JP2014196863A - Evaporator - Google Patents

Evaporator Download PDF

Info

Publication number
JP2014196863A
JP2014196863A JP2013072628A JP2013072628A JP2014196863A JP 2014196863 A JP2014196863 A JP 2014196863A JP 2013072628 A JP2013072628 A JP 2013072628A JP 2013072628 A JP2013072628 A JP 2013072628A JP 2014196863 A JP2014196863 A JP 2014196863A
Authority
JP
Japan
Prior art keywords
temperature
evaporator
compressor
storage agent
cool storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013072628A
Other languages
Japanese (ja)
Inventor
吉洋 綾部
Yoshihiro Ayabe
吉洋 綾部
理郎 松下
Michiro Matsushita
理郎 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2013072628A priority Critical patent/JP2014196863A/en
Publication of JP2014196863A publication Critical patent/JP2014196863A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an evaporator arranged in a refrigeration cycle in which a compressor is controlled to be turned on or off, and capable of preventing the generation of odor resulting from a response delay of a temperature sensor as much as possible.SOLUTION: An evaporator 6 arranged in a steam compression refrigeration cycle 2 in which a compressor 3 is turned on or off on the basis of a temperature sensor 12 that detects a downstream temperature of the evaporator 6, and cooling air flowing outside with a refrigerant flowing in the evaporator 6 when the compressor 3 is turned on, comprises a cold storage agent. The cold storage agent has a freezing point in a temperature range equal to or higher than a temperature exceeding a water freezing temperature and lower than a temperature at which condensed water adhering to the evaporator 6 is evaporated and dried.

Description

本発明は、圧縮機がオンオフ制御される冷凍サイクルに配置された蒸発器に関する。   The present invention relates to an evaporator disposed in a refrigeration cycle in which a compressor is on / off controlled.

蒸気圧縮式冷凍サイクルに配置される蒸発器は、内部の冷媒と外部を通過する空気との間で熱交換して空気を冷却する。この冷却に際して空気中の水分が凝縮して蒸発器の表面に凝縮水として付着する。この凝縮水が凍結すると冷媒と空気との間の熱交換性能が低下する。そのため、蒸発器の下流側温度を温度センサで検知し、検知温度によって圧縮機をオンオフ(例えばオフ温度:3℃、オン温度:5℃)制御し、蒸発器が凍結しないようにするものがある。   The evaporator disposed in the vapor compression refrigeration cycle cools the air by exchanging heat between the refrigerant inside and the air passing outside. During this cooling, water in the air condenses and adheres to the surface of the evaporator as condensed water. When this condensed water freezes, the heat exchange performance between the refrigerant and the air decreases. For this reason, the temperature downstream of the evaporator is detected by a temperature sensor, and the compressor is controlled on and off (for example, off temperature: 3 ° C., on temperature: 5 ° C.) according to the detected temperature to prevent the evaporator from freezing. .

しかし、蒸発器下流側温度の降下速度が速い場合には、図12に示すように、温度センサの応答遅れが生じる。この応答遅れが大きいと、蒸発器の下流側の実際の温度がオフ温度に達しても圧縮機がオフしない、いわゆるアンダーシュートが発生し、蒸発器が凍結したり、水の凍結による焦げ臭が発生したりする。   However, when the rate of decrease in temperature on the downstream side of the evaporator is fast, a response delay of the temperature sensor occurs as shown in FIG. If this response delay is large, the compressor will not turn off even if the actual temperature downstream of the evaporator reaches the off temperature, so-called undershoot occurs, and the evaporator freezes or burnt odor due to water freezing. Occur.

このような問題を解決するため、特許文献1に開示された従来例がある。この従来例は、蒸発器下流側の温度を検知する温度センサと、サーモスイッチでオンオフされる圧縮機と、温度センサで検知された蒸発器下流側温度の遅速に応じてサーモスイッチの作動設定温度を補正する回路を有する制御部とを備えている。   In order to solve such a problem, there is a conventional example disclosed in Patent Document 1. In this conventional example, a temperature sensor that detects a temperature downstream of the evaporator, a compressor that is turned on / off by a thermo switch, and a thermoswitch operating set temperature according to the slow speed of the evaporator downstream temperature detected by the temperature sensor. And a control unit having a circuit for correcting.

上記従来例によれば、蒸発器下流側温度の降下速度が速い場合には、制御部がサーモスイッチの作動設定温度を上げて高めの温度で圧縮機をオフする。これにより、温度センサの応答遅れに起因する圧縮機のオフタイミング遅れを防止し、ひいては蒸発器の凍結を防止する。蒸発器の凍結を防止するため、水の凍結による焦げ臭の発生を防止できる。   According to the above conventional example, when the rate of decrease in the temperature on the downstream side of the evaporator is fast, the control unit raises the operating set temperature of the thermoswitch and turns off the compressor at a higher temperature. This prevents a delay in the compressor off timing caused by a response delay of the temperature sensor, and thus prevents the evaporator from freezing. In order to prevent the evaporator from freezing, the generation of a burning odor due to freezing of water can be prevented.

特許文献2にも、制御部の補正回路によって、蒸発器の凍結を防止し、水の凍結による焦げ臭の発生を防止する構成が開示されている。   Patent Document 2 discloses a configuration in which the evaporator is prevented from freezing and the generation of a burning odor due to water freezing is prevented by the correction circuit of the control unit.

実公平3−43047号公報Japanese Utility Model Publication No. 3-43047 特開2007−99072号公報JP 2007-99072 A

しかしながら、前記従来例では、温度センサで検知された蒸発器下流側温度の変化速度に応じてサーモスイッチの作動設定温度を補正する回路が必要であるという問題があった。   However, the conventional example has a problem that a circuit for correcting the operation set temperature of the thermoswitch in accordance with the changing speed of the temperature downstream of the evaporator detected by the temperature sensor is required.

また、圧縮機をオンオフ制御する蒸気圧縮式冷凍サイクルの蒸発器にあっては、蒸発器の凍結のみならず蒸発器表面に付着した凝縮水の蒸発時にも臭い(いわゆる蒸れ臭)が発生し、この臭いも防止したいという要請がある。   In addition, in an evaporator of a vapor compression refrigeration cycle that controls the compressor on / off, a odor (so-called steamy odor) is generated not only when the evaporator is frozen, but also when the condensed water adhering to the evaporator surface evaporates. There is a request to prevent this odor.

そこで、本発明は、前記した課題を解決すべくなされたものであり、圧縮機がオンオフ制御される冷凍サイクルに配置されるものにあって、温度センサの応答遅れに起因する臭いの発生を極力防止できる蒸発器を提供することを目的とする。   Accordingly, the present invention has been made to solve the above-described problems, and is provided in a refrigeration cycle in which a compressor is controlled to be turned on / off, and the generation of odor due to a response delay of a temperature sensor is minimized. An object is to provide an evaporator that can be prevented.

本発明は、蒸発器下流側の温度を検知する温度センサに基づいて圧縮機がオンオフする冷凍サイクルに配置され、前記圧縮機のオン時には冷媒が内部を流れて外部を流れる空気を冷却する蒸発器であって、蓄冷剤を有し、前記蓄冷剤は、水の凍結温度を超える温度以上で、且つ、蒸発器表面に付着した凝縮水が蒸発して乾く温度未満の範囲に凝固点を有することを特徴とする蒸発器である。   The present invention is arranged in a refrigeration cycle in which a compressor is turned on and off based on a temperature sensor that detects a temperature downstream of the evaporator, and when the compressor is turned on, an evaporator that cools air that flows through the inside of the refrigerant and flows outside. And having a cold storage agent, the cold storage agent having a freezing point in a range of a temperature higher than the freezing temperature of water and less than the temperature at which condensed water adhering to the evaporator surface evaporates and dries. It is a featured evaporator.

前記蓄冷剤の凝固点は、前記圧縮機のオフ温度とオン温度の範囲であっても良い。   The freezing point of the regenerator may be in the range between the off temperature and the on temperature of the compressor.

前記蓄冷剤の凝固点は、前記圧縮機のオンオフ温度の温度差をa℃とすると、前記圧縮機のオフ温度をA℃とし、(A−a)℃〜A℃の範囲であっても良い。   The freezing point of the regenerator may be in the range of (A−a) ° C. to A ° C., where the off temperature of the compressor is A ° C., where the temperature difference between the on / off temperatures of the compressor is a ° C.

前記蓄冷剤の凝固点は、前記圧縮機のオンオフ温度の温度差をa℃とすると、前記圧縮機のオン温度をB℃とし、B℃〜(B+a)℃の範囲であっても良い。   The freezing point of the regenerator may be in the range of B ° C. to (B + a) ° C., where the on temperature of the compressor is B ° C., where the temperature difference of the on / off temperature of the compressor is a ° C.

前記蓄冷剤は、凝固点の異なる第1蓄冷剤と第2蓄冷剤から成り、前記第1蓄冷剤の凝固点は、前記圧縮機のオンオフ温度の温度差をa℃とすると、前記圧縮機のオフ温度をA℃とし、A℃〜(A+(a/2))℃の範囲であり、前記第2蓄冷剤の凝固点は、前記圧縮機のオンオフ温度の温度差をa℃とすると、前記圧縮機のオン温度をB℃とし、(B−(a/2))〜B℃の範囲であっても良い。   The cool storage agent is composed of a first cool storage agent and a second cool storage agent having different freezing points, and the freezing point of the first cool storage agent is defined as an off temperature of the compressor when a temperature difference between on and off temperatures of the compressor is a ° C. Is A ° C., and is in the range of A ° C. to (A + (a / 2)) ° C., and the freezing point of the second regenerator is that the temperature difference of the on / off temperature of the compressor is a ° C. The ON temperature may be B ° C., and may be in the range of (B− (a / 2)) to B ° C.

前記蓄冷剤は、凝固点の異なる第1蓄冷剤と第2蓄冷剤から成り、前記第1蓄冷剤の凝固点は、前記圧縮機のオンオフ温度の温度差をa℃とすると、前記圧縮機のオフ温度をA℃とし、(A−a)℃〜A℃の範囲であり、前記第2蓄冷剤の凝固点は、前記圧縮機のオンオフ温度の温度差をa℃とすると、前記圧縮機のオン温度をB℃とし、B℃〜(B+a)℃の範囲であっても良い。   The cool storage agent is composed of a first cool storage agent and a second cool storage agent having different freezing points, and the freezing point of the first cool storage agent is defined as an off temperature of the compressor when a temperature difference between on and off temperatures of the compressor is a ° C. Is the range of (A−a) ° C. to A ° C., and the freezing point of the second regenerator is the on-off temperature of the compressor when the temperature difference of the on-off temperature of the compressor is a ° C. The temperature may be B ° C and may be in the range of B ° C to (B + a) ° C.

本発明によれば、圧縮機のオン時にあって、蒸発器下流側の温度変化が速い場合に前記温度センサの応答遅れを生じるが、水の凍結温度にまで下がる手前で蓄冷剤が凝固熱を空気等より吸収して蒸発器下流側の温度降下を遅らせるため、温度センサの応答遅れが極力解消される。これにより、アンダーシュートを極力防止でき、いわゆる焦げ臭の発生を防止できる。又、圧縮機のオフ時にあって、蒸発器下流側の温度変化が速い場合に前記温度センサの応答遅れを生じるが、蒸発器表面に付着した凝縮水が蒸発して乾く温度に上がる手前で蓄冷剤が融解熱を空気等に放出して蒸発器下流側の温度上昇を遅らせるため、温度センサの応答遅れが極力解消される。これにより、オーバーシュートを極力防止でき、いわゆる蒸れ臭の発生を防止できる。   According to the present invention, when the compressor is turned on and the temperature change on the downstream side of the evaporator is fast, the response of the temperature sensor is delayed. Since it absorbs from air etc. and delays the temperature drop downstream of the evaporator, the response delay of the temperature sensor is eliminated as much as possible. Thereby, undershoot can be prevented as much as possible, and so-called burning odor can be prevented. In addition, when the compressor is turned off and the temperature change on the downstream side of the evaporator is fast, the response of the temperature sensor is delayed. However, the condensate adhering to the evaporator surface evaporates and cools before the temperature rises to dry. Since the agent releases the heat of fusion to air or the like and delays the temperature rise on the downstream side of the evaporator, the response delay of the temperature sensor is eliminated as much as possible. Thereby, an overshoot can be prevented as much as possible, and the generation of so-called steamy odor can be prevented.

本発明の第1実施形態を示し、車両用空気調和装置の概略構成図である。1 is a schematic configuration diagram of a vehicle air conditioner according to a first embodiment of the present invention. 本発明の第1実施形態を示し、蒸発器の正面図である。1 is a front view of an evaporator according to a first embodiment of the present invention. 本発明の第1実施形態を示し、(a)は図2のA1−A1線断面図、(b)は(a)のC−C線断面図である。1A and 1B show a first embodiment of the present invention, in which FIG. 2A is a cross-sectional view taken along the line A1-A1 of FIG. 2, and FIG. 本発明の第1実施形態を示し、蒸発器下流側の実際の温度と温度センサの検知温度の特性線図である。FIG. 5 is a characteristic diagram of an actual temperature on the downstream side of the evaporator and a detected temperature of the temperature sensor according to the first embodiment of the present invention. 本発明の第2実施形態を示し、蒸発器下流側の実際の温度と温度センサの検知温度の特性線図である。FIG. 6 is a characteristic diagram of an actual temperature on the downstream side of an evaporator and a temperature detected by a temperature sensor, showing a second embodiment of the present invention. 本発明の第3実施形態を示し、(a)は蒸発器の断面図(図2のA1−A1線に相当)、(b)は(a)のD−D線断面図である。3A and 3B show a third embodiment of the present invention, in which FIG. 4A is a cross-sectional view of an evaporator (corresponding to line A1-A1 in FIG. 2), and FIG. 本発明の第3実施形態を示し、蒸発器下流側の実際の温度と温度センサの検知温度の特性線図である。FIG. 6 is a characteristic diagram of an actual temperature downstream of an evaporator and a detected temperature of a temperature sensor according to a third embodiment of the present invention. 本発明の第4実施形態を示し、蒸発器の蓄冷用熱交換部の正面図である。It is a front view of the heat exchange part for cold storage of an evaporator which shows 4th Embodiment of this invention. 本発明の第5実施形態を示し、(a)は一対の偏平プレートの正面図、(b)は(a)のE−E線断面図である。The 5th Embodiment of this invention is shown, (a) is a front view of a pair of flat plate, (b) is the EE sectional view taken on the line of (a). 本発明の第6実施形態を示し、(a)は一対の偏平プレートの正面図、(b)は(a)のF1−F1線断面図、(c)は(a)のF2−F2線断面図である。6A and 6B show a sixth embodiment of the present invention, where FIG. 6A is a front view of a pair of flat plates, FIG. 5B is a cross-sectional view taken along line F1-F1 in FIG. FIG. 各変形例における蓄冷剤の凝固点の範囲を説明する図である。It is a figure explaining the range of the freezing point of the cool storage agent in each modification. 従来例における蒸発器下流側の実際の温度と温度センサの検知温度の特性線図である。It is a characteristic line figure of the actual temperature of the evaporator downstream in a prior art example, and the detection temperature of a temperature sensor.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
図1〜図4は、本発明の第1実施形態を示す。図1に示すように、車両用空気調和装置1は、蒸気圧縮式冷凍サイクル2を有する。蒸気圧縮式冷凍サイクル2は、圧縮機3と凝縮器4と膨張弁5と蒸発器6とこれらを連結する冷媒配管7とを備えている。圧縮機3は、冷媒を断熱圧縮して高温高圧にする。圧縮機3は、下記するサーモスイッチ13によってオンオフする。凝縮器4は、高温高圧の冷媒と車外の空気との間で熱交換し、冷媒を冷却する。膨張弁5は、凝縮器4で冷却された冷媒を減圧する。蒸発器6は、低温低圧の冷媒と車室内に供給する空気との間で熱交換し、空気を冷却する。蒸発器6を通過した冷媒は、低温低圧の気化冷媒となって圧縮機3に戻る。
(First embodiment)
1 to 4 show a first embodiment of the present invention. As shown in FIG. 1, the vehicle air conditioner 1 has a vapor compression refrigeration cycle 2. The vapor compression refrigeration cycle 2 includes a compressor 3, a condenser 4, an expansion valve 5, an evaporator 6, and a refrigerant pipe 7 that connects these. The compressor 3 adiabatically compresses the refrigerant to high temperature and pressure. The compressor 3 is turned on / off by a thermo switch 13 described below. The condenser 4 performs heat exchange between the high-temperature and high-pressure refrigerant and the air outside the vehicle, and cools the refrigerant. The expansion valve 5 depressurizes the refrigerant cooled by the condenser 4. The evaporator 6 exchanges heat between the low-temperature and low-pressure refrigerant and the air supplied to the passenger compartment, thereby cooling the air. The refrigerant that has passed through the evaporator 6 returns to the compressor 3 as a low-temperature and low-pressure vaporized refrigerant.

蒸発器6は、送風路10内に配置される。送風路10には、蒸発器6と共に送風機11等が配置される。送風機11は、空調モード時には圧縮機3のオンオフに関わらず駆動される。この送風機11によって、車室内に供給する空気が送風路10に吸引され、吸引された空気が蒸発器6等を通って車室内に供給される。蒸発器6を通過した冷風は、所定温度にまで再加熱され、又は、再加熱されることなく車室内に供給される。蒸発器6の詳しい構成は、下記する。   The evaporator 6 is disposed in the air passage 10. A blower 11 and the like are disposed in the air passage 10 together with the evaporator 6. The blower 11 is driven regardless of whether the compressor 3 is on or off in the air conditioning mode. The blower 11 sucks air to be supplied into the passenger compartment into the air passage 10, and the sucked air is supplied into the passenger compartment through the evaporator 6 and the like. The cold air that has passed through the evaporator 6 is reheated to a predetermined temperature, or is supplied into the vehicle compartment without being reheated. The detailed configuration of the evaporator 6 will be described below.

蒸発器6の下流部には、温度センサ12が配置されている。温度センサ12は、蒸発器6の下流側の空気温度を検知する。蒸発器6の下流側のフィン温度を検知するようにしても良い。この温度センサ12の検知温度によってサーモスイッチ13がオンオフされる。サーモスイッチ13は、オフ設定温度が3℃に、オン設定温度が5℃に設定されている。このサーモスイッチ13のオンオフによって、上記したように圧縮機3がオンオフされる。つまり、圧縮機3は、温度センサ12が3℃を検知するとオフし、温度センサ12が5℃を検知するとオンする。オンオフ設定温度は、温度センサの感度・精度、使用環境等によって変更される。   A temperature sensor 12 is disposed downstream of the evaporator 6. The temperature sensor 12 detects the air temperature downstream of the evaporator 6. The fin temperature on the downstream side of the evaporator 6 may be detected. The thermoswitch 13 is turned on / off by the temperature detected by the temperature sensor 12. The thermoswitch 13 is set to an off set temperature of 3 ° C. and an on set temperature of 5 ° C. As described above, the compressor 3 is turned on and off by turning on and off the thermo switch 13. That is, the compressor 3 is turned off when the temperature sensor 12 detects 3 ° C., and turned on when the temperature sensor 12 detects 5 ° C. The on / off set temperature is changed depending on the sensitivity / accuracy of the temperature sensor, the usage environment, and the like.

次に、蒸発器6の構成を説明する。図2及び図3に示すように、蒸発器6は、間隔を置いて並列配置された複数のチューブ20と、この各チューブ20間の空気通過路に配置された複数のフィン21と、複数のチューブ20の両端部に配置された一対のタンク22とを備えている。   Next, the configuration of the evaporator 6 will be described. As shown in FIGS. 2 and 3, the evaporator 6 includes a plurality of tubes 20 arranged in parallel at intervals, a plurality of fins 21 arranged in an air passage between the tubes 20, and a plurality of tubes 20. A pair of tanks 22 disposed at both ends of the tube 20 are provided.

各チューブ20は、長手方向にそれぞれ延びる冷媒通路20aと蓄冷剤収容路20bとを有する。各タンク22は、冷媒タンク室22aと蓄冷剤タンク室22bをそれぞれ有する。両側の各冷媒タンク室22aには、各チューブ20の冷媒通路20aの端部がそれぞれ開口している。蒸発器6に流入する冷媒は、各チューブ20内を通り、ここで、外部を流れる空気と熱交換し、蒸発器6から流出する。両側の蓄冷剤タンク室22bには、各チューブ20の蓄冷剤収容路20bの端部がそれぞれ開口している。蓄冷剤収容路20b及び蓄冷剤タンク室22bには、蓄冷剤が収容されている。蓄冷剤は、水の凍結温度を超える温度以上で、且つ、蒸発器6表面に付着した凝縮水が蒸発して乾く温度未満の範囲に凝固点を有する。ここで、蓄冷剤の凝固点の範囲は、圧縮機3のオフ温度をA℃とし、圧縮機3のオン温度をB℃とすると、A℃〜B℃の範囲であることが好ましい(図11(a)参照)。この第1実施形態では、圧縮機3のオフ温度A℃が3℃で、オン温度B℃が5℃であり、蓄冷剤の凝固点は3.5℃である。圧縮機3のオフ温度に近い温度のものである。   Each tube 20 has a refrigerant passage 20a and a regenerator storage passage 20b extending in the longitudinal direction. Each tank 22 has a refrigerant tank chamber 22a and a regenerator tank chamber 22b. The ends of the refrigerant passages 20a of the tubes 20 are opened in the refrigerant tank chambers 22a on both sides. The refrigerant that flows into the evaporator 6 passes through the tubes 20, exchanges heat with the air flowing outside, and flows out of the evaporator 6. In the cool storage agent tank chambers 22b on both sides, the end portions of the cool storage agent storage paths 20b of the tubes 20 are opened. A cool storage agent is stored in the cool storage agent storage path 20b and the cool storage agent tank chamber 22b. The regenerator has a freezing point in a range that is higher than the freezing temperature of water and lower than the temperature at which condensed water adhering to the surface of the evaporator 6 evaporates and dries. Here, the range of the freezing point of the regenerator is preferably in the range of A ° C. to B ° C. when the off temperature of the compressor 3 is A ° C. and the on temperature of the compressor 3 is B ° C. (FIG. 11 ( a)). In the first embodiment, the off temperature A ° C. of the compressor 3 is 3 ° C., the on temperature B ° C. is 5 ° C., and the freezing point of the regenerator is 3.5 ° C. The temperature is close to the off temperature of the compressor 3.

上記構成において、圧縮機3のオン時にあって、冷房負荷が高い場合には、蒸発器6の下流側の温度降下の速度が遅い。そのため、温度センサ12は、応答遅れがなくほぼ実際の温度を検知する。従って、蒸発器6の下流側の実際の温度が3℃まで下がると、温度センサ12もほぼ3℃を検知し、圧縮機3がオフされる。アンダーシュートは、ほとんど発生しない。   In the above configuration, when the compressor 3 is on and the cooling load is high, the temperature drop rate on the downstream side of the evaporator 6 is slow. Therefore, the temperature sensor 12 detects the actual temperature with no response delay. Accordingly, when the actual temperature on the downstream side of the evaporator 6 falls to 3 ° C., the temperature sensor 12 also detects approximately 3 ° C., and the compressor 3 is turned off. Undershoot hardly occurs.

圧縮機3のオン時にあって、冷房負荷が低い場合(例えば、外気温が15℃近傍で蒸発器の表面に凝縮水があまり付着していない場合)には、図4にて実線で示すように、蒸発器6の下流側温度の降下速度が速い。すると、図4にて破線で示すように、蒸発器6の実際の温度変化に対して温度センサ12の応答遅れを生じる。しかし、蒸発器6の下流側の温度が3.5℃まで下がると、蓄冷剤が凝固熱を空気等より吸収して蒸発器6の下流側の温度降下を遅らせる。この温度降下の遅れによって、温度センサ12の検知温度が徐々に実際の温度に追いつき、温度センサ12の応答遅れが解消される。これにより、蒸発器6の下流側の実際の温度が3℃まで下がると、温度センサ12もほぼ3℃を検知し、圧縮機3がオフされる。従って、アンダーシュートの発生をほぼ防止でき、いわゆる焦げ臭の発生を防止できる。   When the compressor 3 is on and the cooling load is low (for example, when the outside air temperature is around 15 ° C. and the condensed water does not adhere to the surface of the evaporator), as shown by the solid line in FIG. Moreover, the rate of decrease in temperature on the downstream side of the evaporator 6 is fast. Then, as shown by a broken line in FIG. 4, a response delay of the temperature sensor 12 occurs with respect to the actual temperature change of the evaporator 6. However, when the temperature on the downstream side of the evaporator 6 falls to 3.5 ° C., the cool storage agent absorbs solidification heat from air or the like and delays the temperature drop on the downstream side of the evaporator 6. Due to this temperature drop delay, the temperature detected by the temperature sensor 12 gradually catches up with the actual temperature, and the response delay of the temperature sensor 12 is eliminated. As a result, when the actual temperature downstream of the evaporator 6 drops to 3 ° C., the temperature sensor 12 also detects approximately 3 ° C., and the compressor 3 is turned off. Therefore, the occurrence of undershoot can be substantially prevented, and so-called burning odor can be prevented.

また、圧縮機3のオフ時にあって、蒸発器6の下流側温度の上昇速度が遅い場合には、温度センサ12は、応答遅れがなくほぼ実際の温度を検知する。従って、蒸発器6の下流側の実際の温度が5℃まで上がると、温度センサ12もほぼ5℃を検知し、圧縮機3がオンされる。オーバーシュートは、発生しない。   Further, when the compressor 3 is turned off and the temperature rising speed of the downstream side of the evaporator 6 is slow, the temperature sensor 12 detects the actual temperature with no response delay. Therefore, when the actual temperature on the downstream side of the evaporator 6 rises to 5 ° C., the temperature sensor 12 also detects approximately 5 ° C., and the compressor 3 is turned on. Overshoot does not occur.

圧縮機のオフ時にあって、蒸発器6の下流側の温度上昇が速い場合に温度センサ12の応答遅れを生じるが、図4に示すように、蒸発器6の下流の実際の温度が3,5℃(蒸発器6表面に付着した凝縮水が蒸発して乾く温度に上がる手前)で蓄冷剤が融解熱を空気等に放出して蒸発器6下流側の温度上昇を遅らせる。この温度上昇の遅れによって、温度センサ12の検知温度が徐々に実際の温度に追いつき、温度センサ12の応答遅れが小さくなる。蒸発器6下流側の温度が5℃まで上がると、温度センサ12が少し遅れて5℃を検知することになる。これにより、蒸発器6下流側の実際の温度が5℃より少しだけ上昇した時点で圧縮機3がオンされる。これにより、オーバーシュートを極力防止でき、いわゆる蒸れ臭の発生を防止できる。蒸れ臭は、蒸発器6への凝縮水の付着量等にもよるが、12℃前後で発生する。   When the compressor is off and the temperature rise on the downstream side of the evaporator 6 is fast, the response of the temperature sensor 12 is delayed. As shown in FIG. 4, the actual temperature downstream of the evaporator 6 is 3 At 5 ° C. (before the condensed water adhering to the surface of the evaporator 6 evaporates and dries), the regenerator releases the heat of fusion to the air and delays the temperature rise on the downstream side of the evaporator 6. Due to this temperature rise delay, the temperature detected by the temperature sensor 12 gradually catches up with the actual temperature, and the response delay of the temperature sensor 12 becomes smaller. When the temperature on the downstream side of the evaporator 6 rises to 5 ° C., the temperature sensor 12 detects 5 ° C. with a slight delay. As a result, the compressor 3 is turned on when the actual temperature downstream of the evaporator 6 rises slightly from 5 ° C. Thereby, an overshoot can be prevented as much as possible, and the generation of so-called steamy odor can be prevented. The steamy odor is generated around 12 ° C., depending on the amount of condensed water adhering to the evaporator 6 and the like.

蓄冷剤の凝固点は、圧縮機3のオフ温度とオン温度の間の範囲である。従って、アンダーシュートとオーバーシュートを共に極力防止できるため、臭いの発生のみならず、温度変動の少ない冷風を供給できる。又、大きなアンダーシュートや大きなオーバーシュートを想定したオンオフ設定にする必要がなく、圧縮機3のオンオフ周期を長くできるため、圧縮機3への負荷軽減、小動力化等になる。   The freezing point of the regenerator is in a range between the off temperature and the on temperature of the compressor 3. Therefore, since both undershoot and overshoot can be prevented as much as possible, not only the generation of odor but also cold air with little temperature fluctuation can be supplied. Further, there is no need to set on / off assuming large undershoot or large overshoot, and the on / off cycle of the compressor 3 can be lengthened, so that the load on the compressor 3 is reduced, the power is reduced, and the like.

(第2実施形態)
図5は、本発明の第2実施形態を示す。この第2実施形態では、前記第1実施形態と比較して、蒸発器6に収容した蓄冷剤の種類のみが相違する。この第2実施形態では、蓄冷剤は、凝固点が4.5℃近傍のものである。圧縮機3のオン温度に近いものである。
(Second Embodiment)
FIG. 5 shows a second embodiment of the present invention. In this 2nd Embodiment, compared with the said 1st Embodiment, only the kind of cool storage agent accommodated in the evaporator 6 is different. In the second embodiment, the cold storage agent has a freezing point near 4.5 ° C. This is close to the ON temperature of the compressor 3.

他の構成は、前記第1実施形態と同じであるため、重複説明回避のため説明を省略する。   Since other configurations are the same as those of the first embodiment, description thereof will be omitted to avoid redundant description.

上記構成において、圧縮機3のオン時にあって、冷房負荷が低い場合(例えば、外気温が15℃近傍で蒸発器6の表面に凝縮水があまり付着していない場合)には、図5にて実線で示すように、蒸発器6の下流側の温度降下の速度が速い。すると、図5にて破線で示すように、蒸発器6の実際の温度変化に対して温度センサ12の応答遅れを生じる。しかし、蒸発器6下流側の温度が4.5℃近傍まで下がると、蓄冷剤が凝固熱を空気等より吸収して蒸発器6下流側の温度降下を遅らせる。この温度降下の遅れによって、温度センサ12の検知温度が徐々に実際の温度に追いつく。蓄冷剤が完全に凝固すると、再び蒸発器6の下流側の温度降下の速度が速くなり、温度センサ12の応答遅れが発生する。そして、温度センサ12が3℃を検知すると、圧縮機3がオフされる。ここで、蓄冷剤の凝固熱によって温度降下が遅れた分だけ、温度センサ12の応答遅れが小さい値になるため、従来に較べて小さなアンダーシュートしか発生せず、いわゆる焦げ臭の発生を防止できる。   In the above configuration, when the compressor 3 is on and the cooling load is low (for example, when the outside air temperature is around 15 ° C. and the condensed water does not adhere to the surface of the evaporator 6), FIG. As shown by the solid line, the speed of the temperature drop on the downstream side of the evaporator 6 is fast. Then, as shown by a broken line in FIG. 5, a response delay of the temperature sensor 12 occurs with respect to the actual temperature change of the evaporator 6. However, when the temperature on the downstream side of the evaporator 6 falls to around 4.5 ° C., the cool storage agent absorbs solidification heat from air or the like and delays the temperature drop on the downstream side of the evaporator 6. Due to this delay in temperature drop, the temperature detected by the temperature sensor 12 gradually catches up with the actual temperature. When the cool storage agent is completely solidified, the temperature drop speed on the downstream side of the evaporator 6 is increased again, and the response of the temperature sensor 12 is delayed. When the temperature sensor 12 detects 3 ° C., the compressor 3 is turned off. Here, the response delay of the temperature sensor 12 becomes a value corresponding to the delay of the temperature drop due to the heat of solidification of the regenerator, so that only a small undershoot occurs compared to the conventional case, and so-called burning odor can be prevented. .

また、圧縮機3のオフ時にあって、蒸発器6下流側の温度上昇が速い場合に温度センサ12の応答遅れを生じるが、図5にて実線で示すように、蒸発器6下流の実際の温度が4.5℃(蒸発器6表面に付着した凝縮水が蒸発して乾く温度に上がる手前)で蓄冷剤が融解熱を空気等に放出して蒸発器6下流側の温度上昇を遅らせる。この温度上昇の遅れによって、図5にて破線で示すように、温度センサ12の応答遅れが追いつく。これにより、蒸発器6下流側の実際の温度が5℃まで上がると、温度センサ12もほぼ5℃を検知し、圧縮機3がオンされる。従って、オーバーシュートの発生をほぼ防止でき、いわゆる蒸れ臭の発生を防止できる。   Further, when the compressor 3 is turned off and the temperature rise on the downstream side of the evaporator 6 is fast, a response delay of the temperature sensor 12 occurs. However, as shown by a solid line in FIG. At a temperature of 4.5 ° C. (before the condensed water adhering to the surface of the evaporator 6 evaporates and dries), the regenerator releases heat of fusion to the air and delays the temperature rise on the downstream side of the evaporator 6. Due to this delay in temperature rise, the response delay of the temperature sensor 12 catches up as shown by the broken line in FIG. Thus, when the actual temperature downstream of the evaporator 6 rises to 5 ° C., the temperature sensor 12 also detects approximately 5 ° C., and the compressor 3 is turned on. Therefore, the occurrence of overshoot can be almost prevented, and so-called steamy odor can be prevented.

蓄冷剤の凝固点の範囲は、圧縮機3のオフ温度とオン温度の間である。従って、アンダーシュートとオーバーシュートを共に極力防止できるため、臭いの発生のみならず、温度変動の少ない冷風を供給できる。又、大きなアンダーシュートや大きなオーバーシュートを想定したオンオフ設定にする必要がなく、圧縮機3のオンオフ周期を長くできるため、圧縮機3への負荷軽減、小動力化等になる。   The range of the freezing point of the cool storage agent is between the off temperature and the on temperature of the compressor 3. Therefore, since both undershoot and overshoot can be prevented as much as possible, not only the generation of odor but also cold air with little temperature fluctuation can be supplied. Further, there is no need to set on / off assuming large undershoot or large overshoot, and the on / off cycle of the compressor 3 can be lengthened, so that the load on the compressor 3 is reduced, the power is reduced, and the like.

(第3実施形態)
図6及び図7は、本発明の第3実施形態を示す。この第3実施形態では、図6に示すように、各チューブ20Aは、長手方向にそれぞれ延びる冷媒通路20aと第1及び第2蓄冷剤収容路20c,20dとを有する。各タンク22Aは、冷媒タンク室22aと第1及び第2蓄冷剤タンク室22c,22dをそれぞれ有する。第1蓄冷剤収容路20cと第1蓄冷剤タンク室22dには、第1蓄冷剤が収容されている。第2蓄冷剤収容路20dと第2蓄冷剤タンク室22dには、第2蓄冷剤が収容されている。
(Third embodiment)
6 and 7 show a third embodiment of the present invention. In this 3rd Embodiment, as shown in FIG. 6, each tube 20A has the refrigerant | coolant channel | path 20a and the 1st and 2nd cool storage agent accommodation paths 20c and 20d which each extend in a longitudinal direction. Each tank 22A has a refrigerant tank chamber 22a and first and second regenerator tank chambers 22c and 22d. The first cool storage agent storage path 20c and the first cool storage agent tank chamber 22d store the first cool storage agent. The second cool storage agent storage path 20d and the second cool storage agent tank chamber 22d store the second cool storage agent.

第1及び第2蓄冷剤は、水の凍結温度を超える温度以上で、且つ、蒸発器表面に付着した凝縮水が蒸発して乾く温度未満の範囲にそれぞれ凝固点を有する。ここで、蓄冷剤の凝固点の範囲は、圧縮機3のオフ温度をA℃とし、圧縮機3のオン温度をB℃とすると、A℃〜B℃の範囲であることが好ましい。   The first and second regenerators each have a freezing point in a range that is higher than the freezing temperature of water and less than the temperature at which condensed water adhering to the evaporator surface evaporates and dries. Here, the range of the freezing point of the regenerator is preferably in the range of A ° C to B ° C, where the off temperature of the compressor 3 is A ° C and the on temperature of the compressor 3 is B ° C.

より詳細には、第1蓄冷剤の凝固点は、圧縮機3のオンオフ温度の温度差をa℃とし、圧縮機3のオフ温度をA℃とすると、A℃〜(A+(a/2))℃の範囲であることが更に好ましい(図11(b)参照)。第2蓄冷剤の凝固点は、圧縮機3のオンオフ温度の温度差をa℃とし、圧縮機3のオン温度をB℃とすると、(B−(a/2))〜B℃の範囲であることが更に好ましい(図11(b)参照)。この第3実施形態では、圧縮機3のオフ温度A℃が3℃で、オン温度B℃が5℃であり、第1蓄冷剤の凝固点は3.5℃である。圧縮機のオフ温度に近いものである。第2蓄冷剤の凝固点は4.5℃であり、圧縮機3のオン温度に近いものである。   More specifically, the freezing point of the first regenerator is defined as A ° C. to (A + (a / 2)), where the temperature difference between the on / off temperatures of the compressor 3 is a ° C. and the off temperature of the compressor 3 is A ° C. More preferably, it is in the range of ° C. (see FIG. 11B). The freezing point of the second regenerator is in the range of (B− (a / 2)) to B ° C. where the temperature difference of the on / off temperature of the compressor 3 is a ° C. and the on temperature of the compressor 3 is B ° C. More preferably (see FIG. 11B). In the third embodiment, the off temperature A ° C. of the compressor 3 is 3 ° C., the on temperature B ° C. is 5 ° C., and the freezing point of the first regenerator is 3.5 ° C. It is close to the off temperature of the compressor. The freezing point of the second cold storage agent is 4.5 ° C., which is close to the ON temperature of the compressor 3.

他の構成は、前記第1実施形態と同じであるため、重複説明回避のため説明を省略する。   Since other configurations are the same as those of the first embodiment, description thereof will be omitted to avoid redundant description.

上記構成において、圧縮機3のオン時にあって、冷房負荷が低い場合(例えば、外気温が15℃近傍で蒸発器6の表面に凝縮水があまり付着していない場合)には、図7にて実線で示すように、蒸発器6の下流側の温度降下の速度が速い。すると、図7にて破線で示すように、蒸発器6の実際の温度変化に対して温度センサ12の応答遅れを生じる。しかし、蒸発器6下流側の温度が4.5℃近傍まで下がると、第2蓄冷剤が凝固熱を空気等より吸収して蒸発器6下流側の温度降下を遅らせる。この温度降下の遅れによって、温度センサ12の検知温度が徐々に実際の温度に追いつく。第2蓄冷剤が完全に凝固すると、再び蒸発器6の下流側の温度降下の速度が速くなり、温度センサ12の応答遅れが発生する。蒸発器6下流側の温度が3.5℃まで下がると、第1蓄冷剤が凝固熱を空気等より吸収して蒸発器6下流側の温度降下を遅らせる。この温度降下の遅れによって、温度センサ12の検知温度が徐々に実際の温度に追いつく。これにより、蒸発器6下流側の実際の温度が3℃まで下がると、温度センサ12もほぼ3℃を検知し、圧縮機3がオフされる。従って、アンダーシュートの発生をほぼ防止でき、いわゆる焦げ臭の発生を防止できる。   In the above configuration, when the compressor 3 is turned on and the cooling load is low (for example, when the outside air temperature is around 15 ° C. and the condensed water does not adhere to the surface of the evaporator 6), FIG. As shown by the solid line, the speed of the temperature drop on the downstream side of the evaporator 6 is fast. Then, as shown by a broken line in FIG. 7, a response delay of the temperature sensor 12 occurs with respect to the actual temperature change of the evaporator 6. However, when the temperature on the downstream side of the evaporator 6 is lowered to about 4.5 ° C., the second cool storage agent absorbs solidification heat from air or the like and delays the temperature drop on the downstream side of the evaporator 6. Due to this delay in temperature drop, the temperature detected by the temperature sensor 12 gradually catches up with the actual temperature. When the second cold storage agent is completely solidified, the temperature drop speed on the downstream side of the evaporator 6 is increased again, and a response delay of the temperature sensor 12 occurs. When the temperature on the downstream side of the evaporator 6 is lowered to 3.5 ° C., the first cool storage agent absorbs the heat of solidification from air or the like and delays the temperature drop on the downstream side of the evaporator 6. Due to this delay in temperature drop, the temperature detected by the temperature sensor 12 gradually catches up with the actual temperature. As a result, when the actual temperature downstream of the evaporator 6 drops to 3 ° C., the temperature sensor 12 also detects approximately 3 ° C., and the compressor 3 is turned off. Therefore, the occurrence of undershoot can be substantially prevented, and so-called burning odor can be prevented.

圧縮機3のオフ時にあって、蒸発器6下流側の温度上昇が速い場合に温度センサ12の応答遅れを生じるが、図7にて実線で示すように、蒸発器6下流の実際の温度が3,5℃(蒸発器6表面に付着した凝縮水が蒸発して乾く温度に上がる手前)で第1蓄冷剤が融解熱を空気等に放出して蒸発器6下流側の温度上昇を遅らせる。この温度上昇の遅れによって、図7にて破線で示すように、温度センサ12の検知温度が徐々に実際の温度に追いつく。第1蓄冷剤が完全に融解すると、再び蒸発器6の下流側の温度上昇の速度が速くなり、温度センサ12の応答遅れが発生する。図7にて実線で示すように、蒸発器6下流の実際の温度が4.5℃(蒸発器6表面に付着した凝縮水が蒸発して乾く温度に上がる手前)で第2蓄冷剤が融解熱を空気等に放出して蒸発器6下流側の温度上昇を遅らせる。この温度上昇の遅れによって、図7にて破線で示すように、温度センサ12の応答遅れが追いつく。これにより、蒸発器6下流側の実際の温度が5℃まで上がると、温度センサ12もほぼ5℃を検知し、圧縮機3がオンされる。従って、オーバーシュートの発生をほぼ防止でき、いわゆる蒸れ臭の発生を防止できる。   When the compressor 3 is off and the temperature rise on the downstream side of the evaporator 6 is fast, a response delay of the temperature sensor 12 occurs. However, as shown by a solid line in FIG. At 3,5 ° C. (before the condensed water adhering to the surface of the evaporator 6 evaporates and dries), the first regenerator releases heat of fusion to the air and delays the temperature rise on the downstream side of the evaporator 6. Due to this delay in temperature rise, the temperature detected by the temperature sensor 12 gradually catches up with the actual temperature, as indicated by a broken line in FIG. When the first cool storage agent is completely melted, the temperature rise speed on the downstream side of the evaporator 6 is increased again, and a response delay of the temperature sensor 12 occurs. As shown by the solid line in FIG. 7, the second regenerator melts when the actual temperature downstream of the evaporator 6 is 4.5 ° C. (before the condensed water adhering to the surface of the evaporator 6 evaporates and dries). Heat is released to air or the like to delay the temperature rise on the downstream side of the evaporator 6. Due to this delay in temperature rise, the response delay of the temperature sensor 12 catches up as shown by the broken line in FIG. Thus, when the actual temperature downstream of the evaporator 6 rises to 5 ° C., the temperature sensor 12 also detects approximately 5 ° C., and the compressor 3 is turned on. Therefore, the occurrence of overshoot can be almost prevented, and so-called steamy odor can be prevented.

蓄冷剤の凝固点の範囲は、圧縮機3のオフ温度とオン温度の間である。従って、アンダーシュートとオーバーシュートを共に極力防止できるため、臭いの発生のみならず、温度変動の少ない冷風を供給できる。又、大きなアンダーシュートや大きなオーバーシュートを想定したオンオフ設定にする必要がなく、圧縮機3のオンオフ周期を長くできるため、圧縮機3への負荷軽減、小動力化等になる。   The range of the freezing point of the cool storage agent is between the off temperature and the on temperature of the compressor 3. Therefore, since both undershoot and overshoot can be prevented as much as possible, not only the generation of odor but also cold air with little temperature fluctuation can be supplied. Further, there is no need to set on / off assuming large undershoot or large overshoot, and the on / off cycle of the compressor 3 can be lengthened, so that the load on the compressor 3 is reduced, the power is reduced, and the like.

(第4実施形態)
図8は、本発明の第4実施形態を示す。この第4実施形態の蒸発器は、前記第1実施形態と異なり、冷媒が流れる冷媒用熱交換部(図示せず)と、蓄冷剤が収容される蓄冷用熱交換部15を有する。空気流れに沿って上流側に冷媒用熱交換部が、その直ぐ下流側に蓄冷用熱交換部15が配置されている。
(Fourth embodiment)
FIG. 8 shows a fourth embodiment of the present invention. Unlike the first embodiment, the evaporator of the fourth embodiment has a refrigerant heat exchange section (not shown) through which a refrigerant flows and a cold storage heat exchange section 15 in which a cold storage agent is accommodated. A refrigerant heat exchanging portion is disposed upstream along the air flow, and a cold storage heat exchanging portion 15 is disposed immediately downstream thereof.

図8に示すように、蓄冷用熱交換部15は、間隔を置いて並列配置された複数のチューブ20B,20Cと、この各チューブ20B,20C間の空気通過路に配置された複数のフィン(図示せず)と、複数のチューブ20B,20Cの両端部に配置された一対のタンク22Bとを備えている。   As shown in FIG. 8, the cold storage heat exchanging unit 15 includes a plurality of tubes 20B, 20C arranged in parallel at intervals, and a plurality of fins arranged in the air passages between the tubes 20B, 20C ( (Not shown) and a pair of tanks 22B disposed at both ends of the plurality of tubes 20B and 20C.

複数のチューブ20B,20Cは、短寸法の第1チューブ20Bと長寸法の第2チューブ20Cを有し、これらが交互に配置されている。一対のタンク22Bの内部には、内側に第1蓄冷剤タンク室22cが、外側に第2蓄冷剤タンク室22dがそれぞれ設けられている。各第1チューブ20B内は第1蓄冷剤タンク室22cに連通し、第2チューブ20C内は第2蓄冷剤タンク室22dに連通している。第1チューブ20B内と第1蓄冷剤タンク室22cには、第1蓄冷剤が収容されている。第2チューブ20C内と第2蓄冷剤タンク室22dには、第2蓄冷剤が収容されている。   The plurality of tubes 20B and 20C have a first tube 20B having a short dimension and a second tube 20C having a long dimension, which are alternately arranged. Inside the pair of tanks 22B, a first cool storage agent tank chamber 22c is provided inside, and a second cool storage agent tank chamber 22d is provided outside. Each first tube 20B communicates with the first cool storage agent tank chamber 22c, and the second tube 20C communicates with the second cool storage agent tank chamber 22d. The 1st cool storage agent is accommodated in the 1st tube 20B and the 1st cool storage agent tank chamber 22c. The second cold storage agent is accommodated in the second tube 20C and the second cold storage agent tank chamber 22d.

第1及び第2蓄冷剤の各凝固点は、前記第3実施形態と同様に設定されている。   Each freezing point of the first and second cool storage agents is set in the same manner as in the third embodiment.

この第4実施形態でも、前記第3実施形態と同様の作用・効果が得られる。   In the fourth embodiment, the same operation and effect as the third embodiment can be obtained.

(第5実施形態)
図9(a)、(b)は、本発明の第5実施形態を示す。この第5実施形態では、蒸発器は、表裏逆に接合した一対の偏平プレート30を複数有する。隣接する一対の偏平プレート30間には、フィン(図示せず)がそれぞれ配置されている。一対の偏平プレート30の内部には、冷媒通路30aと第1及び第2蓄冷剤収容路30c,30dが設けられている。第1蓄冷剤収容路30cと第2蓄冷剤収容路30dは、偏平プレート30の長手方向の全域に亘ってそれぞれ形成されている。各偏平プレート30の各冷媒通路30aは、互いに連通孔30eを介して連通している。各偏平プレート30の各第1及び第2蓄冷剤収容路30c,30dは、連通孔30f,30gを介してそれぞれ連通している。第1蓄冷剤収容路30cには、第1蓄冷剤が収容されている。第2蓄冷剤収容路30dには、第2蓄冷剤が収容される。第1蓄冷剤と第2蓄冷剤の各凝固点は、前記第3及び第4実施形態と同様である。
(Fifth embodiment)
FIGS. 9A and 9B show a fifth embodiment of the present invention. In this fifth embodiment, the evaporator has a plurality of a pair of flat plates 30 that are joined reversely. Fins (not shown) are respectively disposed between a pair of adjacent flat plates 30. Inside the pair of flat plates 30, a refrigerant passage 30a and first and second regenerator storage passages 30c and 30d are provided. The 1st cool storage agent accommodation path 30c and the 2nd cool storage agent accommodation path 30d are each formed over the whole area of the flat plate 30 in the longitudinal direction. Each refrigerant passage 30a of each flat plate 30 communicates with each other through a communication hole 30e. The first and second regenerator storage paths 30c and 30d of the flat plates 30 communicate with each other through communication holes 30f and 30g, respectively. The 1st cool storage agent accommodation path 30c stores the 1st cool storage agent. The second cool storage agent storage path 30d stores the second cool storage agent. Each freezing point of the 1st cool storage agent and the 2nd cool storage agent is the same as that of the 3rd and 4th embodiment.

この第5実施形態でも、前記第3実施形態と同様の作用・効果が得られる。   In the fifth embodiment, the same operation and effect as in the third embodiment can be obtained.

(第6実施形態)
図10(a)〜(c)は、本発明の第6実施形態を示す。この第6実施形態は、前記第5実施形態と比較して偏平プレート30Aの構成が一部相違する。第6実施形態では、第1蓄冷剤収容路30cと第2蓄冷剤収容路30dは、偏平プレート30Aの長手方向の上領域と下領域に分かれてそれぞれ形成されている。
(Sixth embodiment)
FIGS. 10A to 10C show a sixth embodiment of the present invention. This sixth embodiment is partially different from the fifth embodiment in the configuration of the flat plate 30A. In 6th Embodiment, the 1st cool storage agent accommodation path 30c and the 2nd cool storage agent accommodation path 30d are divided | segmented into the upper area | region and lower area of the longitudinal direction of the flat plate 30A, respectively.

他の構成は、前記第5実施形態と同じであるため、重複説明回避のため説明を省略する。   Other configurations are the same as those of the fifth embodiment, and thus description thereof is omitted to avoid redundant description.

この第6実施形態でも、前記第3実施形態と同様の作用・効果が得られる。   In the sixth embodiment, the same operation and effect as in the third embodiment can be obtained.

(第1変形例)
単一種の蓄冷剤のみを使用する場合には、蓄冷剤の凝固点を次の範囲としても良い。つまり、図11(a)に示すように、蓄冷剤の凝固点は、圧縮機3のオンオフ温度の温度差をa℃とし、圧縮機3のオフ温度をA℃とすると、(A−a)℃〜A℃の範囲とする。
(First modification)
When only a single type of regenerator is used, the freezing point of the regenerator may be within the following range. That is, as shown in FIG. 11A, the freezing point of the regenerator is (A−a) ° C. where the temperature difference between the on / off temperatures of the compressor 3 is a ° C. and the off temperature of the compressor 3 is A ° C. It is set as the range of -A degreeC.

圧縮機3のオン時にあって、蒸発器6下流側の温度変化が速い場合に、水の凍結温度にまで下がる近傍温度で、蓄冷剤が蒸発器6下流側の温度降下を遅らせて温度センサ12の応答遅れがない状態になるため、アンダーシュートによる焦げ臭の発生を有効に防止できる。   When the compressor 3 is on and the temperature change on the downstream side of the evaporator 6 is fast, the cool storage agent delays the temperature drop on the downstream side of the evaporator 6 at a temperature close to the freezing temperature of water, and the temperature sensor 12. Therefore, it is possible to effectively prevent the generation of a burning odor due to undershoot.

(第2変形例)
単一種の蓄冷剤のみを使用する場合には、蓄冷剤の凝固点を次の範囲としても良い。つまり、 図11(a)に示すように、蓄冷剤の凝固点は、圧縮機3のオンオフ温度の温度差をa℃とし、圧縮機3のオン温度をB℃とすると、B℃〜(B+a)℃の範囲とする。
(Second modification)
When only a single type of regenerator is used, the freezing point of the regenerator may be within the following range. That is, as shown in FIG. 11 (a), the freezing point of the regenerator is such that the temperature difference between the on / off temperatures of the compressor 3 is a ° C and the on temperature of the compressor 3 is B ° C. The range is ° C.

圧縮機3のオフ時にあって、蒸発器6下流側の温度変化が速い場合に、蒸発器6表面に付着した凝縮水が蒸発して乾く温度にまで上がる近傍温度で、蓄冷剤が蒸発器6下流側の温度上昇を遅らせて温度センサ12の応答遅れがない状態になるため、オーバーシュートによるむれ臭の発生を有効に防止できる。   When the compressor 3 is turned off and the temperature change on the downstream side of the evaporator 6 is fast, the regenerator is at a temperature close to the temperature at which the condensed water adhering to the surface of the evaporator 6 evaporates and dries. Since the temperature rise on the downstream side is delayed and there is no response delay of the temperature sensor 12, it is possible to effectively prevent the generation of a bad smell due to overshoot.

(第3変形例)
二種類の蓄冷剤を使用する場合には、各蓄冷剤の凝固点を次の範囲としても良い。つまり、図11(b)に示すように、第1蓄冷剤の凝固点は、圧縮機3のオンオフ温度の温度差をa℃とし、圧縮機3のオフ温度をA℃とすると、(A−a)℃〜A℃の範囲であり、第2蓄冷剤の凝固点は、圧縮機3のオンオフ温度の温度差をa℃とし、圧縮機3のオン温度をB℃とすると、B℃〜(B+a)℃の範囲とする。
(Third Modification)
When two types of cool storage agents are used, the freezing point of each cool storage agent may be within the following range. That is, as shown in FIG. 11B, the freezing point of the first regenerator is defined as (A−a) where the temperature difference between the on / off temperatures of the compressor 3 is a ° C. and the off temperature of the compressor 3 is A ° C. ) ° C. to A ° C., and the freezing point of the second regenerator is B ° C. to (B + a), where the temperature difference of the on / off temperature of the compressor 3 is a ° C. and the on temperature of the compressor 3 is B ° C. The range is ° C.

圧縮機3のオン時にあって、蒸発器6下流側の温度変化が速い場合に、水の凍結温度にまで下がる近傍温度で、蓄冷剤が蒸発器6下流側の温度降下を遅らせて温度センサ12の応答遅れがない状態になるため、アンダーシュートによる焦げ臭の発生を有効に防止できる。圧縮機3のオフ時にあって、蒸発器6下流側の温度変化が速い場合に、蒸発器6表面に付着した凝縮水が蒸発して乾く温度にまで上がる近傍温度で、蓄冷剤が蒸発器6下流側の温度上昇を遅らせて温度センサの応答遅れがない状態になるため、オーバーシュートによるむれ臭の発生を有効に防止できる。   When the compressor 3 is on and the temperature change on the downstream side of the evaporator 6 is fast, the cool storage agent delays the temperature drop on the downstream side of the evaporator 6 at a temperature close to the freezing temperature of water, and the temperature sensor 12. Therefore, it is possible to effectively prevent the generation of a burning odor due to undershoot. When the compressor 3 is turned off and the temperature change on the downstream side of the evaporator 6 is fast, the regenerator is at a temperature close to the temperature at which the condensed water adhering to the surface of the evaporator 6 evaporates and dries. Since the temperature rise on the downstream side is delayed so that there is no response delay of the temperature sensor, it is possible to effectively prevent the generation of a bad smell due to overshoot.

(その他)
各実施形態では、圧縮機3のオフ温度が3℃で、オン温度が5℃であるが、これに限定されるものではなく他の温度設定でも本発明は適用可能である。圧縮機3のオンオフ温度は、オフ温度が1.5℃で、オン温度が3℃の場合、オフ温度が5℃で、オン温度が7℃の場合等がある。
(Other)
In each embodiment, the off-temperature of the compressor 3 is 3 ° C. and the on-temperature is 5 ° C. However, the present invention is not limited to this and can be applied to other temperature settings. The on / off temperature of the compressor 3 may be an off temperature of 1.5 ° C., an on temperature of 3 ° C., an off temperature of 5 ° C., an on temperature of 7 ° C., or the like.

2 蒸気圧縮式冷凍サイクル(冷凍サイクル)
3 圧縮機
6 蒸発器
12 温度センサ
2 Vapor compression refrigeration cycle (refrigeration cycle)
3 Compressor 6 Evaporator 12 Temperature sensor

Claims (6)

蒸発器(6)下流側の温度を検知する温度センサ(12)に基づいて圧縮機(3)がオンオフする冷凍サイクル(2)に配置され、前記圧縮機(3)のオン時には冷媒が内部を流れて外部を流れる空気を冷却する蒸発器(6)であって、
蓄冷剤を有し、前記蓄冷剤は、水の凍結温度を超える温度以上で、且つ、蒸発器(6)表面に付着した凝縮水が蒸発して乾く温度未満の範囲に凝固点を有することを特徴とする蒸発器(6)。
The evaporator (6) is arranged in a refrigeration cycle (2) in which the compressor (3) is turned on / off based on a temperature sensor (12) for detecting the temperature on the downstream side, and when the compressor (3) is turned on, the refrigerant passes inside. An evaporator (6) for cooling the air flowing and flowing outside,
It has a cold storage agent, and the cold storage agent has a freezing point in a range that is higher than the freezing temperature of water and less than the temperature at which the condensed water adhering to the surface of the evaporator (6) evaporates and dries. An evaporator (6).
請求項1記載の蒸発器(6)であって、
前記蓄冷剤の凝固点は、前記圧縮機(3)のオフ温度とオン温度の間の範囲であることを特徴とする蒸発器(6)。
The evaporator (6) according to claim 1, comprising:
The evaporator (6), wherein a freezing point of the cold storage agent is in a range between an off temperature and an on temperature of the compressor (3).
請求項1又は請求項2記載の蒸発器(6)であって、
前記蓄冷剤の凝固点は、前記圧縮機(3)のオンオフ温度の温度差をa℃とすると、前記圧縮機(3)のオフ温度をA℃とし、(A−a)℃〜A℃の範囲であることを特徴とする蒸発器(6)。
An evaporator (6) according to claim 1 or claim 2, wherein
The freezing point of the regenerator is a range of (A−a) ° C. to A ° C., where the temperature difference between the on / off temperatures of the compressor (3) is a ° C. and the off temperature of the compressor (3) is A ° C. An evaporator (6) characterized in that
請求項1〜請求項3のいずれかに記載の蒸発器(6)であって、
前記蓄冷剤の凝固点は、前記圧縮機(3)のオンオフ温度の温度差をa℃とすると、前記圧縮機(3)のオン温度をB℃とし、B℃〜(B+a)℃の範囲であることを特徴とする蒸発器(6)。
An evaporator (6) according to any of claims 1-3,
The freezing point of the regenerator is in the range of B ° C. to (B + a) ° C., where the on temperature of the compressor (3) is B ° C. where the temperature difference of the on / off temperature of the compressor (3) is a ° C. An evaporator (6) characterized in that.
請求項1記載の蒸発器(6)であって、
前記蓄冷剤は、凝固点の異なる第1蓄冷剤と第2蓄冷剤から成り、前記第1蓄冷剤の凝固点は、前記圧縮機(3)のオンオフ温度の温度差をa℃とすると、前記圧縮機(3)のオフ温度をA℃とし、A℃〜(A+(a/2))℃の範囲であり、
前記第2蓄冷剤の凝固点は、前記圧縮機(3)のオンオフ温度の温度差をa℃とすると、前記圧縮機(3)のオン温度をB℃とし、(B−(a/2))〜B℃の範囲であることを特徴とする蒸発器(6)。
The evaporator (6) according to claim 1, comprising:
The cool storage agent is composed of a first cool storage agent and a second cool storage agent having different freezing points, and the freezing point of the first cool storage agent is defined as a compressor when the temperature difference between on and off temperatures of the compressor (3) is a ° C. The off temperature of (3) is A ° C, and is in the range of A ° C to (A + (a / 2)) ° C.
The freezing point of the second cool storage agent is defined as follows. When the temperature difference of the on / off temperature of the compressor (3) is a ° C, the on temperature of the compressor (3) is B ° C, and (B- (a / 2)) An evaporator (6) characterized in that it is in the range of ~ B ° C.
請求項1又は請求項5記載の蒸発器(6)であって、
前記蓄冷剤は、凝固点の異なる第1蓄冷剤と第2蓄冷剤から成り、前記第1蓄冷剤の凝固点は、前記圧縮機(3)のオンオフ温度の温度差をa℃とすると、前記圧縮機(3)のオフ温度をA℃とし、(A−a)℃〜A℃の範囲であり、
前記第2蓄冷剤の凝固点は、前記圧縮機(3)のオンオフ温度の温度差をa℃とすると、前記圧縮機(3)のオン温度をB℃とし、B℃〜(B+a)℃の範囲であることを特徴とする蒸発器(6)。
An evaporator (6) according to claim 1 or claim 5, wherein
The cool storage agent is composed of a first cool storage agent and a second cool storage agent having different freezing points, and the freezing point of the first cool storage agent is defined as a compressor when the temperature difference between on and off temperatures of the compressor (3) is a ° C. The off temperature of (3) is A ° C, and is in the range of (Aa) ° C to A ° C.
The freezing point of the second regenerator is a range of B ° C to (B + a) ° C, where the on-off temperature of the compressor (3) is B ° C, where the temperature difference of the on / off temperature of the compressor (3) is a ° C. An evaporator (6) characterized in that
JP2013072628A 2013-03-29 2013-03-29 Evaporator Pending JP2014196863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013072628A JP2014196863A (en) 2013-03-29 2013-03-29 Evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013072628A JP2014196863A (en) 2013-03-29 2013-03-29 Evaporator

Publications (1)

Publication Number Publication Date
JP2014196863A true JP2014196863A (en) 2014-10-16

Family

ID=52357770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013072628A Pending JP2014196863A (en) 2013-03-29 2013-03-29 Evaporator

Country Status (1)

Country Link
JP (1) JP2014196863A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110887300A (en) * 2018-09-11 2020-03-17 东芝生活电器株式会社 Refrigerator with a door
CN111102197A (en) * 2019-12-31 2020-05-05 南京精励汽车科技有限公司 Vehicle air compressor flow monitoring device and monitoring system thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110887300A (en) * 2018-09-11 2020-03-17 东芝生活电器株式会社 Refrigerator with a door
CN110887300B (en) * 2018-09-11 2022-02-01 东芝生活电器株式会社 Refrigerator with a door
CN111102197A (en) * 2019-12-31 2020-05-05 南京精励汽车科技有限公司 Vehicle air compressor flow monitoring device and monitoring system thereof

Similar Documents

Publication Publication Date Title
US20100212342A1 (en) Air conditioner and method of controlling the same
JP2005249254A (en) Refrigerator-freezer
JP5988953B2 (en) Heat pump water heater
US20150253040A1 (en) Refrigerator
JP5261066B2 (en) Refrigerator and refrigerator
US20130111943A1 (en) Non-azeotropic mixed refrigerant cycle and refrigerator equipped therewith
JP2012077921A (en) Refrigeration apparatus
CN105135730A (en) Refrigerating circulatory system
US10578344B2 (en) Reversible liquid suction gas heat exchanger
JP2014196863A (en) Evaporator
US20190078817A1 (en) Outdoor unit and refrigeration cycle apparatus including the same
JP5447438B2 (en) refrigerator
CN205048778U (en) Refrigerating circulating system
JP5677237B2 (en) Air conditioner
TWI557385B (en) Heat pump for heating and cooling
KR100709421B1 (en) Heat exchanger
KR101542120B1 (en) Chiller type air conditioner
KR101610252B1 (en) Energy saving freezer and refrigerator with reduced dryness
JP5267614B2 (en) refrigerator
TWI522582B (en) Hybrid heat pump for heating and cooling
WO2016121103A1 (en) Refrigeration cycle device
EP3872421A1 (en) Refrigeration circuit and refrigeration unit with microchannel evaporator
KR20070105746A (en) A refrigerator
JP2001174078A (en) Controlling device of outlet-side refrigerant of evaporator
JP6642326B2 (en) Refrigerant evaporator