JP2014196543A - Production method of grain oriented silicon steel plate - Google Patents

Production method of grain oriented silicon steel plate Download PDF

Info

Publication number
JP2014196543A
JP2014196543A JP2013073264A JP2013073264A JP2014196543A JP 2014196543 A JP2014196543 A JP 2014196543A JP 2013073264 A JP2013073264 A JP 2013073264A JP 2013073264 A JP2013073264 A JP 2013073264A JP 2014196543 A JP2014196543 A JP 2014196543A
Authority
JP
Japan
Prior art keywords
pressure
processing chamber
electron beam
arcing
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013073264A
Other languages
Japanese (ja)
Other versions
JP5974958B2 (en
Inventor
重宏 ▲高▼城
重宏 ▲高▼城
Shigehiro Takagi
花澤 和浩
Kazuhiro Hanazawa
和浩 花澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013073264A priority Critical patent/JP5974958B2/en
Publication of JP2014196543A publication Critical patent/JP2014196543A/en
Application granted granted Critical
Publication of JP5974958B2 publication Critical patent/JP5974958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method with which even when charge-up that makes a deposit in a processing chamber a primary cause is generated, electron beam irradiation treatment to a grain oriented silicon steel plate is appropriately performed.SOLUTION: In a processing chamber that is maintained in a low pressure atmosphere, when a surface of a grain oriented silicon steel plate is irradiated with an electron beam, and subjected to magnetic domain fragmentation treatment, pressure of a beam passage region in the processing chamber is raised according to increment of an occurrence frequency of arcing in irradiation of the electron beam.

Description

本発明は、変圧器鉄心などの用途に使用される方向性電磁鋼板を、電子ビーム照射によって低鉄損化する方法に関するものである。   The present invention relates to a method for reducing the iron loss of a grain-oriented electrical steel sheet used for applications such as a transformer core by electron beam irradiation.

近年、各種機器における使用エネルギーの効率化が進められており、例えば変圧器においては、動作時のエネルギー損失の低減が求められている。この変圧器で生じる損失には、主に導線に生じる銅損と鉄心に生じる鉄損がある。さらに、鉄損は、ヒステリシス損と渦電流損に分けることができ、前者の低減には、素材の結晶方位の改善や、不純物の低減などが有効であることが知られている。
例えば、特許文献1には、最終冷延前の焼鈍条件を適正化することによって、磁束密度と鉄損に優れた方向性電磁鋼板を製造する方法について示されている。
In recent years, energy efficiency in various devices has been improved. For example, transformers are required to reduce energy loss during operation. The loss that occurs in this transformer mainly includes copper loss that occurs in the conductor and iron loss that occurs in the iron core. Furthermore, iron loss can be divided into hysteresis loss and eddy current loss, and it is known that improvement of the crystal orientation of the material and reduction of impurities are effective in reducing the former.
For example, Patent Document 1 discloses a method for manufacturing a grain-oriented electrical steel sheet having excellent magnetic flux density and iron loss by optimizing the annealing conditions before final cold rolling.

一方、渦電流損は、板厚の低減やSi添加量の増大の他に、特に、板厚が0.30mm以下の鋼板において、レーザ、プラズマジェットまたは電子ビームなどを用いて、鋼板表面に熱歪みを導入する等の手法によって、低減可能であることが知られている。
例えば、特許文献2には、2次再結晶後の鋼板にプラズマアークを照射することにより、照射前には0.80W/kg以上であった鉄損W17/50を、0.65W/kg以下に低減する技術が示されている。
On the other hand, eddy current loss is not limited to a reduction in plate thickness or an increase in the amount of Si added, especially in steel plates with a plate thickness of 0.30 mm or less, using a laser, plasma jet, electron beam, etc. It is known that the reduction can be achieved by a technique such as introducing.
For example, in Patent Document 2, the iron loss W 17/50 , which was 0.80 W / kg or more before irradiation, is reduced to 0.65 W / kg or less by irradiating a plasma arc to the steel sheet after secondary recrystallization. Techniques for reducing are shown.

また、特許文献3には、被膜厚と、電子ビーム照射によって鋼板面に形成された磁区不連続部の平均幅とを適正化することによって、鉄損が低くて騒音が小さいトランス用素材を得る技術が示されている。
ここで、電子ビームによる処理は、ビーム偏向を電気制御にて高速化が達成されること、また高加速電圧化によって照射表面からより深い部分にまで熱影響部を形成させること、がメリットであるが、一方で、高真空環境が必須であるという、ハンドリング上の扱い難さがある。この真空環境下でのトラブルとして、排気ポンプによる騒音、真空漏れ、異常放電、そしてチャージアップなどがある。騒音については、ポンプ性能の向上や防音壁の設置などによって、80dB以下での運転が可能になっている。また、真空漏れは発生したとしても、Heリークディテクタなどで検知して補強シーリングすることが可能であり、一旦補強を行えば、長期的に真空環境を保つことが可能である。一方、異常放電は、その発生を抑制するための施策が数々なされてはいるものの、完全に排除できるまでには至っていない。
Further, Patent Document 3 obtains a transformer material with low iron loss and low noise by optimizing the film thickness and the average width of the magnetic domain discontinuities formed on the steel plate surface by electron beam irradiation. Technology is shown.
Here, the processing by the electron beam is advantageous in that the beam deflection can be speeded up by electric control, and that the heat affected zone is formed from the irradiation surface to a deeper portion by increasing the acceleration voltage. However, on the other hand, there is a handling difficulty that a high vacuum environment is essential. Problems in this vacuum environment include noise from the exhaust pump, vacuum leakage, abnormal discharge, and charge up. With regard to noise, operation at 80 dB or less is possible due to improvements in pump performance and the installation of soundproof walls. Further, even if a vacuum leak occurs, it can be detected by a He leak detector or the like and reinforced sealing can be performed, and once reinforced, a vacuum environment can be maintained for a long time. On the other hand, abnormal discharge has not been completely eliminated, although various measures have been taken to suppress its occurrence.

また、チャージアップは、電子顕微鏡の分野において頻出する事例の一つであり、数々の対策が施されている。チャージアップとは、何らかの理由によって電子ビーム経路が正または負に帯電し、鋼板に照射されるべき電子ビームと干渉してしまうことによって起こる現象であり、その結果として、電子ビームの焦点ズレや軌道変更、さらには異常放電発生などの問題が生じる。走査型電子顕微鏡(SEM)の例では、絶縁性試料に、特に高電圧で加速した電子ビームを照射した場合には、試料に照射された電子(負電荷)が、照射によって放出される2次電子よりも多くなって照射部が負に帯電してしまい、後続のビームと電気的相互作用を引き起こしてしまう。   Charge-up is one of the frequent cases in the field of electron microscopes, and many countermeasures have been taken. Charge-up is a phenomenon that occurs when the electron beam path is positively or negatively charged for some reason and interferes with the electron beam to be irradiated on the steel sheet. As a result, the focus shift or trajectory of the electron beam. Problems such as changes and abnormal discharge occur. In the case of a scanning electron microscope (SEM), when an insulating sample is irradiated with an electron beam accelerated at a high voltage, the electron irradiated to the sample (negative charge) is released by irradiation. More than electrons, the irradiated part becomes negatively charged, causing an electrical interaction with the subsequent beam.

方向性電磁鋼板の電子ビーム照射処理においても、地鉄は導電性物質からなるものの表層被膜は絶縁性物質からなるため、電子ビーム照射の際には上記チャージアップが発生する可能性がある。上述のとおり、方向性電磁鋼板への電子ビーム照射は、鉄損低減を目的としたものであるが、このようなチャージアップ現象が生じると、上記のSEMの場合と同様、電子ビームの軌道変更や焦点ズレが生じて、理想的には真円形状であるべきビーム照射軸と直交する断面の形状が楕円状に歪み、その結果、電子ビーム面積当たりの照射エネルギーが低減し、磁区細分化の効果が小さくなってしまう。   Even in the electron beam irradiation treatment of the grain-oriented electrical steel sheet, since the surface layer is made of an insulating material while the ground iron is made of a conductive material, the above charge-up may occur during the electron beam irradiation. As described above, the electron beam irradiation to the grain-oriented electrical steel sheet is aimed at reducing iron loss, but when such a charge-up phenomenon occurs, as in the case of the above SEM, the electron beam trajectory is changed. And a focal shift occurs, and the shape of the cross section perpendicular to the beam irradiation axis, which should be a perfect circle, is ideally distorted into an ellipse, resulting in a reduction in irradiation energy per electron beam area and The effect will be reduced.

この点、特許文献4においては、鋼板を接地することによって、鋼板近傍での異常放電を抑制し、鉄損を改善する方法が示されている。さらに併せて、鋼板表層にガスを残留させて電気的に中和させる方法が示されている。   In this regard, Patent Document 4 discloses a method of suppressing an abnormal discharge in the vicinity of a steel sheet and improving iron loss by grounding the steel sheet. In addition, a method is shown in which gas is left on the steel sheet surface layer to electrically neutralize the gas.

特開2012−1741号公報JP 2012-1741 A 特開2011−246782号公報JP 2011-246782 A 特開2012−52230号公報JP 2012-52230 A 特開昭64−68425号公報JP-A 64-68425

しかしながら、上記のチャージアップ現象は、鋼板近傍でのみ発生するのではなく、むしろ電子ビームが鋼板に到達する手前の経路で発生することが多い。すなわち、電子ビームを長時間照射していると、被加工体を導入した加工室内に該被加工体に由来する成分が堆積してくることがある。方向性電磁鋼板の場合、その表面が絶縁性物質でコーティングされており、電子ビーム照射によって、このコーティングが微量ではあるが高温化ついで気化されて、加工室内に付着するためである。また、電子ビームを照射する表面に油分などの汚れがある場合にも、この油成分が堆積されることがある。   However, the above charge-up phenomenon does not occur only in the vicinity of the steel plate, but rather often occurs in a path before the electron beam reaches the steel plate. That is, when the electron beam is irradiated for a long time, components derived from the workpiece may be deposited in the processing chamber into which the workpiece is introduced. This is because the surface of a grain-oriented electrical steel sheet is coated with an insulating material, and this coating is vaporized at a high temperature but is deposited by electron beam irradiation and adheres to the processing chamber. Moreover, this oil component may be deposited also when there is dirt such as oil on the surface irradiated with the electron beam.

従って、上記のチャージアップの発生を抑制するには、この堆積物の除去がまず考えられる。ところが、方向性電磁鋼板の電子ビーム処理は、被加工体の周囲の圧力が、被加工体のライン位置に応じて、大気圧から加工室内の圧力までの範囲内で変化する、いわゆるAir-to-air方式によって、大気中で無数に接合されたコイルに対して連続的に行うことが多いため、電子ビームの加工室は常時高真空環境に保つ必要があって、堆積した絶縁物を容易には除去できない。それを除去するには、処理ラインの停止が必要になるため、生産性を著しく低減することになる。   Therefore, in order to suppress the occurrence of the above-mentioned charge-up, removal of this deposit can be considered first. However, the electron beam treatment of grain-oriented electrical steel sheets is a so-called air-to-air process in which the pressure around the workpiece changes in a range from atmospheric pressure to the pressure in the machining chamber according to the line position of the workpiece. Because the -air method is often performed continuously for an infinite number of coils joined in the atmosphere, the electron beam processing chamber must be kept in a high vacuum environment at all times, and the deposited insulator can be easily removed. Cannot be removed. To remove it, it is necessary to stop the processing line, so that productivity is significantly reduced.

そこで、本発明は、上記した加工室内での堆積物を主因とするチャージアップが発生した場合にあっても、方向性電磁鋼板に電子ビーム照射処理を適正に行うための方途について提案することを目的とする。   Therefore, the present invention proposes a method for appropriately performing electron beam irradiation treatment on a grain-oriented electrical steel sheet even when the above-described charge-up mainly due to deposits in the processing chamber occurs. Objective.

本発明者らは、チャージアップの原因となる帯電を緩和する手法として、高真空環境内にわずかに残存する大気に着目し、この残存大気が電荷のキャリアとなり得るかを検討した。そこで、電子銃のフィラメントを長時間使い続け、絶縁物を加工室に堆積させたときの、鉄損に及ぼす真空度の影響を調査した。
すなわち、図1に、電子ビーム(400W)の連続照射使用時間が1000hと0(ゼロ)hである電子銃を用いて、電子ビーム照射による処理を行った際の、鉄損に及ぼす加工室圧力の影響を示す。ここで、加工室はビーム通路と空間的につながっているため、加工室圧力はビーム通路域の圧力と一致している(以下、ビーム通路域の圧力を加工室圧力とも称す)。ここに、0hの条件では、公知の手法によってビーム通路域を清掃して加工室に堆積物が無い状態とし、1000hの条件では、1000hの連続照射使用のままの、加工室に絶縁物が堆積した状態とした。同図中のデータは、単板磁気試験器(SST)用試料30枚の平均データである。同図に示す結果より、低鉄損化に有効な加工室圧力は、電子銃のフィラメント使用時間によって異なる、つまり堆積物の有無によって異なることが明らかになった。
The inventors of the present invention focused on the slightly remaining atmosphere in the high vacuum environment as a technique for reducing the charge that causes charge-up, and examined whether this remaining atmosphere could be a charge carrier. Therefore, the effect of the degree of vacuum on the iron loss when the electron gun filament was used for a long time and the insulator was deposited in the processing chamber was investigated.
That is, FIG. 1 shows that the processing chamber pressure exerted on the iron loss when processing by electron beam irradiation is performed using an electron gun having a continuous irradiation time of electron beam (400 W) of 1000 h and 0 (zero) h. The influence of Here, since the processing chamber is spatially connected to the beam passage, the processing chamber pressure matches the pressure in the beam passage region (hereinafter, the pressure in the beam passage region is also referred to as processing chamber pressure). Here, in the condition of 0h, the beam passage area is cleaned by a known method so that there is no deposit in the processing chamber, and in the condition of 1000h, the insulator is deposited in the processing chamber while using 1000h continuous irradiation. It was in a state of being. The data in the figure is the average data of 30 samples for a single plate magnetic tester (SST). From the results shown in the figure, it has been clarified that the working chamber pressure effective for reducing iron loss differs depending on the filament usage time of the electron gun, that is, the presence or absence of deposits.

本発明者らは、上記の実験結果を基にして、絶縁堆積物が加工室に多く堆積するほど、加工室の残留ガス分子を多くし、絶縁物の帯電を中和させることが有効ではないかと推定した。ここで重要になるのは、堆積物量を把握することであるが、従来、堆積物量を定量評価する方法がなく、従って、電子ビーム照射後のある時点でどの程度の堆積があるから、どの程度の圧力にすべきなのかを特定することは不可能であった。   Based on the above experimental results, the present inventors are not effective in increasing the amount of residual gas molecules in the processing chamber and neutralizing the charging of the insulating material as more insulating deposits are deposited in the processing chamber. I estimated. What is important here is to grasp the amount of deposits, but there is no conventional method for quantitative evaluation of the amount of deposits, and therefore how much deposits are present at a certain time after electron beam irradiation. It was impossible to specify what the pressure should be.

そこで、本発明者らは、絶縁物の堆積量を評価する方途について鋭意究明したところ、電子銃内においてカソードとアノードとの間にアークを発生するアーキングの発生回数をもって、絶縁物の堆積評価が可能になるとの結論を得た。すなわち、方向性電磁鋼板への電子ビーム照射に伴う絶縁物の堆積は、被膜物質の損傷、気化および蒸着の順を踏んで発生するものと考えられ、気化が起こった場合には、アーキングが発生することが少なくない。従って、アーキングの発生回数は、被膜の損傷および蒸着量に比例するものと考えられ、このアーキングの発生回数に対応して加工室の圧力を調整すれば、長時間の連続操業においても、極めて鉄損の低い方向性電磁鋼板を安定して製造することが可能になる、との新規知見を得るに到った。   Therefore, the present inventors diligently studied how to evaluate the amount of deposited insulator, and the deposition of the insulator was evaluated based on the number of occurrences of arcing that generates an arc between the cathode and the anode in the electron gun. I got the conclusion that it would be possible. In other words, it is considered that the deposition of insulators on the grain-oriented electrical steel sheet due to electron beam irradiation occurs in the order of damage to the coating material, vaporization, and vapor deposition, and arcing occurs when vaporization occurs. There are many things to do. Therefore, the number of occurrences of arcing is considered to be proportional to the damage of the coating and the amount of deposition, and if the pressure in the processing chamber is adjusted in accordance with the number of occurrences of arcing, even in continuous operation for a long time, It came to the novel knowledge that it became possible to manufacture a grain-oriented electrical steel sheet with low loss stably.

本発明は、以上の知見に基づくものであり、その要旨構成は次のとおりである。
(1) 低圧雰囲気に保持される加工室において、方向性電磁鋼板の表面に電子ビームを照射して磁区細分化処理を施すに当たり、前記電子ビームの照射におけるアーキングの発生回数の増加に応じて、前記加工室内のビーム通路域の圧力を高めて、前記アーキングの発生回数をNとしたときの、前記加工室内のビーム通路域の圧力P(Pa)を下記式に従う範囲とする方向性電磁鋼板の製造方法。

3≧P≧exp[(N−249)/56]
ここに、アーキングの発生回数は、前記加工室の使用開始時、すなわち加工室内の堆積物が除去された状態を起点としてアーキングの発生数を累積したものである。
なお、装置立ち上げ時の陰極フラッシング(陰極やビーム通路に付着した水分を、高出力ビームを照射することによって除去する作業)の間に発生したアーキングは主として水分を起因とするものであるから、本発明でのアーキングの発生回数には含まない。
The present invention is based on the above knowledge, and the gist configuration is as follows.
(1) In the processing chamber maintained in a low-pressure atmosphere, when performing the magnetic domain fragmentation treatment by irradiating the surface of the grain-oriented electrical steel sheet with an electron beam, In the grain-oriented electrical steel sheet, the pressure P (Pa) of the beam passage area in the processing chamber when the pressure in the beam passage area in the processing chamber is increased and the number of occurrences of arcing is N Production method.
3 ≧ P ≧ exp [(N−249) / 56]
Here, the number of occurrences of arcing is obtained by accumulating the number of occurrences of arcing starting from the start of use of the processing chamber, that is, the state where deposits in the processing chamber are removed.
In addition, since arcing generated during cathode flushing (operation for removing moisture adhering to the cathode and the beam path by irradiating a high-power beam) at the time of starting the apparatus is mainly caused by moisture, It is not included in the number of occurrences of arcing in the present invention.

本発明によれば、長時間の電子ビーム照射に伴ってチャージアップが発生した場合にあっても、適正な電子ビーム照射が継続されるため、磁気特性の良好な磁区細分化方向性電磁鋼板を安定して得ることができる。これにより、従来、チャージアップを解消するために実施していた、装置全体の真空解放や、高頻度での加工室の清掃は不要になり、電子ビーム装置のメンテナンス周期が長期化し、高効率で低鉄損方向性電磁鋼板を製造することが可能になる。   According to the present invention, even when charge-up occurs due to long-time electron beam irradiation, proper electron beam irradiation is continued. It can be obtained stably. This eliminates the need for vacuum release of the entire device and high-frequency cleaning of the processing chamber, which have been performed in order to eliminate the charge-up, and increases the maintenance cycle of the electron beam device and increases efficiency. A low iron loss grain-oriented electrical steel sheet can be manufactured.

ビーム通路域の圧力と鉄損との関係を示すグラフである。It is a graph which shows the relationship between the pressure of a beam passage area, and an iron loss. アーキングの発生回数とビーム通路域の最小適正圧力との関係を示すグラフである。It is a graph which shows the relationship between the frequency | count of generation | occurrence | production of arcing, and the minimum appropriate pressure of a beam passage area. ビーム通路域の圧力と鉄損との関係を示すグラフである。It is a graph which shows the relationship between the pressure of a beam passage area, and an iron loss.

本発明は、鉄損低減を目的に、鋼板表面に電子ビームを照射して磁区細分化を実施する方向性電磁鋼板の製造方法である。
ここで、低圧雰囲気に保持される真空チャンバー等の加工室において、方向性電磁鋼板の表面に電子ビームを照射して磁区細分化処理を施すに当たり、前記電子ビーム照射におけるアーキングの発生回数の増加に応じて、前記加工室の圧力を高めることが肝要である。すなわち、アーキングの発生回数に対応して加工室の圧力を調整すれば、チャージアップの原因となる帯電を緩和することができ、極めて鉄損の低い方向性電磁鋼板を安定して製造可能になる。
The present invention is a method for producing a grain-oriented electrical steel sheet, in which a magnetic domain is subdivided by irradiating the surface of the steel sheet with an electron beam for the purpose of reducing iron loss.
Here, in a processing chamber such as a vacuum chamber maintained in a low-pressure atmosphere, the number of arcing occurrences in the electron beam irradiation is increased when the surface of the grain-oriented electrical steel sheet is irradiated with an electron beam and subjected to magnetic domain subdivision processing. Accordingly, it is important to increase the pressure in the processing chamber. In other words, if the pressure in the processing chamber is adjusted in accordance with the number of occurrences of arcing, charging that causes charge-up can be alleviated, and a grain-oriented electrical steel sheet with extremely low iron loss can be manufactured stably. .

そして、アーキングの発生回数をNとしたときに、加工室内のビーム通路域の圧力P(Pa)を次式
3≧P≧exp[(N−249)/56]
を満足する範囲に設定する。
以下に、上記式を導出するに到った実験結果を中心に、当該式について説明する。
まず、ビーム通路域の圧力Pは、過度に高くすると、電子ビームの散乱が顕著になってビーム径を小さくして歪領域を局在化できなくなるために、3Pa以下とする必要がある。より好ましくは、1.0Pa以下である。
When the number of occurrences of arcing is N, the pressure P (Pa) in the beam passage area in the machining chamber is expressed by the following equation 3 ≧ P ≧ exp [(N−249) / 56]
Set to a range that satisfies
In the following, the equation will be described focusing on the experimental results that led to the derivation of the equation.
First, if the pressure P in the beam passage region is excessively high, electron beam scattering becomes remarkable, the beam diameter is reduced, and the strain region cannot be localized. More preferably, it is 1.0 Pa or less.

一方、図2に、ビーム通路域の最小適正圧力とアーキング発生回数との関係を示すように、アーキング発生回数が増加するにつれてビーム通路域の最小適正圧力も高くなっていて、図2に示す結果から、ビーム通路域の適正圧力はP≧exp[(N−249)/56]の範囲にあることがわかる。   On the other hand, as shown in FIG. 2, the relationship between the minimum appropriate pressure in the beam passage area and the number of arcing occurrences, the minimum appropriate pressure in the beam passage area increases as the number of arcing occurrences increases. Thus, it can be seen that the appropriate pressure in the beam passage area is in the range of P ≧ exp [(N−249) / 56].

ここで、最小適正圧力は、以下の手順によって求めた。始めに、ビーム通路域の圧力を、0.002、0.01、0.05、0.2、1.0、2.0、3.0および4.0Paの範囲にそれぞれ設定し、各圧力にて方向性電磁鋼板に磁区細分化処理を行った。具体的には、圧延方向長さ280mm、幅方向長さ100mmおよび板厚0.23mmの方向性電磁鋼板に、フォーカシング条件およびビーム通路域の圧力以外は同一の条件にて発生させた、電子ビームを照射することによって磁区細分化処理を施した。鋼板は同一のコイルから切出した磁気特性が同等の物を用いており、それぞれの圧力条件で各15枚の電子ビーム照射を実施した。尚、フォーカシングは、いずれの場合も、ビーム径が鋼板上で最も小さくなるように調整した。   Here, the minimum appropriate pressure was determined by the following procedure. First, the pressure in the beam passage region was set in the range of 0.002, 0.01, 0.05, 0.2, 1.0, 2.0, 3.0, and 4.0 Pa, respectively, and the magnetic domain refinement treatment was performed on the grain-oriented electrical steel sheet at each pressure. Specifically, an electron beam generated on a grain-oriented electrical steel sheet with a length of 280 mm in the rolling direction, a length of 100 mm in the width direction and a thickness of 0.23 mm under the same conditions except for the focusing conditions and the pressure in the beam passage area. Magnetic domain refinement treatment was performed by irradiation. The steel plates were cut from the same coil and had the same magnetic properties, and each of the 15 electron beam irradiations was performed under each pressure condition. The focusing was adjusted so that the beam diameter was the smallest on the steel plate in any case.

この一連のプロセスを、アーキング発生回数が異なる状況下で数セット実施した。すなわち、0回、73回、153回および315回の各アーキング発生回数下において、上記圧力8条件×15枚の計120枚の試料を作製し、上記したSSTにて鉄損W17/50を評価し、15枚の平均値が最も低くなった圧力条件をビーム通路域の適正圧力とした。その際、最も低い鉄損値から+0.003W/kg以内の鉄損であった場合には、有意差が無いものとして、その条件もまたビーム通路域の適正圧力とした。以上のビーム通路域の適正圧力のうち最小のものを、ビーム通路域の最小適正圧力とした。 Several sets of this series of processes were performed under different circumstances of occurrence of arcing. That is, under the number of arcing occurrences of 0 times, 73 times, 153 times, and 315 times, a total of 120 samples of the above 8 pressure conditions × 15 pieces were prepared, and the iron loss W 17/50 was calculated using the SST described above. The pressure condition under which the average value of 15 sheets was the lowest was determined as the appropriate pressure in the beam passage area. At that time, if the iron loss was within +0.003 W / kg from the lowest iron loss value, it was assumed that there was no significant difference, and the condition was also set to an appropriate pressure in the beam passage area. The minimum appropriate pressure in the beam passage area is defined as the minimum appropriate pressure in the beam passage area.

アーキング発生の無い状態において、低鉄損化する適正圧力は最も低い値で0.01Paであった。アーキング発生回数が増加するにつれて、適正圧力は増大し、315回発生した状態では、加工室の最小適正圧力は3Paであった。
一例として、図3に、アーキング発生回数153回での、鉄損におよぼすビーム通路域の圧力の影響を示す。最も低鉄損になったのは、ビーム通路域の圧力が0.2〜3Paの範囲であった。従って、本回数のアーキングを発生した電子銃を用いた場合、0.2Pa以上にする必要があることになる。
In a state where no arcing occurred, the appropriate pressure for reducing iron loss was 0.01 Pa at the lowest value. As the number of arcing occurrences increased, the appropriate pressure increased. With the occurrence of 315 times, the minimum appropriate pressure in the processing chamber was 3 Pa.
As an example, FIG. 3 shows the influence of the pressure in the beam passage area on the iron loss when the arcing occurs 153 times. The lowest iron loss occurred when the pressure in the beam passage area was in the range of 0.2 to 3 Pa. Therefore, when an electron gun that has generated arcing of this number is used, the pressure must be 0.2 Pa or higher.

また、ビーム通路域を含み、加工室ではない空間、例えばフィラメントと加工室の間に設けられた中間室で管理している圧力があれば、その圧力とアーキング発生回数の関係を求めても良い。尚、通常の電子ビーム照射装置では、ビーム通路域の大半が加工室と圧力が同一である空間に含まれているため、チャージアップも加工室圧力に大きく左右されるものと考えられる。   Further, if there is a pressure that includes a beam passage area and is managed in a space other than the processing chamber, for example, an intermediate chamber provided between the filament and the processing chamber, the relationship between the pressure and the number of arcing occurrences may be obtained. . In a normal electron beam irradiation apparatus, since most of the beam passage area is included in a space having the same pressure as the processing chamber, the charge-up is considered to be greatly influenced by the processing chamber pressure.

さらに、アーキングの発生回数の検出は、公知の手法(例えば、特開昭63−290693号公報および特公平5−32157号公報)を用いてもよいし、その他の手法でもよい。その他の手法として、例えば、絶縁被膜が気化するなどした場合に発生する火花などを観測して、その回数で代替するものでも良い。   Furthermore, the number of occurrences of arcing may be detected using a known method (for example, Japanese Patent Laid-Open No. 63-290693 and Japanese Patent Publication No. 5-32157), or other methods. As another method, for example, a spark generated when the insulating coating is vaporized may be observed and replaced by the number of times.

なお、加工室(ビーム通路域)の圧力調整は、加工室あるいは加工室近傍に設置した微小リークを発生させるバルブによって行うことができる。   Note that the pressure in the processing chamber (beam passage area) can be adjusted by a valve that generates a minute leak installed in the processing chamber or in the vicinity of the processing chamber.

次に、本発明における電子ビームの照射条件について、その条件毎に説明する。
[加速電圧Va:40〜300kV]
同一加速電圧のもとでは、電子ビームの高速化に伴い、適正出力が増大し、低鉄損化に好ましくないビーム径増大が生じる。その抑制には、高加速電圧化が最も有効である。すなわち、加速電圧が40kV未満であると、ビーム径を絞ることが難しくなり鉄損低減効果が小さくなる。一方、300kVを越えると、フィラメントなどの装置寿命が短くなるだけでなく、X線漏洩防止のために装置が過度に巨大化して、メンテナンス性や生産性を減じてしまう。また、過度にビーム径を細くしすぎると、被膜損傷頻度が増大し、チャージアップ回数が増大しやすくなることから、より好ましい範囲としては、150kV以下である。
Next, the electron beam irradiation conditions in the present invention will be described for each condition.
[Acceleration voltage Va: 40 to 300kV]
Under the same acceleration voltage, as the speed of the electron beam increases, the appropriate output increases, resulting in an unfavorable increase in beam diameter for low iron loss. Higher acceleration voltage is the most effective for the suppression. That is, when the acceleration voltage is less than 40 kV, it is difficult to narrow the beam diameter and the effect of reducing iron loss is reduced. On the other hand, if it exceeds 300 kV, not only the life of the apparatus such as the filament will be shortened, but the apparatus will become excessively large in order to prevent X-ray leakage, reducing maintenance and productivity. Further, if the beam diameter is excessively reduced, the frequency of film damage increases and the number of charge-ups tends to increase. Therefore, a more preferable range is 150 kV or less.

[ビーム径:100〜500μmφ]
ビーム径が100μmφ未満であると、そのために、ワーキングディスタンス(WD)を極度に低減するなどの処置を講じざるを得ず、その場合、1つの電子ビーム源によって偏向照射可能な距離が大幅に減少してしまう。その結果、1200mmほどの広幅コイルに照射を行うためには、多数の電子銃が必要となって、メンテナンス性並びに生産性を減じる。
一方、500μmφより大きいと、十分な鉄損低減効果が得られない。というのも、鋼板のビーム照射面積(熱歪み導入部分の体積)が過度に増大して、ヒステリシス損が劣化するためである。
[Beam diameter: 100-500μmφ]
If the beam diameter is less than 100μmφ, it is necessary to take measures such as extremely reducing the working distance (WD). In that case, the distance that can be deflected by one electron beam source is greatly reduced. Resulting in. As a result, in order to irradiate a wide coil of about 1200 mm, a large number of electron guns are required, reducing maintenance and productivity.
On the other hand, if it is larger than 500 μmφ, a sufficient iron loss reduction effect cannot be obtained. This is because the beam irradiation area (volume of the thermal strain introduction portion) of the steel sheet is excessively increased and the hysteresis loss is deteriorated.

[電子ビーム照射パターン]
上記の加速電圧とビーム径を有する電子ビームを鋼板面上で走査させながら、鋼板内部に直線状の熱歪を与えていく。このときの電子ビームの出力や、鋼板上の走査速度は鋼板の低鉄損化に有利な条件となるよう、適宜設定すれば良い。電子ビームの走査は、常時移動し続ける連続的なものであっても良いし、移動と停止を繰返しながら行うドット状のものであってもなんら問題は無い。
[Electron beam irradiation pattern]
While the electron beam having the above acceleration voltage and beam diameter is scanned on the steel plate surface, linear thermal strain is applied to the inside of the steel plate. What is necessary is just to set suitably the output of the electron beam at this time, and the scanning speed on a steel plate so that it may become conditions favorable for the reduction in iron loss of a steel plate. The scanning of the electron beam may be a continuous one that continues to move constantly or a dot-like one that is repeatedly moved and stopped without any problem.

また、上記熱歪は、圧延直角方向からのずれ角が30°以内とすることが望ましい。一般的に、磁化容易軸を横切る向きに導入した熱歪によって、磁区の細分化が起こる。従って、Goss方位粒で主に形成される方向性電磁鋼板においては、圧延直角方向を向いた熱歪があれば、磁区が十分細分化されるし、一方で、圧延直角方向からずれている場合には、その分、余分な熱歪が鋼中に形成されることになり、磁壁移動運動の障害となって、鉄損を劣化してしまう。   Further, it is desirable that the thermal strain has a deviation angle within 30 ° from the direction perpendicular to the rolling. In general, magnetic domains are subdivided by thermal strain introduced in a direction crossing the easy axis of magnetization. Therefore, in the grain-oriented electrical steel sheet mainly formed with Goss-oriented grains, if there is a thermal strain directed in the direction perpendicular to the rolling, the magnetic domain is sufficiently subdivided, while on the other hand, it is shifted from the direction perpendicular to the rolling Therefore, an excessive thermal strain is formed in the steel, which becomes an obstacle to the domain wall motion and deteriorates the iron loss.

さらに、上記線状の熱歪は、圧延方向に一定の間隔を持って周期的に形成する。この間隔(線間隔)は3〜15mmであることが好ましい。線間隔が狭いと、鋼中に形成される歪領域が過度に大きくなって、鉄損(ヒステリシス損)が劣化するだけでなく、生産性を劣化する。一方で、広すぎると、いくら深さ方向に還流磁区を拡大しても、磁区細分化効果が乏しくなり鉄損が改善しない。   Further, the linear thermal strain is periodically formed with a certain interval in the rolling direction. This interval (line interval) is preferably 3 to 15 mm. When the line spacing is narrow, the strain region formed in the steel becomes excessively large, and not only iron loss (hysteresis loss) is deteriorated but also productivity is deteriorated. On the other hand, if it is too wide, no matter how much the reflux magnetic domain is expanded in the depth direction, the effect of subdividing the magnetic domain becomes poor and the iron loss is not improved.

[加工室内のビーム通路域の圧力:3Pa以下]
ビーム通路域の圧力が3Paを超えると、電子銃から発生した電子が残留ガスに散乱され、地鉄に熱影響を与え、還流磁区を形成する電子のエネルギーが減少するため、十分に磁区が細分化されず、鉄損の改善が難しくなる。
[Pressure in the beam passage area in the processing chamber: 3 Pa or less]
When the pressure in the beam passage area exceeds 3 Pa, electrons generated from the electron gun are scattered in the residual gas, which has a thermal effect on the ground iron, reducing the energy of the electrons that form the return magnetic domain. It is difficult to improve iron loss.

[アーキング発生回数:310回以下]
アーキングが過度に発生し、ビーム加工室に絶縁物が大量に付着してしまうと、加工室圧力を3Paまでの範囲で高くしても、その悪影響を抑制できなくなる。310回以上になった場合には、速やかに加工室の清掃によって、チャージアップの原因である絶縁物を除去する必要がある。
[Number of arcing occurrences: 310 times or less]
If arcing occurs excessively and a large amount of insulating material adheres to the beam processing chamber, even if the processing chamber pressure is increased up to 3 Pa, the adverse effect cannot be suppressed. When the number of times becomes 310 times or more, it is necessary to quickly remove the insulator that causes the charge-up by cleaning the processing chamber.

電子ビームを照射する電磁鋼板には、絶縁被膜が形成されていても良いし、無くても問題は無い。すなわち、絶縁被膜が形成されていない場合であっても、例えば鋼板表面に油分などの付着があれば、アーキングが発生する可能性が高く、本発明の適用が有効である。絶縁被膜としては、地鉄よりも十分に導電性の低い、鋼板の表層に均一に形成された無機系の組成からなる物質であって、例えば、酸化物被膜や窒化物被膜などが該当する。   The electromagnetic steel sheet irradiated with the electron beam may be provided with an insulating coating, or there is no problem even if it is not present. That is, even when the insulating coating is not formed, if there is adhesion of oil or the like on the steel sheet surface, for example, there is a high possibility that arcing will occur, and the application of the present invention is effective. The insulating coating is a substance having an inorganic composition uniformly formed on the surface layer of the steel plate, which is sufficiently lower in conductivity than the ground iron, and corresponds to, for example, an oxide coating or a nitride coating.

質量比で3.2%のSiを含んだ鋼板の地鉄表面にMgSiOを主成分とするガラス状被膜を形成し、さらにその上にリン酸塩系の無機物質からなる被膜を形成した、方向性電磁鋼板に電子ビームを照射して磁区細分化処理を施した。その際、アーキングの発生回数に応じて加工室(ビーム通路域)の圧力を、表1に示すように調整した。加工室におけるビーム通路域の圧力調整条件毎に処理後の方向性電磁鋼板の鉄損を調査した結果について、表1に併記する。ここで、処理対象とした方向性電磁鋼板は、電子ビーム照射による磁区細分化を健全な状態で行うと、表1にNo.1として示したように、0.724W/kgまで低鉄損化する材料である。 A glassy film mainly composed of Mg 2 SiO 4 was formed on the surface of the steel sheet containing 3.2% Si by mass ratio, and a film made of a phosphate-based inorganic substance was formed thereon. Magnetic grain refinement treatment was performed by irradiating a grain oriented electrical steel sheet with an electron beam. At that time, the pressure in the processing chamber (beam passage area) was adjusted as shown in Table 1 according to the number of occurrences of arcing. Table 1 also shows the results of examining the iron loss of the grain-oriented electrical steel sheet after treatment for each pressure adjusting condition in the beam passage area in the processing chamber. Here, the grain-oriented electrical steel sheet to be processed is reduced in iron loss to 0.724 W / kg as shown as No. 1 in Table 1 when the magnetic domain fragmentation by electron beam irradiation is performed in a healthy state. Material.

なお、測定データは、同一の陰極を用い、60kVの加速電圧、10mAのビーム電流、ビーム走査速度40m/sである電子ビームを、圧延方向の線間隔5mm、走査方向の圧延直角方向からのズレ角0°の条件で照射した方向性電磁鋼板コイルから切出したSST用単板30枚のデータを平均したものである。   The measurement data is the same cathode, an acceleration voltage of 60 kV, a beam current of 10 mA, and a beam scanning speed of 40 m / s. This is an average of the data of 30 single sheets for SST cut out from a grain-oriented electrical steel sheet coil irradiated at an angle of 0 °.

表1のNo.5に示すように、アーキング発生回数が増加した際に加工室(ビーム通路域)の圧力調整を行わない場合は、鉄損の低減効果が得られないことがわかる。
また、No.4,6および8は圧力調整を行っているものの、圧力条件が上式に適合していないため、鉄損の低減効果が得られないことがわかる。
一方、No.7に示すように、上式に適合する圧力条件にすることによって、アーキング発生回数が多い場合にあっても、低鉄損化が可能であることがわかる。
As shown in No. 5 of Table 1, it can be seen that if the pressure in the machining chamber (beam passage area) is not adjusted when the number of arcing occurrences is increased, the effect of reducing iron loss cannot be obtained.
In addition, although No. 4, 6 and 8 are pressure-adjusted, it can be seen that the effect of reducing iron loss cannot be obtained because the pressure condition does not conform to the above equation.
On the other hand, as shown in No. 7, it can be seen that the iron loss can be reduced even when the number of arcing occurrences is large by setting the pressure condition to meet the above equation.

Figure 2014196543
Figure 2014196543

Claims (1)

低圧雰囲気に保持される加工室において、方向性電磁鋼板の表面に電子ビームを照射して磁区細分化処理を施すに当たり、前記電子ビームの照射におけるアーキングの発生回数の増加に応じて、前記加工室内のビーム通路域の圧力を高めて、前記アーキングの発生回数をNとしたときの、前記加工室内のビーム通路域の圧力P(Pa)を下記式に従う範囲とする方向性電磁鋼板の製造方法。

3≧P≧exp[(N−249)/56]


In the processing chamber maintained in a low-pressure atmosphere, when the surface of the grain-oriented electrical steel sheet is irradiated with an electron beam and subjected to magnetic domain subdivision processing, according to the increase in the number of occurrences of arcing in the irradiation of the electron beam, the processing chamber A method for producing a grain-oriented electrical steel sheet in which the pressure P (Pa) in the beam passage area in the processing chamber is set to a range according to the following equation when the pressure in the beam passage area is increased and the number of occurrences of arcing is N.
3 ≧ P ≧ exp [(N−249) / 56]


JP2013073264A 2013-03-29 2013-03-29 Method for producing grain-oriented electrical steel sheet Active JP5974958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013073264A JP5974958B2 (en) 2013-03-29 2013-03-29 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013073264A JP5974958B2 (en) 2013-03-29 2013-03-29 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2014196543A true JP2014196543A (en) 2014-10-16
JP5974958B2 JP5974958B2 (en) 2016-08-23

Family

ID=52357535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013073264A Active JP5974958B2 (en) 2013-03-29 2013-03-29 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5974958B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659591A (en) * 1979-10-22 1981-05-23 Nec Corp Electron beam welder
JPH0559742U (en) * 1992-01-17 1993-08-06 川崎製鉄株式会社 Electron beam irradiation device
JPH05295446A (en) * 1992-04-20 1993-11-09 Kawasaki Steel Corp Device for reducing iron loss for grain-oriented silicon steel sheet
JP2002134057A (en) * 2000-10-24 2002-05-10 Hitachi Ltd Scanning electron microscope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659591A (en) * 1979-10-22 1981-05-23 Nec Corp Electron beam welder
JPH0559742U (en) * 1992-01-17 1993-08-06 川崎製鉄株式会社 Electron beam irradiation device
JPH05295446A (en) * 1992-04-20 1993-11-09 Kawasaki Steel Corp Device for reducing iron loss for grain-oriented silicon steel sheet
JP2002134057A (en) * 2000-10-24 2002-05-10 Hitachi Ltd Scanning electron microscope

Also Published As

Publication number Publication date
JP5974958B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
RU2578296C2 (en) Textured electrical steel sheet and a method of reducing the iron loss
US10026533B2 (en) Grain-oriented electrical steel sheet for iron core and method of manufacturing the same
CN110352255B (en) Grain-oriented electromagnetic steel sheet and method for producing same
EP3263720A1 (en) Grain-oriented electrical steel sheet and production method therefor
WO2013030953A1 (en) Antenna for plasma processing apparatus, and plasma processing apparatus using antenna
JP6169695B2 (en) Oriented electrical steel sheet
KR20130058625A (en) Ion bombardment apparatus and method for cleaning of surface of base material using the same
JP5974958B2 (en) Method for producing grain-oriented electrical steel sheet
JP2008053116A (en) Ion gun and deposition apparatus
JP6245296B2 (en) Method for producing grain-oriented electrical steel sheet
JP5023552B2 (en) Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof
KR20030024807A (en) Unidirectional silicon steel sheet of ultra-low iron loss and method for production thereof
JP6015723B2 (en) Manufacturing method of grain-oriented electrical steel sheet for low noise transformer cores
CN105225917B (en) A kind of ion trap device and method for reducing straight type gun cathode pollution
TW202228181A (en) Ion source device with adjustable plasma density
JP6160376B2 (en) Directional electrical steel sheet for transformer core and method of manufacturing the same
JP2012035302A (en) Electron beam irradiation device
JP5825284B2 (en) Steel material processing method and grain-oriented electrical steel sheet processing method
JP5533415B2 (en) Electron beam irradiation method
JP2020167107A (en) Ion source and vapor deposition device
CA2885355C (en) Method of manufacturing grain-oriented electrical steel sheet exhibiting low iron loss
JP5929808B2 (en) Method for producing grain-oriented electrical steel sheet by high-speed electron beam irradiation
RU2740146C1 (en) Ion source (ion gun)
JP4457007B2 (en) Apparatus and method for coating a substrate with a coating
Abbas et al. The axial profile of plasma characteristics of cylindrical magnetron sputtering device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160704

R150 Certificate of patent or registration of utility model

Ref document number: 5974958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250