JP2014197050A - Production method of polarizing film - Google Patents

Production method of polarizing film Download PDF

Info

Publication number
JP2014197050A
JP2014197050A JP2013071646A JP2013071646A JP2014197050A JP 2014197050 A JP2014197050 A JP 2014197050A JP 2013071646 A JP2013071646 A JP 2013071646A JP 2013071646 A JP2013071646 A JP 2013071646A JP 2014197050 A JP2014197050 A JP 2014197050A
Authority
JP
Japan
Prior art keywords
film
treatment
swelling
expansion coefficient
treatment tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013071646A
Other languages
Japanese (ja)
Other versions
JP6191197B2 (en
Inventor
圭二 網谷
Keiji Amitani
圭二 網谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2013071646A priority Critical patent/JP6191197B2/en
Priority to PCT/JP2014/059699 priority patent/WO2014157737A1/en
Priority to CN201480017962.6A priority patent/CN105103013B/en
Priority to KR1020157023482A priority patent/KR102130185B1/en
Priority to TW103111470A priority patent/TWI617415B/en
Publication of JP2014197050A publication Critical patent/JP2014197050A/en
Application granted granted Critical
Publication of JP6191197B2 publication Critical patent/JP6191197B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a polarizing plate which exhibits excellent productivity in a swelling process applied to a roll film comprising a polyvinyl alcohol resin and having 10 to 60 μm thickness, suppresses uneven film thickness or generation of wrinkles, and has excellent appearance.SOLUTION: When a swelling process is carried out in a plurality of swelling process tanks, a process temperature and a process time in each tank are controlled in such a manner that an expansion coefficient in a film width direction in a first swelling process tank is 90% or less of the saturated expansion coefficient at the process temperature, and that a difference in an absolute value between the expansion coefficient in the first swelling process tank and an expansion coefficient in the film width direction in a subsequent second swelling process tank is within 2 points. When the swelling process is carried out in a single swelling process tank, a process temperature and a time for passing the film in the process tank are controlled in such a manner that an expansion coefficient in the film width direction in the swelling process tank is 90% or less of the saturated expansion coefficient at the process temperature, and that a difference in an absolute value between the expansion coefficient in the swelling process tank and an expansion coefficient in the film width direction in a subsequent dye process tank is within 2 points.

Description

本発明は、液晶表示装置に使用する偏光フィルムを製造する方法に関するものである。   The present invention relates to a method for producing a polarizing film for use in a liquid crystal display device.

偏光フィルムには、従来から、ポリビニルアルコール系樹脂フィルムに二色性色素を吸着配向させたものが用いられている。すなわち、ヨウ素を二色性色素とするヨウ素系偏光フィルムや、二色性染料を二色性色素とする染料系偏光フィルムなどが知られている。これらの偏光フィルムは通常、その少なくとも片面、好ましくは両面にポリビニルアルコール系樹脂の水溶液からなる接着剤を介してトリアセチルセルロース等の保護フィルムを貼合して偏光板とされ、液晶テレビ、パーソナルコンピュータ用モニター及び携帯電話等の液晶表示装置に用いられる。   Conventionally, a polarizing film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol-based resin film has been used. That is, an iodine polarizing film using iodine as a dichroic dye, a dye polarizing film using a dichroic dye as a dichroic dye, and the like are known. These polarizing films are usually used as polarizing plates by attaching a protective film such as triacetyl cellulose via an adhesive made of an aqueous solution of a polyvinyl alcohol-based resin on at least one side, preferably both sides thereof. Used in liquid crystal display devices such as monitors and mobile phones.

偏光フィルムは、ポリビニルアルコール系樹脂フィルムに対して膨潤処理、染色処理、延伸処理、ホウ酸処理(架橋処理)及び洗浄処理が施され、最後に乾燥することにより製造される。この延伸処理は、通常、1対のニップロールを用いて、それらニップロールの回転周速を変えることで行われる。   The polarizing film is produced by subjecting the polyvinyl alcohol resin film to swelling treatment, dyeing treatment, stretching treatment, boric acid treatment (crosslinking treatment) and washing treatment, and finally drying. This stretching process is usually performed by using a pair of nip rolls and changing the rotational peripheral speed of the nip rolls.

近年、市場では液晶表示装置の大型化や薄型化に加え、高い表示品質を求める傾向があり、これに伴い偏光フィルムの幅広化や薄膜化、例えば大型の偏光フィルムの面積全体における優れた光学特性及び面内均一性等の高性能化を達成できる製造方法が求められている。大型の偏光フィルムを製造するためには、幅広の原反フィルムを均一に一軸延伸することが必要となる。しかし、幅広の原反フィルムを用いる場合は、従来の原反フィルムに比べて均一に膨潤させることや一軸延伸することが困難であるため、得られる偏光フィルムの光吸収軸が一定方向に揃わずに偏光性能等の光学性能が悪化する傾向がある。また、フィルムの厚さが不均一になり、透過率等の光学性能のフィルム面内における均一性が悪化するという傾向もある。このような偏光フィルムを適用した画像表示装置は、表示にムラが発生し、その画質が悪化するという問題があった。そこで、上記のような偏光フィルムへの要求事項を備え、かつ、生産性に優れる偏光フィルムの製造方法の開発が行われている。   In recent years, the market tends to require high display quality in addition to the increase in size and thickness of liquid crystal display devices. With this trend, widening and thinning of polarizing films, for example, excellent optical characteristics over the entire area of large polarizing films There is also a need for a manufacturing method that can achieve high performance such as in-plane uniformity. In order to produce a large polarizing film, it is necessary to uniformly uniaxially stretch a wide original film. However, when using a wide original film, it is difficult to uniformly swell or uniaxially stretch compared to the conventional original film, so the light absorption axes of the obtained polarizing film are not aligned in a certain direction. In particular, optical performance such as polarization performance tends to deteriorate. In addition, the thickness of the film becomes non-uniform, and the uniformity of optical performance such as transmittance in the film surface also tends to deteriorate. An image display device to which such a polarizing film is applied has a problem that unevenness occurs in display and the image quality deteriorates. Therefore, development of a method for producing a polarizing film having the requirements for the polarizing film as described above and excellent in productivity has been performed.

例えば、特許第4229932 号公報(特許文献1)には、膨潤処理槽を複数設け、それらのうちの前段側に位置する膨潤処理槽の浴温を、後方に位置する膨潤処理槽の浴温よりも高く設定することで、色ムラが抑制された高品質の偏光フィルムを短時間に製造できる偏光フィルムの製造方法が開示されている。この製造方法によると、樹脂フィルムの膨張量が短時間で飽和に至るため、続く染色処理においてフィルムが膨潤しにくくなり、これに起因する偏光フィルムの色ムラが抑制される。一方で、特許文献1のように先に位置する膨潤処理槽の浴温を高くしただけでは、高い処理温度によりフィルムが急激に膨潤し、フィルムの厚さが不均一になったり、次の膨潤処理浴の温度によってはフィルムがさらに膨潤し、フィルムにシワが発生して外観が悪化したりするという問題がある。   For example, in Japanese Patent No. 4229932 (Patent Document 1), a plurality of swelling treatment tanks are provided, and the bath temperature of the swelling treatment tank located on the front side of them is set to be higher than the bath temperature of the swelling treatment tank located behind. In addition, a method for producing a polarizing film is disclosed in which a high-quality polarizing film in which color unevenness is suppressed can be produced in a short time by setting a higher value. According to this manufacturing method, since the expansion amount of the resin film reaches saturation in a short time, the film is less likely to swell in the subsequent dyeing process, and color unevenness of the polarizing film due to this is suppressed. On the other hand, just by increasing the bath temperature of the swelling treatment tank located earlier as in Patent Document 1, the film rapidly swells due to the high treatment temperature, the film thickness becomes uneven, or the next swelling Depending on the temperature of the treatment bath, there is a problem that the film further swells, wrinkles are generated in the film, and the appearance deteriorates.

特許第4229932号公報(特開2006−65309号公報)Japanese Patent No. 4229932 (Japanese Patent Laid-Open No. 2006-65309)

本発明の課題は、生産性に優れ、ポリビニルアルコール系樹脂からなる原反フィルムに対して施す各処理、特に膨潤処理におけるフィルムの厚さの不均一化やシワの発生を抑制し、外観に優れる偏光フィルムの製造方法を提供することにある。   An object of the present invention is excellent in productivity, and is excellent in appearance by suppressing unevenness of film thickness and generation of wrinkles in each treatment applied to a raw film made of polyvinyl alcohol resin, particularly in a swelling treatment. It is providing the manufacturing method of a polarizing film.

本発明者は、鋭意検討の結果、ポリビニルアルコール系樹脂からなる原反フィルムに対し、膨潤処理、染色処理、ホウ酸処理、及び洗浄処理をこの順に施して偏光フィルムを製造するに際し、原反フィルムの厚さが10〜60μm であり、この原反フィルムが複数の膨潤処理槽を通過することで膨潤処理が施される場合、原反フィルムが最初に通過する第一の膨潤処理槽におけるフィルムの幅方向の膨張率が所定の範囲内であり、この膨張率と続く第二の膨潤処理槽におけるフィルムの幅方向の膨張率との差が所定の範囲内となるように第一の膨潤処理槽並びに第二の膨潤処理槽の処理温度及び処理槽を通過する時間を調整することで、原反フィルムが薄い場合であっても、フィルムの膨潤ムラやこれに起因するシワの発生を抑制することができ、外観の良好なフィルムを効率良く得られるということを見出した。また、ポリビニルアルコール系樹脂からなる原反フィルムに対し、膨潤処理、染色処理、ホウ酸処理、及び洗浄処理をこの順に施して偏光フィルムを製造するに際し、原反フィルムの厚さが10〜60μm であり、この原反フィルムが一つの膨潤処理槽を通過することで膨潤処理が施される場合、膨潤処理槽におけるフィルムの幅方向の膨張率が所定の範囲内であり、この膨張率と続く染色処理槽におけるフィルムの幅方向の膨張率との差が所定の範囲内となるように膨潤処理槽並びに染色処理槽の処理温度及び処理槽を通過する時間を調整することで、原反フィルムが薄い場合であっても、フィルムの膨潤ムラやこれに起因するシワの発生を抑制することができ、外観の良好なフィルムを効率良く得られるということを見出した。本発明は、このような知見に基づいて完成されたものである。   As a result of intensive studies, the inventor applied a swelling treatment, a dyeing treatment, a boric acid treatment, and a washing treatment in this order to a raw film made of a polyvinyl alcohol resin in this order. The thickness of the film is 10 to 60 μm, and when the original film is passed through a plurality of swelling treatment tanks and subjected to the swelling treatment, the film in the first swelling treatment tank through which the original film passes first The first swelling treatment tank so that the expansion coefficient in the width direction is within a predetermined range, and the difference between the expansion coefficient and the expansion coefficient in the width direction of the film in the subsequent second swelling treatment tank is within the predetermined range. In addition, by adjusting the treatment temperature of the second swelling treatment tank and the time for passing through the treatment tank, even if the raw film is thin, the swelling of the film and the generation of wrinkles due to this are suppressed. In The present inventors have found that a film having a good appearance can be obtained efficiently. When a polarizing film is produced by subjecting a raw film made of polyvinyl alcohol resin to a swelling process, a dyeing process, a boric acid process, and a washing process in this order, the thickness of the original film is 10 to 60 μm. Yes, when the raw film passes through one swelling treatment tank and is subjected to swelling treatment, the expansion coefficient in the width direction of the film in the swelling treatment tank is within a predetermined range, and this expansion coefficient and subsequent dyeing By adjusting the treatment temperature of the swelling treatment tank and the dyeing treatment tank and the time for passing through the treatment tank so that the difference from the expansion coefficient in the width direction of the film in the treatment tank is within a predetermined range, the original film is thin. Even in this case, it has been found that uneven swelling of the film and generation of wrinkles due to this can be suppressed, and a film having a good appearance can be obtained efficiently. The present invention has been completed based on such findings.

すなわち本発明によれば、ポリビニルアルコール系樹脂からなる原反フィルムに対し、膨潤処理、染色処理、ホウ酸処理、及び洗浄処理をこの順に施して偏光フィルムを製造する方法であって、原反フィルムの厚さが10〜60μm であり、上記の膨潤処理が、原反フィルムが入る側から順に少なくとも第一の膨潤処理槽及び第二の膨潤処理槽を含む複数の膨潤処理槽を通過させることにより施され、第一の膨潤処理槽におけるフィルムの幅方向の膨張率が、同じ温度の処理液に浸漬したときの飽和膨張率の90%以下であり、第一の膨潤処理槽におけるフィルムの幅方向の膨張率と、第二の膨潤処理槽におけるフィルムの幅方向の膨張率をそれぞれ百分率で表示したときの差が、絶対値で2ポイント以内となるように、第一の膨潤処理槽及び第二の膨潤処理槽の処理温度と処理槽を通過する時間を調整する偏光フィルムの製造方法が提供される。   That is, according to the present invention, a method for producing a polarizing film by subjecting an original film made of polyvinyl alcohol resin to a swelling process, a dyeing process, a boric acid process, and a washing process in this order. The above-mentioned swelling treatment is made to pass through a plurality of swelling treatment tanks including at least a first swelling treatment tank and a second swelling treatment tank in order from the side on which the raw film enters. Applied, the expansion coefficient in the width direction of the film in the first swelling treatment tank is 90% or less of the saturation expansion coefficient when immersed in the treatment liquid at the same temperature, and the film width direction in the first swelling treatment tank The first swelling treatment tank and the second swelling treatment tank so that the difference when the expansion coefficient in the width direction of the film in the second swelling treatment tank is expressed as a percentage is within 2 points in absolute value. A method for producing a polarizing film is provided that adjusts the treatment temperature of the second swelling treatment tank and the time for passing through the treatment tank.

この方法において、第一の膨潤処理槽の処理温度は35〜45℃であり、第二の膨潤処理槽の処理温度は、第一の膨潤処理槽の処理温度より低く、25〜35℃であることが好ましい。またこれらの方法において、ポリビニルアルコール系樹脂フィルムの幅方向の膨張率は、15〜25%となるように第一の膨潤処理槽の処理温度及び処理槽を通過する時間を調整することが好ましい。   In this method, the treatment temperature of the first swelling treatment tank is 35 to 45 ° C., and the treatment temperature of the second swelling treatment tank is 25 to 35 ° C. lower than the treatment temperature of the first swelling treatment tank. It is preferable. Moreover, in these methods, it is preferable to adjust the processing temperature of the 1st swelling processing tank and the time which passes a processing tank so that the expansion coefficient of the width direction of a polyvinyl alcohol-type resin film may be 15-25%.

また、本発明によれば、ポリビニルアルコール系樹脂からなる原反フィルムに対し、膨潤処理、染色処理、ホウ酸処理、及び洗浄処理をこの順に施して偏光フィルムを製造する方法であって、原反フィルムの厚さが10〜60μm であり、上記の膨潤処理が、一つの膨潤処理槽を通過させることにより施され、膨潤処理槽におけるフィルムの幅方向の膨張率が、同じ温度の処理液に浸漬したときの飽和膨張率の90%以下であり、膨潤処理槽におけるフィルムの幅方向の膨張率と、染色処理槽におけるフィルムの幅方向の膨張率をそれぞれ百分率で表示したときの差が、絶対値で2ポイント以内となるように、膨潤処理槽及び染色処理槽の処理温度と処理槽を通過する時間を調整することを特徴とする偏光フィルムの製造方法が提供される。   Further, according to the present invention, there is provided a method for producing a polarizing film by subjecting an original film made of polyvinyl alcohol resin to swelling treatment, dyeing treatment, boric acid treatment, and washing treatment in this order. The film has a thickness of 10 to 60 μm, and the above swelling treatment is performed by passing it through one swelling treatment tank, and the expansion coefficient in the width direction of the film in the swelling treatment tank is immersed in a treatment liquid having the same temperature. 90% or less of the saturated expansion coefficient when the film is expanded, and the difference between the expansion coefficient in the width direction of the film in the swelling treatment tank and the expansion coefficient in the width direction of the film in the dyeing treatment tank is expressed as a percentage. The polarizing film manufacturing method is characterized by adjusting the treatment temperature of the swelling treatment tank and the dyeing treatment tank and the time for passing through the treatment tank so as to be within 2 points.

この方法において、膨潤処理槽の処理温度は35〜45℃であり、染色処理槽の処理温度は、膨潤処理での処理温度より低く、25〜35℃であることが好ましい。またこれらの方法において、ポリビニルアルコール系樹脂フィルムの幅方向の膨張率が、15〜25%となるように膨潤処理槽の処理温度及び処理槽を通過する時間を調整することが好ましい。   In this method, the treatment temperature of the swelling treatment tank is 35 to 45 ° C, and the treatment temperature of the dyeing treatment tank is preferably lower than the treatment temperature in the swelling treatment and 25 to 35 ° C. Moreover, in these methods, it is preferable to adjust the treatment temperature of the swelling treatment tank and the time for passing through the treatment tank so that the expansion coefficient in the width direction of the polyvinyl alcohol-based resin film is 15 to 25%.

本発明の偏光フィルムの製造方法によれば、偏光フィルムを製造する際に施す各処理、特に膨潤処理において、フィルムの膨潤ムラを抑制し、これに起因するフィルムのシワや破断の発生も抑制できるため、外観に優れた偏光フィルムを効率良く得ることができる。   According to the method for producing a polarizing film of the present invention, in each treatment performed when producing a polarizing film, particularly swelling treatment, swelling unevenness of the film can be suppressed, and wrinkles and breakage of the film caused by this can be suppressed. Therefore, a polarizing film having an excellent appearance can be obtained efficiently.

本発明では、ポリビニルアルコール系樹脂からなる原反フィルムに対し、膨潤処理、染色処理、ホウ酸処理及び洗浄処理をこの順に施して偏光フィルムを製造する。そして、洗浄処理の後、乾燥処理を施して得られる偏光フィルムは、シワなどが抑制されたものとなり、偏光板に好適に用いられる。以下、本発明について詳細に説明する。   In the present invention, a polarizing film is produced by subjecting an original film made of a polyvinyl alcohol resin to swelling treatment, dyeing treatment, boric acid treatment and washing treatment in this order. And the polarizing film obtained by performing a drying process after a washing process becomes a thing by which wrinkles etc. were suppressed, and is used suitably for a polarizing plate. Hereinafter, the present invention will be described in detail.

[偏光フィルムの製造方法]
偏光フィルムは、具体的にはポリビニルアルコール系樹脂フィルムに二色性色素が吸着配向しているものである。原料となるポリビニルアルコール系樹脂は、通常、ポリ酢酸ビニル系樹脂をケン化することにより得られる。このケン化度は、通常85モル%以上、好ましくは90モル%以上、より好ましくは99モル%以上である。ポリ酢酸ビニル系樹脂としては、例えば、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルとこれに共重合可能な他の単量体との共重合体などを挙げることができる。酢酸ビニルと共重合可能な他の単量体としては、不飽和カルボン酸類、オレフィン類、不飽和スルホン酸類、ビニルエーテル類などを挙げることができる。ポリビニルアルコール系樹脂の重合度は、通常1000〜10000程度、好ましくは1500〜5000程度である。
[Production method of polarizing film]
Specifically, the polarizing film is one in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol resin film. The polyvinyl alcohol resin used as a raw material is usually obtained by saponifying a polyvinyl acetate resin. The degree of saponification is usually 85 mol% or more, preferably 90 mol% or more, more preferably 99 mol% or more. Examples of the polyvinyl acetate-based resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith. Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, unsaturated sulfonic acids, vinyl ethers and the like. The degree of polymerization of the polyvinyl alcohol-based resin is usually about 1000 to 10000, preferably about 1500 to 5000.

これらのポリビニルアルコール系樹脂は、変性されていれもよく、例えば、アルデヒド類で変性されたポリビニルホルマール、ポリビニルアセタール、ポリビニルブチラールなども使用しうる。通常、偏光フィルム製造の材料としては、厚さが約10〜60μm、 好ましくは約12〜55μm のポリビニルアルコール系樹脂フィルムの未延伸フィルム(原反フィルム)を用いる。工業的には、フィルムの幅が1500〜6000mmであるものが実用的である。この原反フィルムに対し、膨潤処理、染色処理、ホウ酸処理(架橋処理)及び洗浄処理の順に処理し、最後に乾燥して得られる偏光フィルムの厚さは、例えば約5〜25μm である。   These polyvinyl alcohol resins may be modified, and for example, polyvinyl formal, polyvinyl acetal, polyvinyl butyral and the like modified with aldehydes may be used. Usually, as a material for producing a polarizing film, an unstretched film (raw film) of a polyvinyl alcohol-based resin film having a thickness of about 10 to 60 μm, preferably about 12 to 55 μm is used. Industrially, a film having a width of 1500 to 6000 mm is practical. The thickness of the polarizing film obtained by treating the raw film in the order of swelling treatment, dyeing treatment, boric acid treatment (crosslinking treatment) and washing treatment, and finally drying is, for example, about 5 to 25 μm.

偏光フィルムは、上記のようにポリビニルアルコール系樹脂からなる原反フィルムに対し、膨潤処理、染色処理、ホウ酸処理及び洗浄処理の順に溶液処理を施して製造され、ホウ酸処理中及び必要に応じてホウ酸処理の前でフィルムの一軸延伸が行われる。一軸延伸は、湿式延伸でも乾式延伸でもよく、ホウ酸処理中及びホウ酸処理の前の膨潤処理中や染色処理中に行われる場合は湿式延伸となり、膨潤処理の前に行われる場合は乾式となる。この一軸延伸は、一つの工程で行ってもよいし、二つ以上の工程で行ってもよいが、複数の工程で行うのが好ましい。なお、本発明の一軸延伸には、公知の延伸方法を採用することができる。その延伸方法としては、フィルムを搬送する二つのニップロール間に周速差をつけて延伸を行うロール間延伸、特許第2731813 号公報に記載のような熱ロール延伸、テンター延伸などがある。   The polarizing film is manufactured by subjecting the raw film made of polyvinyl alcohol resin as described above to solution treatment in the order of swelling treatment, dyeing treatment, boric acid treatment and washing treatment, and during the boric acid treatment and as necessary. The film is uniaxially stretched before the boric acid treatment. Uniaxial stretching may be either wet stretching or dry stretching, and is wet stretching when performed during the boric acid treatment and during the swelling treatment or dyeing treatment before the boric acid treatment, and when performed before the swelling treatment, Become. This uniaxial stretching may be performed in one step or in two or more steps, but is preferably performed in a plurality of steps. In addition, a well-known extending | stretching method is employable for the uniaxial stretching of this invention. Examples of the stretching method include inter-roll stretching in which stretching is performed with a difference in peripheral speed between two nip rolls that transport the film, hot roll stretching as described in Japanese Patent No. 2731813, tenter stretching, and the like.

(膨潤処理)
膨潤処理は、ポリビニルアルコール系樹脂からなる原反フィルムの表面の異物除去、フィルム中の可塑剤の除去、続く染色処理における易染色性の付与、フィルムの可塑化などの目的で施される。処理条件は、これらの目的が達成できる範囲で、かつポリビニルアルコール系樹脂フィルムの極端な溶解、透明性の失透などの不具合が生じない範囲で決定される。原反フィルムに対して最初に膨潤処理を施す場合は、例えば、温度が約20〜50℃、好ましくは25〜45℃である処理浴にフィルムを浸漬して行われる。フィルムの浸漬時間は、例えば、約30〜300秒、好ましくは40〜200秒である。
(Swelling treatment)
The swelling treatment is performed for the purpose of removing foreign substances on the surface of the raw film made of polyvinyl alcohol resin, removing the plasticizer in the film, imparting easy dyeability in the subsequent dyeing treatment, and plasticizing the film. The treatment conditions are determined within a range in which these objects can be achieved, and within a range in which problems such as extreme dissolution of the polyvinyl alcohol-based resin film and transparency devitrification do not occur. When the swelling treatment is first performed on the raw film, for example, the film is immersed in a treatment bath having a temperature of about 20 to 50 ° C., preferably 25 to 45 ° C. The immersion time of the film is, for example, about 30 to 300 seconds, preferably 40 to 200 seconds.

膨潤処理では、ポリビニルアルコール系樹脂フィルムが幅方向に膨潤し、フィルムにシワが入る等の問題が生じやすいので、エキスパンダーロール(拡幅ロール)、スパイラルロール、クラウンロール、ベンドバーなどの公知の拡幅装置を用いてフィルムのシワを取りつつフィルムを搬送することが好ましい。この拡幅装置は、例えば、後述する膨潤処理を複数の処理槽で行う場合の第一の膨潤処理槽及び膨潤処理を一つの処理槽で行う場合の膨潤処理槽のように、フィルムの膨張率が高い膨潤処理槽において経由させると効果的である。   In the swelling treatment, the polyvinyl alcohol-based resin film swells in the width direction, and wrinkles are likely to occur in the film. Therefore, a known widening device such as an expander roll (widening roll), a spiral roll, a crown roll, or a bend bar is used. It is preferable to transport the film while removing wrinkles of the film. This widening device has, for example, a first swelling treatment tank in the case where the later-described swelling treatment is performed in a plurality of treatment tanks and a swelling treatment tank in the case where the swelling treatment is performed in one treatment tank. It is effective to pass through in a high swelling treatment tank.

また、浴中のフィルムの搬送を安定化させる目的で、膨潤処理槽中での水流を水中シャワーで制御したり、フィルム端部を検出して蛇行を防止するEPC装置(Edge position control 装置)などを併用したりすることも有用である。   In addition, for the purpose of stabilizing the transport of film in the bath, the water flow in the swelling treatment tank is controlled by an underwater shower, or an EPC device (Edge position control device) that detects the edge of the film to prevent meandering. It is also useful to use in combination.

膨潤処理では、フィルムの搬送方向にもフィルムが膨潤拡大するので、フィルムに積極的な延伸を行わない場合は、搬送方向のフィルムの弛みをなくすため、ニップロールやガイドロール等の搬送ロールの速度を調節する手段を講じることが好ましい。また、原反フィルムに対し、膨潤処理、染色処理及びホウ酸処理をこの順にする施す場合は、膨潤処理において一軸延伸を行ってもよく、その場合の延伸倍率は、 約1.2〜3倍、好ましくは1.3〜2.5倍である。   In the swelling treatment, the film also swells and expands in the film conveyance direction.If the film is not actively stretched, the speed of the conveyance roll such as a nip roll or a guide roll is set to eliminate the slackness of the film in the conveyance direction. It is preferable to take measures to adjust. In addition, when the raw film is subjected to swelling treatment, dyeing treatment and boric acid treatment in this order, uniaxial stretching may be performed in the swelling treatment, and in that case, the draw ratio is about 1.2 to 3 times. The ratio is preferably 1.3 to 2.5 times.

膨潤処理浴には、純水のほか、ホウ酸(特開平10-153709号公報)、塩化物(特開平06-281816号公報)、無機塩、無機酸、アルコール類などが約 0.01〜10重量%の範囲で添加された水溶液を用いることもできる。   In the swelling treatment bath, pure water, boric acid (JP-A-10-153709), chloride (JP-A-06-281816), inorganic salts, inorganic acids, alcohols and the like are about 0.01 to An aqueous solution added in the range of 10% by weight can also be used.

本発明の一つの実施形態として、膨潤処理が複数の工程を経て施される形態を挙げることができる。この場合、膨潤処理は、原反フィルムが入る側から順に少なくとも第一の膨潤処理槽及び第二の膨潤処理槽を含む複数の膨潤処理槽を通過することにより施される。第一の膨潤処理槽及び第二の膨潤処理槽における処理温度及びフィルムが通過する時間は各処理槽におけるフィルムの幅方向の膨張率が所定の範囲内となるように、適宜調整される。   As one embodiment of the present invention, a form in which the swelling treatment is performed through a plurality of steps can be mentioned. In this case, the swelling treatment is performed by passing through a plurality of swelling treatment tanks including at least a first swelling treatment tank and a second swelling treatment tank in order from the side where the raw film enters. The treatment temperature and the time for the film to pass in the first swelling treatment tank and the second swelling treatment tank are appropriately adjusted so that the expansion coefficient in the width direction of the film in each treatment tank falls within a predetermined range.

ここで、上記したフィルムの幅方向の膨張率について説明する。フィルムの幅方向の膨張率とは、膨潤処理により生じたフィルムの幅方向における膨張量を百分率で表したものである。具体的には、まずポリビニルアルコール系樹脂からなる長尺の原反フィルムを、長尺方向50mm×幅方向50mmの大きさの断片に裁断し、このフィルム断片に対して膨潤処理槽と同じ処理条件で膨潤処理を施す。次いで、膨潤処理の前後におけるフィルム断片の幅方向の変化量(膨潤処理後の幅方向の長さ−膨潤処理前の幅方向の長さ)を、裁断時の幅方向の長さ(50mm)で割り、それを百分率で表したものである。   Here, the expansion coefficient in the width direction of the film described above will be described. The expansion coefficient in the width direction of the film is the percentage of the expansion amount in the width direction of the film generated by the swelling treatment. Specifically, first, a long raw film made of polyvinyl alcohol resin is cut into a piece having a size of 50 mm in the long direction and 50 mm in the width direction, and the same processing conditions as the swelling treatment tank are applied to the film piece. Apply swelling treatment. Next, the amount of change in the width direction of the film piece before and after the swelling treatment (the length in the width direction after the swelling treatment−the length in the width direction before the swelling treatment) is the length in the width direction at the time of cutting (50 mm). It is divided and expressed as a percentage.

したがって、本発明でいう第一の膨潤処理槽における膨張率とは、上記のフィルム断片に対し、第一の膨潤処理槽で施すのと同じ処理条件で膨潤処理を施したときの膨張率をさす。この膨張率は、上記のフィルム断片を、第一の膨潤処理浴と同じ組成であり、かつ同じ温度に設定した水溶液中に、製造装置においてフィルムが第一の膨潤処理槽内を通過する時間と同じ時間だけフィルム断片に張力がかからない状態で浸漬させ、そのとき生じるフィルム断片の幅方向の変化量を裁断時の幅方向の長さ(50mm)で割り、それを百分率で表したものである。   Therefore, the expansion coefficient in the first swelling treatment tank in the present invention refers to the expansion coefficient when the film piece is subjected to the swelling treatment under the same treatment conditions as in the first swelling treatment tank. . This expansion coefficient is the same as that of the first swelling treatment bath and the time for the film to pass through the first swelling treatment tank in the production apparatus in an aqueous solution set at the same temperature. The film pieces are immersed for the same time in a state where no tension is applied, and the amount of change in the width direction of the film pieces generated at that time is divided by the length (50 mm) in the width direction at the time of cutting, and expressed as a percentage.

同様に、本発明でいう第二の膨潤処理槽における膨張率とは、上記の第一の膨潤処理槽と同じ処理条件で膨潤処理を施したフィルム断片に対し、さらに第二の膨潤処理槽で施すのと同じ処理条件で膨潤処理を施したときの膨張率をさす。この膨張率は、上記の第一の膨潤処理槽での処理に相当する膨潤処理を施したフィルム断片を、第二の膨潤処理浴と同一の組成であり、かつ同じ温度に設定した水溶液中に、製造装置においてフィルムが第二の膨潤処理槽内を通過する時間と同じ時間だけフィルム断片に張力がかからない状態で浸漬させた後における裁断時のフィルム断片の幅方向の長さからの変化量(第二の膨潤処理後の幅方向の長さ−裁断時の幅方向の長さ)を裁断時の幅方向の長さ(50mm)で割り、それを百分率で表したものである。   Similarly, the expansion coefficient in the second swelling treatment tank in the present invention refers to the film piece subjected to the swelling treatment under the same treatment conditions as the first swelling treatment tank, and further in the second swelling treatment tank. The expansion coefficient when the swelling treatment is performed under the same treatment conditions as the treatment. This expansion coefficient is the same as that of the second swelling treatment bath, and the film piece subjected to the swelling treatment corresponding to the treatment in the first swelling treatment tank is in an aqueous solution set at the same temperature. The amount of change from the length in the width direction of the film piece at the time of cutting after the film piece is immersed in a state where no tension is applied to the film piece for the same time as the time for the film to pass through the second swelling treatment tank in the production apparatus ( The length in the width direction after the second swelling treatment—the length in the width direction at the time of cutting) is divided by the length in the width direction at the time of cutting (50 mm) and expressed as a percentage.

また、本発明でいう飽和膨張率とは、上記の膨潤処理槽における膨張率の算出に用いたのとは別に長尺方向50mm×幅方向50mmのフィルム断片を原反フィルムから裁断し、これを処理浴に10分間浸漬させたときの膨張率をさす。飽和膨張率は、フィルム断片を張力がかからない状態で処理浴に10分間浸漬させたときに生じるフィルム断片の幅方向の変化量(浸漬後の幅方向の長さ−浸漬前の幅方向の長さ)を裁断時の幅方向の長さ(50mm)で割り、それを百分率で表したものである。   In addition, the saturation expansion coefficient referred to in the present invention is a film fragment of 50 mm in the long direction × 50 mm in the width direction cut from the raw film separately from the one used for the calculation of the expansion coefficient in the above-described swelling treatment tank. The expansion rate when immersed in the treatment bath for 10 minutes. The saturation expansion coefficient is the amount of change in the width direction of a film piece that occurs when the film piece is immersed in a treatment bath for 10 minutes in a state where no tension is applied (the length in the width direction after immersion-the length in the width direction before immersion). ) Divided by the length (50 mm) in the width direction at the time of cutting, and expressed as a percentage.

本発明では、膨潤処理を複数の工程で施す一つの実施形態において、第一の膨潤処理槽におけるポリビニルアルコール系樹脂フィルムの幅方向の膨張率が、同じ温度の処理液に浸漬したときの飽和膨張率の90%以下となるように処理槽を通過する時間を調整する。飽和膨張率の90%以下とすることで、フィルムの送り速度を速くした場合においても、巨大な製造装置を使用する必要が無く、効率的に膨潤処理を施すことができる。また、第一の膨潤処理槽におけるフィルムの幅方向の膨張率は、好ましくは70%以上であることが好ましい。70%より小さいと、膨潤処理において、フィルム面内を均一に膨潤させることが難しく、色ムラやシワが発生しやすくなる。   In the present invention, in one embodiment in which the swelling treatment is performed in a plurality of steps, the expansion coefficient in the width direction of the polyvinyl alcohol-based resin film in the first swelling treatment tank is saturated expansion when immersed in a treatment liquid at the same temperature. The time for passing through the treatment tank is adjusted so as to be 90% or less of the rate. By setting the saturation expansion coefficient to 90% or less, even when the film feed rate is increased, it is not necessary to use a huge production apparatus, and the swelling treatment can be performed efficiently. Further, the expansion coefficient in the width direction of the film in the first swelling treatment tank is preferably 70% or more. If it is less than 70%, it is difficult to uniformly swell the film surface in the swelling treatment, and color unevenness and wrinkles are likely to occur.

また、上記の第一の膨潤処理槽における膨張率があまりに小さく、第二の膨潤処理槽での膨張率が大きくなる場合は、第二の膨潤処理槽でフィルムが急激に膨潤するため、フィルムの端部と中央部で膨張率に偏りが生じる。その結果、処理槽内部において前記の拡幅装置を経由したとき、この膨張率の偏りによってシワが発生することがある。一方、第一の膨潤処理槽における膨張率が大きすぎる場合、処理槽内部において経由する拡幅装置で、フィルムを十分に拡幅することができず、シワが発生することがある。したがって、上記した第一の膨潤処理槽におけるフィルムの幅方向の膨張率及び第二の膨潤処理槽におけるフィルムの幅方向の膨張率をそれぞれ百分率で表示したときの差が、絶対値で2ポイント以内となるように、第一の膨潤処理槽及び第二の膨潤処理槽の処理温度と処理槽を通過する時間を調整することが重要である。   In addition, when the expansion coefficient in the first swelling treatment tank is too small and the expansion coefficient in the second swelling treatment tank is large, the film rapidly swells in the second swelling treatment tank. There is a bias in the expansion coefficient between the end and the center. As a result, wrinkles may occur due to this uneven expansion coefficient when passing through the widening device inside the treatment tank. On the other hand, when the expansion coefficient in the first swelling treatment tank is too large, the film cannot be sufficiently widened by the widening device that passes through the inside of the treatment tank, and wrinkles may occur. Therefore, the difference when the expansion coefficient in the width direction of the film in the first swelling treatment tank described above and the expansion coefficient in the width direction of the film in the second swelling treatment tank are respectively expressed as percentages is within 2 points in absolute value. Thus, it is important to adjust the treatment temperature of the first swelling treatment tank and the second swelling treatment tank and the time for passing through the treatment tank.

このように第一の膨潤処理槽及び第二の膨潤処理槽におけるフィルムの幅方向の膨張率をそれぞれ百分率で表示したときの差が、絶対値で2ポイント以内となるように第一の膨潤処理槽及び第二の膨潤処理槽の処理温度と処理槽を通過する時間を調整することで、第一の膨潤処理槽での処理不足を抑制し、第二の膨潤処理槽での好ましくない急激な膨潤を抑制することができる。また、第一の膨潤処理槽及び第二の膨潤処理槽の処理温度と処理槽を通過する時間を組み合わせることによって、膨潤時にフィルムの厚さが不均一になることを抑制できるため、これに起因するシワの発生も抑制され、光学特性や外観のよい偏光フィルムを作製することができる。   As described above, the first swelling treatment is performed so that the difference when the expansion coefficient in the width direction of the film in the first swelling treatment tank and the second swelling treatment tank is expressed in percentage is within 2 points in absolute value. By adjusting the treatment temperature of the tank and the second swelling treatment tank and the time for passing through the treatment tank, the shortage of treatment in the first swelling treatment tank is suppressed, and the undesired rapid in the second swelling treatment tank Swelling can be suppressed. In addition, by combining the treatment temperature of the first swelling treatment tank and the second swelling treatment tank and the time for passing through the treatment tank, it is possible to suppress the film thickness from becoming non-uniform during swelling. The generation of wrinkles is suppressed, and a polarizing film having good optical properties and appearance can be produced.

膨潤処理が複数の膨潤処理槽を通過して施される場合、膨潤処理の時間を短縮する観点から、第一の膨潤処理槽の処理温度は、第二の膨潤処理槽の処理温度より高いことが好ましく、35〜45℃であることが好ましい。また、第二の膨潤処理槽の温度は25〜35℃であることが好ましい。さらに、第一の膨潤処理槽におけるフィルムの幅方向の膨張率が、15〜25%となるように第一の膨潤処理槽の処理温度及び処理槽を通過する時間を調整することが好ましい。   When the swelling treatment is applied through a plurality of swelling treatment tanks, the treatment temperature of the first swelling treatment tank is higher than the treatment temperature of the second swelling treatment tank from the viewpoint of shortening the swelling treatment time. Is preferable, and it is preferable that it is 35-45 degreeC. Moreover, it is preferable that the temperature of a 2nd swelling processing tank is 25-35 degreeC. Furthermore, it is preferable to adjust the treatment temperature of the first swelling treatment tank and the time for passing through the treatment tank so that the expansion coefficient in the width direction of the film in the first swelling treatment tank is 15 to 25%.

第一の膨潤処理槽をフィルムが通過する時間は、10〜60秒、好ましくは15〜50秒である。なお、第二の膨潤処理槽をフィルムが通過する時間も10〜60秒、好ましくは15〜50秒である。   The time for the film to pass through the first swelling treatment tank is 10 to 60 seconds, preferably 15 to 50 seconds. The time for the film to pass through the second swelling treatment tank is also 10 to 60 seconds, preferably 15 to 50 seconds.

本発明のもう一つの実施形態として、膨潤処理が一つの膨潤処理槽のみで行われる形態を挙げることができる。この実施形態において、原反フィルムは、膨潤処理槽から取り出された後、染色処理槽へ搬送される。この場合、膨潤処理槽及び染色処理槽における処理温度及びフィルムが通過する時間は、各処理槽でのフィルムの幅方向の膨張率が所定の範囲内となるよう、適宜調整される。具体的には、以下の染色処理で詳述するが、膨潤処理槽におけるフィルムの幅方向の膨張率が、同じ温度の処理液に浸漬したときの飽和膨張率の90%以下であり、膨潤処理槽におけるフィルムの幅方向の膨張率及び染色処理槽におけるフィルムの幅方向の膨張率をそれぞれ百分率で表示したときの差が、絶対値で2ポイント以内となるように、膨潤処理槽及び染色処理槽の処理温度と処理槽を通過する時間を調整する。   As another embodiment of the present invention, a form in which the swelling treatment is performed in only one swelling treatment tank can be exemplified. In this embodiment, the raw film is taken out of the swelling treatment tank and then conveyed to the dyeing treatment tank. In this case, the treatment temperature and the time for the film to pass in the swelling treatment tank and the dyeing treatment tank are appropriately adjusted so that the expansion coefficient in the width direction of the film in each treatment tank is within a predetermined range. Specifically, as will be described in detail in the following dyeing treatment, the expansion coefficient in the width direction of the film in the swelling treatment tank is 90% or less of the saturation expansion coefficient when immersed in a treatment liquid at the same temperature, and the swelling treatment The swelling treatment tank and the dyeing treatment tank so that the difference when the expansion coefficient in the width direction of the film in the tank and the expansion coefficient in the width direction of the film in the dyeing treatment tank are each expressed in percentage are within two points in absolute value. The processing temperature and the time for passing through the processing tank are adjusted.

(染色処理)
染色処理は、ポリビニルアルコール系樹脂フィルムに二色性色素を吸着させる目的で施される。二色性色素としては、ヨウ素や水溶性二色性染料などを使用することができる。処理条件は、これらの目的が達成できる範囲で、かつ、ポリビニルアルコール系樹脂フィルムの溶解、失透などの不具合が生じない範囲で決定される。
(Dyeing process)
The dyeing treatment is performed for the purpose of adsorbing the dichroic dye on the polyvinyl alcohol-based resin film. As the dichroic dye, iodine, a water-soluble dichroic dye, or the like can be used. The treatment conditions are determined within a range in which these objects can be achieved and within a range in which problems such as dissolution and devitrification of the polyvinyl alcohol resin film do not occur.

二色性色素としてヨウ素を用いる場合、処理浴(染色処理浴)には、例えば、濃度が重量比でヨウ素/ヨウ化カリウム/水=約0.003〜0.2/約0.1〜10 /100である水溶液を用いることができる。このヨウ化カリウムに代えて、ヨウ化亜鉛など、他のヨウ化物を用いてもよく、ヨウ化カリウムと他のヨウ化物とを併用してもよい。また、ヨウ化物以外の化合物、例えば、ホウ酸、塩化亜鉛、塩化コバルトなどを共存させてもよい。処理浴にホウ酸を添加する場合、ヨウ素を含む点で後述するホウ酸処理と区別される。水100重量部に対し、ヨウ素を約0.03 重量部以上含んでいるものであれば染色処理浴とみなすことができる。フィルムを浸漬するときの処理浴の温度は、10〜45℃程度、好ましくは25〜35℃である。フィルムの浸漬時間は、30〜600秒程度、好ましくは30〜300秒である。   When iodine is used as the dichroic dye, the treatment bath (dye treatment bath) has, for example, a concentration of iodine / potassium iodide / water by weight ratio of about 0.003 to 0.2 / about 0.1 to 10 / 100 aqueous solution can be used. Instead of this potassium iodide, other iodides such as zinc iodide may be used, or potassium iodide and other iodides may be used in combination. In addition, compounds other than iodide, for example, boric acid, zinc chloride, cobalt chloride and the like may coexist. When boric acid is added to the treatment bath, it is distinguished from boric acid treatment described later in that it contains iodine. Any dye containing about 0.03 parts by weight or more of iodine with respect to 100 parts by weight of water can be regarded as a dyeing treatment bath. The temperature of the treatment bath when immersing the film is about 10 to 45 ° C, preferably 25 to 35 ° C. The immersion time of the film is about 30 to 600 seconds, preferably 30 to 300 seconds.

二色性色素として水溶性二色性染料を用いる場合、処理浴には、濃度が重量比で二色性染料/水=約0.001〜0.1/100である水溶液を用いることができる。この処理浴は、染色助剤などを含有していてもよく、その例として、硫酸ナトリウム等の無機塩、界面活性剤などが挙げられる。二色性染料は、単独で使用してもよいし2種類以上の二色性染料を併用してもよい。フィルムを浸漬するときの処理浴の温度は、20〜80℃程度、好ましくは25〜70℃であり、フィルムの浸漬時間は、30〜600秒程度、好ましくは30〜300秒である。   When a water-soluble dichroic dye is used as the dichroic dye, an aqueous solution having a concentration of dichroic dye / water = about 0.001 to 0.1 / 100 by weight can be used for the treatment bath. . This treatment bath may contain a dyeing assistant and the like, and examples thereof include inorganic salts such as sodium sulfate, surfactants and the like. The dichroic dye may be used alone or in combination of two or more dichroic dyes. The temperature of the treatment bath when dipping the film is about 20 to 80 ° C., preferably 25 to 70 ° C., and the dipping time of the film is about 30 to 600 seconds, preferably 30 to 300 seconds.

ポリビニルアルコール系樹脂フィルムに対し、膨潤処理、染色処理、ホウ酸処理の順に処理する場合は、通常、染色処理でフィルムの延伸を行う。この延伸処理は、一対のニップロールに周速差を持たせるなどの方法で行われる。染色処理までの積算の延伸倍率(染色処理までに延伸処理がなされていない場合は染色処理での延伸倍率)は、通常 1.6〜4.5倍、好ましくは約1.8〜4倍である。染色処理までの積算延伸倍率が 1.6倍未満であると、フィルムの破断頻度が多くなり、歩留まりを悪化させる傾向にある。   When a polyvinyl alcohol resin film is processed in the order of swelling treatment, dyeing treatment, and boric acid treatment, the film is usually stretched by dyeing treatment. This stretching process is performed by a method of giving a difference in peripheral speed between the pair of nip rolls. The total draw ratio up to the dyeing process (the draw ratio in the dyeing process when no drawing process is performed before the dyeing process) is usually 1.6 to 4.5 times, preferably about 1.8 to 4 times. is there. When the cumulative stretching ratio until the dyeing treatment is less than 1.6 times, the film is frequently broken and tends to deteriorate the yield.

染色処理においても、膨潤処理と同様に、エキスパンダーロール、スパイラルロール、クラウンロール、ベンドバーなどの公知の拡幅装置を用いてフィルムのシワを伸ばしつつフィルムを搬送することが好ましい。   In the dyeing process, as in the swelling process, it is preferable to convey the film while stretching the wrinkles of the film using a known widening device such as an expander roll, a spiral roll, a crown roll, or a bend bar.

また、本発明において膨潤処理が一つの膨潤処理槽のみで行われる場合は、各処理槽でのフィルムの幅方向の膨張率が所定の範囲内となるよう、膨潤処理槽及び染色処理槽における処理温度及びフィルムが通過する時間が適宜調整される。   In the present invention, when the swelling treatment is performed in only one swelling treatment tank, the treatment in the swelling treatment tank and the dyeing treatment tank so that the expansion coefficient in the width direction of the film in each treatment tank is within a predetermined range. The temperature and the time for the film to pass through are appropriately adjusted.

このフィルムの幅方向の膨張率は、前記した第一の膨潤処理槽におけるフィルムの幅方向の膨張率などと同様に求めることができ、前記と同様に原反フィルムを裁断して得たフィルム断片に対して各処理槽と同じ処理条件で処理を施し、このとき生じるフィルム断片の幅方向の変化量と裁断時の幅方向の長さから算出することができる。なお、膨潤処理槽における膨張率及び飽和膨張率もまた、前記した第一の膨潤処理槽における膨張率及び飽和膨張率と同様の方法で求めることができる。   The expansion coefficient in the width direction of the film can be obtained in the same manner as the expansion coefficient in the width direction of the film in the first swelling treatment tank described above, and a film fragment obtained by cutting the raw film in the same manner as described above. Can be calculated from the amount of change in the width direction of the film fragments generated at this time and the length in the width direction at the time of cutting. The expansion coefficient and saturation expansion coefficient in the swelling treatment tank can also be obtained by the same method as the expansion coefficient and saturation expansion coefficient in the first swelling treatment tank described above.

染色処理槽における膨張率とは、膨潤処理槽と同じ処理条件で膨潤処理を施したフィルム断片に対し、さらに染色処理槽と同じ処理条件で処理を施したときの膨張率であり、前記した第二の膨潤処理槽における膨張率と同様に求めることができる。具体的には、膨潤処理槽と同じ処理条件で膨潤処理を施したフィルム断片を、染色処理浴と同一の組成及び温度に設定した水溶液中に、フィルムが染色処理槽を通過する時間と同じ時間だけフィルム断片に張力がかからない状態で浸漬させた後における裁断時のフィルム断片の幅方向の長さからの変化量(染色処理後の幅方向の長さ−裁断時の幅方向の長さ)を、裁断時の幅方向の長さで割り、それを百分率で表したものである。   The expansion coefficient in the dyeing tank is the expansion coefficient when the film pieces subjected to the swelling process under the same processing conditions as the swelling tank are further processed under the same processing conditions as the dyeing tank. It can obtain | require similarly to the expansion coefficient in a 2 swelling processing tank. Specifically, the film piece subjected to the swelling treatment under the same treatment conditions as the swelling treatment tank is the same time as the film passes through the dyeing treatment tank in an aqueous solution set to the same composition and temperature as the dyeing treatment bath. The amount of change from the length in the width direction of the film piece at the time of cutting after being immersed in a state in which no tension is applied to the film piece (length in the width direction after dyeing process−length in the width direction at the time of cutting) , Divided by the length in the width direction at the time of cutting, and expressed as a percentage.

本発明では、膨潤処理を一つの膨潤処理槽のみで施すもう一つの実施形態において、膨潤処理槽におけるフィルムの幅方向の膨張率が、同じ温度の処理液に浸漬したときの飽和膨張率の90%以下となるように処理槽を通過する時間を調整する。飽和膨張率の90%以下とすることで、フィルムの送り速度を速くした場合においても、巨大な装置を使用する必要が無く、効率的に膨潤処理を施すことができる。また、膨潤処理槽におけるフィルムの幅方向の膨張率は、好ましくは70%以上であることが好ましい。70%より小さいと、膨潤処理において、フィルム面内を均一に膨潤させることが難しく、色ムラやシワが発生しやすくなる。   In the present invention, in another embodiment in which the swelling treatment is performed only in one swelling treatment tank, the expansion coefficient in the width direction of the film in the swelling treatment tank is 90% of the saturation expansion coefficient when immersed in a treatment liquid at the same temperature. The time for passing through the treatment tank is adjusted so as to be not more than%. By setting the saturation expansion coefficient to 90% or less, even when the film feed rate is increased, it is not necessary to use a huge apparatus, and the swelling treatment can be performed efficiently. Moreover, the expansion coefficient in the width direction of the film in the swelling treatment tank is preferably 70% or more. If it is less than 70%, it is difficult to uniformly swell the film surface in the swelling treatment, and color unevenness and wrinkles are likely to occur.

また、膨潤処理槽における膨張率があまりに小さく、染色処理槽での膨張率が大きくなる場合は、染色処理槽でフィルムが急激に膨潤するため、フィルムの端部と中央部で膨張率に偏りが生じる。その結果、処理槽内部において前記の拡幅装置を経由したとき、この膨張率の偏りによってシワが発生することがある。一方、膨潤処理槽における膨張率が大きすぎる場合、処理槽内部で経由する拡幅装置で、フィルムを十分に拡幅することができず、シワが発生することがある。したがって、上記した膨潤処理槽におけるフィルムの幅方向の膨張率及び染色処理槽におけるフィルムの幅方向の膨張率をそれぞれ百分率で表示したときの差が、絶対値で2ポイント以内となるように、膨潤処理槽及び染色処理槽の処理温度と処理槽を通過する時間を調整することが重要である。   In addition, when the expansion rate in the swelling treatment tank is too small and the expansion rate in the dyeing treatment tank is large, the film swells rapidly in the dyeing treatment tank, so there is a bias in the expansion rate between the end and the center of the film. Arise. As a result, wrinkles may occur due to this uneven expansion coefficient when passing through the widening device inside the treatment tank. On the other hand, when the expansion coefficient in the swelling treatment tank is too large, the film cannot be sufficiently widened by a widening device that passes through the inside of the treatment tank, and wrinkles may occur. Therefore, swelling is performed so that the difference when the expansion coefficient in the width direction of the film in the swelling treatment tank and the expansion coefficient in the width direction of the film in the dyeing treatment tank are expressed as percentages is within two points in absolute value. It is important to adjust the treatment temperature of the treatment tank and the dyeing treatment tank and the time for passing through the treatment tank.

本発明は、膨潤処理槽におけるフィルムの幅方向の膨張率及びこれと染色処理槽におけるフィルムの幅方向の膨張率をそれぞれ百分率で表示したときの差が、上記した範囲内となるように膨潤処理槽及び染色処理槽の処理時間と処理槽を通過する時間を調整することで、膨潤処理槽での処理不足を抑制し、染色処理槽での好ましくない急激な膨潤を抑制することができる。また、また、膨潤処理槽及び染色処理槽の処理温度と処理槽を通過する時間を組み合わせることによって、膨潤時にフィルムの厚さが不均一になることを抑制できるため、これに起因するシワの発生も抑制され、光学特性や外観のよい偏光フィルムを作製することができる。   In the present invention, the swelling treatment is performed so that the difference when the expansion coefficient in the width direction of the film in the swelling treatment tank and the expansion coefficient in the width direction of the film in the dyeing treatment tank are each expressed in percentage are within the above-described range. By adjusting the processing time of the tank and the dyeing tank and the time of passing through the processing tank, insufficient treatment in the swelling tank can be suppressed, and undesired rapid swelling in the dyeing tank can be suppressed. In addition, by combining the treatment temperature of the swelling treatment tank and the dyeing treatment tank with the time for passing through the treatment tank, it is possible to prevent the film thickness from becoming non-uniform at the time of swelling. Is suppressed, and a polarizing film with good optical properties and appearance can be produced.

このとき、膨潤処理の時間を短縮する観点から、フィルムが溶解しない範囲でできるだけ高い温度であることが好ましく、膨潤処理槽の処理温度は35〜45℃であることが好ましい。また、染色処理槽の温度は25〜35℃であることが好ましい。さらに、膨潤処理槽におけるフィルムの幅方向の膨張率が、15〜25%となるように膨潤処理槽の処理温度及び処理槽を通過する時間を調整することが好ましい。   At this time, from the viewpoint of shortening the swelling treatment time, the temperature is preferably as high as possible within a range in which the film does not dissolve, and the treatment temperature of the swelling treatment tank is preferably 35 to 45 ° C. Moreover, it is preferable that the temperature of a dyeing | staining processing tank is 25-35 degreeC. Furthermore, it is preferable to adjust the treatment temperature of the swelling treatment tank and the time for passing through the treatment tank so that the expansion coefficient in the width direction of the film in the swelling treatment tank is 15 to 25%.

(ホウ酸処理)
ホウ酸処理は、架橋による耐水化や色相調整(フィルム色の青味や赤味を防止する)などの目的で施される。処理浴には、水100重量部に対してホウ酸を約1〜10重量部含有する水溶液を用い、染色処理で使用した二色性色素がヨウ素の場合、ホウ酸に加えてヨウ化物を水100重量部に対して1〜30重量部含有させることが好ましい。ヨウ化物としては、ヨウ化カリウム、ヨウ化ナトリウム、ヨウ化亜鉛などが挙げられる。また、ヨウ化物以外の化合物、例えば、塩化亜鉛、塩化コバルト、塩化ジルコニウム、チオ硫酸ナトリウム、亜硫酸カリウム、硫酸ナトリウムなどを共存させてもよい。なお、耐水化のためのホウ酸処理を、架橋処理、耐水化処理、固定化処理などの名称で呼称することがあり、色相調整のためのホウ酸処理を、補色処理、調色処理などの名称で呼称することがある。
(Boric acid treatment)
The boric acid treatment is performed for the purpose of water resistance by cross-linking and hue adjustment (preventing blue and reddish film colors). In the treatment bath, an aqueous solution containing about 1 to 10 parts by weight of boric acid with respect to 100 parts by weight of water is used. When the dichroic dye used in the dyeing treatment is iodine, iodide is added to water in addition to boric acid. It is preferable to contain 1-30 weight part with respect to 100 weight part. Examples of iodide include potassium iodide, sodium iodide, zinc iodide and the like. In addition, compounds other than iodide, for example, zinc chloride, cobalt chloride, zirconium chloride, sodium thiosulfate, potassium sulfite, sodium sulfate and the like may coexist. In addition, boric acid treatment for water resistance may be referred to by names such as cross-linking treatment, water resistance treatment, and immobilization treatment, and boric acid treatment for hue adjustment may be complementary color treatment, toning treatment, etc. Sometimes called by name.

このホウ酸処理は、その目的に応じ、ホウ酸及びヨウ化物の濃度、並びに処理浴の温度を適宜調整して施される。耐水化のためのホウ酸処理及び色相調整のためのホウ酸処理は特に区別されるものではないが、以下のような条件で実施される。   This boric acid treatment is performed by appropriately adjusting the concentrations of boric acid and iodide and the temperature of the treatment bath according to the purpose. The boric acid treatment for water resistance and the boric acid treatment for hue adjustment are not particularly distinguished, but are carried out under the following conditions.

ポリビニルアルコール系樹脂からなる原反フィルムに対し、膨潤処理、染色処理、及びホウ酸処理をこの順に施す場合であって、ホウ酸処理の目的が架橋による耐水化である場合、その処理浴は、濃度が重量比でホウ酸/ヨウ化物/水=3〜10/1〜20/100の水溶液であることができる。必要に応じて、ホウ酸に代えてグリオキザール及びグルタルアルデヒド等の架橋剤を用いてもよく、ホウ酸と架橋剤を併用してもよい。処理浴の温度は、通常50〜70℃程度、好ましくは55〜65℃であり、フィルムの浸漬時間は、通常10〜600秒程度、好ましくは20〜300秒、より好ましくは20〜200秒である。また、予め延伸したポリビニルアルコール系樹脂フィルムに対し、染色処理及びホウ酸処理をこの順に施す場合、ホウ酸処理浴の温度は、通常、50〜85℃程度、好ましくは55〜80℃である。   When the raw film made of polyvinyl alcohol resin is subjected to swelling treatment, dyeing treatment, and boric acid treatment in this order, and the purpose of boric acid treatment is to make the water resistant by crosslinking, the treatment bath is The concentration may be an aqueous solution of boric acid / iodide / water = 3 to 10/1 to 20/100 by weight. As needed, it may replace with boric acid and may use crosslinking agents, such as a glyoxal and glutaraldehyde, and may use boric acid and a crosslinking agent together. The temperature of the treatment bath is usually about 50 to 70 ° C., preferably 55 to 65 ° C., and the immersion time of the film is usually about 10 to 600 seconds, preferably 20 to 300 seconds, more preferably 20 to 200 seconds. is there. Moreover, when performing a dyeing process and a boric acid process in this order with respect to the polyvinyl alcohol-type resin film previously extended | stretched, the temperature of a boric-acid treatment bath is about 50-85 degreeC normally, Preferably it is 55-80 degreeC.

この耐水化のためのホウ酸処理の後に、色相調整のためのホウ酸処理を行ってもよい。例えば、二色性色素がヨウ素の場合、その処理浴は、濃度が重量比でホウ酸/ヨウ化物/水=1〜5/3〜30/100の水溶液であることができる。処理浴の温度は、通常10〜45℃程度であり、フィルムの浸漬時間は、通常10〜300秒程度、好ましくは10〜100秒である。   After the boric acid treatment for water resistance, boric acid treatment for hue adjustment may be performed. For example, when the dichroic dye is iodine, the treatment bath can be an aqueous solution having a concentration of boric acid / iodide / water = 1 to 5/3 to 30/100 by weight ratio. The temperature of the treatment bath is usually about 10 to 45 ° C., and the immersion time of the film is usually about 10 to 300 seconds, preferably 10 to 100 seconds.

これらのホウ酸処理は、耐水化のためのホウ酸処理と色相調整のためのホウ酸処理という具合に複数回行なってもよい。この場合、使用する各ホウ酸処理槽の水溶液組成及び温度は、上記の範囲内で同じであっても、異なっていてもよい。また、耐水化のためのホウ酸処理及び色相調整のためのホウ酸処理を、それぞれ複数の工程で行なってもよい。   These boric acid treatments may be performed a plurality of times, such as boric acid treatment for water resistance and boric acid treatment for hue adjustment. In this case, the aqueous solution composition and temperature of each boric acid treatment tank to be used may be the same or different within the above range. Moreover, you may perform the boric-acid process for water resistance, and the boric-acid process for hue adjustment in a some process, respectively.

(洗浄処理)
洗浄処理は、ホウ酸処理の後、ポリビニルアルコール系樹脂フィルムに付着した余分なホウ酸やヨウ素等の薬剤を除去する目的で行われる。この洗浄処理は、例えば、耐水化及び/又は色調調整のためにホウ酸処理を施した偏光フィルムを水に浸漬したり、水をシャワーなどによって噴霧したり、あるいはその両方を併用したりすることにより行われる。洗浄処理における水の温度は、通常約2〜40℃であり、処理時間は約5〜120秒であることが好ましい。
(Cleaning process)
The cleaning treatment is performed for the purpose of removing excess chemicals such as boric acid and iodine attached to the polyvinyl alcohol-based resin film after the boric acid treatment. In this cleaning treatment, for example, a polarizing film subjected to boric acid treatment for water resistance and / or color tone adjustment is immersed in water, water is sprayed by a shower, or both are used in combination. Is done. The temperature of water in the washing treatment is usually about 2 to 40 ° C., and the treatment time is preferably about 5 to 120 seconds.

(乾燥処理)
洗浄処理の後、ポリビニルアルコール系樹脂フィルムを乾燥させることにより偏光フィルムを作製することができる。乾燥処理は、温度40〜100℃程度の乾燥炉中で、60〜600秒程度の時間で施される。
(Drying process)
After the washing treatment, the polarizing film can be produced by drying the polyvinyl alcohol resin film. The drying treatment is performed in a drying furnace at a temperature of about 40 to 100 ° C. for a time of about 60 to 600 seconds.

このようにして製造される偏光フィルムの最終的な積算延伸倍率は、通常、約 4.5〜7倍、好ましくは約5〜6.5 倍である。
(その他の処理)
The final integrated draw ratio of the polarizing film thus produced is usually about 4.5 to 7 times, preferably about 5 to 6.5 times.
(Other processing)

また、上記以外の処理を別の目的で追加することもできる。追加されうる処理の例として、ホウ酸処理後に行われる、ホウ酸を含まないヨウ化物水溶液への浸漬処理(ヨウ化物処理)、ホウ酸を含まず塩化亜鉛などを含有する水溶液への浸漬処理(亜鉛処理)などが挙げられる。   Moreover, processes other than those described above can be added for other purposes. Examples of treatments that can be added include immersion treatment in an aqueous iodide solution that does not contain boric acid (iodide treatment), immersion treatment in an aqueous solution that does not contain boric acid and contains zinc chloride, etc. Zinc treatment).

[偏光板の製造方法]
このようにして製造された偏光フィルムの少なくとも片面に、接着剤を用いて保護フィルムを貼合することにより、偏光フィルムと保護フィルムの積層体である偏光板が形成される。保護フィルムとしては、例えば、トリアセチルセルロースのようなアセチルセルロース系樹脂フィルム、シクロオレフィン系樹脂フィルム、シクロオレフィン系共重合樹脂フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレートやポリブチレンテレフタレートのようなポリエステル系樹脂フィルム、ポリカーボネート系樹脂フィルム、ポリメチルメタクリレートのようなアクリル系樹脂フィルム、ポリプロピレン、ポリエチレンのような非環状オレフィン系樹脂フィルムなどが挙げられる。
[Production method of polarizing plate]
Thus, the polarizing plate which is a laminated body of a polarizing film and a protective film is formed by bonding a protective film on the at least single side | surface of the manufactured polarizing film using an adhesive agent. Examples of protective films include acetyl cellulose resin films such as triacetyl cellulose, cycloolefin resin films, cycloolefin copolymer resin films, polyester resin films such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate. , Polycarbonate resin films, acrylic resin films such as polymethylmethacrylate, acyclic olefin resin films such as polypropylene and polyethylene, and the like.

接着剤と上記の偏光フィルム及び/又は上記の保護フィルムとの接着性を向上させるため、偏光フィルム及び/又は保護フィルムの貼合面にコロナ処理、プラズマ処理、火炎処理、紫外線処理、プライマー処理、ケン化処理、溶剤の塗布及び乾燥による溶剤処理等の表面処理を施すことも可能である。   In order to improve the adhesiveness between the adhesive and the polarizing film and / or the protective film, the bonding surface of the polarizing film and / or the protective film is subjected to corona treatment, plasma treatment, flame treatment, ultraviolet treatment, primer treatment, Surface treatment such as saponification treatment, solvent treatment by solvent application and drying can also be applied.

なお、これら保護フィルムに代えて、熱可塑性樹脂の延伸フィルムや熱可塑性樹脂に液晶化合物を配向した光学補償フィルムを、接着剤を介して偏光フィルムに貼合することもできる。これらの熱可塑性樹脂の延伸フィルムや、熱可塑性樹脂に液晶化合物を配向した光学補償フィルムは、公知のものを適宜で使用することができる。   Instead of these protective films, a stretched film of thermoplastic resin or an optical compensation film in which a liquid crystal compound is oriented in a thermoplastic resin can be bonded to a polarizing film via an adhesive. Known stretched films of these thermoplastic resins and optical compensation films in which a liquid crystal compound is oriented in a thermoplastic resin can be used as appropriate.

偏光フィルムと保護フィルムなどの貼合に用いられる接着剤は、偏光フィルムと保護フィルムなどを接合できるものであれば特に限られないが、充分な接着力や透明性を満たすものが選択される。これらの点から、偏光フィルムと保護フィルムなどの貼合には、紫外線硬化型接着剤が好ましく用いられる。また、偏光フィルムとアセチルセルロース系樹脂フィルムの貼合には、上記の紫外線硬化型樹脂のほか、水系の接着剤、例えば、ポリビニルアルコール系樹脂の水溶液及びこれに架橋剤を配合した水溶液、ウレタン系エマルジョン接着剤などを用いることができる。   The adhesive used for laminating the polarizing film and the protective film is not particularly limited as long as it can join the polarizing film and the protective film, but an adhesive satisfying a sufficient adhesive force and transparency is selected. From these points, an ultraviolet curable adhesive is preferably used for bonding a polarizing film and a protective film. In addition, the polarizing film and the acetylcellulose-based resin film are bonded to each other in addition to the above-mentioned ultraviolet curable resin, an aqueous adhesive, for example, an aqueous solution of a polyvinyl alcohol-based resin, an aqueous solution in which a crosslinking agent is mixed, and a urethane-based resin. An emulsion adhesive or the like can be used.

紫外線硬化型接着剤は、アクリル系化合物と光ラジカル重合開始剤の混合物や、エポキシ化合物と光カチオン重合開始剤の混合物などであることができる。また、カチオン重合性のエポキシ化合物とラジカル重合性のアクリル系化合物とを併用し、開始剤として光カチオン重合開始剤と光ラジカル重合開始剤を併用することもできる。   The ultraviolet curable adhesive may be a mixture of an acrylic compound and a photo radical polymerization initiator, a mixture of an epoxy compound and a photo cationic polymerization initiator, or the like. Alternatively, a cationic polymerizable epoxy compound and a radical polymerizable acrylic compound may be used in combination, and a photo cationic polymerization initiator and a photo radical polymerization initiator may be used in combination as an initiator.

紫外線硬化型接着剤を用いた場合は、フィルムを積層後、紫外線を照射することによってその接着剤を硬化させる。紫外線の光源は特に限定されないが、波長400nm以下に発光分布を有するものが好ましく、具体的には、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプなどが好ましく用いられる。   When an ultraviolet curable adhesive is used, the adhesive is cured by irradiating ultraviolet rays after laminating the films. The ultraviolet light source is not particularly limited, but preferably has a light emission distribution at a wavelength of 400 nm or less, specifically, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a chemical lamp, a black light lamp, microwave excitation. Mercury lamps and metal halide lamps are preferably used.

紫外線硬化型接着剤を硬化させるための光照射強度は、接着剤の組成によって適宜決定され、特に限定されないが、重合開始剤の活性化に有効な波長領域の照射強度が 0.1〜6000mW/cm2 となるようにすることが好ましい。照射強度をこの範囲から適宜選択することにより、反応時間が長くなりすぎず、光源から輻射される熱及び接着剤の硬化時の発熱による接着剤の黄変や、偏光フィルムの劣化を抑制することができる。光照射時間もまた、硬化させる接着剤に応じて選択されるものであって特に限定されないが、上記の照射強度と照射時間との積として表される積算光量が10〜10000mJ/cm2 となるように設定されることが好ましい。 The light irradiation intensity for curing the ultraviolet curable adhesive is appropriately determined depending on the composition of the adhesive and is not particularly limited, but the irradiation intensity in the wavelength region effective for activating the polymerization initiator is 0.1 to 6000 mW / It is preferable to be cm 2 . By appropriately selecting the irradiation intensity from this range, the reaction time does not become too long, and the yellowing of the adhesive and the deterioration of the polarizing film due to the heat radiated from the light source and the heat generated when the adhesive is cured are suppressed Can do. The light irradiation time is also selected according to the adhesive to be cured and is not particularly limited. However, the integrated light amount expressed as the product of the irradiation intensity and the irradiation time is 10 to 10,000 mJ / cm 2. It is preferable to set as follows.

積算光量をこの範囲から適宜選択することにより、重合開始剤由来の活性種を十分量発生させて硬化反応を確実に進行させ、また照射時間を短くすることができるため、良好な生産性を維持できる。そして、偏光フィルムや保護フィルムなどを含む積層フィルムで、紫外線の照射によって紫外線硬化型接着剤を硬化させる場合、偏光フィルムの偏光度、透過率及び色相、並びに保護フィルムの透明性など、偏光板の諸機能が低下しない条件で硬化を行うことが好ましい。   By appropriately selecting the integrated light amount from this range, a sufficient amount of active species derived from the polymerization initiator can be generated, the curing reaction can proceed reliably, and the irradiation time can be shortened, thus maintaining good productivity. it can. And when it is a laminated film including a polarizing film and a protective film, and the ultraviolet curable adhesive is cured by irradiation with ultraviolet rays, the polarization degree, transmittance and hue of the polarizing film, and transparency of the protective film, etc. It is preferable to perform the curing under conditions that do not reduce the various functions.

また、水系接着剤を用いる場合は、例えば、フィルムの表面に接着剤を均一に塗布し又は2枚のフィルム間に流し込み、その塗布層を介して2枚のフィルムを重ね、ロールなどにより貼合して乾燥する方法が採用できる。乾燥後はさらに、室温又はそれよりやや高い温度、例えば、20〜45℃程度の温度で養生してもよい。   Moreover, when using an aqueous adhesive, for example, apply the adhesive uniformly on the surface of the film or pour it between two films, overlap the two films via the coating layer, and bond them with a roll or the like. Then, a drying method can be adopted. After drying, it may be further cured at room temperature or slightly higher temperature, for example, about 20 to 45 ° C.

以上の接着剤層の厚さは、0.001〜5μm程度の範囲から、接着剤の種類や接着される2枚のフィルムの組合せによって適宜選択される。その厚さは、好ましくは0.01μm以上であり、また好ましくは2μm 以下である。   The thickness of the above adhesive layer is appropriately selected from the range of about 0.001 to 5 μm depending on the type of adhesive and the combination of two films to be bonded. The thickness is preferably 0.01 μm or more, and preferably 2 μm or less.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例により制限させるものではない。また、以下の例中におけるポリビニルアルコールフィルムの幅方向の膨張率は、次の方法で測定した。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not restrict | limited by these Examples. Moreover, the expansion coefficient of the width direction of the polyvinyl alcohol film in the following examples was measured by the following method.

<膨張率の測定>
フィルムの膨張率は、測定の対象とした膨潤処理槽又は染色処理槽における浸漬前後のフィルムの幅方向の変化量から算出した。まず、以下に記載の実施例及び比較例でそれぞれ用いた長尺のポリビニルアルコールフィルム(原反フィルム)を、長尺方向50mm×幅方向50mmの大きさに裁断した、フィルム断片を用意した。次に、このフィルム断片を、膨張率を測定する処理浴と同一組成の処理液に、実際の処理と同じ温度で、かつフィルムが処理槽を通過する時間と同じ時間だけ処理液に浸漬させた。この浸漬は、フィルムに張力がかからない状態で行った。その後、フィルムを処理液から取り出し、裁断時の幅方向の長さに対する処理前後のフィルムにおける幅方向の変化した長さ(処理後の長さ−裁断時の長さ50mm)を求め、これを百分率で表した。処理後のフィルムの長さは、市販のデジタルノギス〔(株)ミツトヨ社製、“クーラントデジマチックノギス CD-15PSX”〕を用いて、水槽から取り出した直後のポリビニルアルコールフィルムの寸法を測定した。
<Measurement of expansion coefficient>
The expansion coefficient of the film was calculated from the amount of change in the width direction of the film before and after the immersion in the swelling treatment tank or the dyeing treatment tank to be measured. First, a film piece was prepared by cutting a long polyvinyl alcohol film (raw film) used in each of the examples and comparative examples described below into a size of 50 mm in the long direction and 50 mm in the width direction. Next, the film piece was immersed in the treatment liquid having the same composition as the treatment bath for measuring the expansion coefficient at the same temperature as the actual treatment and for the same time as the film passed through the treatment tank. . This immersion was performed in a state where no tension was applied to the film. Thereafter, the film is taken out from the processing solution, and the changed length in the width direction of the film before and after the processing with respect to the length in the width direction at the time of cutting (length after processing−length at the time of cutting 50 mm) is obtained, and the percentage is obtained. Expressed in The length of the film after the treatment was measured using a commercially available digital caliper [manufactured by Mitutoyo Corporation, “Coolant Digimatic caliper CD-15PSX”], and the dimensions of the polyvinyl alcohol film immediately after being taken out of the water tank were measured.

〔実施例1〕
厚さ60μm の長尺のポリビニルアルコールフィルム〔(株)クラレ製の商品名“クラレポバールフィルムVF−PE#6000”、重合度2400、ケン化度 99.9モル%以上〕を用意し、膨潤処理として、37℃の純水が入った第一の膨潤処理槽に、フィルムが弛まないように緊張状態を保ったまま40秒間浸漬した後、30℃の純水が入った第二の膨潤処理槽に20秒間フィルムを浸漬した。このとき、第一の膨潤処理槽内では、エキスパンダーロールを経由させてフィルムを搬送した。次に、染色処理としてヨウ素とヨウ化カリウムを含む30℃の水溶液が入った染色処理槽に60秒間浸漬しつつ、2.2 倍まで一軸延伸を行い、ヨウ化カリウム/ホウ酸/水が重量比で12/ 4.4/100の55℃の水溶液が入った架橋処理槽に浸漬して耐水化処理しつつ、原反からの積算延伸倍率が5.5 倍になるまで一軸延伸を行った。続いて、40℃のホウ酸水溶液が入った補色処理槽に浸漬した後、12℃の純水が入った洗浄処理槽に浸漬し、その後乾燥炉にて70℃で3分間乾燥して偏光フィルムを作製した。膨潤処理においてシワの発生は見られず、フィルムの破断も見られなかった。
[Example 1]
Prepare a long polyvinyl alcohol film [trade name “Kuraray Poval Film VF-PE # 6000” manufactured by Kuraray Co., Ltd., polymerization degree 2400, saponification degree 99.9 mol% or more] having a thickness of 60 μm, and swelling treatment As a second swelling treatment tank containing pure water at 30 ° C. after being immersed in a first swelling treatment tank containing 37 ° C. pure water for 40 seconds while maintaining a tension state so that the film does not loosen The film was immersed for 20 seconds. At this time, in the 1st swelling processing tank, the film was conveyed through the expander roll. Next, uniaxial stretching is performed up to 2.2 times while immersing in a dyeing bath containing a 30 ° C. aqueous solution containing iodine and potassium iodide as a dyeing treatment, and the weight of potassium iodide / boric acid / water is weight. The film was immersed in a cross-linking bath containing a 55 / C aqueous solution having a ratio of 12 / 4.4 / 100 and subjected to water resistance treatment, and uniaxial stretching was performed until the cumulative draw ratio from the original fabric became 5.5 times. . Subsequently, after immersing in a complementary color treatment bath containing 40 ° C. boric acid aqueous solution, it is immersed in a washing treatment bath containing 12 ° C. pure water, and then dried at 70 ° C. for 3 minutes in a drying furnace to obtain a polarizing film. Was made. In the swelling treatment, no generation of wrinkles was observed, and no breakage of the film was observed.

(A)第一の膨潤処理槽における飽和膨張率
実施例1で用いたポリビニルアルコールフィルム“クラレポバールフィルムVF−PE#6000”を長尺方向50mm×幅方向50mmの大きさに裁断し、これを37℃の純水が入った水槽(第一の膨潤処理槽に相当)に10分間浸漬させたときの膨張率を飽和膨張率とし、これを求めた。浸漬後、フィルム断片の幅方向の長さは、 62.70mmであった。浸漬前の幅方向の長さに対する浸漬による長さの変化量から、第一の膨潤処理槽における飽和膨張率を 25.4%とした。
(A) Saturation expansion coefficient in the first swelling treatment tank The polyvinyl alcohol film “Kuraraypoval film VF-PE # 6000” used in Example 1 was cut into a size of 50 mm in the long direction × 50 mm in the width direction. The expansion coefficient when immersed in a water tank (corresponding to the first swelling treatment tank) containing pure water at 37 ° C. for 10 minutes was defined as the saturation expansion coefficient, which was obtained. After immersion, the length of the film piece in the width direction was 62.70 mm. From the amount of change in length by immersion with respect to the length in the width direction before immersion, the saturation expansion coefficient in the first swelling treatment tank was set to 25.4%.

(B)第一の膨潤処理槽におけるフィルムの幅方向の膨張率
上記(A)で裁断したフィルム断片と同じものを別途用意し、それを実施例1の第一の膨潤処理槽での処理と同様に37℃の純水が入った水槽に40秒間浸漬させたときの膨張率を第一の膨潤処理槽での膨張率とし、これを求めた。浸漬後、フィルム断片の幅方向の長さは 61.00mmであった。浸漬前の幅方向の長さに対する第一の膨潤処理槽における長さの変化量から、第一の膨潤処理槽におけるフィルムの幅方向の膨張率は 22.0%であった。また、この膨張率は、上記(A)の飽和膨張率に対して 86.6%であった。以下の表1において、第一の膨潤処理槽の膨張率を「膨張率1」の欄に、飽和膨張率に対する第一の膨潤処理槽の膨張率を「膨張率1/飽和膨張率」の欄に、それぞれ示した。
(B) Expansion coefficient in the width direction of the film in the first swelling treatment tank Separately prepare the same film fragment cut in the above (A), which is treated in the first swelling treatment tank of Example 1 Similarly, the expansion coefficient when immersed in a water tank containing pure water at 37 ° C. for 40 seconds was defined as the expansion coefficient in the first swelling treatment tank. After immersion, the length of the film piece in the width direction was 61.00 mm. From the amount of change in length in the first swelling treatment tank relative to the length in the width direction before immersion, the expansion coefficient in the width direction of the film in the first swelling treatment tank was 22.0%. Moreover, this expansion coefficient was 86.6% with respect to the saturation expansion coefficient of said (A). In Table 1 below, the expansion coefficient of the first swelling treatment tank is in the column of “Expansion coefficient 1”, and the expansion coefficient of the first swelling treatment tank relative to the saturation expansion coefficient is the column of “Expansion coefficient 1 / saturation expansion coefficient”. Respectively.

(C)第二の膨潤処理槽におけるフィルムの幅方向の膨張率
上記(B)で第一の膨潤処理槽と同じ処理を施したフィルム断片に対し、第二の膨潤処理槽と同様の処理を施すため、これをさらに30℃の純水が入った水槽に20秒間浸漬した。浸漬後、フィルム断片の幅方向の長さは 60.60mmであった。裁断時のフィルム断片の幅方向の長さに対する第二の膨潤処理槽における長さの変化量から、第二の膨潤処理槽におけるフィルムの幅方向の膨張率は 21.2%であった。また、上記(B)の第一の膨潤処理槽におけるフィルムの幅方向の膨張率との差は、−0.8 ポイントであった。以下の表1において、第二の膨潤処理槽の膨張率を「膨張率2」の欄に、第一の膨潤処理槽及び第二の膨潤処理槽における膨張率の差を「膨張率差」の欄に、それぞれ示した。
(C) Expansion coefficient in the width direction of the film in the second swelling treatment tank The same treatment as in the second swelling treatment tank is performed on the film piece subjected to the same treatment as in the first swelling treatment tank in (B) above. In order to apply, this was further immersed in a water tank containing pure water at 30 ° C. for 20 seconds. After immersion, the length of the film piece in the width direction was 60.60 mm. From the amount of change in length in the second swelling treatment tank with respect to the length in the width direction of the film piece at the time of cutting, the expansion ratio in the width direction of the film in the second swelling treatment tank was 21.2%. Moreover, the difference with the expansion coefficient of the width direction of the film in the said 1st swelling processing tank of (B) was -0.8 point. In Table 1 below, the expansion rate of the second swelling treatment tank is indicated in the column of “Expansion rate 2”, and the difference in expansion rate between the first swelling treatment tank and the second swelling treatment tank is indicated as “Expansion rate difference”. Each is shown in the column.

〔実施例2〕
原反フィルムに厚さ50μm の長尺のポリビニルアルコールフィルム〔(株)クラレ製の商品名“クラレポバールフィルムVF−PE#5000”、重合度2400、ケン化度99.9モル%以上〕を用い、第一の膨潤処理槽での膨潤処理を35℃の純水に30秒間浸漬するように変更した以外は、実施例1と同様にして偏光フィルムを作製した。膨潤処理においてシワの発生は見られず、フィルムの破断も見られなかった。
[Example 2]
A 50 μm-thick polyvinyl alcohol film (trade name “Kuraray Poval Film VF-PE # 5000” manufactured by Kuraray Co., Ltd., polymerization degree 2400, saponification degree 99.9 mol% or more) was used for the raw film. A polarizing film was produced in the same manner as in Example 1 except that the swelling treatment in the first swelling treatment tank was changed to be immersed in pure water at 35 ° C. for 30 seconds. In the swelling treatment, no generation of wrinkles was observed, and no breakage of the film was observed.

(A)第一の膨潤処理槽における飽和膨張率
実施例2で用いたポリビニルアルコールフィルム“クラレポバールフィルムVF−PE#5000”からフィルム断片を裁断し、水槽内の純水の温度を35℃に変更した以外は実施例1(A)と同様にして第一の膨潤処理槽における飽和膨張率を求めた。浸漬後、フィルム断片の幅方向の長さは 62.10mmであった。浸漬前の幅方向の長さに対する浸漬による長さの変化量から、第一の膨潤処理槽における飽和膨張率を 24.2%とした。
(A) Saturation expansion coefficient in the first swelling treatment tank A film piece is cut from the polyvinyl alcohol film “Kuraray Poval Film VF-PE # 5000” used in Example 2, and the temperature of pure water in the water tank is set to 35 ° C. The saturated expansion coefficient in the first swelling treatment tank was determined in the same manner as in Example 1 (A) except that the change was made. After immersion, the length of the film piece in the width direction was 62.10 mm. From the amount of change in length by immersion with respect to the length in the width direction before immersion, the saturation expansion coefficient in the first swelling treatment tank was set to 24.2%.

(B)第一の膨潤処理槽におけるフィルムの幅方向の膨張率
実施例2(A)で裁断したフィルム断片と同じものを別途用意し、それを実施例2の第一の膨潤処理槽での処理と同様に35℃の純水が入った水槽に30秒間浸漬させて第一の膨潤処理槽での膨張率を求めた。浸漬後、フィルム断片の幅方向の長さは 60.45mmであった。第一の膨潤処理槽におけるフィルムの幅方向の膨張率を実施例1(B)と同様にして求めた結果 20.9%であった。またこの膨張率は、上記(A)の飽和膨張率に対して 86.4%であった。
(B) Expansion coefficient in the width direction of the film in the first swelling treatment tank The same film fragment as that cut in Example 2 (A) was prepared separately, and it was used in the first swelling treatment tank in Example 2. Similarly to the treatment, it was immersed in a water tank containing 35 ° C. pure water for 30 seconds to obtain the expansion coefficient in the first swelling treatment tank. After immersion, the width of the film piece in the width direction was 60.45 mm. It was 20.9% as a result of calculating | requiring the expansion coefficient of the width direction of the film in a 1st swelling processing tank like Example 1 (B). Moreover, this expansion coefficient was 86.4% with respect to the saturation expansion coefficient of said (A).

(C)第二の膨潤処理槽におけるフィルムの幅方向の膨張率
上記(B)で第一の膨潤処理槽と同じ処理を施したフィルム断片に対し、第二の膨潤処理槽と同様の処理を施すため、これをさらに30℃の純水が入った水槽に20秒間浸漬した。浸漬後、フィルム断片の幅方向の長さは 60.50mmであった。第二の膨潤処理槽におけるフィルムの幅方向の膨張率を、実施例1(C)と同様にして求めた結果、 21.0%であった。また上記(B)の第一の膨潤処理槽におけるフィルムの幅方向の膨張率との差は、 +0.1ポイントであった。
(C) Expansion coefficient in the width direction of the film in the second swelling treatment tank The same treatment as in the second swelling treatment tank is performed on the film piece subjected to the same treatment as in the first swelling treatment tank in (B) above. In order to apply, this was further immersed in a water tank containing pure water at 30 ° C. for 20 seconds. After immersion, the length of the film piece in the width direction was 60.50 mm. As a result of obtaining the expansion coefficient in the width direction of the film in the second swelling treatment tank in the same manner as in Example 1 (C), it was 21.0%. Moreover, the difference with the expansion coefficient of the width direction of the film in the said 1st swelling processing tank of (B) was +0.1 point.

〔実施例3〕
原反フィルムに厚さ60μm の長尺のポリビニルアルコールフィルム〔(株)クラレ製の商品名“クラレポバールフィルムVF−PE#6000”、重合度2400、ケン化度99.9 モル%以上〕を用い、膨潤処理として、37℃の純水が入った膨潤処理槽に、フィルムが弛まないように緊張状態を保ったまま40秒間浸漬した。このとき、膨潤処理槽内では、エキスパンダーロールを経由させてフィルムを搬送した。次に、染色処理としてヨウ素とヨウ化カリウムを含む30℃の水溶液が入った染色処理槽に60秒間浸漬しつつ2.2 倍まで一軸延伸を行い、ヨウ化カリウム/ホウ酸/水が重量比で12/4.4 / 100である55℃の水溶液が入った架橋処理槽に浸漬して耐水化処理しつつ、原反からの積算延伸倍率が 5.5倍になるまで一軸延伸を行った。続いて、40℃のホウ酸水溶液が入った補色処理槽に浸漬した後、12℃の純水が入った洗浄処理槽に浸漬し、乾燥炉にて70℃で3分間乾燥して偏光フィルムを製造した。膨潤処理及び染色処理においてシワの発生は見られずフィルムの破断も見られなかった。
Example 3
A 60 μm-thick polyvinyl alcohol film (trade name “Kuraray Poval Film VF-PE # 6000” manufactured by Kuraray Co., Ltd., polymerization degree 2400, saponification degree 99.9 mol% or more) was used for the raw film. As the swelling treatment, the film was immersed in a swelling treatment tank containing pure water at 37 ° C. for 40 seconds while maintaining the tension state so that the film did not loosen. At this time, in the swelling processing tank, the film was conveyed via an expander roll. Next, as a dyeing treatment, uniaxial stretching is performed up to 2.2 times while immersing in a dyeing treatment tank containing a 30 ° C. aqueous solution containing iodine and potassium iodide for 60 seconds, and the weight ratio of potassium iodide / boric acid / water is The film was immersed in a crosslinking treatment tank containing a 55 ° C. aqueous solution of 12 / 4.4 / 100 and subjected to water resistance treatment, and uniaxial stretching was performed until the cumulative draw ratio from the raw material became 5.5 times. . Subsequently, after immersing in a complementary color treatment tank containing a 40 ° C. boric acid aqueous solution, it is immersed in a washing treatment tank containing 12 ° C. pure water, followed by drying at 70 ° C. for 3 minutes in a drying furnace. Manufactured. In the swelling treatment and dyeing treatment, no wrinkles were observed and no film breakage was observed.

(A)膨潤処理槽における飽和膨張率
実施例3で用いたポリビニルアルコールフィルム“クラレポバールフィルムVF−PE#6000”からフィルム断片を裁断した以外は実施例1(A)と同様にして膨潤処理槽における飽和膨張率を求めた。浸漬後、フィルム断片の幅方向の長さは、 62.70mmであった。浸漬前の幅方向の長さに対する浸漬による長さの変化量から、膨潤処理槽における飽和膨張率を 25.4%とした。
(A) Saturation expansion rate in the swelling treatment tank The swelling treatment tank was obtained in the same manner as in Example 1 (A) except that the film piece was cut from the polyvinyl alcohol film “Kuraray Poval Film VF-PE # 6000” used in Example 3. The saturation expansion coefficient at was determined. After immersion, the length of the film piece in the width direction was 62.70 mm. From the amount of change in length by immersion with respect to the length in the width direction before immersion, the saturation expansion coefficient in the swelling treatment tank was set to 25.4%.

(B)膨潤処理槽におけるフィルムの幅方向の膨張率
上記(A)で裁断したフィルム断片と同じものを別途用意し、それを実施例3の膨潤処理槽での処理と同様に37℃の純水が入った水槽に40秒間浸漬させて膨潤処理槽での膨張率を求めた。浸漬後、フィルム断片の幅方向の長さは 61.00mmであった。この膨潤処理槽におけるフィルムの幅方向の膨張率を、実施例1(B)と同様にして求めた結果、22.0%であった。また、この膨張率は、上記(A)の飽和膨張率に対して86.6%であった。以下の表1において、膨潤処理槽の膨張率を「膨張率1」の欄に、飽和膨張率に対する膨潤処理槽の膨張率を「膨張率1/飽和膨張率」の欄に、それぞれ示した。
(B) Expansion coefficient in the width direction of the film in the swelling treatment tank Separately prepared is the same film fragment cut in the above (A), and the same as the treatment in the swelling treatment tank of Example 3 was performed at 37 ° C. It was immersed in a water tank containing water for 40 seconds, and the expansion coefficient in the swelling treatment tank was determined. After immersion, the length of the film piece in the width direction was 61.00 mm. The expansion coefficient in the width direction of the film in this swelling treatment tank was determined in the same manner as in Example 1 (B), and as a result, it was 22.0%. Moreover, this expansion coefficient was 86.6% with respect to the saturation expansion coefficient of said (A). In Table 1 below, the expansion coefficient of the swelling treatment tank is shown in the column of “Expansion coefficient 1”, and the expansion coefficient of the swelling treatment tank relative to the saturation expansion coefficient is shown in the column of “Expansion coefficient 1 / saturation expansion coefficient”.

(C)染色処理槽におけるフィルムの幅方向の膨張率
上記(B)で膨潤処理槽と同じ処理を施したフィルム断片に対し、染色処理槽と同様の処理を施すため、染色処理浴と同じ組成であり、かつ、同じ温度(30℃)である水溶液を入れた水槽に60秒間浸漬した。浸漬後、フィルム断片の幅方向の長さは 60.85mmであった。裁断時のフィルム断片の幅方向の長さに対する染色処理槽における長さの変化量から、染色処理槽におけるフィルムの幅方向の膨張率は 21.7%であった。また、上記(B)の膨潤処理槽におけるフィルムの幅方向の膨張率との差は、 −0.3ポイントであった。以下の表1において、染色処理槽の膨張率を「膨張率2」の欄に、膨潤処理槽及び染色処理槽における膨張率の差を「膨張率差」の欄に、それぞれ示した。
(C) Expansion coefficient in the width direction of the film in the dyeing treatment tank The same composition as the dyeing treatment bath is applied to the film pieces subjected to the same treatment as the swelling treatment tank in (B) above, in order to perform the same treatment as in the dyeing treatment tank. And was immersed for 60 seconds in a water bath containing an aqueous solution having the same temperature (30 ° C.). After immersion, the length of the film piece in the width direction was 60.85 mm. From the amount of change in length in the dyeing tank relative to the length in the width direction of the film piece at the time of cutting, the expansion coefficient in the width direction of the film in the dyeing tank was 21.7%. Moreover, the difference with the expansion coefficient of the width direction of the film in the swelling processing tank of the said (B) was -0.3 point. In Table 1 below, the expansion rate of the dyeing treatment tank is shown in the column of “Expansion rate 2”, and the difference in expansion rate between the swelling treatment tank and the dyeing treatment vessel is shown in the column of “Expansion coefficient difference”.

〔比較例1〕
第一の膨潤処理槽におけるフィルムの浸漬時間を10秒間に変更した以外は実施例1と同様にして偏光フィルムを作製した。第一の膨潤処理槽及び第二の膨潤処理槽においてシワが発生し、延伸時にフィルムの切断が多発した。また、得られた偏光フィルムの外観を確認するとシワが見られた。
[Comparative Example 1]
A polarizing film was produced in the same manner as in Example 1 except that the immersion time of the film in the first swelling treatment tank was changed to 10 seconds. Wrinkles occurred in the first swelling treatment tank and the second swelling treatment tank, and the film was frequently cut during stretching. Moreover, when the external appearance of the obtained polarizing film was confirmed, wrinkles were seen.

(A)第一の膨潤処理槽における飽和膨張率
実施例1(A)と同様にして第一の膨潤処理槽における飽和膨張率を求めた。浸漬後におけるフィルム断片の幅方向の長さは、 62.70mmであり、飽和膨張率は 25.4%であった。
(A) Saturation expansion coefficient in the first swelling treatment tank The saturation expansion coefficient in the first swelling treatment tank was determined in the same manner as in Example 1 (A). The length of the film piece in the width direction after immersion was 62.70 mm, and the saturation expansion coefficient was 25.4%.

(B)第一の膨潤処理槽におけるフィルムの幅方向の膨張率
浸漬時間を10秒間に変更した以外は、実施例1(B)と同様にして第一の膨潤処理槽における膨張率を求めた。浸漬後、フィルム断片の幅方向の長さは 55.35mmであり、この膨張率は 10.7%であった。また、この膨張率は、上記(A)の飽和膨張率に対して 42.1%であった。
(B) Expansion coefficient in the width direction of the film in the first swelling treatment tank Except that the immersion time was changed to 10 seconds, the expansion coefficient in the first swelling treatment tank was determined in the same manner as in Example 1 (B). . After immersion, the width of the film piece in the width direction was 55.35 mm, and the expansion rate was 10.7%. Moreover, this expansion coefficient was 42.1% with respect to the saturation expansion coefficient of said (A).

(C)第二の膨潤処理槽におけるフィルムの幅方向の膨張率
用いるフィルム断片を、上記(B)で第一の膨潤処理槽と同じ処理を施したものに変更した以外は、実施例1(C)と同様の処理を施した。浸漬後、フィルム断片の幅方向の長さは58.20mmであり、第二の膨潤処理槽におけるフィルムの幅方向の膨張率は16.4%であった。また、上記(B)の第一の膨潤処理槽におけるフィルムの幅方向の膨張率との差は、 +5.7ポイントであった。
(C) Expansion coefficient in the width direction of the film in the second swelling treatment tank Example 1 (except that the film piece used was changed to the one subjected to the same treatment as the first swelling treatment tank in (B) above. The same treatment as in C) was performed. After immersion, the length in the width direction of the film piece was 58.20 mm, and the expansion coefficient in the width direction of the film in the second swelling treatment tank was 16.4%. Moreover, the difference with the expansion coefficient of the width direction of the film in the 1st swelling processing tank of said (B) was +5.7 point.

〔比較例2〕
第一の膨潤処理槽におけるフィルムの浸漬時間を10秒間に変更した以外は実施例2と同様にして偏光フィルムを作製した。また、第一の膨潤処理槽及び第二の膨潤処理槽においてシワが発生し、延伸時にフィルムの切断が多発した。得られた偏光フィルムの外観を確認するとシワが見られた。
[Comparative Example 2]
A polarizing film was produced in the same manner as in Example 2 except that the immersion time of the film in the first swelling treatment tank was changed to 10 seconds. Moreover, wrinkles were generated in the first swelling treatment tank and the second swelling treatment tank, and the film was frequently cut during stretching. When the appearance of the obtained polarizing film was confirmed, wrinkles were observed.

(A)第一の膨潤処理槽における飽和膨張率
実施例2(A)と同様にして第一の膨潤処理槽における飽和膨張率を求めた。浸漬後におけるフィルム断片の幅方向の長さは、 62.10mmであり、飽和膨張率は 24.2%であった。
(A) Saturation expansion coefficient in the first swelling treatment tank The saturation expansion coefficient in the first swelling treatment tank was determined in the same manner as in Example 2 (A). The length of the film piece in the width direction after the immersion was 62.10 mm, and the saturation expansion coefficient was 24.2%.

(B)第一の膨潤処理槽におけるフィルムの幅方向の膨張率
浸漬時間を10秒間に変更した以外は、実施例2(B)と同様にして第一の膨潤処理槽における膨張率を求めた。浸漬後、フィルム断片の幅方向の長さは 56.60mmであり、この膨張率は 13.2%であった。また、この膨張率は、上記(A)の飽和膨張率に対して 54.5%であった。
(B) Expansion coefficient in the width direction of the film in the first swelling treatment tank Except that the immersion time was changed to 10 seconds, the expansion coefficient in the first swelling treatment tank was determined in the same manner as in Example 2 (B). . After immersion, the width of the film piece in the width direction was 56.60 mm, and the expansion rate was 13.2%. Moreover, this expansion coefficient was 54.5% with respect to the saturation expansion coefficient of said (A).

(C)第二の膨潤処理槽におけるフィルムの幅方向の膨張率
用いるフィルム断片を、上記(B)で第一の膨潤処理槽と同じ処理を施したものに変更した以外は、実施例1(C)と同様の処理を施した。浸漬後、フィルム断片の幅方向の長さは59.05mmであり、第二の膨潤処理槽におけるフィルムの幅方向の膨張率は18.1%であった。また、上記(B)の第一の膨潤処理槽におけるフィルムの幅方向の膨張率との差は、 +4.9ポイントであった。
(C) Expansion coefficient in the width direction of the film in the second swelling treatment tank Example 1 (except that the film piece used was changed to the one subjected to the same treatment as the first swelling treatment tank in (B) above. The same treatment as in C) was performed. After immersion, the width in the width direction of the film piece was 59.05 mm, and the expansion coefficient in the width direction of the film in the second swelling treatment tank was 18.1%. Moreover, the difference with the expansion coefficient of the width direction of the film in the said 1st swelling processing tank of (B) was +4.9 point.

〔比較例3〕
第一の膨潤処理槽におけるフィルムの浸漬時間を100秒と変更した以外は実施例2と同様にして偏光フィルムを作製した。第一の膨潤処理槽及び第二の膨潤処理槽においてシワの発生は見られなかった。
[Comparative Example 3]
A polarizing film was produced in the same manner as in Example 2 except that the immersion time of the film in the first swelling treatment tank was changed to 100 seconds. Generation | occurrence | production of the wrinkle was not seen in the 1st swelling processing tank and the 2nd swelling processing tank.

(A)第一の膨潤処理槽における飽和膨張率
実施例2(A)と同様にして第一の膨潤処理槽における飽和膨張率を求めた。浸漬後におけるフィルム断片の幅方向の長さは、 62.10mmであり、飽和膨張率は 24.2%であった。
(A) Saturation expansion coefficient in the first swelling treatment tank The saturation expansion coefficient in the first swelling treatment tank was determined in the same manner as in Example 2 (A). The length of the film piece in the width direction after the immersion was 62.10 mm, and the saturation expansion coefficient was 24.2%.

(B)第一の膨潤処理槽におけるフィルムの幅方向の膨張率
浸漬時間を100秒間に変更した以外は実施例2(B)と同様にして第一の膨潤処理槽における膨張率を求めた。浸漬後、フィルム断片の幅方向の長さは 61.70mmであり、この膨張率は 23.4%であった。また、この膨張率は、上記(A)の飽和膨張率に対して 96.7%であった。
(B) Expansion coefficient in the width direction of the film in the first swelling treatment tank The expansion coefficient in the first swelling treatment tank was determined in the same manner as in Example 2 (B) except that the immersion time was changed to 100 seconds. After immersion, the width of the film piece in the width direction was 61.70 mm, and the expansion rate was 23.4%. Moreover, this expansion coefficient was 96.7% with respect to the saturation expansion coefficient of said (A).

(C)第二の膨潤処理槽におけるフィルムの幅方向の膨張率
用いるフィルム断片を、上記(B)で第一の膨潤処理槽と同じ処理を施したものに変更した以外は、実施例1(C)と同様の処理を施した。浸漬後、フィルム断片の幅方向の長さは61.75mmであり、第二の膨潤処理槽におけるフィルムの幅方向の膨張率は23.5%であった。また、上記(B)の第一の膨潤処理槽におけるフィルムの幅方向の膨張率との差は、 +0.1ポイントであった。
(C) Expansion coefficient in the width direction of the film in the second swelling treatment tank Example 1 (except that the film piece used was changed to the one subjected to the same treatment as the first swelling treatment tank in (B) above. The same treatment as in C) was performed. After immersion, the width in the width direction of the film piece was 61.75 mm, and the expansion coefficient in the width direction of the film in the second swelling treatment tank was 23.5%. Moreover, the difference with the expansion coefficient of the width direction of the film in the said 1st swelling processing tank of (B) was +0.1 point.

〔比較例4〕
第一の膨潤処理槽における処理温度を50℃と変更した以外は実施例2と同様にして偏光フィルムを作製した。第一の膨潤処理槽及び第二の膨潤処理槽においてシワが発生し、延伸時にフィルムの切断が多発したため、偏光フィルムを作製することができなかった。
[Comparative Example 4]
A polarizing film was produced in the same manner as in Example 2 except that the treatment temperature in the first swelling treatment tank was changed to 50 ° C. Since wrinkles were generated in the first swelling treatment tank and the second swelling treatment tank, and the film was frequently cut during stretching, a polarizing film could not be produced.

(A)第一の膨潤処理槽における飽和膨張率
純水の温度を50℃に変更した以外は実施例2(A)と同様にして第一の膨潤処理槽における飽和膨張率を求めた。浸漬後におけるフィルム断片の幅方向の長さは、 73.10mmであり、飽和膨張率は 46.2%であった。
(A) Saturation expansion coefficient in the first swelling treatment tank The saturation expansion coefficient in the first swelling treatment tank was determined in the same manner as in Example 2 (A) except that the temperature of pure water was changed to 50 ° C. The length of the film piece in the width direction after the immersion was 73.10 mm, and the saturation expansion coefficient was 46.2%.

(B)第一の膨潤処理槽におけるフィルムの幅方向の膨張率
純水の温度を50℃に変更した以外は実施例2(B)と同様にして第一の膨潤処理槽における膨張率を求めた。浸漬後、フィルム断片の幅方向の長さは 69.30mmであり、この膨張率は 38.6%であった。また、この膨張率は、上記(A)の飽和膨張率に対して83.5 %であった。
(B) Expansion coefficient in the width direction of the film in the first swelling treatment tank The expansion coefficient in the first swelling treatment tank was obtained in the same manner as in Example 2 (B) except that the temperature of pure water was changed to 50 ° C. It was. After immersion, the width of the film piece in the width direction was 69.30 mm, and the expansion rate was 38.6%. Moreover, this expansion coefficient was 83.5% with respect to the saturation expansion coefficient of said (A).

(C)第二の膨潤処理槽におけるフィルムの幅方向の膨張率
用いるフィルム断片を、上記(B)で第一の膨潤処理槽と同じ処理を施したものに変更した以外は、実施例1(C)と同様の処理を施した。浸漬後、フィルム断片の幅方向の長さは67.00mmであり、第二の膨潤処理槽におけるフィルムの幅方向の膨張率は34.0%であった。また、上記(B)の第一の膨潤処理槽におけるフィルムの幅方向の膨張率との差は、 −4.6ポイントであった。
(C) Expansion coefficient in the width direction of the film in the second swelling treatment tank Example 1 (except that the film piece used was changed to the one subjected to the same treatment as the first swelling treatment tank in (B) above. The same treatment as in C) was performed. After immersion, the length in the width direction of the film piece was 67.00 mm, and the expansion coefficient in the width direction of the film in the second swelling treatment tank was 34.0%. Moreover, the difference with the expansion coefficient of the width direction of the film in the said 1st swelling processing tank of (B) was -4.6 points.

〔比較例5〕
第一の膨潤処理槽における処理温度を20℃と変更した以外は実施例2と同様にして偏光フィルムを作製した。第一の膨潤処理槽及び第二の膨潤処理槽においてシワが発生し、延伸時にフィルムの切断が多発した。得られた偏光フィルムの外観を確認するとシワが見られた。
[Comparative Example 5]
A polarizing film was produced in the same manner as in Example 2 except that the treatment temperature in the first swelling treatment tank was changed to 20 ° C. Wrinkles occurred in the first swelling treatment tank and the second swelling treatment tank, and the film was frequently cut during stretching. When the appearance of the obtained polarizing film was confirmed, wrinkles were observed.

(A)第一の膨潤処理槽における飽和膨張率
純水の温度を20℃に変更した以外は実施例2(A)と同様にして第一の膨潤処理槽における飽和膨張率を求めた。浸漬後におけるフィルム断片の幅方向の長さは、 59.15mmであり、飽和膨張率は 18.3%であった。
(A) Saturation expansion coefficient in the first swelling treatment tank The saturation expansion coefficient in the first swelling treatment tank was determined in the same manner as in Example 2 (A) except that the temperature of pure water was changed to 20 ° C. The length of the film piece in the width direction after immersion was 59.15 mm, and the saturation expansion coefficient was 18.3%.

(B)第一の膨潤処理槽におけるフィルムの幅方向の膨張率
純水の温度を50℃に変更した以外は、実施例2(B)と同様にして第一の膨潤処理槽における膨張率を求めた。浸漬後、フィルム断片の幅方向の長さは 54.45mmであり、この膨張率は 8.9%であった。また、この膨張率は、上記(A)の飽和膨張率に対して48.6 %であった。
(B) Expansion coefficient in the width direction of the film in the first swelling treatment tank Except that the temperature of pure water was changed to 50 ° C., the expansion coefficient in the first swelling treatment tank was determined in the same manner as in Example 2 (B). Asked. After immersion, the width of the film piece in the width direction was 54.45 mm, and the expansion rate was 8.9%. Moreover, this expansion coefficient was 48.6% with respect to the saturation expansion coefficient of said (A).

(C)第二の膨潤処理槽におけるフィルムの幅方向の膨張率
用いるフィルム断片を、上記(B)で第一の膨潤処理槽と同じ処理を施したものに変更した以外は、実施例1(C)と同様の処理を施した。浸漬後、フィルム断片の幅方向の長さは58.05mmであり、第二の膨潤処理槽におけるフィルムの幅方向の膨張率は16.1%であった。また、上記(B)の第一の膨潤処理槽におけるフィルムの幅方向の膨張率との差は、 +7.2ポイントであった。
(C) Expansion coefficient in the width direction of the film in the second swelling treatment tank Example 1 (except that the film piece used was changed to the one subjected to the same treatment as the first swelling treatment tank in (B) above. The same treatment as in C) was performed. After immersion, the length in the width direction of the film piece was 58.05 mm, and the expansion coefficient in the width direction of the film in the second swelling treatment tank was 16.1%. Moreover, the difference with the expansion coefficient of the width direction of the film in the said 1st swelling processing tank of (B) was +7.2 points.

Figure 2014197050
Figure 2014197050

表1より、本発明の規定をすべて満たす実施例1、及び実施例1と同じ原反フィルムを用いているが本発明の規定を満たさない比較例1を比較すると、実施例1では第一の膨潤処理槽において十分にフィルムが膨潤された結果、製造中に続く第二の膨潤処理槽における膨張率の差に起因するシワが発生することなく、得られた偏光フィルムにもシワが確認されず外観が良好であったのに対し、比較例1では、処理時間が短いため十分に膨潤されなかった結果、製造中にシワやフィルムの破断が発生し、得られた偏光フィルムでもシワが確認された。また、実施例1より薄膜の原反フィルムを用いた実施例2、並びにこれと同じ原反フィルムを用いているが本願の規定を満たさない比較例2、4及び5を比較すると、実施例2では製造中にシワやフィルムの破断が発生することなく、外観の良好な偏光フィルムを作製できたのに対し、いずれの比較例でも製造中にシワやフィルムの破断が発生し、得られた偏光フィルムにもシワが見られたり、破断が多発して偏光フィルムを得ることができないという結果であった。   From Table 1, when Example 1 that satisfies all the provisions of the present invention and Comparative Example 1 that uses the same raw film as Example 1 but does not satisfy the provisions of the present invention are compared, As a result of the film sufficiently swollen in the swelling treatment tank, wrinkles due to the difference in expansion coefficient in the second swelling treatment tank that occurs during production do not occur, and no wrinkles are confirmed in the obtained polarizing film. Whereas the appearance was good, Comparative Example 1 was not sufficiently swollen because the treatment time was short. As a result, wrinkles and film breakage occurred during production, and wrinkles were confirmed even in the obtained polarizing film. It was. In addition, when Example 2 using a thin film film than Example 1 and Comparative Examples 2, 4 and 5 which use the same original film but do not satisfy the provisions of this application are compared, Example 2 Thus, a polarizing film having a good appearance could be produced without causing wrinkles or film breakage during production, whereas in any of the comparative examples, wrinkles or film breakage occurred during production, and the polarized light obtained It was a result that wrinkles were also seen in the film, or breakage occurred frequently and a polarizing film could not be obtained.

比較例3は、製造中にフィルムシワや破断を生じることなく、外観の良好な偏光フィルムを製造できるものの、第一の膨潤処理槽での処理時間の長く、実施例2に比べ、製造効率が低いものであった。   Although Comparative Example 3 can produce a polarizing film with good appearance without producing film wrinkles or breakage during production, the treatment time in the first swelling treatment tank is long, and the production efficiency is higher than that in Example 2. It was low.

本発明のもう一つの実施形態である、膨潤処理を一つの膨潤処理槽のみで施した例である実施例3は、本発明の規定をすべて満たしたものであり、膨潤処理槽において十分にフィルムが膨潤された結果、製造中に続く染色処理における膨張率の差に起因するシワが発生することなく、得られた偏光フィルムにもシワが確認されず外観が良好であった   Example 3, which is another embodiment of the present invention, which is an example in which the swelling treatment is performed only in one swelling treatment tank, satisfies all the provisions of the present invention, and the film is sufficiently formed in the swelling treatment tank. As a result of swelling, no wrinkles were generated due to the difference in expansion coefficient in the dyeing process that followed during production, and no wrinkles were observed in the obtained polarizing film, and the appearance was good.

Claims (6)

ポリビニルアルコール系樹脂からなる原反フィルムに対し、膨潤処理、染色処理、ホウ酸処理、及び洗浄処理をこの順に施して偏光フィルムを製造する方法であって、
原反フィルムの厚さが10〜60μm であり、
前記膨潤処理が、原反フィルムが入る側から順に少なくとも第一の膨潤処理槽及び第二の膨潤処理槽を含む複数の膨潤処理槽を通過させることにより施され、
第一の膨潤処理槽におけるフィルムの幅方向の膨張率が、同じ温度の処理液に浸漬したときの飽和膨張率の90%以下であり、
第一の膨潤処理槽におけるフィルムの幅方向の膨張率と、第二の膨潤処理槽におけるフィルムの幅方向の膨張率をそれぞれ百分率で表示したときの差が、絶対値で2ポイント以内となるように、第一の膨潤処理槽及び第二の膨潤処理槽の処理温度と処理槽を通過する時間を調整することを特徴とする偏光フィルムの製造方法。
A method for producing a polarizing film by subjecting an original film made of polyvinyl alcohol resin to swelling treatment, dyeing treatment, boric acid treatment, and washing treatment in this order,
The thickness of the raw film is 10-60 μm,
The swelling treatment is performed by passing a plurality of swelling treatment tanks including at least a first swelling treatment tank and a second swelling treatment tank in order from the side where the raw film enters.
The expansion coefficient in the width direction of the film in the first swelling treatment tank is 90% or less of the saturation expansion coefficient when immersed in a treatment liquid at the same temperature,
The difference when the expansion coefficient in the width direction of the film in the first swelling treatment tank and the expansion coefficient in the width direction of the film in the second swelling treatment tank are each expressed as a percentage so that the absolute value is within 2 points. And adjusting the treatment temperature of the first swelling treatment tank and the second swelling treatment tank and the time for passing through the treatment tank.
第一の膨潤処理槽の処理温度が35〜45℃であり、第二の膨潤処理槽の処理温度が、第一の膨潤処理の処理温度より低く、25〜35℃である請求項1に記載の偏光フィルムの製造方法。   The treatment temperature of the first swelling treatment tank is 35 to 45 ° C, and the treatment temperature of the second swelling treatment tank is lower than the treatment temperature of the first swelling treatment and is 25 to 35 ° C. Manufacturing method of the polarizing film. ポリビニルアルコール系樹脂フィルムの幅方向の膨張率が、15〜25%となるように第一の膨潤処理槽の処理温度及び処理槽を通過する時間を調整する請求項1又は2に記載の偏光フィルムの製造方法。   The polarizing film of Claim 1 or 2 which adjusts the process temperature of the 1st swelling processing tank, and the time which passes a processing tank so that the expansion coefficient of the width direction of a polyvinyl alcohol-type resin film may be 15-25%. Manufacturing method. ポリビニルアルコール系樹脂からなる原反フィルムに対し、膨潤処理、染色処理、ホウ酸処理、及び洗浄処理をこの順に施して偏光フィルムを製造する方法であって、
原反フィルムの厚さが10〜60μm であり、
前記膨潤処理が、一つの膨潤処理槽を通過させることにより施され、
膨潤処理槽におけるフィルムの幅方向の膨張率が、同じ温度の処理液に浸漬したときの飽和膨張率の90%以下であり、
膨潤処理槽におけるフィルムの幅方向の膨張率と、染色処理槽におけるフィルムの幅方向の膨張率をそれぞれ百分率で表示したときの差が、絶対値で2ポイント以内となるように、膨潤処理槽及び染色処理槽の処理温度と処理槽を通過する時間を調整することを特徴とする偏光フィルムの製造方法。
A method for producing a polarizing film by subjecting an original film made of polyvinyl alcohol resin to swelling treatment, dyeing treatment, boric acid treatment, and washing treatment in this order,
The thickness of the raw film is 10-60 μm,
The swelling treatment is performed by passing through one swelling treatment tank,
The expansion coefficient in the width direction of the film in the swelling treatment tank is 90% or less of the saturation expansion coefficient when immersed in a treatment liquid at the same temperature,
The swelling treatment tank and the difference between the expansion coefficient in the width direction of the film in the swelling treatment tank and the expansion coefficient in the width direction of the film in the dyeing treatment tank expressed as percentages are within 2 points in absolute value. The manufacturing method of the polarizing film characterized by adjusting the processing temperature of a dyeing | staining processing tank, and the time which passes a processing tank.
膨潤処理槽の処理温度が35〜45℃であり、染色処理槽の処理温度が、膨潤処理の処理温度より低く、25〜35℃である請求項4に記載の偏光フィルムの製造方法。   The method for producing a polarizing film according to claim 4, wherein the treatment temperature of the swelling treatment tank is 35 to 45 ° C, and the treatment temperature of the dyeing treatment tank is lower than the treatment temperature of the swelling treatment and is 25 to 35 ° C. ポリビニルアルコール系樹脂フィルムの幅方向の膨張率が、15〜25%となるように膨潤処理槽の処理温度及び処理槽を通過する時間を調整する請求項4又は5に記載の偏光フィルムの製造方法。   The manufacturing method of the polarizing film of Claim 4 or 5 which adjusts the processing temperature of a swelling processing tank, and the time which passes a processing tank so that the expansion coefficient of the width direction of a polyvinyl alcohol-type resin film may be 15-25%. .
JP2013071646A 2013-03-29 2013-03-29 Manufacturing method of polarizing film Active JP6191197B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013071646A JP6191197B2 (en) 2013-03-29 2013-03-29 Manufacturing method of polarizing film
PCT/JP2014/059699 WO2014157737A1 (en) 2013-03-29 2014-03-26 Process for producing polarizing film
CN201480017962.6A CN105103013B (en) 2013-03-29 2014-03-26 The manufacture method of light polarizing film
KR1020157023482A KR102130185B1 (en) 2013-03-29 2014-03-26 Process for producing polarizing film
TW103111470A TWI617415B (en) 2013-03-29 2014-03-27 Method for producing polarizing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013071646A JP6191197B2 (en) 2013-03-29 2013-03-29 Manufacturing method of polarizing film

Publications (2)

Publication Number Publication Date
JP2014197050A true JP2014197050A (en) 2014-10-16
JP6191197B2 JP6191197B2 (en) 2017-09-06

Family

ID=51624692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013071646A Active JP6191197B2 (en) 2013-03-29 2013-03-29 Manufacturing method of polarizing film

Country Status (5)

Country Link
JP (1) JP6191197B2 (en)
KR (1) KR102130185B1 (en)
CN (1) CN105103013B (en)
TW (1) TWI617415B (en)
WO (1) WO2014157737A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017107161A (en) * 2015-11-27 2017-06-15 住友化学株式会社 Polarizer manufacturing method
JP2017107162A (en) * 2015-11-27 2017-06-15 住友化学株式会社 Polarizer manufacturing method
CN107111043A (en) * 2015-11-05 2017-08-29 住友化学株式会社 Polarizer and its manufacture method
JP2017223941A (en) * 2016-06-13 2017-12-21 日本合成化学工業株式会社 Polyvinyl alcohol film for polarization films, and method for producing the same, and polarization film
KR20180022648A (en) 2015-06-24 2018-03-06 닛폰고세이가가쿠고교 가부시키가이샤 Polyvinyl alcohol film, method for producing polyvinyl alcohol film, and polarizer film
KR20180111922A (en) 2016-02-09 2018-10-11 주식회사 쿠라레 Polarizing film and manufacturing method thereof
KR20190018419A (en) 2016-06-13 2019-02-22 닛폰고세이가가쿠고교 가부시키가이샤 A polyvinyl alcohol film, a production method thereof, and a polarizing film using the polyvinyl alcohol film
KR20190119127A (en) 2017-03-08 2019-10-21 주식회사 쿠라레 Polarizing Films, Polarizing Plates, and Their Manufacturing Methods
KR20190119126A (en) 2017-03-08 2019-10-21 주식회사 쿠라레 Polarizing Films, Polarizing Plates, and Their Manufacturing Methods

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160043765A (en) * 2014-10-14 2016-04-22 스미또모 가가꾸 가부시키가이샤 Polarizer and preparing method thereof
JPWO2017094253A1 (en) * 2015-11-30 2018-08-09 富士フイルム株式会社 Retardation film and method for producing the same, polarizing plate provided with retardation film, and liquid crystal display device
CN107238881A (en) * 2016-03-28 2017-10-10 住友化学株式会社 The manufacture method of polarizing coating and the manufacture device of polarizing coating
JP2017182035A (en) * 2016-03-28 2017-10-05 住友化学株式会社 Method and apparatus for manufacturing polarizing film
JP6235677B2 (en) * 2016-03-28 2017-11-22 住友化学株式会社 Manufacturing method of polarizing film
CN108957616A (en) * 2018-09-11 2018-12-07 深圳市盛波光电科技有限公司 A kind of manufacturing method of dye-type polaroid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006065309A (en) * 2004-07-28 2006-03-09 Nitto Denko Corp Method for manufacturing polarizing film, polarizing film, polarizing plate, optical film and image display device
JP2007206138A (en) * 2006-01-31 2007-08-16 Nippon Kayaku Co Ltd Polarizing plate with improved durability
JP2012003173A (en) * 2010-06-21 2012-01-05 Sumitomo Chemical Co Ltd Polarization film and manufacturing method of polarizer
JP2013033154A (en) * 2011-08-02 2013-02-14 Nitto Denko Corp Process film manufacturing method and manufacturing device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4975236B2 (en) * 2002-07-24 2012-07-11 日東電工株式会社 Polarizer, optical film using the same, and image display device using the same
TWI266907B (en) * 2002-07-24 2006-11-21 Nitto Denko Corp Polarizing device, optical thin film using the same, and image display device using the same
JP2004093993A (en) * 2002-08-30 2004-03-25 Nitto Denko Corp Polarizer, optical film using the same, and liquid crystal display using the same as well as electroluminescence display
KR100846036B1 (en) * 2004-07-28 2008-07-11 닛토덴코 가부시키가이샤 Process for producing polarizing film, polarizing film, polarizing plate, optical film, and image display
US7871665B2 (en) * 2004-07-28 2011-01-18 Nitto Denko Corporation Process for producing polarizing film, polarizing film, polarizing plate, optical film, and image display
JP4458483B2 (en) * 2005-03-22 2010-04-28 日東電工株式会社 Manufacturing method of polarizing film, polarizing film, polarizing plate, and image display device
JP4541303B2 (en) * 2006-01-24 2010-09-08 矢崎総業株式会社 Terminal fitting
JP2009063829A (en) * 2007-09-06 2009-03-26 Sumitomo Chemical Co Ltd Polarizing film, polarizing plate and those manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006065309A (en) * 2004-07-28 2006-03-09 Nitto Denko Corp Method for manufacturing polarizing film, polarizing film, polarizing plate, optical film and image display device
JP2007206138A (en) * 2006-01-31 2007-08-16 Nippon Kayaku Co Ltd Polarizing plate with improved durability
JP2012003173A (en) * 2010-06-21 2012-01-05 Sumitomo Chemical Co Ltd Polarization film and manufacturing method of polarizer
JP2013033154A (en) * 2011-08-02 2013-02-14 Nitto Denko Corp Process film manufacturing method and manufacturing device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180022648A (en) 2015-06-24 2018-03-06 닛폰고세이가가쿠고교 가부시키가이샤 Polyvinyl alcohol film, method for producing polyvinyl alcohol film, and polarizer film
CN107111043A (en) * 2015-11-05 2017-08-29 住友化学株式会社 Polarizer and its manufacture method
JP2017107161A (en) * 2015-11-27 2017-06-15 住友化学株式会社 Polarizer manufacturing method
JP2017107162A (en) * 2015-11-27 2017-06-15 住友化学株式会社 Polarizer manufacturing method
JP2017107237A (en) * 2015-11-27 2017-06-15 住友化学株式会社 Polarizer manufacturing method
KR20180111922A (en) 2016-02-09 2018-10-11 주식회사 쿠라레 Polarizing film and manufacturing method thereof
JP2017223941A (en) * 2016-06-13 2017-12-21 日本合成化学工業株式会社 Polyvinyl alcohol film for polarization films, and method for producing the same, and polarization film
KR20190018419A (en) 2016-06-13 2019-02-22 닛폰고세이가가쿠고교 가부시키가이샤 A polyvinyl alcohol film, a production method thereof, and a polarizing film using the polyvinyl alcohol film
JP7192198B2 (en) 2016-06-13 2022-12-20 三菱ケミカル株式会社 POLYVINYL ALCOHOL-BASED FILM FOR POLARIZING FILM AND METHOD FOR MANUFACTURING THE SAME AND POLARIZING FILM AND METHOD FOR MANUFACTURING THE SAME
KR20190119127A (en) 2017-03-08 2019-10-21 주식회사 쿠라레 Polarizing Films, Polarizing Plates, and Their Manufacturing Methods
KR20190119126A (en) 2017-03-08 2019-10-21 주식회사 쿠라레 Polarizing Films, Polarizing Plates, and Their Manufacturing Methods

Also Published As

Publication number Publication date
TW201501902A (en) 2015-01-16
CN105103013A (en) 2015-11-25
WO2014157737A1 (en) 2014-10-02
KR20150136591A (en) 2015-12-07
KR102130185B1 (en) 2020-07-03
JP6191197B2 (en) 2017-09-06
CN105103013B (en) 2018-02-06
TWI617415B (en) 2018-03-11

Similar Documents

Publication Publication Date Title
JP6191197B2 (en) Manufacturing method of polarizing film
KR102189762B1 (en) Process for manufacturing polarizing film
JP5568353B2 (en) Manufacturing method of polarizing film
JP4902801B2 (en) Manufacturing method of polarizing film
JP5438581B2 (en) Manufacturing method of polarizing film
JP2008249766A (en) Method for manufacturing polarizing film, and method for manufacturing polarizing plate
JP2013148806A (en) Polarizing film and manufacturing method thereof and polarizer
JP2009230131A (en) Method of manufacturing polarization film, polarizing plate, and optical laminated body
JP2013178356A (en) Method for manufacturing polarizing plate
JP2009063829A (en) Polarizing film, polarizing plate and those manufacturing method
JP2011164553A (en) Method for manufacturing polarizing film
JP2012003173A (en) Polarization film and manufacturing method of polarizer
JP6339350B2 (en) Manufacturing method of polarizing film
JP2006189560A (en) Method for manufacturing polarizing film, polarizing plate and optical laminate
JP2005084506A (en) Polarizing film, its manufacturing method, polarizing plate, and optical laminate
JP6067158B1 (en) Manufacturing method of polarizing film
JP7129766B2 (en) Manufacturing method and manufacturing apparatus for polarizing film
JP6255919B2 (en) Manufacturing method of polarizing film
KR101828213B1 (en) Polarizing plate and method for propucing the same and image display device
JP4421886B2 (en) Method for producing iodine polarizing film and method for producing polarizing plate
JP2006189559A (en) Method for manufacturing polarizing film, polarizing plate and optical laminate
JP2005227649A (en) Manufacturing method of polarizing film, polarizing plate and optical laminate
JP2005173216A (en) Manufacturing method of polarizing film, manufacturing method of polarizing plate and manufacturing method of optical laminate
JP2009237096A (en) Method of manufacturing polarizing film, polarizing plate and optical laminate
JP2011186084A (en) Method for manufacturing polarizing film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170724

R151 Written notification of patent or utility model registration

Ref document number: 6191197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350