and sufficient performance as a battery cannot be obtained. In addition, the LFPO-based active material also has a problem that when the electrode material is formed by the same method as that for a conventional lithium secondary battery, the ion conductivity is poor and a sufficient capacity cannot be obtained. In other words, even if the theoretical capacity is high, the capacity cannot be expressed efficiently.

そこで本発明は、LFPO系活物質を用いた実用的なリチウム二次電池用電極活物質を提供することを目的としている。また、その電極活物質を用いたリチウム二次電池およびリチウム二次電池用電極活物質の製造方法を提供することも目的としている。   Accordingly, an object of the present invention is to provide a practical electrode active material for a lithium secondary battery using an LFPO-based active material. Another object of the present invention is to provide a lithium secondary battery using the electrode active material and a method for producing an electrode active material for a lithium secondary battery.

上記目的を達成するための本発明は、MをNiとCoのいずれか、あるいは両方として、化学式LiFe(1−x)で表される粉末状の化合物にカーボンの被膜が形成されていることを特徴とするリチウムイオン二次電池用電極活物質としている。 In order to achieve the above object, the present invention provides a powdery compound represented by the chemical formula Li 2 Fe (1-x) M x P 2 O 7 where M is either Ni or Co, or both. The electrode active material for a lithium ion secondary battery is characterized in that a film is formed.

また前記カーボンが前記化合物に対して1.0wt%以上10.0wt%以下含まれていることを特徴とするリチウムイオン二次電池用電極活物質とすれば好適である。前記化合物の平均粒径が2.0μm以下であればより好ましい。そして、前記化合物がLiFePの化学式で表されるリチウムイオン二次電池用電極活物質とすることができる。 Further, it is preferable to use an electrode active material for a lithium ion secondary battery characterized in that the carbon is contained in an amount of 1.0 wt% to 10.0 wt% with respect to the compound. More preferably, the average particle size of the compound is 2.0 μm or less. Then, the compound may be Li 2 FeP 2 lithium ion secondary battery electrode active material represented by the chemical formula O 7.

また本発明は、上記いずれかに記載のリチウムイオン二次電池用電極活物質を正極活物質、あるいは負極活物質として用いたリチウム二次電池と、リチウムイオン二次電池用電極活物質の製造方法に及んでいる。そして当該製造方法に係る発明は、
化学式LiFe(1−x)で表される化合物の原料にカーボンの原料を混合する原料混合ステップと、
原料混合ステップにより得た混合物をプレス加工してペレットに成形した上で、当該ペレットを焼成温度よりも低い温度で加熱して一次焼成品を得る仮焼成ステップと、
前記一次焼成品を粉砕して得た粉末をプレス加工してペレットに成形した上で、当該ペレットを焼成して二次焼成品を得る本焼成ステップと、
前記二次焼成品を所定の平均粒径となるように粉砕する粒径調整ステップと、
を含むことを特徴とするリチウムイオン二次電池用電極活物質の製造方法としている。
The present invention also provides a lithium secondary battery using the electrode active material for a lithium ion secondary battery as described above as a positive electrode active material or a negative electrode active material, and a method for producing an electrode active material for a lithium ion secondary battery It reaches to. And the invention related to the manufacturing method is
A raw material mixing step of mixing a carbon raw material with a raw material of a compound represented by the chemical formula Li 2 Fe (1-x) M x P 2 O 7 ;
After pressing the mixture obtained by the raw material mixing step to form a pellet, the pellet is heated at a temperature lower than the firing temperature to obtain a primary fired product,
After the powder obtained by pulverizing the primary fired product is pressed into a pellet, the main firing step of firing the pellet to obtain a secondary fired product,
A particle size adjusting step of pulverizing the secondary fired product to have a predetermined average particle size;
A method for producing an electrode active material for a lithium ion secondary battery.

本発明によれば、高い容量とともに高い安全性と化学的安定性を備えたリチウム二次電池用電極活物質を安価に提供することができる。また安価で高容量のリチウム二次電池を提供することもできる。   According to the present invention, an electrode active material for a lithium secondary battery having high capacity and high safety and chemical stability can be provided at low cost. In addition, an inexpensive and high-capacity lithium secondary battery can be provided.

本発明の実施例に係るリチウム二次電池用電極活物質の製造方法を示す図である。It is a figure which shows the manufacturing method of the electrode active material for lithium secondary batteries which concerns on the Example of this invention. 上記実施例に係るリチウム二次電池用電極活物質を用いたリチウム二次電池の組み立て方法を示す図である。It is a figure which shows the assembly method of the lithium secondary battery using the electrode active material for lithium secondary batteries which concerns on the said Example. 本発明の実施例に係るリチウム二次電池用電極活物質を用いたリチウム二次電池の充放電特性を示す図である。It is a figure which shows the charging / discharging characteristic of the lithium secondary battery using the electrode active material for lithium secondary batteries which concerns on the Example of this invention.

===LFPO系活物質について===
従来のリチウム二次電池用電極活物質であるLiCoOやLiMnは、化学式あたり1個のリチウムイオンが移動可能であるのに対し、LiFe(1−x)の化学式で表されるLFPO系活物質は2個である。そして、1個のリチウムイオンあたりの容量が110mAh/gであるため、理論上は220mAh/gの高い容量が得られる可能性がある。しかし、上述したように、LFPO系活物質には電子伝導性が低いという問題があり、LFPO系活物質を電極活物質としたリチウム二次電池は未だ実用化されていない。
=== About LFPO-based active material ===
LiCoO 2 and LiMn 2 O 4, which are conventional electrode active materials for lithium secondary batteries, can move one lithium ion per chemical formula, whereas Li 2 Fe (1-x) M x P 2 O There are two LFPO-based active materials represented by the chemical formula ( 7 ). And since the capacity | capacitance per 1 lithium ion is 110 mAh / g, theoretically a high capacity | capacitance of 220 mAh / g may be obtained. However, as described above, the LFPO-based active material has a problem of low electron conductivity, and a lithium secondary battery using the LFPO-based active material as an electrode active material has not yet been put into practical use.

===本発明の実施例について===
本発明の実施例に係る電極活物質は、電子伝導特性やイオン伝導特性を改良したLFPOである。具体的には、LiFe(1−x)で表されるLFPO系活物質の化学式において、x=0としたLiFePで表されるLFPOにカーボン被膜を形成した微粒子状の電極活物質であり、その電極活物質自体の電子電導性が改善されている。また、電極活物質をリチウム二次電池に用いる際には、その電極活物質に導電材やバインダーを混合して電極材料にするため、リチウムイオンがその電極材料に対して可逆的にかつ円滑に挿入、離脱できるように平均粒径が適切に調整された電極活物質も本発明の実施例としている。
=== About Example of the Invention ===
The electrode active material according to the embodiment of the present invention is LFPO with improved electron conduction characteristics and ion conduction characteristics. Specifically, in the chemical formula of the LFPO-based active material represented by Li 2 Fe (1-x) M x P 2 O 7 , a carbon coating is applied to LFPO represented by Li 2 FeP 2 O 7 where x = 0. The electrode active material is in the form of fine particles, and the electron conductivity of the electrode active material itself is improved. In addition, when an electrode active material is used in a lithium secondary battery, a conductive material and a binder are mixed with the electrode active material to form an electrode material, so that lithium ions are reversibly and smoothly applied to the electrode material. An electrode active material whose average particle size is appropriately adjusted so that it can be inserted and removed is also an example of the present invention.

===サンプルについて===
本実施例の電極活物質の特性を評価するため、あるいはLFPOに被膜するカーボンの量や電極活物質において好ましい平均粒径を規定するために、製造条件が異なる様々な電極活物質を作製し、その電極活物質を用いたリチウム二次電池をサンプルとして作製した。以下に、電極活物質の製造方法とその電極活物質を用いたリチウム二次電池の組み立て方法について説明する。
=== About Samples ===
In order to evaluate the characteristics of the electrode active material of this example, or to define a preferable average particle size in the amount of carbon coated on LFPO and the electrode active material, various electrode active materials having different production conditions were prepared, A lithium secondary battery using the electrode active material was produced as a sample. Below, the manufacturing method of an electrode active material and the assembly method of a lithium secondary battery using the electrode active material are demonstrated.

<電極活物質の製造方法>
図1にLFPOを主成分とした電極活物質の製造方法を示した。まず、LFPOの原料となる(NH)HPO、LiCO、FeC・2HOを化学量論比で秤量し(s1)、秤量後の原料を磁性乳鉢で混合した(s2→s4)。あるいは、サンプルに応じて電極活物質の電子伝導度を高めるためのカーボンの原料としてアスコルビン酸をLFPOの原料とともに混合した(s2→s3→s4)。アスコルビン酸の混合量はサンプルに応じて加減した。
<Method for producing electrode active material>
FIG. 1 shows a method for producing an electrode active material containing LFPO as a main component. First, (NH 4 ) 2 HPO 4 , Li 2 CO 3 , FeC 2 O 4 .2H 2 O as raw materials for LFPO were weighed in a stoichiometric ratio (s1), and the weighed raw materials were mixed in a magnetic mortar. (S2 → s4). Alternatively, ascorbic acid was mixed with LFPO as a carbon material for increasing the electron conductivity of the electrode active material according to the sample (s2 → s3 → s4). The amount of ascorbic acid mixed was adjusted according to the sample.

つぎに、電極活物質の原料を混合したものを6t/cmの圧力でプレス加工して直径21.5mmの扁平円筒状のペレットに成形し(s5)、そのペレットをアルミナルツボに入れ、Ar雰囲気中300℃の温度で1時間加熱することで仮焼成を行ない、一次焼成品を生成した(s6)。 Next, a mixture of electrode active material raw materials is pressed at a pressure of 6 t / cm 2 to form a flat cylindrical pellet having a diameter of 21.5 mm (s5). The pellet is placed in an alumina crucible, and Ar Temporary baking was performed by heating at a temperature of 300 ° C. for 1 hour in an atmosphere to produce a primary fired product (s6).

一次焼成品を今度はメノウ乳鉢で粉砕し(s7)、その粉砕によって得た粉末を再び上記と同様の条件でプレス加工してペレットに成型した(s8)。そのペレットをアルミナルツボに入れ、今度はAr雰囲気中600℃の温度で2時間加熱して焼成(本焼成)し、二次焼成品を得た(s9)。   The primary fired product was then pulverized in an agate mortar (s7), and the powder obtained by the pulverization was pressed again under the same conditions as described above to form pellets (s8). The pellets were put into an alumina crucible, and this time, heated for 2 hours at a temperature of 600 ° C. in an Ar atmosphere (fired) to obtain a secondary fired product (s9).

最後に、サンプルに応じた平均粒径となるように二次焼成品を粉砕した。なお、粉砕は平均粒径に応じて異なる手順で行った。平均粒径5.0μm以下の粉末を得る場合は、ボールミルを用いアルコール媒体中で粉砕した(s10→s11)。このボールミルによる粉砕では、その粉砕時間や媒体の種類などを調整することで平均粒子0.01μm、0.05μm、0.1μm、0.5μm、1.0μm、2.0μm、5.0μmの電極活物質を得た。平均粒径が5μmよりも大きな粉体を得る場合には、メノウ乳鉢によって粉砕した(s10→s12)。それによって平均粒径10.0μmの電極活物質を得た。   Finally, the secondary fired product was pulverized so as to have an average particle size according to the sample. In addition, grinding | pulverization was performed in the different procedure according to the average particle diameter. When obtaining a powder having an average particle size of 5.0 μm or less, it was pulverized in an alcohol medium using a ball mill (s10 → s11). In the pulverization by this ball mill, electrodes having average particles of 0.01 μm, 0.05 μm, 0.1 μm, 0.5 μm, 1.0 μm, 2.0 μm, and 5.0 μm are adjusted by adjusting the pulverization time and the type of medium. An active material was obtained. When obtaining a powder having an average particle size larger than 5 μm, it was pulverized with an agate mortar (s10 → s12). Thereby, an electrode active material having an average particle diameter of 10.0 μm was obtained.

<リチウム二次電池の製造方法>
図2に図1に示した手順で製造された電極活物質を用いたリチウム二次電池の組み立て方法を示した。上述した方法によって製造した電極活物質を正極活物質とし、当該電極活物質(以下、正極活物質とも言う)と導電材であるケッチェンブラック(KB)とバインダーであるポリフッ化ビニリデン(PVDF)を(N−メチルピロリドン)NMPを溶媒として混合し、スラリーペースト状の正極材料を得た(s21)。なお、正極活物質、KBおよびPVDFの割合は、73wt%、14wt%および13wt%としている。そして、上記正極材料を正極集電体である20μmのアルミニウム箔上に均一に塗工したものを乾燥し(s22)、当該正極材料が塗工されたアルミニウム箔を20cm四方の矩形状に切り抜き、これを正極とした(s23)。
<Method for producing lithium secondary battery>
FIG. 2 shows a method for assembling a lithium secondary battery using the electrode active material manufactured by the procedure shown in FIG. The electrode active material manufactured by the method described above is used as a positive electrode active material, and the electrode active material (hereinafter also referred to as a positive electrode active material), ketjen black (KB) as a conductive material, and polyvinylidene fluoride (PVDF) as a binder. (N-methylpyrrolidone) NMP was mixed as a solvent to obtain a slurry paste-like positive electrode material (s21). Note that the ratios of the positive electrode active material, KB, and PVDF are 73 wt%, 14 wt%, and 13 wt%. And drying what applied the said positive electrode material uniformly on 20 micrometers aluminum foil which is a positive electrode electrical power collector (s22), cut out the aluminum foil with which the said positive electrode material was coated into a 20 cm square rectangular shape, This was used as a positive electrode (s23).

負極は、負極活物質として金属Liを用い、この金属リチウム(Li)を極集電体である20μmの銅箔上に貼り付け(s25)、当該金属Liを貼り付けた銅箔を20cm四方の矩形状に切り抜くことで作製した(s26)。そして、正極と負極の集電体に電極端子となるリード線を接続し(s24、s27)、紙製のセパレータを介して正極と負極を積層した(s28)。このセパレータを介して正極と負極を積層した構造体(以下、電極積層体)の外側にさらにガラス板を積層するようにして張り付けた(s29)。   The negative electrode uses metal Li as the negative electrode active material, and the metal lithium (Li) is pasted on a 20 μm copper foil as a current collector (s25), and the copper foil on which the metal Li is pasted is 20 cm square. It was produced by cutting out into a rectangular shape (s26). And the lead wire used as an electrode terminal was connected to the collector of a positive electrode and a negative electrode (s24, s27), and the positive electrode and the negative electrode were laminated | stacked through the paper-made separator (s28). A glass plate was further laminated on the outside of the structure in which the positive electrode and the negative electrode were laminated (hereinafter referred to as an electrode laminate) via this separator (s29).

つぎに、このガラス板の挟持された状態の電極構造体を袋状のラミネートフィルム内に配置しつつ、リード線を袋の外側に導出させる(s30)。そして、ラミネートフィルム内に電解液を注液し(s31)、真空中にて脱泡した上で、ラミネートフィルムの開口を熱圧着などの方法により封口し、リチウム二次電池の組み立てを完了させた(s32、s33)。なお、電解液には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)が30wt%と70wt%の比率となる混合物に支持塩として1MのLiPFを溶解させたものを用いた。 Next, the lead wire is led out to the outside of the bag while the electrode structure with the glass plate sandwiched is placed in the bag-like laminate film (s30). Then, an electrolyte was poured into the laminate film (s31), defoamed in vacuum, and the opening of the laminate film was sealed by a method such as thermocompression bonding, thereby completing the assembly of the lithium secondary battery. (S32, s33). The electrolyte used was a solution in which 1M LiPF 6 was dissolved as a supporting salt in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a ratio of 30 wt% and 70 wt%.

===第1の実施例===
本発明の実施例に係る電極活物質は、単体では電子伝導性が低いLFPOをカーボンで被膜することで電子電導性を向上させるという技術思想に基づいている。そこで、本発明の第1の実施例として、カーボンに被膜されたLFPOからなる正極活物質を挙げ、その正極活物質の特性について検討した。当該検討に際しては、平均粒径を一律に1.0μmとしつつ図1における混合工程で混合するアスコルビン酸の量を変えてカーボンの量を変えた正極活物質を用いてリチウム二次電池を組み立て、そのリチウム二次電池をサンプルとして各サンプルの放電容量特性を評価した。
=== First Embodiment ===
The electrode active material according to the embodiment of the present invention is based on the technical idea of improving the electronic conductivity by coating LFPO, which has a low electronic conductivity with a single substance, with carbon. Therefore, as a first example of the present invention, a positive electrode active material made of LFPO coated on carbon was cited, and characteristics of the positive electrode active material were examined. In the examination, a lithium secondary battery was assembled using a positive electrode active material in which the amount of carbon was changed by changing the amount of ascorbic acid mixed in the mixing step in FIG. Using the lithium secondary battery as a sample, the discharge capacity characteristics of each sample were evaluated.

具体的には、恒温槽内で25℃を維持しつつ40μAの低電流で正負極間の電圧が4.5Vおよび2.0Vとなるように充電および放電を行い、そのときの充電時間および放電時間から求めた容量(mAh/g)によって評価した。また、各サンプルに用いた正極活物質の結晶構造をx線回折測定によって評価した。なおLFPOの結晶構造については、例えば上記特許文献1の第5頁などに記載されている単体のLFPOに対するX線回折測定(リートベルト解析)の結果と比較することで行い。単体のLFPOがカーボンで被膜されることでLFPOとは異なる相の結晶相があるか否かを確認することで評価した。   Specifically, charging and discharging are performed so that the voltage between the positive and negative electrodes is 4.5 V and 2.0 V at a low current of 40 μA while maintaining 25 ° C. in the thermostatic bath, and the charging time and discharging at that time Evaluation was made based on the capacity (mAh / g) obtained from the time. Moreover, the crystal structure of the positive electrode active material used for each sample was evaluated by x-ray diffraction measurement. The crystal structure of LFPO is determined by comparing with the result of X-ray diffraction measurement (Rietveld analysis) for a single LFPO described in, for example, page 5 of Patent Document 1 above. Evaluation was made by confirming whether or not there was a crystal phase having a phase different from that of LFPO by coating a single LFPO with carbon.

表1に各サンプルにおけるカーボン量と放電容量特性とX線回折測定結果とを示した。   Table 1 shows the carbon amount, discharge capacity characteristics, and X-ray diffraction measurement results for each sample.

Figure 2014197462

表1において、サンプル1はカーボン被膜がないLFPO自体を正極活物質としたものである。そしてこのサンプル1(以下、比較例1とも言う)に対し、LFPOにカーボンを被膜した正極活物質を用いたサンプル2〜9ではその全てにおいて放電容量特性が向上した。さらに、カーボン量が1.0wt%以上10.0wt%以下とすると、従来の正極活物質にも置換可能な実測値で90mAh/g以上の容量が得られた。なお、カーボン量を15.0wt%以上とすると結晶構造に異相となる構造が出現した。
Figure 2014197462

In Table 1, Sample 1 uses LFPO itself having no carbon coating as the positive electrode active material. In comparison with Sample 1 (hereinafter, also referred to as Comparative Example 1), discharge capacity characteristics were improved in all of Samples 2 to 9 using a positive electrode active material in which carbon was coated on LFPO. Furthermore, when the carbon amount was 1.0 wt% or more and 10.0 wt% or less, a capacity of 90 mAh / g or more was obtained as an actually measured value that could be substituted for a conventional positive electrode active material. When the carbon amount was 15.0 wt% or more, a structure having a different phase in the crystal structure appeared.

以上から、LFPOにカーボン被膜を施すことで電子電導性が向上し、確実に容量が増大することが確認できた。さらに、そのカーボン被膜を形成するためにカーボンを電極活物質中に1.0wt%以上10.0wt%以下の量で混合することでより優れた放電容量特性が得られることもわかった。   From the above, it was confirmed that by applying a carbon film to LFPO, the electronic conductivity was improved and the capacity was surely increased. Furthermore, it has also been found that better discharge capacity characteristics can be obtained by mixing carbon in the electrode active material in an amount of 1.0 wt% to 10.0 wt% in order to form the carbon coating.

なお、カーボン量が1.0wt%未満であるサンプル2、3ではカーボン量が不足しているために電子伝導性が低下して過電圧が上昇したことでサンプル4〜7ほどの放電容量特性が得られなかったものと考えられる。カーボン量が10.0wt%より多いサンプル8、9では電極活物質中のリチウムイオンの供給源であるLFPOが相対的に減少したことにより、やはり高い放電容量特性が得られなかったものと考えられる。また、カーボン量が多いサンプル8、9では、カーボンをLFPOに被膜したことによってLFPOとは異なる相の結晶構造が現れることも確認できた。いずれにしても、カーボンで被膜されたLFPOは、LFPO単体と比較して電子電導性が向上して容量が増大することは事実である。   In Samples 2 and 3 where the amount of carbon is less than 1.0 wt%, since the amount of carbon is insufficient, the electron conductivity decreases and the overvoltage increases, so that the discharge capacity characteristics of Samples 4 to 7 are obtained. It is thought that it was not possible. In Samples 8 and 9 having a carbon amount of more than 10.0 wt%, it is considered that LFPO, which is a supply source of lithium ions in the electrode active material, was relatively reduced, so that high discharge capacity characteristics were not obtained. . In Samples 8 and 9 having a large amount of carbon, it was also confirmed that a crystal structure having a phase different from that of LFPO appeared by coating carbon on LFPO. In any case, it is a fact that LFPO coated with carbon has improved electronic conductivity and increased capacity as compared with LFPO alone.

===第2の実施例===
上述したように、電極材料は電極活物質単体で構成されているのではなく、電極活物質に導電材やバインダーを混合したものである。そして、その混合物はさらに所定の形状に成形される。例えば、ここで作製したサンプルでは、電極活物質は正極活物質としてペースト状の正極材料中に含まれ、その正極材料は金属箔上に塗工されてシート状に成形されていた。
=== Second Embodiment ===
As described above, the electrode material is not composed of a single electrode active material, but is a mixture of a conductive material and a binder in the electrode active material. The mixture is further formed into a predetermined shape. For example, in the sample produced here, the electrode active material was contained as a positive electrode active material in a paste-like positive electrode material, and the positive electrode material was coated on a metal foil and formed into a sheet shape.

リチウム二次電池において、イオン電導性を向上させることは電極活物質を含む電極材料中にリチウムイオンがより円滑に挿入、離脱できるようにすることである。そしてイオン導電性を向上させることが放電容量特性を向上させることに繋がる。そこで第2の実施例として、カーボン被膜が施されているとともに、平均粒径が適正数値範囲となるように調整されたLFPOからなる正極活物質を挙げる。そして、その正極活物質についてより好ましい平均粒径を規定するために、カーボン量を一定にしつつ平均粒径が異なる各種正極活物質を用いたリチウム二次電池をサンプルとして組み立て、各サンプルの放電容量特性を評価した。なおカーボン量については、表1に示した結果から放電容量特性に優れていたサンプル6における5wt%を採用した。また、カーボン被膜がなく平均粒径が10.0μmの正極活物質を用いたリチウム二次電池もサンプルとして組み立てた。   In a lithium secondary battery, improving ion conductivity is to allow lithium ions to be more smoothly inserted and removed from an electrode material containing an electrode active material. And improving ionic conductivity leads to improving discharge capacity characteristics. Therefore, as a second embodiment, a positive electrode active material made of LFPO, which has a carbon coating and is adjusted so that the average particle diameter is in an appropriate numerical range, is given. Then, in order to define a more preferable average particle diameter for the positive electrode active material, a lithium secondary battery using various positive electrode active materials having different average particle diameters while keeping the carbon amount constant is assembled as a sample, and the discharge capacity of each sample Characteristics were evaluated. As for the carbon amount, 5 wt% in the sample 6 having excellent discharge capacity characteristics from the results shown in Table 1 was adopted. In addition, a lithium secondary battery using a positive electrode active material having no carbon coating and an average particle size of 10.0 μm was also assembled as a sample.

表2に各サンプルについての正極活物質の平均粒径と放電容量特性を示した。   Table 2 shows the average particle diameter and discharge capacity characteristics of the positive electrode active material for each sample.

Figure 2014197462

表2において、サンプル18はカーボン被膜がない正極活物質を用いたサンプル(以下、比較例2とも言う)である。またサンプル14は括弧内に番号「6」を付記したように表1におけるサンプル6と同じである。そしてこの表2より、正極活物質の平均粒径を2.0μm以下としたサンプル10〜15では100mAh/g以上の高い容量が得られた。平均粒径が5.0μm以上のサンプル16と17では、放電容量特性がそれぞれ70mAh/gと60mAh/gとサンプル10〜15と比較すると低かった。これは、粒径が大きいために粒子内のリチウムイオン伝導の抵抗が高くなり、過電圧も大きくなり放電容量特性が低下したものと考えられる。しかし、平均粒径がサンプル17と同じ10.0μmでカーボン被膜がないLFPOを正極活物質として用いた比較例2では、放電容量特性がサンプル17の1/2であったことから、平均粒径が10.0μmと大きな場合であってもLFPOにカーボン被膜を形成することによって放電容量特性が向上することが確認できた。
Figure 2014197462

In Table 2, Sample 18 is a sample using a positive electrode active material without a carbon coating (hereinafter also referred to as Comparative Example 2). Sample 14 is the same as Sample 6 in Table 1 as indicated by the number “6” in parentheses. From Table 2, a high capacity of 100 mAh / g or more was obtained in Samples 10 to 15 in which the average particle diameter of the positive electrode active material was 2.0 μm or less. Samples 16 and 17 having an average particle size of 5.0 μm or more had discharge capacity characteristics of 70 mAh / g and 60 mAh / g, respectively, which were lower than those of samples 10-15. This is presumably because the resistance of lithium ion conduction in the particles is increased due to the large particle size, the overvoltage is increased, and the discharge capacity characteristics are lowered. However, in Comparative Example 2 in which LFPO having an average particle diameter of 10.0 μm, which is the same as that of Sample 17 and having no carbon coating, was used as the positive electrode active material, the discharge capacity characteristic was ½ that of Sample 17, It was confirmed that the discharge capacity characteristics were improved by forming a carbon film on LFPO even when the value was as large as 10.0 μm.

なお、正極活物質の平均粒径を1.0μm以下としたサンプル10〜14では1個のリチウムイオンが充放電に寄与したときの理論上の容量である110mAh/gが得られており、1.0μm以下であれば電極活物質の平均粒径を闇雲に小さくする必要がない。平均粒径が過度に小さいと、スラリー状の電極材料に形成する際に多量のバインダーが必要となる場合もあることから、電極活物質は、製造容易性も考慮して適宜な平均粒径のものを採用すればよい。   In Samples 10 to 14 in which the average particle diameter of the positive electrode active material is 1.0 μm or less, 110 mAh / g, which is a theoretical capacity when one lithium ion contributes to charge / discharge, is obtained. If it is 0.0 μm or less, it is not necessary to reduce the average particle diameter of the electrode active material to a dark cloud. If the average particle size is excessively small, a large amount of binder may be required when forming the slurry-like electrode material. Therefore, the electrode active material has an appropriate average particle size in consideration of manufacturability. What is necessary is just to adopt.

以上より、本発明の第1の実施例に係る電極活物質は、LFPOにカーボン被膜が形成されていることが必須であり、より好ましくは、そのカーボンの量がLFPOに対して1.0〜10.0wt%であるものである。また第2の実施例に係る電極活物質は、カーボン被膜が形成されているLFPOであって、その平均粒径が2.0μm以下であるものである。そして、図3に本発明の実施例に係る電極活物質を用いたリチウム二次電池として、表1におけるサンプル6(表2におけるサンプル14)、および比較例1と2の充放電特性を示した。図3(A)と(B)は、それぞれ比較例2と比較例1の充放電特性を示すグラフであり、図3(C)は、サンプル6(サンプル14)の充放電特性を示すグラフである。これらのグラフでは充放電を3回繰り返したときの容量と正負極間の電圧との関係が示されている。   From the above, it is essential that the electrode active material according to the first embodiment of the present invention has a carbon film formed on LFPO, and more preferably, the amount of carbon is 1.0 to LFPO. It is 10.0 wt%. The electrode active material according to the second embodiment is LFPO on which a carbon film is formed, and has an average particle size of 2.0 μm or less. And as a lithium secondary battery using the electrode active material which concerns on the Example of this invention in FIG. 3, the charging / discharging characteristic of the sample 6 in Table 1 (sample 14 in Table 2) and the comparative examples 1 and 2 was shown. . 3A and 3B are graphs showing the charge / discharge characteristics of Comparative Example 2 and Comparative Example 1, respectively, and FIG. 3C is a graph showing the charge / discharge characteristics of Sample 6 (Sample 14). is there. These graphs show the relationship between the capacity and the voltage between the positive and negative electrodes when charging and discharging are repeated three times.

まず、図3(A)に示した比較例2の充放電特性グラフ101を見ると、カーボン被膜がなく平均粒径が10.0μmと大きなLFPOを正極活物質としているため、充電時の特性曲線101aと放電時の特性曲線101bが乖離し、過電圧によって充放電特性が大きく劣化していることが確認できる。図3(B)に示した比較例1の充放電特性グラフ102では、平均粒径が1.0μmになったことによって比較例2よりは充放電特性が若干改善されているが、依然として充電時の特性曲線102aと放電時の特性曲線102bが乖離している。すなわち、電極活物質を微粒子化するだけでは過電圧にともなう充放電特性の劣化を根本的に解決することができない。そして、本発明の実施例に対応する図3(C)に示したサンプル6(サンプル14)の充放電特性グラフ103をみると、充電時の特性曲線103aと放電時の特性曲線103bが広い容量範囲で近接し、一定の電圧に維持されていることがわかり、LFPOにカーボンを被膜することによる過電圧の抑制効果が確認できる。   First, the charge / discharge characteristic graph 101 of Comparative Example 2 shown in FIG. 3A shows a characteristic curve during charging because LFPO having a carbon film and no average particle size of 10.0 μm is used as the positive electrode active material. 101a and the characteristic curve 101b at the time of discharge deviate, and it can be confirmed that the charge / discharge characteristics are greatly deteriorated due to overvoltage. In the charge / discharge characteristic graph 102 of Comparative Example 1 shown in FIG. 3 (B), the charge / discharge characteristics are slightly improved as compared with Comparative Example 2 because the average particle size is 1.0 μm, but the charge is still during charging. The characteristic curve 102a is different from the characteristic curve 102b during discharge. That is, it is impossible to fundamentally solve the deterioration of charge / discharge characteristics due to overvoltage only by making the electrode active material fine particles. When the charge / discharge characteristic graph 103 of sample 6 (sample 14) shown in FIG. 3C corresponding to the embodiment of the present invention is seen, the characteristic curve 103a during charging and the characteristic curve 103b during discharge have a wide capacity. It can be seen that they are close in range and maintained at a constant voltage, and the effect of suppressing overvoltage by coating LFPO with carbon can be confirmed.

===その他の実施例など===
<カーボン原料の混合時期について>
上記の各サンプルに使用した電極活物質は全て図1に示した手順に基づいて製造されている。しかし、当然のことながらカーボン被膜を施した電極活物質は前例がなく、従来のLFPOの製造手順に対しカーボンの原料を混合する時期について明確な基準がない。上記実施例では、LFPOの粒成長の抑制効果とカーボン被膜の均一形成を期待してLFPOの原料とともにカーボンを混合していたが、カーボン原料の混合時期としては、他に仮成後や本焼成後が考えられる。そこで、カーボン原料の混合時期による放電容量特性の優劣の傾向を確認するために、混合時期を変えて混合したカーボンによって被膜されたLFPOを正極活物質としたリチウム二次電池をサンプルとして作製し、各サンプルの放電容量特性を評価した。なお、カーボン原料の混合量は全てのサンプルで一律に5wt%とした。
=== Other Examples etc. ===
<About mixing time of carbon raw materials>
The electrode active materials used for the above samples are all manufactured based on the procedure shown in FIG. However, as a matter of course, the electrode active material coated with the carbon film has no precedent, and there is no clear standard for the timing of mixing the carbon raw material with respect to the conventional LFPO manufacturing procedure. In the above embodiment, carbon was mixed with the LFPO raw material in order to suppress the grain growth of LFPO and to form a uniform carbon film. The later is considered. Therefore, in order to confirm the tendency of the superiority or inferiority of the discharge capacity characteristics due to the mixing timing of the carbon raw material, a lithium secondary battery using LFPO coated with carbon mixed at different mixing timings as a positive electrode active material was prepared as a sample, The discharge capacity characteristics of each sample were evaluated. The mixing amount of the carbon raw material was uniformly 5 wt% for all the samples.

表3に正極活物質の作製条件と放電容量特性との関係を示した。   Table 3 shows the relationship between the preparation conditions of the positive electrode active material and the discharge capacity characteristics.

Figure 2014197462


表3に示したように、各サンプルは、正極活物質の製造条件としてカーボン原料の混合時期と焼成条件が異なっている。混合時期としてはLFPOの原料とともにカーボン原料を混合する場合(原料混合時)、仮焼成後に混合する場合(仮焼成後)および本焼成後に混合する場合(本焼成後)があり、焼成条件としては、本焼成後の二次焼成品を粉砕したものを正極活物質として用いる場合(再焼成なし)と、本焼成後にカーボン原料を混合した場合において、二次焼成品を粉砕したものを再度本焼成と同じ条件で再度焼成(再焼成)するとともに、その再焼成によって得た粉体(再焼成品)を粉砕したものを正極活物質とする場合(再焼成あり)とがある。
Figure 2014197462


As shown in Table 3, each sample has different carbon raw material mixing times and firing conditions as production conditions for the positive electrode active material. The mixing timing includes mixing the carbon raw material together with the LFPO raw material (at the time of raw material mixing), mixing after the pre-firing (after the pre-firing), and mixing after the main firing (after the main firing). In the case of using the pulverized secondary fired product after the main firing as the positive electrode active material (without re-firing) and mixing the carbon raw material after the main firing, the secondary fired product is ground again. And firing again (refired) under the same conditions as above, and pulverizing the powder (refired product) obtained by the refire is used as the positive electrode active material (with refired).

上記焼成条件において、再焼成については、二次焼成品の平均粒径が1.0μmと小さい場合についてのみ採用した。これは、カーボンを含まない二次焼成品にカーボン原料を加えて粉砕しても所望の平均粒径まで粉砕することが難しいからである。なお、再焼成したサンプル20では、二次焼成品の平均粒径は1.0μmであり、再焼成品を平均粒径が2.0μmとなるように粉砕した。なお、表3におけるサンプル19、21、22は、表2におけるサンプル14、15、17と同じものであり、表3では表2におけるサンプル番号を括弧内に付記した。   In the above firing conditions, re-firing was employed only when the average particle size of the secondary fired product was as small as 1.0 μm. This is because it is difficult to pulverize to a desired average particle size even if a carbon raw material is added to a secondary baked product containing no carbon and pulverized. In Sample 20 that was refired, the average particle size of the secondary fired product was 1.0 μm, and the refired product was pulverized so that the average particle size was 2.0 μm. Samples 19, 21, and 22 in Table 3 are the same as Samples 14, 15, and 17 in Table 2. In Table 3, the sample numbers in Table 2 are shown in parentheses.

ここで表3に示した各サンプルの放電容量特性をみると、まずサンプル19と20は、二次焼成後に粉砕したときの平均粒径が1.0μmで同じであるがカーボン原料の混合時期が異なっている。またサンプル22〜24は二次焼成後に粉砕したときの平均粒径が10.0μmで同じであるが、やはりカーボン原料の混合時期が異なっている。そして、サンプル19と20を比較した場合、あるいはサンプル22〜24を比較した場合、そのいずれの場合でもLFPOの原料とともにカーボン原料を混合したサンプル19あるいはサンプル22の方が同じ平均粒径でカーボン原料の混合時期を変えた他のサンプルよりも放電容量特性に優れていた。また、サンプル20と21では、最終的な正極活物質の平均粒径が同じ2.0μmであったが、この場合もLFPOの原料とともにカーボン原料を混合したサンプル20の方が放電容量特性に優れていた。   Here, looking at the discharge capacity characteristics of each sample shown in Table 3, the samples 19 and 20 have the same average particle diameter of 1.0 μm when pulverized after the secondary firing, but the mixing timing of the carbon raw material is the same. Is different. Samples 22 to 24 have the same average particle size of 10.0 μm when pulverized after secondary firing, but the mixing timing of the carbon raw materials is also different. When samples 19 and 20 are compared, or when samples 22 to 24 are compared, in either case, sample 19 or sample 22 in which the carbon raw material is mixed together with the LFPO raw material has the same average particle size and carbon raw material. The discharge capacity characteristics were superior to those of other samples with different mixing times. In Samples 20 and 21, the final positive electrode active material had the same average particle diameter of 2.0 μm. In this case, Sample 20 in which the carbon raw material is mixed with the LFPO raw material has better discharge capacity characteristics. It was.

以上より、サンプル22〜24のように平均粒径が大きい場合では、LFPOの原料とともにカーボン原料を混合すると、カーボン原料が混合された状態で仮焼成と本焼成が行われるため、LFPOの結晶成長に伴ってカーボンがLFPOに被膜されていき、LFPOの平均粒径が大きくても粒成長が抑制され、さらにカーボン被膜も均一に形成され、その結果、LFPOの原料とともにカーボン原料を混合したサンプル22の放電容量特性がサンプル23や24よりも向上したものと考えられる。   As described above, when the average particle size is large as in Samples 22 to 24, when the carbon raw material is mixed together with the LFPO raw material, the preliminary firing and the main firing are performed in a state where the carbon raw material is mixed. As a result, carbon is coated on LFPO, grain growth is suppressed even when the average particle size of LFPO is large, and the carbon film is also formed uniformly. As a result, sample 22 is obtained by mixing the carbon raw material together with the LFPO raw material. It is considered that the discharge capacity characteristics of the sample were improved over those of the samples 23 and 24.

一方、サンプル19〜21のように平均粒径が小さい場合では、LFPOの原料とともにカーボンを混合して二次焼成後に粉砕を行うことでLFPOの周りを覆っていたカーボン被膜の一部が脱落しイオン導電性が向上し、その結果、放電容量特性も向上すると考えることができる。二次焼成品にカーボン原料を加えて再焼成したサンプル20では、最終的な電極活物質自体は、カーボンに被膜されて電子導電性は確保されているものの、カーボン被膜が却ってによりイオン伝導性を阻害してしまったもの考えられる。   On the other hand, in the case where the average particle size is small as in Samples 19 to 21, a part of the carbon coating covering the periphery of LFPO is dropped by mixing carbon together with the LFPO raw material and performing pulverization after secondary firing. It can be considered that the ionic conductivity is improved, and as a result, the discharge capacity characteristics are also improved. In Sample 20, which was re-fired by adding a carbon raw material to the secondary fired product, the final electrode active material itself was coated with carbon to ensure electronic conductivity. It is thought that it was obstructed.

<正極と負極について>
上記各サンプルでは、負極活物質として用いた金属Liとの電位差から、作製した電極活物質を正極活物質としてリチウム二次電池に組み込んでいたが、LFPOよりも電位が高い電極活物質を負極に用いれば、理論上は上記各実施例の電極活物質を負極活物質として利用することも可能である。
<About positive electrode and negative electrode>
In each of the above samples, the produced electrode active material was incorporated into the lithium secondary battery as the positive electrode active material because of the potential difference from the metal Li used as the negative electrode active material, but the electrode active material having a higher potential than LFPO was used as the negative electrode. If used, it is theoretically possible to use the electrode active material of each of the above embodiments as the negative electrode active material.

<LFPOの組成について>
上記各サンプルでは、LiFe(1−x)の化学式においてx=0としたLFPOを電極活物質としていたが、Feの一部を同じ遷移金属であるCoやNiに置換することができ、その電極活物質を用いたリチウム二次電池の特性は、上記各サンプルに近似することは容易に想像がつく。
<About the composition of LFPO>
In each of the above samples, LFPO having x = 0 in the chemical formula of Li 2 Fe (1-x) M x P 2 O 7 was used as the electrode active material, but part of Fe was changed to Co or Ni, which are the same transition metals. It can be easily imagined that the characteristics of the lithium secondary battery using the electrode active material can be approximated to the above samples.

<リチウム二次電池の実施形態>
LFPOを用いたリチウム二次電池は、2個のリチウムイオンが充放電に寄与した場合5.3Vの電圧で動作することが知られ、極めて高いエネルギー密度が得られる。しかし、電解液を用いたリチウム二次電池では、5V以上で電解液が分解してしまうため、各サンプルでは電解液を用いて2.5V〜4.5Vで動作させていた。その一方で、2個のリチウムイオンを充放電に寄与させる場合では、電解液の代わりに固体電解質を用いた全固体電池に適用することも可能となる。すなわち本発明に係るリチウムイオン電池は、電解液を用いたリチウム二次電池に限らず、全固体電池にも適用可能な電極活物質とその電極活物質を用いた固体電池にも及んでいる。
<Embodiment of lithium secondary battery>
A lithium secondary battery using LFPO is known to operate at a voltage of 5.3 V when two lithium ions contribute to charge and discharge, and an extremely high energy density is obtained. However, in the lithium secondary battery using the electrolytic solution, since the electrolytic solution is decomposed at 5 V or more, each sample is operated at 2.5 V to 4.5 V using the electrolytic solution. On the other hand, in the case where two lithium ions are allowed to contribute to charging / discharging, it can be applied to an all-solid battery using a solid electrolyte instead of the electrolytic solution. That is, the lithium ion battery according to the present invention extends not only to a lithium secondary battery using an electrolytic solution, but also to an electrode active material applicable to an all-solid battery and a solid battery using the electrode active material.

101〜103 リチウム二次電池の充放電特性グラフ、
s1 FLPO原料秤量工程、s3 カーボン原料(アスコルビン酸)秤量工程、
s4 電極活物質の原料混合工程、s6 仮焼成工程、s9 本焼成工程、
s11,s12 粉砕(粒径調整)工程
101-103 Lithium secondary battery charge / discharge characteristics graph,
s1 FLPO raw material weighing step, s3 carbon raw material (ascorbic acid) weighing step,
s4 electrode active material raw material mixing step, s6 temporary baking step, s9 main baking step,
s11, s12 crushing (particle size adjustment) process

Claims (6)

MをNiとCoのいずれか、あるいは両方として、化学式LiFe(1−x)で表される粉末状の化合物にカーボンの被膜が形成されていることを特徴とするリチウムイオン二次電池用電極活物質。 A carbon film is formed on a powdery compound represented by the chemical formula Li 2 Fe (1-x) M x P 2 O 7 where M is either Ni or Co, or both. Electrode active material for lithium ion secondary batteries. 請求項1において、前記カーボンが前記化合物に対して1.0wt%以上10.0wt%以下含まれていることを特徴とするリチウムイオン二次電池用電極活物質。   2. The electrode active material for a lithium ion secondary battery according to claim 1, wherein the carbon is contained in an amount of 1.0 wt% to 10.0 wt% with respect to the compound. 請求項1または2において、前記化合物は、平均粒径が2.0μm以下であることを特徴とするリチウムイオン二次電池用電極活物質。   3. The electrode active material for a lithium ion secondary battery according to claim 1, wherein the compound has an average particle size of 2.0 μm or less. 請求項1〜3において、前記化合物は、LiFePの化学式で表されることを特徴とするリチウムイオン二次電池用電極活物質。 The electrode active material for a lithium ion secondary battery according to claim 1, wherein the compound is represented by a chemical formula of Li 2 FeP 2 O 7 . 請求項1〜4のいずれかに記載のリチウムイオン二次電池用電極活物質を正極活物質、あるいは負極活物質として用いたことを特徴とするリチウム二次電池。   A lithium secondary battery using the electrode active material for a lithium ion secondary battery according to claim 1 as a positive electrode active material or a negative electrode active material. リチウムイオン二次電池用電極活物質の製造方法であって、
化学式LiFe(1−x)で表される化合物の原料にカーボンの原料を混合する原料混合ステップと、
原料混合ステップにより得た混合物をプレス加工してペレットに成形した上で、当該ペレットを焼成温度よりも低い温度で加熱して一次焼成品を得る仮焼成ステップと、
前記一次焼成品を粉砕して得た粉末をプレス加工してペレットに成形した上で、当該ペレットを焼成して二次焼成品を得る本焼成ステップと、
前記二次焼成品を所定の平均粒径となるように粉砕する粒径調整ステップと、
を含むことを特徴とするリチウムイオン二次電池用電極活物質の製造方法。
A method for producing an electrode active material for a lithium ion secondary battery, comprising:
A raw material mixing step of mixing a carbon raw material with a raw material of a compound represented by the chemical formula Li 2 Fe (1-x) M x P 2 O 7 ;
After pressing the mixture obtained by the raw material mixing step to form a pellet, the pellet is heated at a temperature lower than the firing temperature to obtain a primary fired product,
After the powder obtained by pulverizing the primary fired product is pressed into a pellet, the main firing step of firing the pellet to obtain a secondary fired product,
A particle size adjusting step of pulverizing the secondary fired product to have a predetermined average particle size;
The manufacturing method of the electrode active material for lithium ion secondary batteries characterized by including this.
JP2013071762A 2013-03-29 2013-03-29 Method for producing electrode active material for lithium secondary battery Active JP6111118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013071762A JP6111118B2 (en) 2013-03-29 2013-03-29 Method for producing electrode active material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013071762A JP6111118B2 (en) 2013-03-29 2013-03-29 Method for producing electrode active material for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2014197462A true JP2014197462A (en) 2014-10-16
JP6111118B2 JP6111118B2 (en) 2017-04-05

Family

ID=52358114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013071762A Active JP6111118B2 (en) 2013-03-29 2013-03-29 Method for producing electrode active material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP6111118B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017182949A (en) * 2016-03-29 2017-10-05 Fdk株式会社 Method for manufacturing positive electrode substance material for all-solid battery, and positive electrode active substance material for all-solid battery
JP2018116776A (en) * 2017-01-16 2018-07-26 Fdk株式会社 All-solid battery and manufacturing method of all-solid battery
JP2018125181A (en) * 2017-02-01 2018-08-09 富士通株式会社 Positive electrode material for secondary battery, manufacturing method therefor, and lithium ion secondary battery
JP2019169314A (en) * 2018-03-22 2019-10-03 Fdk株式会社 Method for producing positive electrode active material, positive electrode active material, and all-solid battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004514639A (en) * 2000-11-28 2004-05-20 ヴァレンス テクノロジー インコーポレーテッド Method for producing lithium metal compound useful as positive electrode active material
WO2011068255A1 (en) * 2009-12-04 2011-06-09 国立大学法人 東京大学 Pyrophosphate compound and method for producing same
JP2012195156A (en) * 2011-03-16 2012-10-11 Toyo Ink Sc Holdings Co Ltd Positive electrode active material substance for lithium secondary battery, method for manufacturing the same, and lithium secondary battery using the same
JP2012204322A (en) * 2011-03-28 2012-10-22 Gs Yuasa Corp Method for producing active material for nonaqueous electrolyte secondary battery
JP2012248378A (en) * 2011-05-27 2012-12-13 Hitachi Metals Ltd Positive electrode active material for lithium secondary battery, method for manufacturing the same, positive electrode for lithium secondary battery, and lithium secondary battery
WO2013024585A1 (en) * 2011-08-18 2013-02-21 三井化学株式会社 Method for producing porous positive electrode material and lithium ion cell
WO2013035572A1 (en) * 2011-09-05 2013-03-14 国立大学法人 東京大学 Method for producing lithium- or sodium-containing oxoate compound

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004514639A (en) * 2000-11-28 2004-05-20 ヴァレンス テクノロジー インコーポレーテッド Method for producing lithium metal compound useful as positive electrode active material
WO2011068255A1 (en) * 2009-12-04 2011-06-09 国立大学法人 東京大学 Pyrophosphate compound and method for producing same
JP2012195156A (en) * 2011-03-16 2012-10-11 Toyo Ink Sc Holdings Co Ltd Positive electrode active material substance for lithium secondary battery, method for manufacturing the same, and lithium secondary battery using the same
JP2012204322A (en) * 2011-03-28 2012-10-22 Gs Yuasa Corp Method for producing active material for nonaqueous electrolyte secondary battery
JP2012248378A (en) * 2011-05-27 2012-12-13 Hitachi Metals Ltd Positive electrode active material for lithium secondary battery, method for manufacturing the same, positive electrode for lithium secondary battery, and lithium secondary battery
WO2013024585A1 (en) * 2011-08-18 2013-02-21 三井化学株式会社 Method for producing porous positive electrode material and lithium ion cell
WO2013035572A1 (en) * 2011-09-05 2013-03-14 国立大学法人 東京大学 Method for producing lithium- or sodium-containing oxoate compound

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
P. BARPANDA ET AL.: "Eco-efficient splash combustion synthesis of nanoscale pyrophosphate (Li2FeP2O7) positive-electrode", JOURNAL OF MATERIALS CHEMISTRY, vol. 22, no. 27, JPN6016045874, 2012, pages 13455 - 13459, ISSN: 0003452524 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017182949A (en) * 2016-03-29 2017-10-05 Fdk株式会社 Method for manufacturing positive electrode substance material for all-solid battery, and positive electrode active substance material for all-solid battery
JP2018116776A (en) * 2017-01-16 2018-07-26 Fdk株式会社 All-solid battery and manufacturing method of all-solid battery
JP7002199B2 (en) 2017-01-16 2022-01-20 Fdk株式会社 Manufacturing method of all-solid-state battery
JP2018125181A (en) * 2017-02-01 2018-08-09 富士通株式会社 Positive electrode material for secondary battery, manufacturing method therefor, and lithium ion secondary battery
JP2019169314A (en) * 2018-03-22 2019-10-03 Fdk株式会社 Method for producing positive electrode active material, positive electrode active material, and all-solid battery
JP7101005B2 (en) 2018-03-22 2022-07-14 Fdk株式会社 Manufacturing method of positive electrode active material

Also Published As

Publication number Publication date
JP6111118B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
JP6288716B2 (en) Method for producing sulfide solid electrolyte material
WO2015068268A1 (en) All-solid-state cell, electrode for all-solid-state cell, and method for manufacturing same
JP6044588B2 (en) Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material
JP6044587B2 (en) Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material
CN108987687B (en) Low-temperature lithium ion battery graphite negative electrode material and preparation method thereof
JP6119469B2 (en) Ion conductive solid, method for producing the same, and solid battery
JP5703626B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP7133435B2 (en) All-solid battery
JP2015173100A (en) Solid electrolyte composition, method of manufacturing the same, electrode sheet for battery using the same, and solid secondary battery
JP2008052970A (en) Manufacturing method of electrode material, positive electrode material, and battery
US10205168B2 (en) Sodium transition metal silicates
JP2006261061A (en) Electrode material, electrode and lithium cell using the same, and manufacturing method for electrode material
JP7414702B2 (en) Cathode active material for lithium secondary batteries
WO2015037270A1 (en) Solid electrolyte, and all-solid ion secondary battery using same
JP6369126B2 (en) Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2023040136A (en) Positive electrode active material for sodium ion secondary battery, positive electrode material for sodium ion secondary battery, positive electrode for sodium ion secondary battery, and sodium ion secondary battery
JP6111118B2 (en) Method for producing electrode active material for lithium secondary battery
WO2018003071A1 (en) Positive electrode material for secondary batteries, method for producing same, and lithium ion secondary battery
WO2014091687A1 (en) Composite metal oxide, method for producing composite metal oxide, and sodium secondary battery
JP2010056027A (en) Aqueous lithium secondary battery, and electrode for aqueous lithium secondary battery
JP2012212636A (en) Active material, method for manufacturing active material, electrode, and lithium ion secondary battery
JP7197834B2 (en) Positive electrode active material for sodium ion secondary battery
JP2019040752A (en) All solid secondary battery
WO2016199732A1 (en) Positive electrode active material for magnesium secondary cell, positive electrode for magnesium secondary cell, and magnesium secondary cell
JP6414813B2 (en) Solid electrolyte and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170313

R150 Certificate of patent or registration of utility model

Ref document number: 6111118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R255 Notification that request for automated payment was rejected

Free format text: JAPANESE INTERMEDIATE CODE: R2525

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250