JP2014196832A - Polytetrafluoroethylene bellows and fluid pumping device - Google Patents

Polytetrafluoroethylene bellows and fluid pumping device Download PDF

Info

Publication number
JP2014196832A
JP2014196832A JP2014151215A JP2014151215A JP2014196832A JP 2014196832 A JP2014196832 A JP 2014196832A JP 2014151215 A JP2014151215 A JP 2014151215A JP 2014151215 A JP2014151215 A JP 2014151215A JP 2014196832 A JP2014196832 A JP 2014196832A
Authority
JP
Japan
Prior art keywords
bellows
core
ptfe
preform
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014151215A
Other languages
Japanese (ja)
Inventor
裕亮 佐藤
Hirosuke Sato
裕亮 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014151215A priority Critical patent/JP2014196832A/en
Publication of JP2014196832A publication Critical patent/JP2014196832A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/10Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/50Removing moulded articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C2043/3205Particular pressure exerting means for making definite articles
    • B29C2043/3222Particular pressure exerting means for making definite articles pressurized gas, e.g. air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/703Bellows

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Diaphragms And Bellows (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem that contamination of very small wastes and foreign matters ("particles" in the art) adversely influence various items such as product yield as semiconductor element integration increases in a semiconductor manufacturing device.SOLUTION: A bellows or a component constituting bellows having at least an inner surface that is a mirror surface and formed of PTFE, and a fluid pumping device are provided.

Description

本発明はポリテトラフルオロエチレン(以下、「ポリテトラフルオロエチレ」を「PTFE]と略記する)製ベローズ、およびそれを用いた流体圧送機器に関する。  The present invention relates to a bellows made of polytetrafluoroethylene (hereinafter, “polytetrafluoroethylene” is abbreviated as “PTFE”), and a fluid pumping device using the bellows.

ベローズは、それが用いられるポンプ系内を循環する液体に耐えられる材質でなければならず、例えば、半導体製造装置のように種々の薬液を用いる分野では、それらすべての薬液に耐えられるような材質となると、PTFE以外考えられない。また、ベローズは屈曲を繰り返すので、耐屈曲性が高い材質でなければならない。この点でもPTFEは傑出している。しかしながら、PTFEの如く極度に流動性の悪い、即ち、溶融粘度の高い高分子溶融物を一般的な成形方法、例えば射出成形法、押出成形法、トランスファー成形法等で、ベローズ状のものを作るのは実際上不可能であった。仮にそのような形状のものが出来たとしても、流動抵抗により流動成形時に出来る成形歪が非常に大きな製品が出来てしまい、繰り返し屈曲性を要求されるベローズには使えないからである。そのため、従来は、丸棒状ブロック体から旋盤などによって機械切削加工によって成形されてきた。この点については例えば、下記特許文献1、下記特許文献2に記載されている。
特開2001−193836号公報 実公平8−5417号公報
The bellows must be made of a material that can withstand the liquid circulating in the pump system in which it is used. For example, in the field of using various chemical solutions such as semiconductor manufacturing equipment, the material can withstand all of these chemical solutions. Then, it is unthinkable except PTFE. Further, since the bellows repeatedly bends, it must be made of a material having high bending resistance. In this respect, PTFE is outstanding. However, a polymer melt having extremely poor fluidity, such as PTFE, that is, a polymer melt having a high melt viscosity is made into a bellows shape by a general molding method such as an injection molding method, an extrusion molding method, or a transfer molding method. It was practically impossible. Even if a product having such a shape is produced, a product having a very large molding strain at the time of fluid molding is produced due to flow resistance, and it cannot be used for a bellows that requires repeated bending. Therefore, conventionally, it has been formed by machining with a lathe from a round bar-shaped block body. This point is described in, for example, Patent Document 1 and Patent Document 2 below.
JP 2001-193836 A No. 8-5417

かように、ベローズの世界ではPTFEが材質的には傑出しているのであるが、機械切削加工によって成形されていることにより、以下に述べるように、使用される用途分野にいろいろな問題をもたらしてきた。  Thus, in the world of bellows, PTFE is outstanding in terms of material. However, since it is formed by mechanical cutting, it brings various problems to the application fields used as described below. I came.

一つの問題点は例えば、半導体製造装置において発生している。半導体素子の集積度の高まりとともに、微小なゴミ、異物の類のもの(以下、「パーティクル」と呼ぶ)の混在は種々の支障をもたらす。回路の幅より小さい大きさのものであっても、回線の上に付いたパーティクルは、レジスト塗布、現像、エッチング、レジスト剥離などの全ての工程において、生産時の歩留まり低下の大きな原因となるだけでなく、使用時に品質の劣化等の原因となるからである。  One problem occurs, for example, in semiconductor manufacturing equipment. As the degree of integration of semiconductor elements increases, a mixture of minute dust and foreign matters (hereinafter referred to as “particles”) causes various problems. Even if the size is smaller than the width of the circuit, particles on the circuit line can cause a significant decrease in production yield in all processes such as resist coating, development, etching, and resist stripping. This is because it causes deterioration of quality during use.

このようなパーティクルの発生源としてPTFEから切削加工により製作されたベローズからもたらされるものがあることが本発明者の研究からわかった。この点を詳細に説明すると以下のようになる。機械切削加工の状況を顕微鏡観察するとよくわかることであるが、バイト先端による切削跡溝が形成されると同時に、PTFE独特の曳糸効果も加味された髭状の糸屑や鱗片状切片が無限といってよいほど多数形成される。このうち、髭状の糸屑は「毛羽立ち」とも云われるものであり、糸屑の一端は自由であり、他端が成形物と接続している。また、鱗片状切片は顕微鏡で観察すると、笹くれ立っており、糸屑と同様に一端は自由であり他端が成形物と接続しているものと、他端も成形物に接続しており、その間が成形物と離れているものとがある。糸屑や鱗片状切片は、本来、その切削個所から切り落とされるべきものであるが、切り落とされず、その位置に接続したまま残ったものである。これら糸屑や鱗片状切片はポンプ内の流体の流動に抗してある程度の期間は成形物であるベローズ上に留まっているのであるが、ベローズの振動と流体との衝突で、いつかは流動に抗し切れずにベローズ上から切り離されてパーティクルとなるのである。糸屑や鱗片状切片の大きさは切削加工によるものであるので、かなりの幅があるが、顕微鏡で見えるものの中でその大きいものについていえば、糸屑の太さは10〜20μm程度であり、糸屑の長さは100〜800μm程度である。また、鱗片状切片の幅は5μm程度であり、切片の長さは20〜40μm程度である。これらより小さいものはいくらでもある。このようなパーティクルの製品への混入を避けるために吐出側に高価なフィルターを使用しても、それを素通りするパーティクルは存在するのである。  As a result of the inventor's research, it was found that such a particle generation source is a bellows produced by cutting from PTFE. This point will be described in detail as follows. It is well understood by microscopic observation of the state of mechanical cutting, but at the same time a cutting trace groove is formed by the tip of the bite, and at the same time, cocoon-like lint and scaly slices that take into account the PTFE peculiar thread effect are infinite. Many are formed. Among these, the cocoon-like lint is also called “fluffing”, one end of the lint is free and the other end is connected to the molded product. In addition, when the scale-like slices are observed with a microscope, they are wrinkled and, like lint, one end is free and the other end is connected to the molded product, and the other end is also connected to the molded product. , There are some that are separated from the molded product. The lint and scaly slice should originally be cut off from the cutting point, but are not cut off and remain connected at that position. These lint and scale-like pieces remain on the bellows as a molded product for a certain period of time against the fluid flow in the pump. It is separated from the bellows without resisting and becomes particles. The size of the lint and scaly slices is due to the cutting process, so there is a considerable width, but the thickness of the lint is about 10 to 20 μm for the larger ones that can be seen with a microscope. The length of the yarn waste is about 100 to 800 μm. Moreover, the width | variety of a scale-like section is about 5 micrometers, and the length of a section is about 20-40 micrometers. There are many smaller ones. Even if an expensive filter is used on the discharge side in order to avoid mixing such particles into the product, there are particles that pass through them.

もう一つの問題点は、糸屑や鱗片状切片とともに機械切削加工で形成された切削溝跡はパーティクルにはならないが、ポンプ内を超純水が循環する系においては、その水が超純水であるので、微生物の発生源として二次汚染の原因となっていることがわかった。超純水は純水であるが故に殺菌されることがないため、微生物の発生源となるのである。同様に超純水製造ラインのパイプ内側の溝状凹凸も微生物の発生源となるのである。  Another problem is that the groove marks formed by machining with lint and scaly do not become particles, but in a system where ultrapure water circulates in the pump, the water is ultrapure water. Therefore, it was found that it is a cause of secondary contamination as a source of microorganisms. Since ultrapure water is pure water and is not sterilized, it is a source of microorganisms. Similarly, the groove-like unevenness inside the pipe of the ultrapure water production line is also a source of microorganisms.

本発明の課題は、上記課題を解決するベローズ、およびそれを用いた流体圧送機器を提供することにある。The subject of this invention is providing the bellows which solves the said subject, and the fluid pumping apparatus using the same.

本発明は少なくとも内面が鏡面のPTFEよりなるベローズまたはベローズを構成する部品である。The present invention is a bellows or a part constituting a bellows having at least an inner surface made of PTFE having a mirror surface.

ここでいう「鏡面」とは、肉眼で見て凹凸が認められず、光沢を有するものである。好ましくは表面仕上げがJIS B0601に基づいて0.1−S〜6−Sのもの、より好ましくは0.1−S〜0.8−Sで、バフ仕上げ、ラップ仕上げで精密仕上げをした金属金型を使用して、PTFEを溶融後圧着してベローズの内側面に転写された状態を意味する。故に、荒さの範囲として1μ以下が期待できる。  Here, the “mirror surface” is glossy with no irregularities observed with the naked eye. Preferably, metal gold having a surface finish of 0.1-S to 6-S based on JIS B0601, more preferably 0.1-S to 0.8-S, and buff finish and lapping finish. It means a state in which PTFE is melted and pressure-bonded and transferred to the inner surface of the bellows using a mold. Therefore, 1 μm or less can be expected as the roughness range.

また本発明は顕微鏡で観察して糸屑や鱗片状切片のない前記ベローズまたはベローズを構成する部品である。Moreover, this invention is the components which comprise the said bellows or bellows which are observed with a microscope and do not have a lint and a scale piece.

また、本発明は厚さ1mmにおける可視光線の透過率が50%以上である前記ベローズまたはベローズを構成する部品である。Moreover, this invention is the components which comprise the said bellows or the bellows whose transmittance | permeability of visible light in thickness 1mm is 50% or more.

また、本発明は、スクリュー型である前記ベローズまたはベローズを構成する部品である。Moreover, this invention is the components which comprise the said bellows or bellows which are screw types.

また、本発明は前記ベローズを用いた流体圧送機器である。Further, the present invention is a fluid pressure feeding device using the bellows.

本発明によるベローズは内面が鏡面であり、切削加工で得られたPTFEベローズとは異なり、パーティクルの発生原因となる糸屑や鱗片状切片が顕微鏡観察によっても認められないものが得られる。The bellows according to the present invention has a mirror inner surface, and unlike the PTFE bellows obtained by the cutting process, it is possible to obtain a product in which the lint and scaly slices that cause the generation of particles are not observed by microscopic observation.

本発明によるベローズはテトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合樹脂製ベローズと比較したところ、約100倍程度の耐久性がある。The bellows according to the present invention is about 100 times more durable than a bellows made of a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin.

本発明流体圧送機器は、ベローズ由来によるパーティクルの発生のないものが得られ、特に非接触型バルブと併用することにより、パーティクルの発生原因が流体圧送機器からもたらされないものが得られる。  The fluid pumping device according to the present invention is one that does not generate particles due to the bellows, and particularly when used in combination with a non-contact valve, one that does not cause the generation of particles from the fluid pumping device is obtained.

以下、本発明の実施形態を、図面に基づいて、幾つか説明する。  Hereinafter, some embodiments of the present invention will be described based on the drawings.

[予備成形物を成形してベローズを作る方法]
1つの実施形態は、PTFEの所謂モールディングパウダーを出発原料として予備成形物を作り、それを基にして、ベローズを作る方法である。予備成形物は公知の方法が適用され、予備成形工程、一次焼成工程を経由して作られる。
[Method of forming a bellows by molding a preform]
One embodiment is a method of making a preform using a so-called molding powder of PTFE as a starting material, and making a bellows based on the preform. A known method is applied to the preform, and the preform is made through a preforming step and a primary firing step.

(予備成形工程)
PTFEは溶融粘度が極度に大きく、流動性が乏しいので、予備成形物の形状は、その後の溶融加圧成形で変形が可能であるとともに、溶融加圧成形後の諸工程で容易にベローズまたはベローズ部品にできるような形状が好適に選択される。ベローズにおいては円筒状あるいはビーカー状の予備成形物が好ましい。ここでは円筒状の予備成形物を作る場合について説明する。予備成形は、一口で言えば、液圧成形法の金型を用いた成形である。具体的に言えば、円筒状外部金型と、その円筒状外部金型の両端を塞ぐ上部金型と下部金型で密閉された空間が形成される。その空間内に同心円状に外子金型と、表面を鏡面仕上げした円柱状中子金型とが配置される。外子金型と中子金型との間に設けられた隙間で円筒状予備成形物が形成される。ここで外子金型は、例えば中に液体を入れた袋状のゴム弾性体であり、前述の円筒状外子金型、上部金型及び下部金型との隙間をなくし、密閉することができる。外子金型の内側は滑らかな面で出来ていることが好ましい。また、内子金型も金属製である必要はなく、例えばセラミックスなどでもよい。上部金型を外して前記隙間に振動を与えながら、100kg/cm程度の予備加圧をしてPTFEのモールディングパウダーを所定量封入し、外子金型に100〜200kgf/cmの液圧を加え、いわゆるおこし状のPTFEの円筒状物を作る。
(Preliminary molding process)
Since PTFE has extremely high melt viscosity and poor fluidity, the shape of the preform can be deformed by subsequent melt-pressure molding, and can easily be bellows or bellows in various steps after melt-pressure molding. A shape that can be formed into a part is preferably selected. In the bellows, a cylindrical or beaker-shaped preform is preferable. Here, a case where a cylindrical preform is made will be described. Preliminary molding is molding using a hydraulic molding die. Specifically, a sealed space is formed by a cylindrical external mold and an upper mold and a lower mold that block both ends of the cylindrical external mold. A concentric outer core mold and a cylindrical core mold having a mirror-finished surface are disposed in the space. A cylindrical preform is formed in a gap provided between the outer mold and the core mold. Here, the outer mold is, for example, a bag-like rubber elastic body in which a liquid is put, and the gap between the cylindrical outer mold, the upper mold, and the lower mold can be eliminated and sealed. it can. The inner side of the outer mold is preferably made of a smooth surface. Further, the inner mold need not be made of metal, and may be ceramics, for example. While removing the upper mold and applying vibration to the gap, pre-pressurization of about 100 kg / cm 2 is performed and a predetermined amount of PTFE molding powder is sealed, and a hydraulic pressure of 100 to 200 kgf / cm 2 is filled in the outer mold. To make a so-called braided PTFE cylinder.

(一次焼成工程)
おこし状PTFE円筒状物を、PTFEの溶融温度327℃より高く、大きな熱分解の始まらない温度である425℃より低い340〜400℃で電気炉またはN等の不活性ガス熱風炉にて15分間〜1時間焼成する。その際、変形防止にSUSの保持具が有効である。この工程でモールディングパウダー同士が融着して、いわゆるボイドが抜ける。この後、これを冷却する。
(Primary firing process)
The braided PTFE cylindrical material is heated in an electric furnace or an inert gas hot air furnace such as N 2 at 340 to 400 ° C. which is higher than the melting temperature of PTFE 327 ° C. and lower than 425 ° C. which is a temperature at which large thermal decomposition does not start. Bake for 1 minute to 1 hour. At that time, a SUS holder is effective for preventing deformation. In this process, the molding powders are fused together, so-called voids are removed. After this, it is cooled.

(Sliding Plate Molding;S.P.M方式)
このようにして得られた予備成形物であるPTFE円筒状物を、中子と可動な外子金型の間に置いて圧縮成形を行いベローズを得る。圧縮成形する際には不動の中子は形状的には大体において中心軸対称形であればよく、材質は通常、金属、特に弗素、弗酸に耐食性のある金属であり、稀に目的に合わせてセラミックス、高張力カーボン、粘土を焼成したものでもよい。可動である外子金型および後押し用外子金型は複数個の強靭かつ硬質な板状の金属、特に弗素、弗酸に耐食性のある金属で作られ、それらが相互にスライディングしながら、中子との間にあるPTFEの溶融物に対して全体的に均一な圧力を加えながら加圧圧縮成形を行う。その成形工程の最初と最終では中子を囲んで構成する体積が大から小へと変動する。以下、この成形方法をSliding Plate Molding、あるいは略してS.P.M方式と呼ぶことにする。ベローズは一山ベローズが幾つか繋ぎ合わされたものと見ることができるが、その一山ベローズを幾つか用意して、それより所定長のベローズを製造する方法をまず説明する。
(Sliding Plate Molding; SPM system)
The thus obtained preformed PTFE cylindrical product is placed between a core and a movable outer mold and subjected to compression molding to obtain a bellows. In compression molding, the stationary core may be generally symmetrical with respect to the central axis, and the material is usually a metal, particularly a metal that is corrosion resistant to fluorine and hydrofluoric acid. Ceramics, high-tensile carbon and clay may be fired. The movable outer die and the pushing outer die are made of a plurality of tough and hard plate-like metals, especially metals that are corrosion resistant to fluorine and hydrofluoric acid. The pressure compression molding is performed while applying an overall uniform pressure to the PTFE melt between the core and the melt. At the beginning and end of the molding process, the volume surrounding the core varies from large to small. Hereinafter, this molding method is referred to as “Sliding Plate Molding” or S. P. This will be referred to as M system. The bellows can be regarded as a combination of several single bellows. First, a method for preparing several single bellows and manufacturing a predetermined length of bellows will be described first.

図1は一山ベローズの製造を開姶する前の状態を示し、中子1の周りを囲むものを一部切り欠いた斜視図である。図2は図1の上面部分図である。上面図の上部のみを示し、他は対称ゆえに省略した。図1、2に示すように、一つ山部1pを持ち、外子金型と相対する表面は鏡面仕上げを施した一山作り中子1を中心に設置し、その外側に向かって順に、円筒状内側ヒーター2(図2では図示せず)、PTFE製円筒状物3、円筒状外側ヒーター4(図2では図示せず)、中子の中心軸に平行に複数個に分割された可動の外子金型5a〜5h、外子金型と同数、同方向に分割された可動の後押し用外子金型6a〜6hを中子1と同心円状に配している。このうち、外子金型5a〜5hと後押し用外子金型6a〜6hはそれぞれ、1つ山部5ap〜5hp、6ap〜6hpを持ち、また、各外子金型5a〜5hの分割辺の周辺はいずれも各後押し用外子金型6a〜6hの分割辺の周辺と重なり合い相互にスライドしながら可動して、溶融圧着成形する際には、複数個に分割された可動の外子金型5a〜5h,6a〜6hが作る円の径を狭めるようになっており、かつ円筒状物3が溶融した際、外子金型5a〜5h,6a〜6hから外に漏出できないように両金型の間にはスライドしても隙間が常にないような擦り合わせ構造になっている。図3は溶融圧着成形後の状態を図2と同方向から見た図であるが、図2と異なり、全体図である。このように、後押し用外子金型6a〜6hは最終的には外子金型5a〜5hの外側に移行し、外子金型5a〜5hだけで成形物の外周を囲む構造になっている。  FIG. 1 is a perspective view showing a state before the manufacture of a single bellows, and a part surrounding the core 1 is partially cut away. FIG. 2 is a partial top view of FIG. Only the upper part of the top view is shown, and the others are omitted because they are symmetrical. As shown in FIGS. 1 and 2, the surface opposite to the outer mold has one peak 1p, and the mirror-finished one-core making core 1 is installed at the center, and in order toward the outside, Cylindrical inner heater 2 (not shown in FIG. 2), PTFE cylindrical object 3, cylindrical outer heater 4 (not shown in FIG. 2), movable divided into a plurality in parallel to the central axis of the core The number of outer molds 5a to 5h and the same number of movable outer molds 6a to 6h as the outer molds divided in the same direction are arranged concentrically with the core 1. Of these, the outer molds 5a to 5h and the booster outer molds 6a to 6h each have one peak part 5ap to 5hp and 6ap to 6hp, and the divided sides of the outer molds 5a to 5h. Each of the outer periphery of each of the outer peripheral molds 6a to 6h for each of the boosters overlaps with the periphery of the divided side and is movable while being slid and mutually melted. The diameters of the circles formed by the molds 5a to 5h and 6a to 6h are reduced, and when the cylindrical object 3 is melted, both of the outer molds 5a to 5h and 6a to 6h are prevented from leaking out. The structure is such that there is always no gap between the molds even when sliding. FIG. 3 is a view of the state after melt-compression molding as viewed from the same direction as FIG. 2, but is an overall view different from FIG. As described above, the pushing outer molds 6a to 6h finally move to the outside of the outer molds 5a to 5h, and only the outer molds 5a to 5h surround the outer periphery of the molded product. Yes.

外子金型5a〜5hと後押し用外子金型6a〜6hそれぞれは複数個の金型からなるが、その数は多いほど相互のスライドがスムーズにできるのであるが、一個の外子金型が作る円弧の中心角αと一個の後押し用外子金型が作る円弧の中心角βとの間には以下の要件を満たすことが必要である。  Each of the outer molds 5a to 5h and the booster outer molds 6a to 6h is composed of a plurality of molds. The larger the number, the smoother the mutual sliding is. It is necessary to satisfy the following requirements between the central angle α of the circular arc formed by and the central angle β of the circular arc formed by one booster outer die.

Figure 2014196832
Figure 2014196832

例えば、図2に示す場合では、一つの外子金型5aが作る円弧の中心角αは図から求めると24°である。βは後押し用外子金型の数が8個であることから、{360−(24×8)}/8=21°である。よって上述の条件を満たすから、相互のスライドはスムーズに行われる。これに対し、外子金型、後押し用外子金型それぞれの個数が4個の場合には、図示しないが、αは42°、βは48°となり、上述の条件を満たさない。  For example, in the case shown in FIG. 2, the center angle α of the arc formed by one outer mold 5a is 24 ° when calculated from the figure. β is {360− (24 × 8)} / 8 = 21 ° because the number of outer molds for boosting is eight. Therefore, since the above-described conditions are satisfied, the slides are performed smoothly. On the other hand, when the number of each of the outer mold and the booster outer mold is four, although not shown, α is 42 ° and β is 48 °, which does not satisfy the above conditions.

さらに、このスライドをスムーズにするために両方の金型の間に耐熱潤滑剤を介在させてもよい。また、成形物に無用な皺状個所の発生を防ぐべく、PTFE製円筒状物3と外子金型5a〜5hの間にも耐熱滑り剤を介在させてもよい。また、外子金型5a〜5hと後押し用外子金型6a〜6hはいずれも、外力を受けて同期しつつそれぞれの作る円の径を狭めるが、その際、後押し用外子金型6a〜6hだけ押せばよく、外子金型5a〜5hは後押し用外子金型6a〜6h押されていく。なお、外側ヒーター4と内側ヒーター2はその間に挟まれたPTFE製円筒状物3を溶融させた後に上方または下方に抜き出すのを可能にするように隙間を有して配されており、通電により加熱されるようになっている。なお、ヒーターは上述のようにいずれも中子1より外側にある、外側ヒーター4と内側ヒーター2の組み合わせではなく、内側ヒーター2が中子1の中に内蔵されたものであってもよい。また強度的に可能であれば、外側ヒーター4を外子金型5a〜5hの中に内蔵させてもよい。さらに図示されていないが、中子1の中には冷媒を循環させて成形物を急冷できるような冷却装置がある。  Further, in order to make this slide smooth, a heat-resistant lubricant may be interposed between both molds. Moreover, in order to prevent generation | occurrence | production of an unnecessary bowl-shaped part in a molded object, you may interpose a heat-resistant slip agent between the cylindrical body 3 made from PTFE, and the outer mold | dies 5a-5h. Further, the outer molds 5a to 5h and the booster outer molds 6a to 6h both reduce the diameter of the respective circles to be made while synchronizing with external force. The outer mold dies 5a to 5h are pushed by the pushing outer molds 6a to 6h. The outer heater 4 and the inner heater 2 are arranged with a gap so that the PTFE cylindrical body 3 sandwiched therebetween can be melted and extracted upward or downward. It is supposed to be heated. As described above, the heater is not a combination of the outer heater 4 and the inner heater 2, which are outside the core 1, but the inner heater 2 may be built in the core 1. Further, if possible in strength, the outer heater 4 may be incorporated in the outer molds 5a to 5h. Further, although not shown in the figure, there is a cooling device in the core 1 that can circulate a refrigerant to rapidly cool the molded product.

このような装置を用いて以下のようにして製造される。まず、通電によりヒークー2、4を加熟し、PTFE製円筒状物3はその形状を保ちつつ熱分解しなく且つ溶融する温度である375〜450℃にする。次いで、ヒーター2、4を抜き出し、後押し用外子金型6a〜6hを介して外側より油圧または機械力による押し込み装置(図示せず)によって、外子金型5a〜5hそれぞれに対し中心に向かって等しく、10kgf/cm以上、好ましくは20kgf/cm以上、特に好ましくは50kgf/cm以上の外力7が加えられる。この外力7により、後押し用外子金型6a〜6hそれぞれは中子1に向かって同心円を保ちながら絞り込まれるように等速で外子金型5a〜5hの囲む円を狭めていく。このとき、後押し用外子金型6a〜6hによって両辺を押さえつけられている外子金型5a〜5hは金型の外から見ると両辺の後押し用外子金型6a〜6hにスライドしながらその両辺の後押し用外子金型6a〜6hの後ろに隠れていく。この過程でPTFE製円筒状物3は中子1と外子金型5a〜5hの間で溶融加圧され圧縮成形される。圧縮成形された後は、中子1内に冷媒を循環させて中子の表面温度を300℃以下、好ましくは200℃以下、特に好ましくは150℃以下にして成形物を加圧したまま急冷させる。このような急冷で透明性の高いものが得られる。It manufactures as follows using such an apparatus. First, the heat-cooling 2 and 4 are ripened by energization, and the cylindrical body 3 made of PTFE is maintained at its shape and is set to 375 to 450 ° C., which is a temperature at which it does not undergo thermal decomposition and melts. Next, the heaters 2 and 4 are extracted, and are pushed toward the center with respect to each of the outer molds 5a to 5h by a pushing device (not shown) by hydraulic pressure or mechanical force from the outside through the outer pressing molds 6a to 6h. The external force 7 of 10 kgf / cm 2 or more, preferably 20 kgf / cm 2 or more, particularly preferably 50 kgf / cm 2 or more is applied. By this external force 7, each of the pushing outer die dies 6a to 6h narrows the circle surrounded by the outer die dies 5a to 5h at a constant speed so as to be narrowed down while maintaining a concentric circle toward the core 1. At this time, the outer mold dies 5a to 5h pressed on both sides by the booster outer molds 6a to 6h are slid to the rear pusher molds 6a to 6h on both sides when viewed from the outside of the mold. It hides behind the outer molds 6a-6h for boosting both sides. In this process, the PTFE cylindrical body 3 is melt-pressed and compression-molded between the core 1 and the outer molds 5a to 5h. After the compression molding, the refrigerant is circulated in the core 1 so that the surface temperature of the core is 300 ° C. or lower, preferably 200 ° C. or lower, particularly preferably 150 ° C. or lower, and the molded product is rapidly cooled while being pressurized. . Such a rapid cooling and high transparency can be obtained.

(ベローズの鍔返し工程)
PTFE製円筒状物3は上記により圧縮成形されて一山ベローズ原体となるも、中子1に巻きついた状態にある。図4a、図4b、図4c、図4dは一山ベローズ原体8から中子1を抜くためにフランジ部を作る過程を示す説明図であり、図4aより順に図4b、図4c、図4dと進むことを示す。まず一山ベローズ原体8の上部を220〜250℃に加熱し熱膨張により中子1より剥離させ、ベローズ原体8の先端部8aと中子1との隙間に、鍔返し一段目用押し付け金属フランジ9の先端部9aを差し込む(図4a)。次いで、鍔返し一段目用押し付け金属フランジ9を下方に移動することで、少々鍔返ったフランジ部8bを有するベローズ原体8を得る(図4b)。鍔返し一段目用押し付け金属フランジ9の下方への移行は回転支柱10の周りを回転取手11にて押し込み用円盤状平板12を回転させながら、押し込み用ボルト13を介して遂行される。さらに鍔返しを進行させるべく、鍔返し一段日用押し付け金属フランジ9に代えて鍔返し二段目用押し付け金属フランジ14と差し替え、さらに鍔返しの成形を進めるべく、回転取手11を回転させることで鍔返しがさらに進行して鍔返し8c(図4c)となり、さらに回転取手11を回転させることで、完全に鍔返ったフランジ部8dを有する、一山ベローズ原体8を得る(図4d)。同様の操作を一山ベローズ原体8の下部にも施すことで、上下にフランジ部8dを有する原体8が得られる。図5はその縦断面図である。また、一山の代わりに数山ベローズを得ることも同様に可能である。さらに今までは円筒状物を予備成形物とする場合について説明してきたが、ビーカー状のものを用いてフランジ部をビーカー上部に作ることも同様にしてできる。
(Bellows turning process)
The PTFE cylindrical body 3 is compression-molded as described above to form a single bellows base, but is wound around the core 1. 4a, 4b, 4c, and 4d are explanatory views showing a process of making a flange portion for removing the core 1 from the single bellows base 8, and FIG. 4b, FIG. 4c, and FIG. Indicates that the process proceeds. First, the upper part of the single bellows base material 8 is heated to 220 to 250 ° C. and is peeled off from the core 1 by thermal expansion, and is pressed back into the gap between the tip 8a of the bellows base material 8 and the core 1 for the first step. The tip 9a of the metal flange 9 is inserted (FIG. 4a). Subsequently, the bellows base material 8 having the flange portion 8b slightly turned over is obtained by moving the turned-up first-stage pressing metal flange 9 downward (FIG. 4b). The downward transition of the first-stage pressing metal flange 9 for turning is performed through the pressing bolts 13 while rotating the pressing disk-shaped flat plate 12 around the rotating support column 10 by the rotary handle 11. In order to further advance the turning, it is replaced with the turning-back second-stage pressing metal flange 14 instead of the turning-up first-stage pressing metal flange 9, and further, the rotating handle 11 is rotated in order to advance the turning. The turn-up further proceeds to turn-up 8c (FIG. 4c), and by further rotating the rotary handle 11, a single bellows base material 8 having a completely turned-up flange portion 8d is obtained (FIG. 4d). By performing the same operation on the lower part of the single bellows base material 8, the base body 8 having the flange portions 8d on the top and bottom is obtained. FIG. 5 is a longitudinal sectional view thereof. It is also possible to obtain several bellows instead of one. Further, the case where a cylindrical object is used as a preform has been described so far, but it is also possible to make a flange part on the upper part of a beaker using a beaker-like object.

(ベローズ扁肉調整工程)
ベローズの肉厚に斑があると、薄い個所からベローズの使用内圧によって膨れなどの変形を起こし、ベローズの破壊の原因となる。またベローズの屈伸作動中に厚さ斑が変形の原因となるので、厚さ斑は±5%以内にする。そこで中子にベローズが巻き付いている段階で中子を倣いとして旋盤にて外側を機械切削して厚さ斑の調整を行うのが好適である。外側に切削屑の付着、切削跡があってもこの段階での扁肉調整はベローズの使用上大きな不都合とはならない。
(Bellows thinning adjustment process)
If there is unevenness in the thickness of the bellows, it will cause deformation such as swelling due to the internal pressure of the bellows from a thin part, causing damage to the bellows. Further, since the thickness spots cause deformation during the bending and stretching operation of the bellows, the thickness spots should be within ± 5%. Therefore, it is preferable to adjust the thickness unevenness by machining the outer side with a lathe using the core while copying the bellows around the core. Even if there is sticking or cutting marks on the outside, adjusting the thickness at this stage is not a major disadvantage in using the bellows.

(中子抜き工程)
図6は中子抜き工程を説明するための中子抜き装置の縦断面図である。本図はPTFEの予備成形物の形状がビーカー状のものから五山のベローズ原体21を作り、ビーカーの広口部分にフランジ部をつくったものについて中子抜きする場合である。中子抜き装置は大別すると、図の上部に示す、気密性をもった中子抜き上げ用耐圧容器22と、図の下部に示す、中子抜き装置支持部23がある。中子抜き上げ用耐圧容器22は一体の筒状物で、上部Oリング24と下部Oリング25によって内部の気密性が保持され、支持部材26により位置決めがされる。五山のベローズ原体21が中子27に圧着されたままの状態で、そのフランジ部21cが中子抜き上げ用耐圧容器22と中子抜き装置支持部23の間に保持される。中子27の上端には中子抜き上げ棒28が固定されている。また、中子抜き上げ用耐圧容器22にはNなどの不活性なガス体によって容器22の内圧を上げる内圧加圧装置が内圧加圧導入口29を介して接続されている。フランジ部21cにはフランジ部拡張装置30が付けられている。この装置30の内部には油圧によって作動する爪状チャック部31があり、これによってPTFEフランジ部を拡張すべく遠心方向の外力32によってPTFEフランジ部は遠心方向に拡張される。
(Core removal process)
FIG. 6 is a vertical cross-sectional view of the core removal device for explaining the core removal process. This figure shows a case where a five-belt base material 21 is made from a PTFE preform having a beaker shape, and a core is removed from a beaker having a flange portion at the wide mouth portion. The core punching device is roughly classified into a pressure-tight container 22 for lifting the core having airtightness shown in the upper part of the figure, and a core punching device support part 23 shown in the lower part of the figure. The core pulling-out pressure vessel 22 is an integral cylindrical object, and the upper O-ring 24 and the lower O-ring 25 maintain the internal airtightness, and the support member 26 positions the core. The flange portion 21c is held between the pressure pull-out container 22 for pulling out the core and the core punching device support portion 23 in a state where the five-belt base material 21 is still crimped to the core 27. A core pull-up rod 28 is fixed to the upper end of the core 27. Further, an internal pressure pressurizing device for increasing the internal pressure of the container 22 by an inert gas body such as N 2 is connected to the core pull-out pressure resistant container 22 via an internal pressure pressurizing introduction port 29. A flange portion expansion device 30 is attached to the flange portion 21c. Inside this device 30, there is a claw-like chuck portion 31 that is actuated by hydraulic pressure, whereby the PTFE flange portion is expanded in the centrifugal direction by an external force 32 in the centrifugal direction to expand the PTFE flange portion.

このような装置を用いて中子抜き工程は以下のようにしてなされる。まずベローズ原体21を200℃程度に均一に加熱する。PTFEの熱膨張係数は20×10−5/℃であるからベローズ原体21は中子27から完全に剥離する。その後内圧加圧導入口29より内圧を、例えば5kgf/cmにすれば、ベローズの山部の直径が80φ、谷部の直径が60φ、肉厚4mmの場合、フープテンション力により平均値70φが約100φと拡張され、中子27と一体となっていたベローズ原体21は中子27に妨げられずに抜ける大きさとなった膨張ベローズ原体33となる。フランジ部21cに対しては遠心方向の外力32、例えばフランジ部21cの円周長1cm当たり11kgf以上により拡張されることで、中子27はスムーズに中子抜き上げ力34によって抜き上げられる。ベローズ原体21が円筒状物の場合は下部にもフランジ部をつくり、そこにもフランジ部拡張装置を付けて同様に行なえばよい。上記により五山を有するベローズが得られた。この山の数は任意に選べるので、このような山の数だけでも十分な場合が多いが、それでも不十分な場合には以下に述べるような溶接工程がなされる。溶接はPTFEの公知の方法でなされる。溶接によりつくられたフランジ部に軽金属またはPTFE以外のエンプラ等によるバックアップ部材の装着をしてもよい。この後はアニーリングがなされるが、アニーリングも公知の方法でなされ、温度は通常、230〜290℃でなされる。図7は一山ベローズ原体から溶接により三山ベローズとした縦断面図である。Using such an apparatus, the core removal step is performed as follows. First, the bellows base 21 is uniformly heated to about 200 ° C. Since the thermal expansion coefficient of PTFE is 20 × 10 −5 / ° C., the bellows base 21 is completely peeled from the core 27. Thereafter, if the internal pressure is set to, for example, 5 kgf / cm 2 from the internal pressure pressurization introduction port 29, the average value 70φ is obtained by the hoop tension force when the diameter of the peak of the bellows is 80φ, the diameter of the valley is 60φ, and the wall thickness is 4mm. The bellows base material 21 expanded to about 100φ and integrated with the core 27 becomes an expanded bellows base material 33 having a size that can be removed without being blocked by the core 27. The core 27 is smoothly pulled up by the core pull-up force 34 by being expanded by an external force 32 in the centrifugal direction with respect to the flange portion 21c, for example, 11 kgf or more per 1 cm of the circumferential length of the flange portion 21c. In the case where the bellows base 21 is a cylindrical object, a flange portion may be formed at the lower portion and a flange portion expanding device may be attached thereto in the same manner. By the above, a bellows having five mountains was obtained. Since the number of peaks can be selected arbitrarily, the number of peaks is often sufficient, but if it is still insufficient, a welding process as described below is performed. Welding is performed by a known method of PTFE. A backup member made of light metal or engineering plastic other than PTFE may be attached to the flange portion formed by welding. After this, annealing is performed, but annealing is also performed by a known method, and the temperature is usually 230 to 290 ° C. FIG. 7 is a longitudinal cross-sectional view of a single bellows base material formed into a triple bellows by welding.

以上では予備成形物の形状が山を幾つか有する円筒状あるいはビーカー状のベローズの場合を示したが、予備成形物の形状はこのような形状に限定されない。例えば、予備成形物として、ベローズほどの曲率ではなく、緩やかな波状の表面を有する円筒状物を作り、Sliding Plate Molding法により少なくとも内面が鏡面を有する溶融成形物を作り、その後でその両端から圧力を加えて、成形物を圧縮させてベローズまたはベローズ部品を作ってもよい。ベローズの場合は、中子抜きの後に、このような操作を行う。また、ベローズ部品の場合は圧縮後、溶接してもよいし、逆に溶接してから圧縮してもよい。その際、加熱してやるのが好ましい。また、一度に圧縮させると加圧の仕方によっては割れてしまうこともあるので、緩やかな加圧にするとか、あるいは多段階の加圧とするのが好ましい方法である。この変形例の場合には中子抜きが簡単である。予備成形物がこのような緩やかな波状の表面を有する円筒状物、ビーカー状物をも包含する意味で、それぞれ、「略円筒状」、「略ビーカー状」と本発明では呼ぶことにする。また、予備成形物の形状としてはPTFE平板にベローズ開口径に相当する穴を空けた環状のものでもよい。図8はこれから一山ベローズの山の頂上で分断されたようなものを作る過程を示す説明図であり、(a)は予備成形物を溶融プレス成形した後の横断面図である。それを鍔返しした後の横断面図が(b)であり、それを溶接した後の横断面図が(c)である。この場合には溶接する箇所が多くなるという欠点があるが、Sliding Plate Molding用の金型を用意する必要もないし、中子金型を抜くための装置がなくても済むという長所もある。また、この方法はベローズに限らず、ダイヤフラムポンプのダイヤフラムの製作にも応用できる。また、(a)は中心軸に対しベローズ開口面が垂直であるのに対し、(a´)に示すように、中心軸に対し、ベローズ開口面を斜めに形成し、それに隣接して溶接されるべきものをその傾斜角度に合わせて成形し、逐次溶接していくことで、従来存在しなかったスクリュー型ベローズが得られる。  Although the shape of the preform has been shown as a cylindrical or beaker-shaped bellows having several peaks, the shape of the preform is not limited to such a shape. For example, as a preform, a cylindrical product having a gently wavy surface instead of a curvature as that of a bellows is made, and a melt-formed product having at least an inner surface having a mirror surface is formed by a sliding plate molding method, and then pressure is applied from both ends thereof. And the molded product may be compressed to produce a bellows or a bellows part. In the case of a bellows, such an operation is performed after the core is removed. In the case of a bellows part, it may be welded after being compressed, or conversely welded and then compressed. In that case, it is preferable to heat. Moreover, since it may break depending on the method of pressurization when it is compressed at once, it is preferable to use gentle pressurization or multi-stage pressurization. In the case of this modification, the core can be easily removed. In the present invention, the preforms are referred to as “substantially cylindrical” and “substantially beaker”, respectively, in the sense that the preform includes such a cylindrical object having a gently wavy surface and a beaker object. Further, the shape of the preform may be an annular shape in which a hole corresponding to the bellows opening diameter is formed in the PTFE flat plate. FIG. 8 is an explanatory view showing the process of making a part that is divided at the top of a single bellows peak, and (a) is a cross-sectional view after a preform is melt-pressed. The cross-sectional view after turning it over is (b), and the cross-sectional view after welding it is (c). In this case, there is a disadvantage that the number of places to be welded increases, but there is also an advantage that it is not necessary to prepare a mold for sliding plate molding, and there is no need for an apparatus for removing the core mold. This method is not limited to the bellows, and can be applied to the manufacture of diaphragms for diaphragm pumps. Also, in (a), the bellows opening surface is perpendicular to the central axis, whereas as shown in (a ′), the bellows opening surface is formed obliquely with respect to the central axis and welded adjacent thereto. By forming the things to be matched to the inclination angle and sequentially welding them, a screw-type bellows that did not exist conventionally can be obtained.

(Equalized Pressure Molding;スクリュー型ベローズの製造方法)
さらに、別の変形例を示す。予備成形物を作ってから行うという点では共通するが、前述のSliding Plate Moldingを用いない別な方法である。それはスクリュー型ベローズの別な製造方法でもある。スクリュー型ベローズを得るのには、前述の方法でも可能であるが、この方法の方がより容易である。図9はスクリュー型ベローズをつくる金型装置に予備成形物を挿入した際の縦断面図である。中子101の表面は、成形物の溶融加圧成形することでスクリュー型ベローズまたはその部品を形成するような形状をしている。中子101の外側には円筒状のPTFEの予備成形物102が配置される。中子101の上下両方には押さえヘッダー103がある。押さえヘッダー103は円筒状の予備成形物102の位置ホルダー104を押さえつけている。位置ホルダー104はリング状の形をしており、圧力を封止する作用もしている。位置ホルダー104には油圧または機械力により出入する断面舌状の耐熱ラバーよりなる圧力封止部104aが付いている。図9に示した状態は圧力封止部104aの舌状部が引き込まれている状態を示している。図の二点鎖線は舌状部によって圧力が封止され、位置決めされた状態を示す。中子101は支持台106上に設置され、同心的に円筒状の内側ヒーター107、円筒状の予備成形物102、円筒状の外側ヒーター108それぞれは2〜5mmの間を取って配置する。さらに両ヒーター107、108には引き上げ棒109が付けられている。また、円筒状予備成形物102に対し、その中心軸に向かう方向に流体圧を加えるための装置が円筒状予備成形物102の外周に配置されている。すなわち、流体の導入弁部110より導入された加圧流体により、円筒状予備成形物102の外周を囲むように配置された二重円筒111の内管より予備成形物102の外周に対し、中心軸方向に向かって均等に流体圧が加わるように多数の流体導入穴112が付いている。二重円筒111の上下には、中子に附した位置ホルダー104と同様に位置ホルダー105が付いている。位置ホルダー105には位置ホルダー104の圧力封止部104aと同様、油圧または機械力により出入する断面舌状の耐熱ラパーよりなる圧力封止部105aが付いており、舌状部は引き込んだ状態で支持台106上に設置されている。また、位置ホルダー104、105の舌状圧力封止部104a、105aの近傍には両ヒーター107、108の発熱源はないようにする。そのようにすることで、舌状圧力封止部104a、105aがPTFE予備成形物102に接しても焼損は生じない。また、図示していないが、予備成形物102の自立のためには上部より吊り上げるとか、円筒状予備成形物102の内に少々の加圧をするなどの補助的な手段を取ることができる。また、予備成形物102の外側に、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合樹脂(PFA)を付着させて、流体の圧力をより一層均一にするようにする場合もある。加圧流体としては例えば窒素ガスなどの気体、有機熱媒体などで粘度の低い液体などが好ましく用いられる。流体温度は50〜300℃が選択されるので、加熱装置が必要な場合もある。圧力は10〜100kgf/cmが通常採用される。なお、S.P.M法と同様、ヒーターは上述のようにいずれも中子1より外側にある、外側ヒーター108と内側ヒーター107の組み合わせではなく、内側ヒーターが中子1の中に内蔵されたものであってもよい。また、成形物を溶融加圧した後の冷却のための装置は通常中子の中に内蔵される。
(Equalized Pressure Molding; Method for producing screw-type bellows)
Furthermore, another modification is shown. Although it is common in that it is performed after a preform is made, this is another method that does not use the above-described sliding plate molding. It is another method for producing screw-type bellows. The screw-type bellows can be obtained by the above-described method, but this method is easier. FIG. 9 is a longitudinal sectional view when a preform is inserted into a mold apparatus for producing a screw-type bellows. The surface of the core 101 has such a shape that a screw-type bellows or a part thereof is formed by melt-pressing the molded product. A cylindrical PTFE preform 102 is disposed outside the core 101. There are holding headers 103 on both the upper and lower sides of the core 101. The holding header 103 holds down the position holder 104 of the cylindrical preform 102. The position holder 104 has a ring shape and also functions to seal pressure. The position holder 104 is provided with a pressure sealing portion 104a made of a heat-resistant rubber having a tongue-like cross section that enters and exits by hydraulic pressure or mechanical force. The state shown in FIG. 9 shows a state in which the tongue-like portion of the pressure sealing portion 104a is drawn. The two-dot chain line in the figure shows a state where the pressure is sealed and positioned by the tongue-shaped portion. The core 101 is installed on a support base 106, and each of the concentrically cylindrical inner heater 107, the cylindrical preform 102, and the cylindrical outer heater 108 is disposed between 2 to 5 mm. Further, a lifting rod 109 is attached to both heaters 107 and 108. Further, an apparatus for applying fluid pressure to the cylindrical preform 102 in the direction toward the central axis thereof is disposed on the outer periphery of the cylindrical preform 102. That is, with the pressurized fluid introduced from the fluid introduction valve unit 110, the inner tube of the double cylinder 111 disposed so as to surround the outer periphery of the cylindrical preform 102 is centered with respect to the outer periphery of the preform 102. A number of fluid introduction holes 112 are provided so that fluid pressure is evenly applied in the axial direction. Position holders 105 are attached above and below the double cylinder 111 in the same manner as the position holder 104 attached to the core. Similar to the pressure seal 104a of the position holder 104, the position holder 105 is provided with a pressure seal 105a made of a heat-resistant rapper having a tongue-shaped cross section that is moved in and out by hydraulic pressure or mechanical force, and the tongue is retracted. It is installed on the support base 106. Also, the heat sources of both heaters 107 and 108 are not provided in the vicinity of the tongue-shaped pressure sealing portions 104a and 105a of the position holders 104 and 105. By doing so, even if the tongue-shaped pressure sealing portions 104 a and 105 a are in contact with the PTFE preform 102, no burning occurs. Although not shown, auxiliary means such as lifting from the upper part or applying a little pressure in the cylindrical preform 102 can be taken for self-supporting of the preform 102. In some cases, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin (PFA) is attached to the outside of the preform 102 to make the pressure of the fluid even more uniform. As the pressurized fluid, for example, a gas such as nitrogen gas, a liquid having a low viscosity such as an organic heat medium, or the like is preferably used. Since the fluid temperature is selected from 50 to 300 ° C., a heating device may be necessary. The pressure is usually 10 to 100 kgf / cm 2 . S. P. As with the M method, the heater is not the combination of the outer heater 108 and the inner heater 107, both of which are outside the core 1 as described above, but the inner heater is incorporated in the core 1 as well. Good. Moreover, the apparatus for cooling after melt-pressing a molding is normally incorporated in a core.

このような装置を用いて、以下のようにして製造される。内外円筒状ヒーター107、108に通電して予備成形物102の表面温度を375〜450℃に保持して予備成形物を溶融させる。予備成形物の厚さが5mm程度の場合には、加熱に要する時聞は5〜30分である。予備成形物102を溶融後、内外ヒーター107、108は引き上げ棒109により上方に引き抜かれる。次に位置ホルダー104、105の舌状圧力封止部104a、105aに油圧または前進機械力113を予備成形物102の内外より加えて、予備成形物102を間にして位置のホールドと圧力封止を完全に行った後、圧力流体導入弁部110を急速に開口し、例えば100℃程度の窒素ガスにより10kgf/cm以上、好ましくは20kgf/cm以上、特に好ましくは50kgf/cm以上の圧力で二重円筒111内を急激に満たす。所要時間は1〜20秒、長くても60秒である。このとき、中子の表面は300℃以下、好ましくは150℃以下に保持する。その結果、予備成形物102は中子101に巻き付いてスクリュー型ベローズ原体114(二点鎖線)となる。スクリュー型ベローズ状をした中子の場合には、中子を冷やし、回転することで簡単に中子抜きすることができる。この中子を軸対称の普通型ベローズにすれば、普通型ベローズを得ることもできる。この場合は中子抜きはスクリュー型と同様にはできないので、前述した鍔返しをするなどして行なった方法による点で若干異なるが、外子金型を用いずに、流体圧を用いるところまでは共通である。この方式を以下、Equalized Pressure Molding(E.P.M法とも略記する)と呼ぶことにする。It manufactures as follows using such an apparatus. The inner and outer cylindrical heaters 107 and 108 are energized to maintain the surface temperature of the preform 102 at 375 to 450 ° C. to melt the preform. When the thickness of the preform is about 5 mm, the time required for heating is 5 to 30 minutes. After the preform 102 is melted, the inner and outer heaters 107 and 108 are pulled upward by the lifting rod 109. Next, hydraulic pressure or forward mechanical force 113 is applied to the tongue-shaped pressure sealing portions 104a and 105a of the position holders 104 and 105 from the inside and outside of the preform 102, and the position is held and pressure sealed with the preform 102 interposed therebetween. Then, the pressure fluid introduction valve unit 110 is rapidly opened, and is, for example, 10 kgf / cm 2 or more, preferably 20 kgf / cm 2 or more, particularly preferably 50 kgf / cm 2 or more with nitrogen gas at about 100 ° C. The inside of the double cylinder 111 is rapidly filled with pressure. The required time is 1 to 20 seconds, and 60 seconds at the longest. At this time, the surface of the core is kept at 300 ° C. or lower, preferably 150 ° C. or lower. As a result, the preform 102 is wound around the core 101 to become a screw-type bellows base 114 (two-dot chain line). In the case of a screw-type bellows-like core, the core can be easily removed by cooling and rotating the core. If this core is an axisymmetric normal bellows, a normal bellows can be obtained. In this case, the core can not be removed in the same way as the screw type, so it is slightly different in terms of the method performed by turning over as described above, but up to the point where fluid pressure is used without using the outer die. Are common. Hereinafter, this method will be referred to as Equalized Pressure Molding (abbreviated as EPM method).

(Equalized Pressure Moldingの変形例)
また、E.P.M法で作られるものはスクリュー型ベローズに限られるのではなく、通常のベローズにも適用できる。この場合には、中子抜きはS.P.M法と同様になされる。また、ベローズではないが、種々の形状のもの、例えば球状成形物も可能である。その場合、中子は焼いた粘土とかセラミックスで作られた球状物とし、そのまま中子を抜かずに使用するとか、成形物が不完全球状物である場合には、球状に蓋われていないところから中子を壊して取り出す。これにより種々の造形物を得ることができる。
(Modified example of Equalized Pressure Molding)
In addition, E.I. P. What is made by the M method is not limited to the screw-type bellows, but can also be applied to ordinary bellows. In this case, the core removal is S.I. P. It is made in the same way as the M method. Moreover, although it is not a bellows, the thing of various shapes, for example, a spherical molded product, is also possible. In that case, the core is a spherical product made of baked clay or ceramics. If the core is used without removing the core, or if the molded product is an incomplete spherical product, it is not covered with a spherical shape. The core is broken and removed. Thereby, various shaped objects can be obtained.

[予備成形物の代わりとして、切削加工若しくはブロー成形されたPTFE製ベローズを用いて本発明ベローズを作る方法]
(スクリュー型ベローズのさらに別な製造方法など)
さらに別の変形例を示す。旋盤による切削加工によって製作されたベローズを用いて、S.P.M法により本発明ベローズを作るものである。図10はそのような場合における本発明ベローズを作るための装置の縦断面図である。旋盤による切削加工によって製作された五山ベローズ201が下部全支え台202上に設置されている。五山ベローズ201には中子抜き工程で必要となるフランジ部201a、201bが両端に形成されている。また中子抜き装置支持部203も下部全支え台202上に設置されており、その上に中子抜き上げ耐圧容器204が設置されている。中子抜き上げ耐圧容器204は支持部材205により支持されている。初期段階では、五山ベローズ中子206は中子抜き上げ棒207により図の二点鎖線の位置に抜き上げられている。また、円筒状ヒーター208も引き上げ棒209により引き上げられている。中子抜き上げ耐圧容器204はその上下をOリング210、211により、また五山ベローズ201は下部全支え台202のOリング212によって所定の圧力下で保持される。また、五山作り用Sliding Plate Molding外子金型と五山作り用Sliding Plate Molding後押し用外子金型213も駆動装置(図示せず)とともに下部全支え台202上にセットされている。また、フランジ部拡張装置214がフランジ部201a、201bに対応する位置に設置されている。フランジ部拡張装置214は油圧作動の爪状チャック部215によってフランジ部201a、201bにしっかり喰い込んでいる。
[Method of Making Bellows of the Present Invention Using PTFE Bellows Cut or Blow Molded as a Pre-formed Product]
(Another method for manufacturing screw-type bellows, etc.)
Yet another modification is shown. Using bellows manufactured by lathe cutting, S. P. The bellows of the present invention is made by the M method. FIG. 10 is a longitudinal sectional view of an apparatus for making the bellows of the present invention in such a case. A five mountain bellows 201 manufactured by a cutting process using a lathe is installed on the lower full support base 202. The five mountain bellows 201 are formed with flange portions 201a and 201b at both ends, which are necessary for the core removal step. In addition, the core removal device support 203 is also installed on the lower full support base 202, and the core removal pressure vessel 204 is installed thereon. The core pull-out pressure vessel 204 is supported by a support member 205. In the initial stage, the five-belt bellows core 206 is pulled up to the position of the two-dot chain line in the figure by the core pull-up rod 207. The cylindrical heater 208 is also lifted by the lifting rod 209. The core withdrawing pressure vessel 204 is held at a predetermined pressure by O-rings 210 and 211 at the top and bottom, and the five mountain bellows 201 by an O-ring 212 of the lower full support base 202. In addition, a sliding plate molding outer mold for making five mountains and a sliding plate molding pushing outer mold 213 for making five mountains are also set on the lower full support base 202 together with a driving device (not shown). Moreover, the flange part expansion apparatus 214 is installed in the position corresponding to the flange parts 201a and 201b. The flange portion expanding device 214 is securely biting into the flange portions 201a and 201b by a hydraulically operated claw-shaped chuck portion 215.

このような装置において熱風または外部電熱等により、旋盤による切削加工によって製作された五山ベローズ201を200℃程度に均一に熱する。その後、内圧加圧導入口216より5〜10kgf/cm程度の内圧を加える。それと同時にフランジ部拡張装置214に遠心方向の外力217を加える。その大きさはフランジ部の肉厚が4mm、幅が40mmの場合にはフランジ部円周長1cm当たり11〜13kgf程度である。その結果、切削加工によって製作された五山ベローズ201は大体均一に膨張して、五山作り用Sliding Plate Molding外子金型と五山作り用Sliding Plate Molding後押し用外子金型213の内面に密着される(図に二点鎖線で示した201c)。この過程における加熱は外子金型にまで膨張させるためだけであり、樹脂を柔らかくする程度で十分である。但し、成形物の大きさ、形状から溶融させてもPTFEの極度に大きい溶融粘度であることから次の工程までの間に流動の心配がない場合には溶融させてもよい。次に中子206を下部全支え台202上に設置するとともに、円筒状ヒーター208を下げて、切削加工によって製作された五山ベローズ201と中子206の間に設置する。次いで、円筒状ヒーター208に通電して375〜425℃に保持する。それにより、切削加工によって製作された五山ベローズ201の内側は完全に溶融される。所要時間は5〜30分である。次に円筒状ヒーター208を、引き上げ捧209により引き上げ、五山作り用Sliding Plate Molding外子金型と五山作り用Sliding Plate Molding後押し用外子金型213を中心に向かって前進させ、切削加工によって製作された五山ベローズ201を加圧し、溶融加圧成形する。この後は冒頭に挙げた例と同様に行うことで、本発明ベローズが得られる。同様にして、ブロー成形によって製作されたベローズを予備成形物としても本発明ベローズを作ることができることは明らかである。また通常のベローズでなく、スクリュー型ベローズにも適用できる。この場合には中子抜きは前述と同様に、中子の回転だけで抜くこともできる。さらに上述のようなS.P.M法を用いる代わりに、E.P.M法でも同様にできる。S.P.M法にせよ、E.P.M法にせよ、いずれもあたかも衣類をアイロン掛けするに似るが、それ以上に表面を鏡面に仕上げ、毛羽立ちをなくすという効果をもたらすものである。当然ながら、一山ずつのアイロン掛け等も可能である。In such an apparatus, the Goyama bellows 201 manufactured by cutting with a lathe is heated uniformly to about 200 ° C. by hot air or external electric heat. Thereafter, an internal pressure of about 5 to 10 kgf / cm 2 is applied from the internal pressure pressurization inlet 216. At the same time, an external force 217 in the centrifugal direction is applied to the flange portion expanding device 214. The size is about 11 to 13 kgf per 1 cm of the circumferential length of the flange when the thickness of the flange is 4 mm and the width is 40 mm. As a result, the five-sided bellows 201 produced by the cutting process expands substantially uniformly and is in close contact with the inner surface of the five-sided sliding plate molding outer die and the five-sided sliding plate molding post-pressing outer die 213. (201c indicated by a two-dot chain line in the figure). The heating in this process is only for expanding the outer mold, and it is sufficient to soften the resin. However, even if it is melted from the size and shape of the molded product, it can be melted if there is no concern about flow during the next step because of the extremely high melt viscosity of PTFE. Next, the core 206 is installed on the lower full support base 202, and the cylindrical heater 208 is lowered and installed between the five mountain bellows 201 and the core 206 manufactured by cutting. Next, the cylindrical heater 208 is energized and maintained at 375 to 425 ° C. Thereby, the inside of the five mountain bellows 201 manufactured by cutting is completely melted. The time required is 5 to 30 minutes. Next, the cylindrical heater 208 is pulled up by a lifting 209, and a sliding plate molding outer mold for making a five mountain and a sliding plate molding boosting outer mold 213 for making a five mountain are advanced toward the center and manufactured by cutting. The formed five mountain bellows 201 is pressurized and melt-pressed. Thereafter, the bellows of the present invention can be obtained by carrying out in the same manner as in the example given at the beginning. Similarly, it is clear that the bellows of the present invention can be made using a bellows manufactured by blow molding as a preform. Moreover, it is applicable not only to a normal bellows but also to a screw-type bellows. In this case, the core can be removed only by rotating the core, as described above. Further, the S.I. P. Instead of using the M method, P. The same can be done with the M method. S. P. Regardless of the M method, E.E. P. In both cases, the M method is similar to ironing clothing, but more than that, it has a mirror-finished surface that eliminates fuzz. Of course, it is possible to iron one mountain at a time.

(変形例)
さらに別の変形例を示す。今まで述べてきたものは、溶融加圧成形された形状がベローズまたはベローズ部品であったが、その形状が、ベローズほどの曲率ではなく、緩やかな波状の表面を有するベローズ状のものを作り、その後で、その両端から圧力を加えて、成形物を圧縮させてベローズまたはベローズ部品を作ってもよい。したがって、先に述べた製造方法において、溶融加圧成形物の形状は、ベローズまたはベローズ部品だけでなく、これよりも緩やかな波状のものをも包含する。
(Modification)
Yet another modification is shown. What has been described so far was that the melt-pressed shape was a bellows or a bellows part, but the shape is not a curvature as much as a bellows, but a bellows shape with a gentle wavy surface is created, Thereafter, pressure may be applied from both ends to compress the molded product to produce a bellows or a bellows part. Therefore, in the manufacturing method described above, the shape of the melt-pressed product includes not only a bellows or a bellows part, but also a gentle wave shape.

(変形例2)
本発明の方法は、上述したPTFEの成形のみならず、高流動抵抗、具体的には、流体抵抗が50万P(ポイズ)以上、より好ましくは100万P(ポイズ)以上の樹脂、例えば熱硬化性樹脂に適用可能である。
(Modification 2)
The method of the present invention is not limited to the above-mentioned molding of PTFE, but also has a high flow resistance, specifically, a resin having a fluid resistance of 500,000 P (poise) or more, more preferably 1,000,000 P (poise) or more, such as heat. Applicable to curable resin.

半導体製造装置において用いられる本発明ベローズはパーティクルを発生させない点で極めて有用である。このほか、この他ナノテクノロジーに用いられるPTFEベローズにも広く好適に用いられ得る。  The bellows of the present invention used in a semiconductor manufacturing apparatus is extremely useful in that it does not generate particles. In addition, PTFE bellows used in other nanotechnology can also be used widely and suitably.

また、本発明ベローズは透明性が高いので種々の薬品を流すベローズに用い、外から内部の異物とか、内部での気泡発生等の異常反応を知ることができる。  In addition, since the bellows of the present invention is highly transparent, it can be used for bellows through which various chemicals flow, and it is possible to know abnormal reactions such as generation of internal foreign matters and bubbles inside from the outside.

また、本発明ベローズは超純水製造ラインとか、超純水を用いる系に好適に用いられる。  Moreover, this invention bellows is used suitably for the system which uses an ultrapure water production line or ultrapure water.

さらに、液晶表示面体のセルギャップは例えば1500nmの場合、その1/10程度のパーティクルの存在でも配向不良部分、いわれる“くすみ”の原因となるといわれているが、本発明ベローズを用いれば、そのようなパーティクルが発生しないので、パーティクルに起因するくすみのない液晶表示面体が得られる。また、有機ELの表示面体にも使える可能性がある。  Further, when the cell gap of the liquid crystal display surface is, for example, 1500 nm, it is said that even the presence of about 1/10 of the particles causes a misalignment portion, so-called “dullness”. Since such particles are not generated, a liquid crystal display surface free from dullness caused by the particles can be obtained. Moreover, there is a possibility that it can be used for an organic EL display surface.

また、燃料電池の燃料である液化天然ガス中におけるパーティクルの存在はプロセス全体の故障の原因または電池触媒上の汚点となるといわれているが、本発明ベローズを用いればパーティクルの発生がないので、故障の少ない燃料電池を提供する。  In addition, it is said that the presence of particles in liquefied natural gas, which is fuel for fuel cells, causes the failure of the entire process or a stain on the cell catalyst. However, if the bellows of the present invention are used, no particles are generated. Provide a fuel cell with less energy consumption.

また、既製品を使ってもよいし、特別用意したものを予備成形物にしてもよく、自由度が高い。とくに後者であれば、金属イオンなどの混入も避けることができ、より好ましいものが得られる。  In addition, ready-made products may be used, or specially prepared products may be used as preforms, and the degree of freedom is high. In particular, in the latter case, mixing of metal ions and the like can be avoided, and a more preferable one can be obtained.

一山ベローズの溶融圧縮成形物を作る装置に円筒状の予備成形物を挿入した状態を示す一部を切り欠いた斜視図である。It is the perspective view which notched a part which shows the state which inserted the cylindrical preform in the apparatus which makes the melt compression molding of a single bellows. 図1の上面部分図(ヒーターは図示せず)である。FIG. 2 is a top partial view of FIG. 1 (a heater is not shown). 一山ベローズの溶融圧縮成形物を作った後の状態を図2と同方向から見た上面全体図である。It is the upper surface whole view which looked at the state after making the melt compression molding product of a single bellows from the same direction as FIG. (a)一山ベローズ原体がら中子を抜くために必要なフランジ部を作る過程を示す説明図における最初の段階のもの(縦断面上部部分図)である。(b)一山ベローズ原体から中子を抜くために必要なフランジ部を作る過程を示す説明図における、図4aをより進行させたものである。(c)一山ベローズ原体から中子を抜くために必要なフランジ部を作る過程を示す説明図において、図4bの鍔返し一段目用押し付け金属フランジを鍔返し二段目用押し付け金属フランジと差し替え、さらに鍔返しを進行させたものである。(d)一山ベローズ原体から中子を抜くために必要なフランジ部を作る過程を示す説明図において、図4cを更に進行させて鍔返しを完成させたものである。(A) It is a thing of the first step in an explanatory view showing a process of making a flange part required in order to pull out a core from a single bellows base material (vertical section upper part partial view). (B) FIG. 4a is a more advanced view illustrating the process of making the flange portion necessary for removing the core from the single bellows base. (C) In the explanatory view showing the process of making the flange part necessary for removing the core from the single bellows base, the turned-up first stage pressing metal flange of FIG. Replacement and further turnover. (D) In the explanatory view showing the process of making the flange part necessary for removing the core from the single bellows base, FIG. 4c is further advanced to complete the turning. フランジを上下に作成した後の一山ベローズ原体の縦断面図である。It is a longitudinal cross-sectional view of the single bellows original material after creating a flange up and down. 中子抜き装置縦断面図である。It is a longitudinal cross-sectional view of a core removal apparatus. 一山ベローズを溶接して三山ベローズとした後の縦断面図である。It is a longitudinal cross-sectional view after welding a single bellows into a triple bellows. PTFE平板にベローズ開口経に相当する穴を空けた環状のものを予備成形物として、一山ベローズの山の頂上で分断されたものを作る過程を示す説明図であり、(a)は予備成形物を溶融プレス成形した後の横断面図、(b)はそれを鍔返しした横断面図、(c)は溶接後の横断面図であり、(a´)はスクリュー型ベローズを作る場合の予備成形物の溶融プレス成型した後の横断面図である。It is explanatory drawing which shows the process of making what was divided | segmented at the top of the mountain | belt of a single bellows, making the annular | circular thing which opened the hole corresponded to the bellows opening length on the PTFE flat plate, and (a) is preforming. (B) is a cross-sectional view after turning it over, (c) is a cross-sectional view after welding, and (a ') is for making a screw-type bellows. It is a cross-sectional view after performing melt press molding of a preform. スクリュー型ベローズをつくる金型装置の縦断面図である。It is a longitudinal cross-sectional view of the metal mold | die apparatus which produces a screw type bellows. 旋盤による切削加工によって製作されたベローズを用いたときの成形装置の縦断面図である。It is a longitudinal cross-sectional view of a shaping | molding apparatus when using the bellows manufactured by the cutting process by a lathe.

1・・・一山作り中子、
1p・・・中子の1の山部、
2・・・円筒状内側ヒーター、
3・・・PTFE製円筒状物、
4・・・円筒状外側ヒーター、
5a〜5h・・・外子金型、
5ap〜5hp・・・外子金型の山部、
6a〜6h・・・後押し用外子金型、
6ap〜6hp・・・後押し用外子金型の山部、
8・・・一山ベローズ原体、
8d・・・完全に鍔返った一山ベローズ原体8、
29・・・内圧加圧導入口、
30・・・フランジ部拡張装置、
101・・・中子、
102・・・予備成形物、
110・・・圧力流体導入弁部、
201・・・五山ベローズ、
214・・・フランジ部拡張装置、
216・・・内圧加圧導入口。
1 ... Ichiyama making core,
1p ... 1 mountain part of the core,
2 ... Cylindrical inner heater,
3 ... PTFE cylinder,
4 ... Cylindrical outer heater,
5a-5h ... outer mold,
5ap to 5hp ... Mountain part of outer mold,
6a-6h ... outer mold for boosting,
6ap to 6hp ... the peak part of the outer mold for boosting,
8 ... Ichiyama Bellows base,
8d ... A mountain bellows base 8 completely turned over,
29 ... Internal pressure pressurizing inlet,
30 ... Flange part expansion device,
101 ... core,
102 ... preformed product,
110: Pressure fluid introduction valve part,
201 ... Gosan Bellows,
214 ... Flange part expansion device,
216: Internal pressure pressurizing inlet.

Claims (5)

少なくとも内面が鏡面のポリテトラフルオロエチレンよりなることを特徴とするベローズまたはベローズを構成する部品。A bellows or a part constituting the bellows, characterized in that at least the inner surface is made of polytetrafluoroethylene having a mirror surface. 顕微鏡で観察して糸屑や鱗片状切片のないことを特徴とする請求項1のベローズまたはベローズを構成する部品。The bellows or the part constituting the bellows according to claim 1, wherein the bellows or the bellows are free from lint and scaly slices as observed with a microscope. 厚さ1mmにおける可視光線透過率が50%以上である請求項1または請求項2のベロズまたはベローズを構成する部品。The component constituting the bellows or bellows according to claim 1 or 2, wherein the visible light transmittance at a thickness of 1 mm is 50% or more. スクリュー型であることを特徴とする請求項1乃至3のいずれか一項に記載のベローズまたはベローズを構成する部品。The bellows according to any one of claims 1 to 3, or a part constituting the bellows, wherein the bellows is a screw type. 請求項1乃至4のいずれか1項に記載のベローズまたはベローズを用いた流体圧送機器。A fluid pressure feeding device using the bellows or the bellows according to any one of claims 1 to 4.
JP2014151215A 2007-09-26 2014-06-17 Polytetrafluoroethylene bellows and fluid pumping device Pending JP2014196832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014151215A JP2014196832A (en) 2007-09-26 2014-06-17 Polytetrafluoroethylene bellows and fluid pumping device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007275712 2007-09-26
JP2007275712 2007-09-26
JP2014151215A JP2014196832A (en) 2007-09-26 2014-06-17 Polytetrafluoroethylene bellows and fluid pumping device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008272485A Division JP5574141B2 (en) 2007-09-26 2008-09-25 Bellows made of polytetrafluoroethylene, method for producing the same, device for producing the same, and fluid pumping device using the same

Publications (1)

Publication Number Publication Date
JP2014196832A true JP2014196832A (en) 2014-10-16

Family

ID=40511316

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008272485A Expired - Fee Related JP5574141B2 (en) 2007-09-26 2008-09-25 Bellows made of polytetrafluoroethylene, method for producing the same, device for producing the same, and fluid pumping device using the same
JP2014151215A Pending JP2014196832A (en) 2007-09-26 2014-06-17 Polytetrafluoroethylene bellows and fluid pumping device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008272485A Expired - Fee Related JP5574141B2 (en) 2007-09-26 2008-09-25 Bellows made of polytetrafluoroethylene, method for producing the same, device for producing the same, and fluid pumping device using the same

Country Status (3)

Country Link
JP (2) JP5574141B2 (en)
TW (1) TW200932472A (en)
WO (1) WO2009041433A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5530770B2 (en) * 2010-03-18 2014-06-25 淀川ヒューテック株式会社 High durability bellows and manufacturing method thereof
KR102019449B1 (en) * 2018-04-17 2019-09-06 김송산 Bellows forming equipment
CN111136847A (en) * 2020-01-14 2020-05-12 安徽理工大学 Automatic plastic cap edge expansion device and control method thereof
US11780122B2 (en) 2020-04-20 2023-10-10 Westinghouse Electric Company Llc Internal hydroforming method for manufacturing heat pipe wicks
TWI741801B (en) * 2020-09-18 2021-10-01 國立中山大學 Die for forming irregular bellow

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152186U (en) * 1983-03-30 1984-10-12 住友電気工業株式会社 vertical pump
JPS61254327A (en) * 1985-05-07 1986-11-12 Asahi Chem Ind Co Ltd Multi-axially oriented product of polytetrafluoroethylene
JPH0315406U (en) * 1989-06-28 1991-02-15
JPH04220524A (en) * 1990-12-20 1992-08-11 Yamatake Honeywell Co Ltd Method and apparatus for forming lining in pipe
JPH0610658U (en) * 1992-07-14 1994-02-10 東洋ゴム工業株式会社 Flexible boots
JPH09177971A (en) * 1995-12-27 1997-07-11 Toyoda Gosei Co Ltd Boot for universal joint made of resin
JPH1073162A (en) * 1996-08-29 1998-03-17 Suzuki Motor Corp Boots and its molding/extracting method
JP2002511558A (en) * 1998-04-11 2002-04-16 トゥーヒェンハーゲン・ゲーエムベーハー Bellows body for sealing the valve stem passage of the lifting valve
JP2002187911A (en) * 2000-12-21 2002-07-05 Asahi Glass Co Ltd Method for producing paraffin wax for aqueous dispersion polymerization of tetrafluoroethylene and method for producing tetrafluoroethylene polymer by using the paraffin wax
JP2003171080A (en) * 2001-12-04 2003-06-17 Myotoku Ltd Sucking pad and manufacturing method thereof
JP2003335926A (en) * 2002-05-21 2003-11-28 Techno Polymer Co Ltd Thermoplastic resin composition
JP2004018816A (en) * 2002-06-20 2004-01-22 Hitachi Cable Ltd Coating material for forming water-repellent coating film
WO2005088129A1 (en) * 2004-03-15 2005-09-22 Koganei Corporation Liquid chemical supplying machine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5290664U (en) * 1975-12-27 1977-07-06
JPS6339491Y2 (en) * 1981-01-07 1988-10-17
EP0583481B1 (en) * 1992-02-05 1999-11-10 Daikin Industries, Ltd. Polytetrafluoroethylene powder for molding
JPH1135709A (en) * 1997-07-16 1999-02-09 Daikin Ind Ltd Smoothing of sintered polytetrafluoroethylene sheet
JP2001193836A (en) * 2000-01-11 2001-07-17 Nippon Pillar Packing Co Ltd Bellows and fluid equipment using the bellows
JP2002250442A (en) * 2001-02-23 2002-09-06 Yokohama Rubber Co Ltd:The Joint boot
JP3723538B2 (en) * 2001-12-25 2005-12-07 株式会社利川プラスチック Annular forming apparatus and forming method thereof
KR20070086795A (en) * 2004-11-30 2007-08-27 다이킨 고교 가부시키가이샤 Modified polytetrafluoroethylene molded article and process for manufacture thereof

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152186U (en) * 1983-03-30 1984-10-12 住友電気工業株式会社 vertical pump
JPS61254327A (en) * 1985-05-07 1986-11-12 Asahi Chem Ind Co Ltd Multi-axially oriented product of polytetrafluoroethylene
JPH0315406U (en) * 1989-06-28 1991-02-15
JPH04220524A (en) * 1990-12-20 1992-08-11 Yamatake Honeywell Co Ltd Method and apparatus for forming lining in pipe
JPH0610658U (en) * 1992-07-14 1994-02-10 東洋ゴム工業株式会社 Flexible boots
JPH09177971A (en) * 1995-12-27 1997-07-11 Toyoda Gosei Co Ltd Boot for universal joint made of resin
JPH1073162A (en) * 1996-08-29 1998-03-17 Suzuki Motor Corp Boots and its molding/extracting method
JP2002511558A (en) * 1998-04-11 2002-04-16 トゥーヒェンハーゲン・ゲーエムベーハー Bellows body for sealing the valve stem passage of the lifting valve
JP2002187911A (en) * 2000-12-21 2002-07-05 Asahi Glass Co Ltd Method for producing paraffin wax for aqueous dispersion polymerization of tetrafluoroethylene and method for producing tetrafluoroethylene polymer by using the paraffin wax
JP2003171080A (en) * 2001-12-04 2003-06-17 Myotoku Ltd Sucking pad and manufacturing method thereof
JP2003335926A (en) * 2002-05-21 2003-11-28 Techno Polymer Co Ltd Thermoplastic resin composition
JP2004018816A (en) * 2002-06-20 2004-01-22 Hitachi Cable Ltd Coating material for forming water-repellent coating film
WO2005088129A1 (en) * 2004-03-15 2005-09-22 Koganei Corporation Liquid chemical supplying machine

Also Published As

Publication number Publication date
TW200932472A (en) 2009-08-01
JP5574141B2 (en) 2014-08-20
WO2009041433A1 (en) 2009-04-02
JP2009097725A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
JP2014196832A (en) Polytetrafluoroethylene bellows and fluid pumping device
US20110023568A1 (en) Apparatus and method of hot bulge forming, and product formed by hot bulge forming
CN1853893B (en) Method and device for processing preforms
JP5675844B2 (en) Method of pressure forming a metal container or the like from a preform having a wall thickness gradient
CN105216294B (en) A kind of expanding device and flared method of PVC O tubing
GB1589052A (en) Pipe of oriented thermoplastic polymeric material and method of forming the same
JP2003202077A (en) Bellows and manufacturing method thereof
JP2017121661A (en) Method and apparatus for forming tool and associated materials therefrom
EP0028450A2 (en) Manufacture of thermoplastics pipe
JP2009113059A (en) Method and apparatus for forming prismatic container made of ferritic stainless steel, and prismatic container
CN1824409A (en) External beating metal plate material high temperature ultrahigh water pressure once shaping technology, method and equipment
JP2009097725A5 (en)
TWI552967B (en) A manufacturing method of an optical element and a manufacturing apparatus for an optical element
CN112477106A (en) Method for installing plastic-lined pipe of metal pipe with plastic-lined pipe
JP5756338B2 (en) Manufacturing method of sealing member and sealing member produced by the method
WO2016091376A1 (en) A method and arrangement for manufacturing of tubes by continuous hydraulic expansion
JPH10232290A (en) Manufacture of ceramics bellows
TW201012621A (en) Molding method for an optical element and optical element molding apparatus
JP2004314180A (en) Method of pressure-ram-forming metal container
KR20050020312A (en) Blow molded fluoropolymeric bellows with an uniform thickness, an apparatus and method for manufacturing the same
JP2003181545A (en) Molding method for bellows tube
CN115106428B (en) In-situ strengthening rapid forming method for titanium alloy thin-wall pipe
CN113386326A (en) Apparatus for forming plastic sheet using flexible mold
EP3825089B1 (en) Molding method for fluororesin molded article, production method for medical diaphragm, and production method for diaphragm for semiconductor
JP5574714B2 (en) Manufacturing method of heat transfer promotion tube, mold for heat transfer promotion tube, heat transfer promotion tube, heat exchanger, fusion reactor, and neutral particle injection heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141022

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161104

AX71 Interruption

Free format text: JAPANESE INTERMEDIATE CODE: A0071

Effective date: 20170512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171027

AX71 Interruption

Free format text: JAPANESE INTERMEDIATE CODE: A0071

Effective date: 20180424

AX72 Removal of interruption

Free format text: JAPANESE INTERMEDIATE CODE: A0072

Effective date: 20181128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190625