JP2014195779A - Treatment method and apparatus of an organic effluent combining a hydrothermal treatment and an anaerobic treatment - Google Patents

Treatment method and apparatus of an organic effluent combining a hydrothermal treatment and an anaerobic treatment Download PDF

Info

Publication number
JP2014195779A
JP2014195779A JP2013073065A JP2013073065A JP2014195779A JP 2014195779 A JP2014195779 A JP 2014195779A JP 2013073065 A JP2013073065 A JP 2013073065A JP 2013073065 A JP2013073065 A JP 2013073065A JP 2014195779 A JP2014195779 A JP 2014195779A
Authority
JP
Japan
Prior art keywords
anaerobic
treatment apparatus
organic
tank
hydrothermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013073065A
Other languages
Japanese (ja)
Inventor
圭介 宍戸
Keisuke Shishido
圭介 宍戸
寛 内藤
Hiroshi Naito
寛 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suntory Holdings Ltd
Original Assignee
Suntory Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntory Holdings Ltd filed Critical Suntory Holdings Ltd
Priority to JP2013073065A priority Critical patent/JP2014195779A/en
Publication of JP2014195779A publication Critical patent/JP2014195779A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for stably and efficiently treating, anaerobically together with an organic effluent, a liquid matrix obtained by liquefying, in a high efficiency, a solid biomass via a hydrothermal reaction by using an organic acid-containing liquid in place of water based on the permeation of both through an anaerobic treatment apparatus.SOLUTION: The provided anaerobic treatment method of an organic effluent targeting an effluent treatment apparatus including an acid generation tank and an anaerobic reaction tank is furnished with the following steps: a step of introducing, together with a solid biomass, a portion of an organic acid-containing liquid obtained as an effluent from the acid generation tank into a hydrothermal treatment apparatus and then obtaining a liquid matrix by liquefying both via a hydrothermal reaction under subcritical water conditions; and a step of returning the obtained liquid matrix into the acid generation tank, whereas the solid biomass and the organic effluent are anaerobically treated within the identical anaerobic reaction tank; an effluent treatment apparatus for implementing this method is also provided.

Description

本発明は、水に代えて有機酸含有液を用いて固形バイオマスを水熱反応により高い効率で液状化して得た液体基質を、有機性排水とともに、嫌気性処理装置に通水して安定かつ効率的に嫌気性処理する方法に関する。   In the present invention, a liquid substrate obtained by liquefying solid biomass with high efficiency by hydrothermal reaction using an organic acid-containing liquid instead of water is stably passed through an anaerobic treatment apparatus together with organic waste water. The present invention relates to a method for anaerobic treatment efficiently.

一般に、お茶やコーヒー飲料工場等の食品製造工程からの緑茶滓やコーヒー豆滓などの水に不溶な食品系有機廃棄物は、焼却処理がなされ、あるいは家畜の飼料、肥料などとして利用されている。
焼却処理においては、前記緑茶滓等の燃焼により発生した熱を回収しているが、以下に説明する嫌気処理においてメタンガスとして回収されない。
In general, water-insoluble food-based organic waste such as green tea and coffee beans from food manufacturing processes such as tea and coffee beverage factories are incinerated or used as livestock feed, fertilizer, etc. .
In the incineration process, the heat generated by the combustion of the green tea bowl or the like is recovered, but it is not recovered as methane gas in the anaerobic process described below.

以下の特許文献1に記載されるように、有機性排水を、酸生成槽を介して嫌気反応槽、例えば、上向流嫌気性汚泥床(UASB)型嫌気反応槽で嫌気性処理する方法は知られている。
UASB法、すなわち、上向流嫌気性汚泥床法(Upflow Anaerobic Sludge Blanket Process)は、嫌気性菌(メタン生成細菌)を、付着担体を用いることなく自己造粒又は核となる物質に造粒させてなる造粒汚泥(グラニュール)の汚泥床(スラッジブランケット)を形成した反応槽に、原水を上向流で通水して処理する方法であり、UASB反応槽中に高濃度の微生物を保持することが可能であることから、高負荷処理にて、有機性排水中の有機物を効率良く分解除去することができる方法である。それゆえ、UASB型嫌気性処理装置は、好気性活性汚泥法に比べて、反応槽容積当りの有機物負荷が高く、曝気のためのエネルギーが不要で、メタンガスとしてエネルギーの回収が可能である上に、余剰汚泥発生量が少なく、しかも、槽内構造がシンプルであるといった優れた特長を備えているため、近年、食品工場排水などを対象として普及しつつある。
As described in Patent Document 1 below, the method of anaerobically treating organic wastewater in an anaerobic reaction tank, for example, an upflow anaerobic sludge bed (UASB) type anaerobic reaction tank, via an acid generation tank is as follows. Are known.
The UASB method, that is, the Upflow Anaerobic Sludge Blanket Process, granulates anaerobic bacteria (methanogenic bacteria) into self-granulating or core material without using adherent carriers. This is a method in which raw water is passed upward in a reaction tank that forms a sludge bed (sludge blanket) of granulated sludge (granule) and retains high-concentration microorganisms in the UASB reaction tank. Therefore, it is a method capable of efficiently decomposing and removing organic substances in organic wastewater by high load treatment. Therefore, compared to the aerobic activated sludge method, the UASB type anaerobic treatment apparatus has a higher organic substance load per reaction tank volume, does not require energy for aeration, and can recover energy as methane gas. In recent years, it is becoming popular for food factory wastewater and the like because it has excellent features such as a small amount of excess sludge generation and a simple tank internal structure.

他方、以下の特許文献2や3に記載されるように、廃酵母や麦搾り滓、生ごみ等の水に不溶な食品系有機廃棄物を亜臨界水条件下での水熱反応により液状化する技術が知られている。また、特許文献2や3には、かかる水熱反応を行う水熱反応処理装置と嫌気性処理装置を含む処理槽位置によりメタンガスを回収することが記載されている。   On the other hand, as described in Patent Documents 2 and 3 below, food-based organic waste such as waste yeast, wheat straw, and garbage is liquefied by hydrothermal reaction under subcritical water conditions. The technology to do is known. Further, Patent Documents 2 and 3 describe that methane gas is recovered at a processing tank position including a hydrothermal reaction processing apparatus that performs such a hydrothermal reaction and an anaerobic processing apparatus.

特開平8−155486号公報JP-A-8-155486 特開2002−102897号公報JP 2002-102897 A 特開2009−119378号公報JP 2009-119378 A

特許文献2や3に記載された嫌気性処理装置は、被処理物が、廃酵母や麦搾り滓、生ごみ等の固形バイオマスであり、かかる固形バイオマスを、まず、水熱反応により液状化し、これを嫌気性処理してメタンガスを回収する装置であるため、有機性排水と固形バイオマスを共に処理することは想定されていない。また、特許文献2や3に記載された技術における水熱反応は、水に不溶な固形バイオマスを液状化できるが、液状化のために水と、水を亜臨界水条件化とするための熱と、液状化までの反応時間が必要となる。さらに、特許文献2と3に記載された方法は、バッチ処理であり、特に、特許文献3においては、以降のメタン発酵槽において使用する凝集剤の量を低減するために、水熱処理された後の液状化されなかった処理物を、メタン発酵槽に供給している。   In the anaerobic treatment apparatus described in Patent Documents 2 and 3, the object to be treated is solid biomass such as waste yeast, wheat straw, and garbage, and the solid biomass is first liquefied by a hydrothermal reaction, Since it is an apparatus which anaerobically treats this and collect | recovers methane gas, processing an organic waste water and solid biomass together is not assumed. Further, the hydrothermal reaction in the techniques described in Patent Documents 2 and 3 can liquefy solid biomass insoluble in water, but water and heat for making water into subcritical water conditions for liquefaction. And reaction time until liquefaction is required. Furthermore, the methods described in Patent Documents 2 and 3 are batch processes, and in particular, in Patent Document 3, after hydrothermal treatment is performed in order to reduce the amount of flocculant used in the subsequent methane fermentation tank. The processed product which has not been liquefied is supplied to the methane fermentation tank.

本発明が解決しようとする課題は、水に代えて有機酸含有液を用いて固形バイオマスを水熱反応することにより、水を用いた水熱反応よりも水熱反応を促進させて液状化して得た液体基質を、有機性排水とともに、嫌気性処理装置に通水して安定かつ効率的に嫌気性処理する方法及び装置を提供することである。   The problem to be solved by the present invention is that hydrothermal reaction of solid biomass using an organic acid-containing liquid instead of water promotes hydrothermal reaction rather than hydrothermal reaction using water, and liquefies. An object is to provide a method and an apparatus for anaerobically treating the obtained liquid substrate together with organic waste water through an anaerobic treatment apparatus in a stable and efficient manner.

本発明者らは、かかる課題を解決すべく、鋭意検討し実験を重ねた結果、酸生成槽と嫌気反応槽を含む排水処理装置において有機性排水を嫌気性処理する方法において、水に代えて、酸生成槽の出口液である有機酸含有水を水熱処理に用いることで、上記課題を解決しうることを見出し、本発明を完成するに至ったものである。   As a result of intensive studies and experiments to solve such problems, the present inventors have conducted anaerobic treatment of organic wastewater in a wastewater treatment apparatus including an acid generation tank and an anaerobic reaction tank, instead of water. The present inventors have found that the above-mentioned problems can be solved by using organic acid-containing water, which is an outlet liquid of an acid generation tank, for hydrothermal treatment, and have completed the present invention.

すなわち、本発明は、以下の通りのものである。
[1]酸生成槽と嫌気性反応槽を含む排水処理装置における有機性排水の嫌気性処理方法において、以下の工程:
該酸生成槽の流出液である有機酸含有液の一部と、固形バイオマスを、水熱処理装置に導入し、亜臨界水条件下での水熱反応により液状化して液体基質を得、
得られた液体基質を、該酸生成槽に返送する、
を含み、該固形バイオマスと該有機性排水を、同一の該嫌気性反応槽で嫌気性処理することを特徴とする、前記方法。
That is, the present invention is as follows.
[1] In the anaerobic treatment method for organic wastewater in a wastewater treatment apparatus including an acid generation tank and an anaerobic reaction tank, the following steps are performed:
Part of the organic acid-containing liquid that is the effluent of the acid generation tank and solid biomass are introduced into a hydrothermal treatment apparatus, and liquefied by a hydrothermal reaction under subcritical water conditions to obtain a liquid substrate.
The obtained liquid substrate is returned to the acid generation tank.
The solid biomass and the organic waste water are subjected to anaerobic treatment in the same anaerobic reaction tank.

[2]前記水熱処理装置の出口液である液体基質と、前記水熱処理装置に導入する有機酸含有液との間で、熱交換する、前記[1]に記載の方法。   [2] The method according to [1], wherein heat exchange is performed between a liquid substrate which is an outlet liquid of the hydrothermal treatment apparatus and an organic acid-containing liquid introduced into the hydrothermal treatment apparatus.

[3]前記嫌気性反応槽が、上向流嫌気性汚泥床(UASB)型嫌気性反応槽である、前記[1]又は[2]に記載の方法。   [3] The method according to [1] or [2], wherein the anaerobic reaction tank is an upward flow anaerobic sludge bed (UASB) type anaerobic reaction tank.

[4]前記固形バイオマスが、飲料工場等の食品製造工程から排出された廃棄物である、前記[1]〜[3]のいずれかに記載の方法。   [4] The method according to any one of [1] to [3], wherein the solid biomass is waste discharged from a food manufacturing process such as a beverage factory.

[5]酸生成槽と嫌気性反応槽と水熱処理装置とを含む、有機性排水の排水処理装置であって、該酸生成槽の流出液である有機酸含有液の一部と、固形バイオマスを、該水熱処理装置に導入し、亜臨界水条件下での水熱反応により液状化して液体基質を得、得られた液体基質を、該酸生成槽に返送し、該固形バイオマスと該有機性排水を、同一の該嫌気性反応槽で嫌気性処理することを特徴とする、前記排水処理装置。   [5] A wastewater treatment apparatus for organic wastewater including an acid generation tank, an anaerobic reaction tank, and a hydrothermal treatment apparatus, a part of the organic acid-containing liquid that is an effluent of the acid generation tank, and solid biomass Is introduced into the hydrothermal treatment apparatus and liquefied by a hydrothermal reaction under subcritical water conditions to obtain a liquid substrate. The obtained liquid substrate is returned to the acid generation tank, and the solid biomass and the organic The wastewater treatment apparatus is characterized in that anaerobic wastewater is anaerobically treated in the same anaerobic reaction tank.

[6]前記水熱処理装置の出口液である液体基質と、前記水熱処理装置に導入する有機酸含有液との間で、熱交換する、前記[5]に記載の排水処理装置。   [6] The wastewater treatment apparatus according to [5], wherein heat exchange is performed between a liquid substrate which is an outlet liquid of the hydrothermal treatment apparatus and an organic acid-containing liquid introduced into the hydrothermal treatment apparatus.

[7]前記嫌気性反応槽が、上向流嫌気性汚泥床(UASB)型嫌気性反応槽である、前記[5]又は[6]に記載の排水処理装置。   [7] The waste water treatment apparatus according to [5] or [6], wherein the anaerobic reaction tank is an upward flow anaerobic sludge bed (UASB) type anaerobic reaction tank.

[8]前記固形バイオマスが、飲料工場等の食品製造工程から排出された廃棄物である、前記[5]〜[7]のいずれかに記載の排水処理装置。   [8] The wastewater treatment apparatus according to any one of [5] to [7], wherein the solid biomass is waste discharged from a food manufacturing process such as a beverage factory.

本発明の嫌気性処理方法においては、酸生成槽の流出液である有機酸含有液の一部と、固形バイオマスを、水熱処理装置に導入し、亜臨界水条件下での水熱反応により液状化して液体基質を得るため、有機酸が水熱反応を促進するため、固形バイオマスを、水を用いた水熱反応よりも短い水熱反応時間で糖や有機酸を含む液体基質に変換することが可能となり、水熱反応に必要な熱の使用量が削減され、省エネに寄与する。
得られた液体基質は、酸生成に返送して、最終的に、嫌気性反応槽、例えば、UASB型嫌気性反応槽で嫌気性処理することができるので、該固形バイオマスと該有機性排水を、同一の該嫌気性反応槽で嫌気性処理し、メタンガスを回収することが可能となる。
さらに、酸生成槽の流出液を水熱処理装置に導入して、固形バイオマスの水熱反応に用いるので、水熱処理装置において外部からの水の供給が不要となり、ランニングコスト低減が可能となる。
また、水熱処理装置の出口液である液体基質と、水熱処理装置に導入する有機酸含有液との間で、熱交換することにより、さらなる省エネに寄与する。
すなわち、本発明により、酸生成槽と嫌気性反応槽を含む排水処理装置に有機性排水を通水して嫌気性処理する方法に、水熱処理を、該方法の安定性や効率を低下させず、むしろ効率を高めて、組み入れることによって、焼却等により廃棄処理されていた固形バイオマスをメタンガスとして回収することが可能となる。
In the anaerobic treatment method of the present invention, a part of the organic acid-containing liquid that is the effluent of the acid generation tank and the solid biomass are introduced into a hydrothermal treatment apparatus, and are liquefied by a hydrothermal reaction under subcritical water conditions. Converting solid biomass into a liquid substrate containing sugars and organic acids in a shorter hydrothermal reaction time than hydrothermal reactions using water, because organic acids promote hydrothermal reactions to produce liquid substrates As a result, the amount of heat required for the hydrothermal reaction is reduced, contributing to energy saving.
The obtained liquid substrate can be returned to acid generation and finally anaerobically treated in an anaerobic reaction tank, for example, a UASB type anaerobic reaction tank, so that the solid biomass and the organic waste water can be removed. It is possible to perform anaerobic treatment in the same anaerobic reaction tank and recover methane gas.
Furthermore, since the effluent of the acid generation tank is introduced into the hydrothermal treatment apparatus and used for the hydrothermal reaction of the solid biomass, no external water supply is required in the hydrothermal treatment apparatus, and the running cost can be reduced.
Moreover, it contributes to further energy saving by exchanging heat between the liquid substrate which is the outlet liquid of the hydrothermal treatment apparatus and the organic acid-containing liquid introduced into the hydrothermal treatment apparatus.
That is, according to the present invention, hydrothermal treatment is applied to a method of anaerobic treatment by passing organic wastewater through a wastewater treatment apparatus including an acid generation tank and an anaerobic reaction tank, without reducing the stability and efficiency of the method. Rather, it is possible to recover solid biomass that has been disposed of by incineration or the like as methane gas by increasing efficiency and incorporating it.

本発明の嫌気性排水処理法のフロー図である。It is a flowchart of the anaerobic waste water treatment method of this invention. 水熱処理装置の出口液である液体基質と水熱処理装置に導入する有機酸含有液との間で熱交換する場合のフロー図である。It is a flowchart in the case of exchanging heat between the liquid substrate that is the outlet liquid of the hydrothermal treatment apparatus and the organic acid-containing liquid introduced into the hydrothermal treatment apparatus. 固形バイオマスとして緑茶滓を使用し、通常の水と、酸生成槽の流出液である有機酸含有液とを、それぞれ、用いて反応温度140℃で水熱処理して得た溶解液のBrix値を示すグラフである。The Brix value of the solution obtained by hydrothermally treating using normal water and the organic acid-containing liquid that is the effluent of the acid generation tank at a reaction temperature of 140 ° C. is used as the solid biomass. It is a graph to show. 固形バイオマスとして緑茶滓を使用し、通常の水と、酸生成槽の流出液である有機酸含有液とを、それぞれ、用いて反応温度180℃で水熱処理して得た溶解液のBrix値を示すグラフである。The Brix value of the solution obtained by using a green tea bowl as solid biomass and hydrothermally treating each of the normal water and the organic acid-containing liquid that is the effluent of the acid generation tank at a reaction temperature of 180 ° C. It is a graph to show. 固形バイオマスとして緑茶滓を使用し、通常の水と、酸生成槽の流出液である有機酸含有液とを、それぞれ、用いて反応温度140℃、160℃、及び180℃で水熱処理して得た溶解液の糖+有機酸濃度(炭素基準)の上昇分を示すグラフである。Using green tea cake as solid biomass, obtained by hydrothermal treatment using normal water and organic acid-containing liquid that is the effluent of the acid generator at reaction temperatures of 140 ° C, 160 ° C, and 180 ° C, respectively. It is a graph which shows the increase part of the saccharide | sugar + organic acid density | concentration (carbon reference | standard) of the dissolved solution.

まず、図1を参照して、酸生成槽と嫌気性反応槽を含む排水処理装置において、嫌気性反応槽として上向流嫌気性汚泥床(UASB)型の嫌気性反応槽を用いた排水処理装置に有機性排水を通水して嫌気性処理する方法を説明する。
飲料工場等の食品製造工程から排出される廃棄物である、緑茶、コーヒー飲料等の製造工程からの有機性(工場)排水は、酸生成槽に送られ、該排水中の糖、タンパクなどを、乳酸、プロピオン酸、酪酸、酢酸などの低級脂肪酸に分解される。すなわち、酸生成槽内には、酸生成細菌が浮遊状態で又は担体に固定された状態で存在しており、低級脂肪酸への分解反応が行われる。すなわち、酸生成槽の流出液は、有機酸含有液である。
First, referring to FIG. 1, in a wastewater treatment apparatus including an acid generation tank and an anaerobic reaction tank, wastewater treatment using an anaerobic reaction tank of an upflow anaerobic sludge bed (UASB) type as an anaerobic reaction tank. A method for anaerobic treatment by passing organic wastewater through the apparatus will be described.
Organic (factory) wastewater from the manufacturing process of green tea, coffee beverages, etc., which is the waste discharged from the food manufacturing process of beverage factories, etc., is sent to the acid generation tank, where sugar, protein, etc. in the wastewater are removed. It is decomposed into lower fatty acids such as lactic acid, propionic acid, butyric acid and acetic acid. That is, in the acid production tank, acid producing bacteria are present in a floating state or fixed to a carrier, and a decomposition reaction into lower fatty acids is performed. That is, the effluent of the acid generation tank is an organic acid-containing liquid.

酸生成槽の流出液は、上向流嫌気性汚泥床(UASB)型の嫌気性反応槽に導入される。酸生成による極端なpH低下を防止して、酸生成速度を高めるために、酸生成槽は、通常、pHが5.5〜6.5の弱酸性状態となるように、必要により、アルカリ添加により維持される(図示せず)。また、必要によりpH調整剤が酸生成槽流出液に添加され、UASB型嫌気性反応槽の処理液は、該酸生成槽に所定量循環される(図示せず)。かかる循環により、酸生成槽のpH調整のためのアルカリ添加量の低減を図ることができる。   The effluent of the acid generation tank is introduced into an upflow anaerobic sludge bed (UASB) type anaerobic reaction tank. In order to prevent an extreme decrease in pH due to acid generation and increase the acid generation rate, the acid generation tank is usually added with an alkali as necessary so that the pH is in a weakly acidic state of 5.5 to 6.5. (Not shown). Further, if necessary, a pH adjusting agent is added to the acid production tank effluent, and a predetermined amount of the treatment liquid in the UASB type anaerobic reaction tank is circulated in the acid production tank (not shown). By such circulation, it is possible to reduce the amount of alkali added for adjusting the pH of the acid generation tank.

前記したように、UASB反応槽の嫌気性処理水は、その一部が配管により酸生成槽に循環され、残部は配管により凝集沈殿槽に排出される。凝集沈殿槽で固液分離した後、処理液を、必要により好気性処理し、COD(CODMn;化学的酸素要求量、過マンガン酸カリウム法による)を、放流基準の濃度以下に低減し、さらに必要に応じてCOD以外の放流基準を満たすための処理を行った後、一般の下水、あるいは河川等に放流する。
凝集沈殿槽内の余剰汚泥は、配管により抜き出し、従来と同様に脱水埋立処分することが可能であるが、乾燥させた後に肥料として有効利用することも可能である。
As described above, a part of the anaerobic treated water in the UASB reaction tank is circulated to the acid generation tank by piping, and the remaining part is discharged to the coagulation sedimentation tank by piping. After solid-liquid separation in the coagulation sedimentation tank, the treatment liquid is subjected to aerobic treatment as necessary, and COD (CODMn; chemical oxygen demand, by the potassium permanganate method) is reduced to a concentration below the discharge standard, and After processing to meet the discharge standard other than COD as necessary, it is discharged into general sewage or rivers.
Excess sludge in the coagulation sedimentation tank can be extracted by piping and dehydrated and landfilled in the same manner as before, but it can also be effectively used as fertilizer after drying.

UASB反応槽の上部からは、グラニュール汚泥中に存在するメタン生成細菌により有機酸からメタン発酵により生成されたバイオガス(メタンガス)が発生する。発生したメタンガスは集められ、ボイラーや発電機に利用され、蒸気や電気エネルギーとして回収される。   From the upper part of the UASB reaction tank, biogas (methane gas) generated by methane fermentation from an organic acid is generated by methanogenic bacteria present in the granular sludge. The generated methane gas is collected, used for boilers and generators, and recovered as steam and electrical energy.

次に、水熱処理について説明する。
水熱処置としては、亜臨界水によるごみ処理が知られている。
水の臨界点は圧力22.12MPa、温度374.15°C (647.30K) である。水は臨界点まで蒸気圧曲線に従い、ある温度である圧力以上をかけると液体の状態を保つ。この状態の水(下限は大気圧、100°C)を亜臨界水という。さらに、臨界点以上の圧力・温度条件の水を超臨界水という。亜臨界水ではイオン積が常温常圧の水より高く、オキソニウムイオン及び水酸化物イオンの濃度が高くなる。例えば、この水酸化物イオンが蛋白質のペプチド結合を加水分解してアミノ酸を生成させ、また、脂質や糖質も同様のメカニズムでそれぞれ脂肪酸やグルコースに加水分解される。超臨界水はステンレスをボロボロにしたり、タンパク質をアンモニアにまで分解したり、強力な反応を起こすが、これでは反応が強すぎて扱い難いので、温度を374℃以下、圧力を22MPa以下にした亜臨界水が利用されている。亜臨界水では酸化反応はほとんど起こらず、有機物はアミノ酸や脂肪酸などの分子まで分解するが、二酸化炭素を発生させることはない。そこで、亜臨界水は,生ごみや廃木材,紙くず,動物の糞尿,下水汚泥,廃油などの天然有機物の分解に利用されている。
Next, hydrothermal treatment will be described.
As hydrothermal treatment, waste treatment with subcritical water is known.
The critical point of water is a pressure of 22.12 MPa and a temperature of 374.15 ° C (647.30K). Water follows the vapor pressure curve up to a critical point, and maintains a liquid state when a certain pressure or higher is applied. Water in this state (lower limit is atmospheric pressure, 100 ° C) is called subcritical water. Furthermore, water with pressure and temperature conditions above the critical point is called supercritical water. Subcritical water has an ionic product higher than that of water at normal temperature and pressure, and has higher concentrations of oxonium ions and hydroxide ions. For example, this hydroxide ion hydrolyzes a peptide bond of a protein to produce an amino acid, and lipids and carbohydrates are also hydrolyzed to fatty acids and glucose, respectively, by the same mechanism. Supercritical water breaks down stainless steel, decomposes protein to ammonia, and causes a strong reaction.However, this is too strong to handle, so the temperature is 374 ° C or lower and the pressure is 22MPa or lower. Critical water is used. Subcritical water hardly oxidizes, and organic matter decomposes to molecules such as amino acids and fatty acids, but does not generate carbon dioxide. Therefore, subcritical water is used for decomposing natural organic matter such as garbage, waste wood, waste paper, animal manure, sewage sludge, and waste oil.

本発明においては、通常の水に代えて、前記酸生成槽の流出液である有機酸含有液の一部と、緑茶滓又はコーヒー豆滓などの固形バイオマスとを、水熱処理装置に導入し、亜臨界水条件下での水熱反応により液状化して液体基質を得ることを特徴とする。これにより、液状化を高効率で進行させることができる。すなわち、通常の水に由来する亜臨界水におけるイオン積が常温常圧の水より高く、オキソニウムイオン及び水酸化物イオンの濃度が高くなることに加え、有機酸を含有することで、さらにオキソニウムイオンの濃度が高まり、これにより、固形バイオマスの分解が促進されると考えられる。   In the present invention, instead of normal water, a part of the organic acid-containing liquid that is the effluent of the acid generation tank and solid biomass such as green tea bowl or coffee bean cake are introduced into the hydrothermal treatment apparatus, A liquid substrate is obtained by liquefaction by a hydrothermal reaction under subcritical water conditions. Thereby, liquefaction can be advanced with high efficiency. That is, the ion product in subcritical water derived from normal water is higher than that of water at normal temperature and pressure, and the concentration of oxonium ions and hydroxide ions is increased. It is thought that the concentration of nium ions is increased, which promotes the decomposition of solid biomass.

亜臨界水条件は、例えば、140〜250℃、28〜40気圧(2.8〜4MPa)であることができる。かかる亜臨界水条件を調整することにより、どの程度の糖、有機酸、等にまで分解させるのかを制御することができる。あまりに激しい条件を用いると、分解物が縮重合したり、炭化物や気体となってしまう。したがって、本発明においては、酸生成槽で生成される有機酸の程度にまで固形バイオマスを分解するような亜臨界水条件であることが好ましい。   Subcritical water conditions can be, for example, 140 to 250 ° C. and 28 to 40 atmospheres (2.8 to 4 MPa). By adjusting such subcritical water conditions, it is possible to control how much sugar, organic acid, etc. are decomposed. If too harsh conditions are used, the decomposed product will be polycondensed or become a carbide or gas. Therefore, in this invention, it is preferable that it is subcritical water conditions which decompose | disassemble solid biomass to the grade of the organic acid produced | generated by an acid production tank.

本発明においては、かかる亜臨界水条件下での水熱反応により液状化して得られた液体基質を、酸生成槽に返送することにより、固形バイオマスと有機性排水を、同一のUASB型嫌気性反応槽で嫌気性処理することが可能となる。
すなわち、本発明により、有機性排水を、酸生成槽を介して上向流嫌気性汚泥床(UASB)型嫌気性反応槽を含む排水処理装置に通水して嫌気性処理する方法に、水熱処理を、該方法の安定性や効率を低下させず、むしろ効率を高めて、組み入れることによって、焼却等により廃棄処理されていた固形バイオマスをメタンガスとして回収することが可能となる。
In the present invention, the liquid substrate obtained by liquefaction by the hydrothermal reaction under such subcritical water conditions is returned to the acid generation tank, so that the solid biomass and the organic waste water are the same UASB type anaerobic. An anaerobic treatment can be performed in the reaction tank.
That is, according to the present invention, organic wastewater is passed through an acid generation tank through a wastewater treatment apparatus including an upflow anaerobic sludge bed (UASB) type anaerobic reaction tank, and an anaerobic treatment is performed. By incorporating the heat treatment without increasing the stability and efficiency of the method, but rather increasing the efficiency, it is possible to recover the solid biomass that has been disposed of by incineration or the like as methane gas.

尚、以上の説明では、嫌気性反応槽として上向流嫌気性汚泥床(UASB)型嫌気性反応槽の場合について述べたが、UASB型嫌気性反応槽以外の、嫌気性固定床型嫌気性反応槽、嫌気性流動床嫌気性反応槽、膨張汚泥床(EGSB:Expanded Granular Bed)型嫌気性反応槽にあっても、UASB型嫌気性反応槽と同様に、固形バイオマスと有機性排水を同一の嫌気性反応槽で嫌気性処理することが可能である。   In the above description, the case of an upflow anaerobic sludge bed (UASB) type anaerobic reaction tank is described as the anaerobic reaction tank, but an anaerobic fixed bed type anaerobic other than the UASB type anaerobic reaction tank. Even in reaction tanks, anaerobic fluidized bed anaerobic reaction tanks, and expanded sludge bed (EGSB) type anaerobic reaction tanks, solid biomass and organic wastewater are the same as in the UASB type anaerobic reaction tank. It is possible to perform anaerobic treatment in the anaerobic reaction tank.

以下、本発明を実施例及び比較例を挙げて具体的に説明する。
[実施例1:水熱処理前後の溶解液のBrix値の測定]
固形バイオマスとして緑茶滓を使用し、通常の水と、酸生成槽の流出液である有機酸含有液とを、それぞれ、用いて反応温度140℃と180℃で水熱処理して得た溶解液のBrix値を図3と4にそれぞれ示す。
通常の水に代えて、有機酸含有液を用い場合、水熱処理における糖の含有量が増加した。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
[Example 1: Measurement of Brix value of dissolved solution before and after hydrothermal treatment]
Using green tea cake as solid biomass, normal water and an organic acid-containing liquid that is the effluent of the acid generation tank, respectively, were used for hydrothermal treatment at a reaction temperature of 140 ° C. and 180 ° C., respectively. The Brix values are shown in FIGS. 3 and 4, respectively.
When an organic acid-containing liquid was used instead of normal water, the sugar content in the hydrothermal treatment increased.

[実施例2:水熱処理前後の溶解液の糖と有機酸の濃度の測定]
固形バイオマスとして緑茶滓を使用し、通常の水と、有機酸を含有している酸生成槽の出口で採取した飲料製造工場から排出された排水とを、それぞれ、用いて反応温度140℃、160℃、及び180℃で水熱処理して得た溶解液の糖と有機酸濃度を図5に示す。尚、図5は、糖と有機酸濃度上昇分のブランク差し引き分を示している。
有機酸を含有している排水を用いた場合、水を用いた場合よりも短い反応時間で水熱処理における糖と有機酸濃度が増加しており、反応温度が180℃になるとより顕著な効果が奏されることが分かる。
[Example 2: Measurement of concentration of sugar and organic acid in solution before and after hydrothermal treatment]
Using green tea cake as solid biomass, using normal water and waste water discharged from the beverage production plant collected at the outlet of the acid generation tank containing organic acid, reaction temperatures of 140 ° C. and 160 ° C., respectively. FIG. 5 shows the sugar and organic acid concentrations of the solution obtained by hydrothermal treatment at ℃ and 180 ℃. In addition, FIG. 5 has shown the blank subtraction part for a sugar and an organic acid density | concentration raise.
When wastewater containing organic acid is used, the sugar and organic acid concentrations in the hydrothermal treatment increase in a shorter reaction time than when water is used, and a more remarkable effect is obtained when the reaction temperature reaches 180 ° C. You can see that it is played.

本発明により、酸生成槽と嫌気性反応槽を含む排水処理装置に有機性排水を通水して嫌気性処理する方法に、水熱処理を、該方法の安定性や効率を低下させず、むしろ水熱反応を促進させて、組み入れることによって、焼却等により廃棄処理されていた固形バイオマスをメタンガスとして回収することが可能となる。したがって、本発明は、お茶やコーヒー飲料工場等の食品製造工程から廃棄物の処理に好適に利用可能である。   According to the present invention, hydrothermal treatment is applied to a method of anaerobic treatment by passing organic wastewater through a wastewater treatment apparatus including an acid generation tank and an anaerobic reaction tank, rather than reducing the stability and efficiency of the method. By promoting and incorporating the hydrothermal reaction, solid biomass that has been disposed of by incineration or the like can be recovered as methane gas. Therefore, the present invention can be suitably used for the treatment of waste from food manufacturing processes such as tea and coffee beverage factories.

Claims (8)

酸生成槽と嫌気性反応槽を含む排水処理装置における有機性排水の嫌気性処理方法において、以下の工程:
該酸生成槽の流出液である有機酸含有液の一部と、固形バイオマスを、水熱処理装置に導入し、亜臨界水条件下での水熱反応により液状化して液体基質を得、
得られた液体基質を、該酸生成槽に返送する、
を含み、該固形バイオマスと該有機性排水を、同一の該嫌気性反応槽で嫌気性処理することを特徴とする、前記方法。
In the method for anaerobic treatment of organic wastewater in a wastewater treatment apparatus including an acid generation tank and an anaerobic reaction tank, the following steps are performed:
Part of the organic acid-containing liquid that is the effluent of the acid generation tank and solid biomass are introduced into a hydrothermal treatment apparatus, and liquefied by a hydrothermal reaction under subcritical water conditions to obtain a liquid substrate.
The obtained liquid substrate is returned to the acid generation tank.
The solid biomass and the organic waste water are subjected to anaerobic treatment in the same anaerobic reaction tank.
前記水熱処理装置の出口液である液体基質と、前記水熱処理装置に導入する有機酸含有液との間で、熱交換する、請求項1に記載の方法。   The method according to claim 1, wherein heat exchange is performed between a liquid substrate which is an outlet liquid of the hydrothermal treatment apparatus and an organic acid-containing liquid introduced into the hydrothermal treatment apparatus. 前記嫌気性反応槽が、上向流嫌気性汚泥床(UASB)型嫌気性反応槽である、請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein the anaerobic reaction tank is an upflow anaerobic sludge bed (UASB) type anaerobic reaction tank. 前記固形バイオマスが、飲料工場等の食品製造工程から排出された廃棄物である、請求項1〜3のいずれか1項に記載の方法。   The method according to any one of claims 1 to 3, wherein the solid biomass is waste discharged from a food manufacturing process such as a beverage factory. 酸生成槽と嫌気性反応槽と水熱処理装置とを含む、有機性排水の排水処理装置であって、該酸生成槽の流出液である有機酸含有液の一部と、固形バイオマスを、該水熱処理装置に導入し、亜臨界水条件下での水熱反応により液状化して液体基質を得、得られた液体基質を、該酸生成槽に返送し、該固形バイオマスと該有機性排水を、同一の該嫌気性反応槽で嫌気性処理することを特徴とする、前記排水処理装置。   A wastewater treatment apparatus for organic wastewater including an acid generation tank, an anaerobic reaction tank, and a hydrothermal treatment apparatus, wherein a part of the organic acid-containing liquid that is an effluent of the acid generation tank, and the solid biomass, Introduced into a hydrothermal treatment device, liquefied by a hydrothermal reaction under subcritical water conditions to obtain a liquid substrate, the obtained liquid substrate is returned to the acid generation tank, and the solid biomass and the organic waste water are The waste water treatment apparatus is characterized in that anaerobic treatment is performed in the same anaerobic reaction tank. 前記水熱処理装置の出口液である液体基質と、前記水熱処理装置に導入する有機酸含有液との間で、熱交換する、請求項5に記載の排水処理装置。   The wastewater treatment apparatus according to claim 5, wherein heat exchange is performed between a liquid substrate which is an outlet liquid of the hydrothermal treatment apparatus and an organic acid-containing liquid introduced into the hydrothermal treatment apparatus. 前記嫌気性反応槽が、上向流嫌気性汚泥床(UASB)型嫌気性反応槽である、請求項5又は6に記載の排水処理装置。   The wastewater treatment apparatus according to claim 5 or 6, wherein the anaerobic reaction tank is an upflow anaerobic sludge bed (UASB) type anaerobic reaction tank. 前記固形バイオマスが、飲料工場等の食品製造工程から排出された廃棄物である、請求項5〜7のいずれか1項に記載の排水処理装置。   The wastewater treatment apparatus according to any one of claims 5 to 7, wherein the solid biomass is waste discharged from a food manufacturing process such as a beverage factory.
JP2013073065A 2013-03-29 2013-03-29 Treatment method and apparatus of an organic effluent combining a hydrothermal treatment and an anaerobic treatment Pending JP2014195779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013073065A JP2014195779A (en) 2013-03-29 2013-03-29 Treatment method and apparatus of an organic effluent combining a hydrothermal treatment and an anaerobic treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013073065A JP2014195779A (en) 2013-03-29 2013-03-29 Treatment method and apparatus of an organic effluent combining a hydrothermal treatment and an anaerobic treatment

Publications (1)

Publication Number Publication Date
JP2014195779A true JP2014195779A (en) 2014-10-16

Family

ID=52357027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013073065A Pending JP2014195779A (en) 2013-03-29 2013-03-29 Treatment method and apparatus of an organic effluent combining a hydrothermal treatment and an anaerobic treatment

Country Status (1)

Country Link
JP (1) JP2014195779A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117886636A (en) * 2024-03-18 2024-04-16 潍坊市农业科学院(山东省农业科学院潍坊市分院) Method for fermenting liquid fertilizer based on vegetable organic waste
CN117886636B (en) * 2024-03-18 2024-05-31 潍坊市农业科学院(山东省农业科学院潍坊市分院) Method for fermenting liquid fertilizer based on vegetable organic waste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117886636A (en) * 2024-03-18 2024-04-16 潍坊市农业科学院(山东省农业科学院潍坊市分院) Method for fermenting liquid fertilizer based on vegetable organic waste
CN117886636B (en) * 2024-03-18 2024-05-31 潍坊市农业科学院(山东省农业科学院潍坊市分院) Method for fermenting liquid fertilizer based on vegetable organic waste

Similar Documents

Publication Publication Date Title
Strong et al. Combined thermochemical and fermentative destruction of municipal biosolids: A comparison between thermal hydrolysis and wet oxidative pre-treatment
US8444861B2 (en) Method and apparatus using hydrogen peroxide and microwave system for slurries treatment
JP3617528B1 (en) Biomass processing method
Chu et al. Dairy cow solid waste hydrolysis and hydrogen/methane productions by anaerobic digestion technology
CN106915883A (en) A kind of minimizing of endogenous FNA pretreating sludges and process for reclaiming
JP2006280362A (en) System for treating biomass
JP4822800B2 (en) Methane fermentation treatment method for garbage or food residue
KR101235710B1 (en) System and method for resource conversion of food waste
KR101814492B1 (en) simultaneous producting system and method of various bio fuel using biomass
JP2007216207A (en) Method and apparatus for anaerobic digestion of organic waste liquid
JP5063269B2 (en) Biogas system
KR101605523B1 (en) Method and appratus for treating organic waste
CN101434436A (en) Processing method for wastewater from cassava starch production
JP4844951B2 (en) Processing method and apparatus for garbage and paper waste
CA2760882A1 (en) Method and apparatus for anaerobically digesting organic material
KR101181834B1 (en) Pre-thermal treatment of microalgae and high temperature and high efficiency hydrogen/methane fermentation process using waste heat of power-plant effluent gas
JP2014195779A (en) Treatment method and apparatus of an organic effluent combining a hydrothermal treatment and an anaerobic treatment
Wang et al. Advances in understanding entire process of medium chain carboxylic acid production from organic wastes via chain elongation
JP5731209B2 (en) Method and apparatus for treating soap production waste liquid
JP2018008203A (en) Wet type methane fermentation system
JP4600921B2 (en) Organic waste treatment method and apparatus
Wang et al. Sewage sludge for hydrogen production
JP7432910B2 (en) Methane generation system and methane generation method
JP2004275813A (en) Treatment method for sludge
JP2005193122A (en) Anaerobic hydrogen fermentation treatment system