JP4822800B2 - Methane fermentation treatment method for garbage or food residue - Google Patents

Methane fermentation treatment method for garbage or food residue Download PDF

Info

Publication number
JP4822800B2
JP4822800B2 JP2005308344A JP2005308344A JP4822800B2 JP 4822800 B2 JP4822800 B2 JP 4822800B2 JP 2005308344 A JP2005308344 A JP 2005308344A JP 2005308344 A JP2005308344 A JP 2005308344A JP 4822800 B2 JP4822800 B2 JP 4822800B2
Authority
JP
Japan
Prior art keywords
methane fermentation
garbage
food residue
food
subcritical water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005308344A
Other languages
Japanese (ja)
Other versions
JP2007111673A (en
JP2007111673A5 (en
Inventor
弘之 吉田
孝史 三澤
茂 亀田
正郎 小西
伸 日下部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Prefecture University
Okumura Corp
Original Assignee
Osaka Prefecture University
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Prefecture University, Okumura Corp filed Critical Osaka Prefecture University
Priority to JP2005308344A priority Critical patent/JP4822800B2/en
Publication of JP2007111673A publication Critical patent/JP2007111673A/en
Publication of JP2007111673A5 publication Critical patent/JP2007111673A5/ja
Application granted granted Critical
Publication of JP4822800B2 publication Critical patent/JP4822800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、生ゴミ又は食品残渣をメタン発酵によって処理する生ゴミ又は食品残渣のメタン発酵処理方法に関する。   The present invention relates to a method for methane fermentation treatment of garbage or food residues, which comprises treating garbage or food residues by methane fermentation.

生ごみ、汚泥等の有機性廃棄物の処理方法として、焼却処分や埋立処分が行われてきたが、近年、焼却に伴う大量の重油の消費、ダイオキシンの発生や埋立処分地の不足等を鑑みて、環境への負荷の少ない処理方法が要望されている。環境への負荷の少ない処理方法として、有機性廃棄物をメタン発酵処理する方法が開発されており(例えば、特許文献1、特許文献2参照)、このようなメタン発酵処理方法は、例えば有機性廃棄物を粉砕してペースト状或いはスラリー状にした後に、これらをメタン発酵設備に供給し、嫌気性条件下でメタン菌により発酵処理することで、有機性廃棄物をメタンガスに転換するものである。メタン発酵処理方法は、有機性廃棄物をバイオガスと水とに分解して大幅に減量することができ、嫌気性条件下での発酵であるため曝気動力が不要であり、また副産物として生成するバイオガス中のメタンガスをエネルギーとして回収できる等の利点がある。   Incineration and landfill disposal have been carried out as a method for treating organic waste such as garbage and sludge. In recent years, however, in view of consumption of large amounts of heavy oil, incineration of dioxins, and shortage of landfill disposal sites. Therefore, there is a demand for a processing method with a low environmental load. As a treatment method with a low environmental load, a method for methane fermentation treatment of organic waste has been developed (see, for example, Patent Literature 1 and Patent Literature 2). Such a methane fermentation treatment method is, for example, organic. After waste is pulverized into a paste or slurry, these are supplied to the methane fermentation facility and fermented with methane bacteria under anaerobic conditions to convert organic waste into methane gas. . The methane fermentation treatment method can decompose organic waste into biogas and water, greatly reducing the amount of waste, and does not require aeration power because it is fermented under anaerobic conditions. There is an advantage that methane gas in biogas can be recovered as energy.

メタン発酵処理方法では、メタン発酵設備おけるメタン発酵を効率良く行なって処理能力を向上させるべく、有機性廃棄物をメタン発酵設備に供給するのに先立って種々の前処理が行われる。また前処理の一例として、亜臨界水処理が検討されており(例えば、特許文献3、特許文献4参照)、例えば特許文献3には、農業や林業で排出する籾殻、芝生、剪定枝、枯草等のセルロース・リグニン系高C/N比低水分廃棄物と屎尿・厨芥系高C/N比低水分廃棄物とを一体としてメタン発酵処理するのに先立って、セルロース・リグニン系高C/N比低水分廃棄物を、水の臨界点(374.1℃、22.04MPa)に近いか又は臨界点以下の条件で水熱処理する亜臨界水処理として、圧力(ゲーシ圧力)2〜22MPa、温度200〜650℃、処理時間1分〜10時間の条件で処理することが記載されている。また特許文献4には、食品の廃棄処理方法として、特にパン及びパン生地等を含む焼き菓子や乳製品等について、150〜300℃、及びその温度に応じた飽和蒸気圧程度の亜臨界水条件下で処理することが記載されている(例えば、特許文献4参照)。
特開2002−119937号公報 特開2004−130206号公報 特開2003−94022号公報 特開2003−251306号公報
In the methane fermentation treatment method, various pretreatments are performed prior to supplying organic waste to the methane fermentation facility in order to efficiently perform methane fermentation in the methane fermentation facility and improve the processing capacity. In addition, subcritical water treatment has been studied as an example of pretreatment (see, for example, Patent Document 3 and Patent Document 4). For example, Patent Document 3 includes rice husks, lawn, pruned branches, and hay that are discharged in agriculture and forestry. Cellulose / Lignin High C / N Ratio Low C / N Ratio Waste and Manure / Manure High C / N Ratio Low Moisture Waste Prior to Methane Fermentation Treatment, Cellulose / Lignin High C / N As a subcritical water treatment for hydrothermally treating a specific low-moisture waste near or below the critical point of water (374.1 ° C., 22.04 MPa), the pressure (Gaesh pressure) 2 to 22 MPa, It describes that the treatment is performed under conditions of a temperature of 200 to 650 ° C. and a treatment time of 1 minute to 10 hours. In Patent Document 4, as a food disposal method, particularly for baked confectionery and dairy products including bread and dough, 150 to 300 ° C. and subcritical water conditions of about the saturated vapor pressure according to the temperature. (For example, refer to Patent Document 4).
JP 2002-119937 A JP 2004-130206 A JP 2003-94022 A JP 2003-251306 A

一方、有機性廃棄物のうち、一般家庭から生じる生ゴミや、飲食店、ホテル、旅館、スーパーマーケット、コンビニエンスストア、食品製造業、食品販売業、食品流通業等から生じる事業用の生ゴミや食品残渣については、これらの生ゴミや食品残渣は本来その分解性が他の有機性廃棄物と比較して高いものであり、また亜臨界水処理を行うには、相当の加熱エネルギーを必要とすることから、費用対効果を考慮した場合、却ってコスト高になるといった考えにより、亜臨界水処理による前処理は不用とされてきたのが現状である。   On the other hand, among organic waste, raw garbage from general households, and business-use garbage and food from restaurants, hotels, inns, supermarkets, convenience stores, food manufacturing, food sales, food distribution, etc. As for residues, these garbage and food residues are inherently more degradable than other organic wastes, and considerable heating energy is required to perform subcritical water treatment. Therefore, in consideration of cost-effectiveness, pretreatment by subcritical water treatment has been made unnecessary due to the idea that the cost is rather high.

しかしながら、近年の豊かな食生活から、大量の生ゴミや食品残渣が廃棄物として発生するようになってきており、また廃棄物の再利用や環境問題への関心も向上し、廃棄物の分別回収も定着してきていることから、生ゴミや食品残渣をさらに効率良く低コストで処理することができると共に、資源としても有効利用できるようにする処理方法の開発が望まれている。   However, due to the abundant eating habits in recent years, a large amount of garbage and food residues have been generated as waste, and interest in recycling of waste and environmental problems has been improved. Since recovery has become established, it is desired to develop a treatment method that can treat raw garbage and food residues more efficiently and at low cost, and can also be used effectively as a resource.

本発明は、このような従来の課題に着目してなされたものであり、生ゴミ又は食品残渣を、エネルギー源として回収しつつ低コストで効率良く処理することのできる生ゴミ又は食品残渣のメタン発酵処理方法を提供することを目的とする。   The present invention has been made paying attention to such a conventional problem, and methane of garbage or food residue that can be efficiently processed at low cost while collecting garbage or food residue as an energy source. An object is to provide a fermentation treatment method.

本発明者は、鋭意研究を重ねた結果、生ゴミ又は食品残渣は、特定の低温の温度帯域及び短時間での亜臨界水処理を行った後に、メタン発酵設備に供給した場合に、生ゴミ又は食品残渣を高い効率で発酵させることが可能であり、これによって低コストで迅速に生ゴミ又は食品残渣を処理できることを実験的に見出した。   As a result of intensive research, the present inventor has found that raw garbage or food residue is treated as a raw garbage when it is supplied to a methane fermentation facility after being subjected to a subcritical water treatment in a specific low temperature zone and in a short time. Alternatively, the present inventors have experimentally found that food residues can be fermented with high efficiency, whereby food waste or food residues can be processed quickly at low cost.

本発明は、このような知見に基づいてなされたものであり、生ゴミ又は食品残渣をメタン発酵によって処理する生ゴミ又は食品残渣のメタン発酵処理方法において、前記生ゴミ又は食品残渣をメタン発酵設備に供給するのに先立ち、120〜140℃の亜臨界水処理温度で、該亜臨界水処理温度での圧力を0.2〜0.5MPaとして、2.5〜10分間、該生ゴミ又は食品残渣を閉鎖空間内において亜臨界水処理する生ゴミ又は食品残渣のメタン発酵処理方法を提供することにより、上記目的を達成したものである。 The present invention has been made based on such knowledge, and in the method of methane fermentation treatment of raw garbage or food residue by treating raw garbage or food residue by methane fermentation, the raw garbage or food residue is treated with methane fermentation equipment. Prior to supply to the sub-critical water treatment temperature of 120 to 140 ° C. , the pressure at the sub-critical water treatment temperature is 0.2 to 0.5 MPa, and the garbage or food for 2.5 to 10 minutes. The above object is achieved by providing a method for methane fermentation treatment of garbage or food residue in which the residue is treated with subcritical water in a closed space .

また、本発明の生ゴミ又は食品残渣のメタン発酵処理方法は、前記生ゴミ又は食品残渣の含水率が80〜90%であることが好ましい。 Moreover , it is preferable that the moisture content of the said garbage or food residue is 80 to 90% in the methane fermentation processing method of the garbage or food residue of this invention.

本発明の挙動解析方法によれば、本発明の生ゴミ又は食品残渣のメタン発酵処理方法によれば、生ゴミ又は食品残渣を、費用対効果を考慮した場合でも充分に採算に見合うように、エネルギー源として回収しつつ低コストで効率良く処理することができる。 According to the behavior analysis method of the present invention, according to the method of methane fermentation of food waste or food residue of the present invention, the food waste or food residue is sufficiently profitable even when considering cost-effectiveness, It can be efficiently processed at low cost while being recovered as an energy source.

本発明の好ましい一実施形態に係る生ゴミ又は食品残渣のメタン発酵処理方法は、有機性廃棄物として好ましくは80〜90%の含水率の生ゴミ又は食品残渣を、例えば図1に示すような、前処理設備10、メタン発酵設備11、エネルギー回収設備12等を備えるメタン発酵処理施設において処理する際の処理方法として採用されたものである。   The method for methane fermentation treatment of garbage or food residue according to a preferred embodiment of the present invention preferably treats garbage or food residue having a water content of 80 to 90% as organic waste, for example, as shown in FIG. , A processing method used for processing in a methane fermentation treatment facility including a pretreatment facility 10, a methane fermentation facility 11, an energy recovery facility 12, and the like.

すなわち、本実施形態の生ゴミ又は食品残渣のメタン発酵処理方法は、生ゴミ又は食品残渣をメタン発酵によって処理するメタン発酵処理方法において、生ゴミ又は食品残渣をメタン発酵設備11に供給するのに先立ち、前処理設備10において120〜140℃の亜臨界水処理温度で2.5〜10分間、生ゴミ又は食品残渣を亜臨界水処理によって前処理するようになっている。 That is, the method of methane fermentation treatment of garbage or food residue according to the present embodiment is for supplying garbage or food residue to the methane fermentation facility 11 in the methane fermentation treatment method of treating garbage or food residue by methane fermentation. Prior to this, the garbage or food residue is pretreated by subcritical water treatment in the pretreatment facility 10 at a subcritical water treatment temperature of 120 to 140 ° C. for 2.5 to 10 minutes.

ここで、本実施形態では、メタン発酵処理施設において、処理対象物である生ゴミ又は食品残渣(以下、「含水食品残渣」とする。)は、前処理設備10の受入装置10aに投入された後に、前処理装置10bによって所定量ずつ粉砕されると共に発酵不適物が除去され、スラリー状となって保管される。スラリー状となった含水食品残渣は、必要に応じてメタン発酵設備11のメタン発酵槽11aに供給され、メタン発酵処理が行われる。メタン発酵は、有機物が種々の微生物に資化されてメタン(CH4)に変換される一連の過程であり、例えば固形有機物が炭水化物、アミノ酸、脂肪酸などの水溶性低分子物質に分解される過程(可溶化過程)、さらに分解されて酢酸、プロピオン酸、酪酸などの低級脂肪酸を生成する過程、酢酸や水素ガスなどに分解される過程、酢酸や水素ガスからメタンが生成される過程等からなるものであり、嫌気性雰囲気下でメタン菌の作用によって、これらの過程を経て含水食品残渣が発酵処理されることになる。   Here, in the present embodiment, in the methane fermentation treatment facility, raw garbage or food residue (hereinafter referred to as “hydrated food residue”) that is a processing target is input to the receiving device 10 a of the pretreatment facility 10. After that, it is pulverized by a predetermined amount by the pretreatment device 10b and unsuitable for fermentation is removed and stored as a slurry. The hydrated food residue in the form of slurry is supplied to the methane fermentation tank 11a of the methane fermentation facility 11 as necessary, and methane fermentation treatment is performed. Methane fermentation is a series of processes in which organic substances are assimilated by various microorganisms and converted to methane (CH4). For example, solid organic substances are decomposed into water-soluble low-molecular substances such as carbohydrates, amino acids, and fatty acids ( Solubilization process), further decomposed to produce lower fatty acids such as acetic acid, propionic acid and butyric acid, decomposed into acetic acid and hydrogen gas, etc., and produced methane from acetic acid and hydrogen gas In the anaerobic atmosphere, the hydrated food residue is fermented through these processes by the action of methane bacteria.

また、メタン発酵によって発生するメタンガスを主成分とするバイオガスは、ガスホルダー11b、脱硫装置11c等を介して例えばエネルギー回収設備12の発電装置12aなどに供給され、電気の発電や、熱の供給等に有効に活用されることになる。一方、メタン発酵槽11aからの残渣である消化液や消化汚泥は、例えば消化液処理設備13の消化液処理システム13aや液肥貯留設備14の液肥貯留槽14a等に送られた後に、液肥や堆肥として農地還元されたり、河川放流や下水処理場への搬送がなされることになる。   In addition, biogas mainly composed of methane gas generated by methane fermentation is supplied to, for example, the power generation device 12a of the energy recovery facility 12 through the gas holder 11b, the desulfurization device 11c, and the like to generate electricity or supply heat. It will be used effectively. On the other hand, the digested liquid and digested sludge, which are residues from the methane fermentation tank 11a, are sent to the digested liquid processing system 13a of the digested liquid processing facility 13, the liquid fertilizer storage tank 14a of the liquid fertilizer storage facility 14, etc. As a result, it will be returned to farmland, discharged into rivers and transported to sewage treatment plants.

そして、本実施形態では、含水食品残渣の亜臨界水処理による前処理は、前処理設備10の前処理装置10bにおいて、例えば粉砕されてスラリー状となった含水食品残渣に対して、120〜140℃の亜臨界水処理温度で2.5〜10分間、水熱反応処理を施すことによって行われる。 And in this embodiment, the pretreatment by the subcritical water treatment of the hydrated food residue is performed on the hydrated food residue that has been pulverized into a slurry form in the pretreatment device 10b of the pretreatment facility 10, for example, 120 to 140 It is carried out by subjecting to a hydrothermal reaction treatment at a subcritical water treatment temperature of ° C. for 2.5 to 10 minutes.

ここで、含水食品残渣の亜臨界水処理による前処理は、120〜140℃の亜臨界水処理温度で行う必要がある。亜臨界水処理温度が112℃よりも低いと、メタン生成の前駆物質への分解が不十分になり、140℃よりも高いと、分解が過剰になる。また亜臨界水処理温度を120〜140℃とすることにより、メタン生成の前駆物質としてより適した分解状態が実現されることになる。 Here, the pretreatment by the subcritical water treatment of the water-containing food residue needs to be performed at a subcritical water treatment temperature of 120 to 140 ° C. When the subcritical water treatment temperature is lower than 112 ° C. , the decomposition to the precursor of methanation becomes insufficient, and when it is higher than 140 ° C. , the decomposition becomes excessive. Further, by setting the subcritical water treatment temperature to 120 to 140 ° C., a decomposition state more suitable as a precursor for methane formation is realized.

なお、亜臨界水処理は、前処理設備10の前処理装置10bに設けられた閉鎖空間内において行われ、閉鎖空間内の圧力(ゲージ圧力)は、亜臨界水処理温度を120〜140℃とした場合には、閉鎖空間内の圧力(ゲージ圧力)は、0.2〜0.5MPaとすることが特に好ましいIncidentally, subcritical water treatment is performed in the preprocessing facility 10 in a closed space provided pretreatment apparatus 10b of the pressure in the closed space (gauge pressure), and 120 to 140 ° C. The subcritical water treatment temperature In this case, the pressure in the closed space (gauge pressure) is particularly preferably 0.2 to 0.5 MPa.

また、本実施形態では、含水食品残渣の120〜140℃の亜臨界水処理温度での前処理は、2.5〜10分間行う必要があり、また5〜7.5分間行うことが好ましい。亜臨界水処理の時間が2.5分よりも短いと、メタン生成の前駆物質への分解が不十分になり、10分よりも長いと、分解が過剰になる。また亜臨界水処理の時間を5〜7.5分とすることにより、メタン生成の前駆物質としてより適した分解状態が実現されることになる。 Further, in the present embodiment, pretreatment with subcritical water treatment temperature 120 to 140 ° C. of hydrous food residue, it is necessary to perform 2.5-10 minutes and are preferably carried out between 5 and 7.5 minutes. If the subcritical water treatment time is shorter than 2.5 minutes, the decomposition of the methanation into precursors is insufficient, and if it is longer than 10 minutes, the decomposition becomes excessive. Further, by setting the subcritical water treatment time to 5 to 7.5 minutes, a decomposition state more suitable as a precursor for methane production is realized.

また、含水食品残渣は、含水率を80〜90%とした状態で亜臨界水処理を行うことが好ましい。含水食品残渣の含水率を80〜90%とした状態で亜臨界水処理を行うことにより、メタン生成の前駆物質としてより適した分解状態が実現されることになる。なお、生ゴミ又は食品残渣は、本来70〜95%程度の相当の含水率を備えるものであるが、粉砕されてスラリー状となった含水食品残渣の含水率が80%に満たない場合には、適量の水を適宜加え、含水食品残渣の含水率を80〜90%に保持して亜臨界水処理を行うことが好ましい。   Moreover, it is preferable that a water-containing food residue performs a subcritical water process in the state which made the moisture content 80-90%. By performing subcritical water treatment in a state where the water content of the water-containing food residue is 80 to 90%, a decomposition state more suitable as a precursor for methane production is realized. In addition, although raw garbage or food residue originally has a considerable moisture content of about 70 to 95%, when the moisture content of the hydrated food residue that has been pulverized into a slurry is less than 80%. It is preferable to perform a subcritical water treatment by adding an appropriate amount of water as appropriate and maintaining the water content of the water-containing food residue at 80 to 90%.

そして、本実施形態の生ゴミ又は食品残渣のメタン発酵処理方法によれば、生ゴミ又は食品残渣を、エネルギー源として回収しつつ低コストで効率良く処理することが可能になる。すなわち、本実施形態では、含水食品残渣をメタン発酵設備に供給するのに先立ち、前処理設備10内の閉鎖空間において、上述の特定の低温の温度帯域及び短時間での亜臨界水処理を前処理として行うので、亜臨界水処理を行うことなくメタン発酵を行った場合と比較して、例えば1.8倍〜2.0倍程度のメタン発酵による処理速度と、例えば1.2倍〜1.5倍程度のメタン発酵によるガスの発生量を得ることができ、費用対効果を考慮した場合でも、充分に採算に見合う安価な処理システムを構築することが可能になると共に、多量の生ゴミ又は食品残渣を効率良く速やかに処理することが可能になる。 And according to the methane fermentation processing method of the garbage or food residue of this embodiment, it becomes possible to efficiently process the garbage or food residue at low cost while collecting it as an energy source. That is, in this embodiment, prior to supplying the hydrated food residue to the methane fermentation facility, the above-mentioned specific low temperature band and short-time subcritical water treatment are performed in the closed space in the pretreatment facility 10. Since it performs as a process, compared with the case where methane fermentation is performed without performing a subcritical water process, for example, the processing speed by about 1.8-2.0 times methane fermentation, for example, 1.2 times-1 it is possible to obtain a generation of gas by methane fermentation of approximately .5 times, even when considering cost-effectiveness, it becomes possible to construct an inexpensive processing system to meet the sufficient profitability, a large amount of garbage Or it becomes possible to process a food residue efficiently and promptly.

また、本実施形態によれば、含水食品残渣を効率良くメタン発酵させて、より多くのバイオガスをエネルギー源として回収することが可能になると共に、メタン発酵後の発酵残渣を低減して、発酵残渣の処理の負担を低減することも可能になり、これらによって、さらに安価且つ効率良く生ゴミ又は食品残渣を処理してゆくことが可能になる。   In addition, according to the present embodiment, it is possible to efficiently ferment hydrated food residue with methane and recover more biogas as an energy source, reduce fermentation residue after methane fermentation, and ferment It is also possible to reduce the burden of residue processing, which makes it possible to process garbage or food residues more inexpensively and efficiently.

なお、本発明は上記実施形態に限定されることなく種々の変更が可能である。例えば、本発明の生ゴミ又は食品残渣のメタン発酵処理方法は、図1に示す構成のメタン発酵施設の他、その他の種々の公知のメタン発酵処理施設やメタン発酵処理システムにおいて採用することができる。   The present invention is not limited to the above-described embodiment, and various modifications can be made. For example, the method for methane fermentation treatment of raw garbage or food residue of the present invention can be employed in various other known methane fermentation treatment facilities and methane fermentation treatment systems in addition to the methane fermentation facility having the configuration shown in FIG. .

以下、本発明を、室内実験で行った実施例及び比較例に基づいてさらに詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, although this invention is demonstrated still in detail based on the Example and comparative example which were done by the laboratory experiment, this invention is not limited to these.

〔亜臨界水処理温度とガス発生量との関係〕
生ゴミ又は食品残渣として、表1に示す配合及び含水率の模擬食品残渣を用い、比較例1として、亜臨界水処理による前処理を行うことなくメタン発酵させてガスの発生量を測定した。また、実施例1〜4として、表2に示す処理温度で表2に示す時間、亜臨界水処理による前処理を行った後に、メタン発酵させてガスの発生量を測定した。測定結果を比較例1によるガスの発生量との比として表2に示す。さらに、比較例2,3として、表2に示す処理温度で表2に示す時間、亜臨界水処理による前処理を行った後に、メタン発酵させてガスの発生量を測定した。測定結果を比較例1によるガスの発生量との比として表2に示す。さらにまた、表2におけるガスの発生量の測定結果をチャートとして図2に示す。
[Relationship between subcritical water treatment temperature and gas generation rate]
As food waste or food residue, a simulated food residue having the composition and water content shown in Table 1 was used. As Comparative Example 1, the amount of gas generated was measured by methane fermentation without pretreatment by subcritical water treatment. Moreover, as Examples 1-4, after performing the pretreatment by subcritical water treatment for the time shown in Table 2 at the treatment temperature shown in Table 2, methane fermentation was performed and the amount of gas generated was measured. The measurement results are shown in Table 2 as a ratio with the amount of gas generated in Comparative Example 1. Furthermore, as Comparative Examples 2 and 3, after pretreatment by subcritical water treatment for the time shown in Table 2 at the treatment temperature shown in Table 2, methane fermentation was performed and the amount of gas generated was measured. The measurement results are shown in Table 2 as a ratio with the amount of gas generated in Comparative Example 1. Furthermore, the measurement result of the gas generation amount in Table 2 is shown in FIG. 2 as a chart.

Figure 0004822800
Figure 0004822800

Figure 0004822800
Figure 0004822800

表2及び図2に示すガスの発生量比によれば、本発明に係る実施例1〜4では、ガスの発生量が顕著に増加していることが判明する。   According to the gas generation ratio shown in Table 2 and FIG. 2, it is found that in Examples 1 to 4 according to the present invention, the gas generation is remarkably increased.

〔亜臨界水処理温度とメタン生成の前駆物質である有機酸の量との関係〕
生ゴミ又は食品残渣として、表1に示す配合及び含水率の模擬食品残渣を用い、実施例5として、表3に示す処理温度で表3に示す時間、亜臨界水処理による前処理を行った後に、有機酸の量(mg/リッタ)を測定した。測定結果を表3に示す。また、比較例4〜6として、表3に示す処理温度で表3に示す時間、亜臨界水処理による前処理を行った後に、有機酸の量(mg/リッタ)を測定した。測定結果を表3に示す。さらに、表3における有機酸の量の測定結果をチャートとして図3に示す。
[Relationship between subcritical water treatment temperature and amount of organic acid as precursor of methanogenesis]
As food waste or food residue, a simulated food residue having the composition and water content shown in Table 1 was used, and as Example 5, pretreatment by subcritical water treatment was performed at the treatment temperature shown in Table 3 for the time shown in Table 3. Later, the amount of organic acid (mg / liter) was measured. Table 3 shows the measurement results. Further, as Comparative Examples 4 to 6, after the pretreatment by the subcritical water treatment for the time shown in Table 3 at the treatment temperature shown in Table 3, the amount of organic acid (mg / liter) was measured. Table 3 shows the measurement results. Furthermore, the measurement result of the amount of organic acid in Table 3 is shown in FIG. 3 as a chart.

Figure 0004822800
Figure 0004822800

表3及び図3に示す有機酸の量の測定結果によれば、本発明に係る実施例5では、メタン生成の前駆物質である有機酸の量が顕著に増加していることが判明する。   According to the measurement results of the amount of the organic acid shown in Table 3 and FIG. 3, it is found that in Example 5 according to the present invention, the amount of the organic acid that is the precursor of methane formation is remarkably increased.

〔発酵時間とガス発生量との関係〕
生ゴミ又は食品残渣として、表1に示す配合及び含水率の模擬食品残渣を用い、比較例7として、亜臨界水処理による前処理を行うことなくメタン発酵させ、発酵時間とガス発生量との関係を測定した。また、比較例8として、200℃の処理温度で5分間、亜臨界水処理による前処理を行った後にメタン発酵させ、発酵時間とガス発生量との関係を測定した。測定結果をチャートとして図4に示す。
[Relationship between fermentation time and gas generation]
As food waste or food residue, the simulated food residue with the composition and moisture content shown in Table 1 was used, and as Comparative Example 7, methane fermentation was carried out without pretreatment by subcritical water treatment, and the fermentation time and gas generation amount The relationship was measured. Moreover, as Comparative Example 8, methane fermentation was performed after pretreatment by subcritical water treatment at a treatment temperature of 200 ° C. for 5 minutes, and the relationship between fermentation time and gas generation amount was measured. The measurement results are shown as a chart in FIG.

図4に示す発酵時間とガス発生量との関係の測定結果によれば、200℃の処理温度で5分間、亜臨界水処理による前処理を行った比較例8では、前処理を行うことなくメタン発酵させた比較例7と比較して、ガスの発生量は幾分しか増えておらず、含水食品残渣の過剰分解が推測される。   According to the measurement result of the relationship between the fermentation time and the gas generation amount shown in FIG. 4, in Comparative Example 8 in which pretreatment by subcritical water treatment was performed for 5 minutes at a treatment temperature of 200 ° C., no pretreatment was performed. Compared with the comparative example 7 fermented with methane, the amount of gas generated is only slightly increased, and it is assumed that the hydrous food residue is excessively decomposed.

生ゴミ又は食品残渣として、表1に示す配合及び含水率の模擬食品残渣を用い、比較例9として、亜臨界水処理による前処理を行うことなくメタン発酵させ、発酵時間とガス発生量との関係を測定した。実施例6として、120℃の処理温度で5分間、亜臨界水処理による前処理を行った後にメタン発酵させ、発酵時間とガス発生量との関係を測定した。実施例7として、120℃の処理温度で10分間、亜臨界水処理による前処理を行った後にメタン発酵させ、発酵時間とガス発生量との関係を測定した。実施例8として、140℃の処理温度で10分間、亜臨界水処理による前処理を行った後にメタン発酵させ、発酵時間とガス発生量との関係を測定した。実施例9として、160℃の処理温度で5分間、亜臨界水処理による前処理を行った後にメタン発酵させ、発酵時間とガス発生量との関係を測定した。比較例10として、180℃の処理温度で10分間、亜臨界水処理による前処理を行った後にメタン発酵させ、発酵時間とガス発生量との関係を測定した。測定結果をチャートとして図5に示す。   As food waste or food residue, the simulated food residue with the composition and moisture content shown in Table 1 was used, and as Comparative Example 9, methane fermentation was carried out without pretreatment by subcritical water treatment, and the fermentation time and gas generation amount The relationship was measured. As Example 6, methane fermentation was performed after pretreatment by subcritical water treatment at a treatment temperature of 120 ° C. for 5 minutes, and the relationship between fermentation time and gas generation amount was measured. As Example 7, pretreatment by subcritical water treatment was performed at a treatment temperature of 120 ° C. for 10 minutes, followed by methane fermentation, and the relationship between fermentation time and gas generation amount was measured. As Example 8, methane fermentation was performed after pretreatment by subcritical water treatment at a treatment temperature of 140 ° C. for 10 minutes, and the relationship between fermentation time and gas generation amount was measured. As Example 9, methane fermentation was performed after pretreatment by subcritical water treatment at a treatment temperature of 160 ° C. for 5 minutes, and the relationship between fermentation time and gas generation amount was measured. As Comparative Example 10, methane fermentation was carried out after pretreatment by subcritical water treatment at a treatment temperature of 180 ° C. for 10 minutes, and the relationship between fermentation time and gas generation amount was measured. The measurement results are shown as a chart in FIG.

図5に示す発酵時間とガス発生量との関係の測定結果によれば、本発明に係る実施例6〜8では、ガスの発生速度及び発生量について良好な結果が得られ、前処理を行っていない比較例9と比較して、概ね例えば1.8倍〜2.0倍程度のメタン発酵によるガスの発生速度と、例えば1.2倍〜1.5倍程度のメタン発酵によるガスの発生量とが得られることが判明する。一方、実施例9では、実施例6〜8と比較して、ガスの発生速度とガスの発生量がいずれも減少しており、含水食品残渣の前処理による部分的な過剰分解が推測される。また、比較例10では、前処理を行っていない比較例11と同様のガスの発生速度とガスの発生量しか得られず、含水食品残渣の前処理による過剰分解が推測される。   According to the measurement results of the relationship between the fermentation time and the gas generation amount shown in FIG. 5, in Examples 6 to 8 according to the present invention, good results are obtained with respect to the gas generation rate and the gas generation amount, and the pretreatment is performed. Compared with the comparative example 9 which is not, the generation rate of gas by methane fermentation of about 1.8 times to 2.0 times, for example, and the generation of gas by methane fermentation of about 1.2 times to 1.5 times, for example It turns out that the quantity is obtained. On the other hand, in Example 9, compared with Examples 6-8, both the generation rate of gas and the amount of gas generation have decreased, and partial excessive decomposition | disassembly by pre-processing of a water-containing food residue is estimated. . In Comparative Example 10, only the same gas generation rate and gas generation amount as those in Comparative Example 11 in which no pretreatment was performed can be obtained, and excessive decomposition due to pretreatment of the water-containing food residue is estimated.

本発明の好ましい一実施形態に係るメタン発酵処理方法を用いて生ゴミ又は食品残渣をメタン発酵処理するメタン発酵処理施設の概略の構成を示す説明図である。It is explanatory drawing which shows the general | schematic structure of the methane fermentation processing facility which carries out methane fermentation processing of garbage or a food residue using the methane fermentation processing method which concerns on preferable one Embodiment of this invention. ガスの発生量の測定結果を示すチャートである。It is a chart which shows the measurement result of the generation amount of gas. 有機酸の量の測定結果を示すチャートである。It is a chart which shows the measurement result of the quantity of organic acid. 発酵時間とガス発生量との関係の測定結果を示すチャートである。It is a chart which shows the measurement result of the relationship between fermentation time and gas generation amount. 発酵時間とガス発生量との関係の測定結果を示すチャートである。It is a chart which shows the measurement result of the relationship between fermentation time and gas generation amount.

符号の説明Explanation of symbols

10 前処理設備
10a 受入装置
10b 前処理装置
11 メタン発酵設備
11a メタン発酵槽
11b ガスホルダー
11c 脱硫装置
12 エネルギー回収設備
12a 発電装置
13 消化液処理設備
13a 消化液処理システム
14 液肥貯留設備
14a 液肥貯留槽
DESCRIPTION OF SYMBOLS 10 Pretreatment equipment 10a Receiving device 10b Pretreatment equipment 11 Methane fermentation equipment 11a Methane fermentation tank 11b Gas holder 11c Desulfurization equipment 12 Energy recovery equipment 12a Power generation equipment 13 Digestive liquid treatment equipment 13a Digestive liquid treatment system 14 Liquid fertilizer storage equipment 14a Liquid fertilizer storage tank

Claims (2)

生ゴミ又は食品残渣をメタン発酵によって処理する生ゴミ又は食品残渣のメタン発酵処理方法において、
前記生ゴミ又は食品残渣をメタン発酵設備に供給するのに先立ち、120〜140℃の亜臨界水処理温度で、該亜臨界水処理温度での圧力を0.2〜0.5MPaとして、2.5〜10分間、該生ゴミ又は食品残渣を閉鎖空間内において亜臨界水処理する生ゴミ又は食品残渣のメタン発酵処理方法。
In the method of methane fermentation treatment of garbage or food residue, which treats garbage or food residue by methane fermentation,
Prior to supplying the garbage or food residue to the methane fermentation facility, the subcritical water treatment temperature is 120 to 140 ° C. , and the pressure at the subcritical water treatment temperature is 0.2 to 0.5 MPa . A method for methane fermentation treatment of garbage or food residue, wherein the garbage or food residue is treated with subcritical water in a closed space for 5 to 10 minutes.
前記生ゴミ又は食品残渣の含水率が80〜90%である請求項1に記載の生ゴミ又は食品残渣のメタン発酵処理方法。 The method for methane fermentation treatment of garbage or food residue according to claim 1 , wherein the moisture content of the garbage or food residue is 80 to 90%.
JP2005308344A 2005-10-24 2005-10-24 Methane fermentation treatment method for garbage or food residue Active JP4822800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005308344A JP4822800B2 (en) 2005-10-24 2005-10-24 Methane fermentation treatment method for garbage or food residue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005308344A JP4822800B2 (en) 2005-10-24 2005-10-24 Methane fermentation treatment method for garbage or food residue

Publications (3)

Publication Number Publication Date
JP2007111673A JP2007111673A (en) 2007-05-10
JP2007111673A5 JP2007111673A5 (en) 2008-12-25
JP4822800B2 true JP4822800B2 (en) 2011-11-24

Family

ID=38094332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005308344A Active JP4822800B2 (en) 2005-10-24 2005-10-24 Methane fermentation treatment method for garbage or food residue

Country Status (1)

Country Link
JP (1) JP4822800B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9738943B2 (en) 2010-11-01 2017-08-22 Renmatix, Inc. Process for controlled liquefaction of a biomass feedstock by treatment in hot compressed water
JP2012200691A (en) * 2011-03-27 2012-10-22 Kajima Corp Method and system for methane fermentation of sludge using hydrothermal reaction
SE535702C2 (en) * 2011-04-15 2012-11-13 Reac Fuel Ab Process for the treatment of organic material to produce methane gas
JP2013034988A (en) * 2011-07-14 2013-02-21 Toyo Tire & Rubber Co Ltd Highly-efficient methane fermentation of garbage using subcritical water treatment
BR112014010626A8 (en) 2011-11-08 2018-02-06 Renmatix Inc METHOD FOR TREATMENT OF A BIOMASS RAW MATERIAL
JP2015217345A (en) * 2014-05-19 2015-12-07 東洋ゴム工業株式会社 Methane fermentation treatment method for organic waste
JP6675031B1 (en) * 2019-06-28 2020-04-01 三菱重工環境・化学エンジニアリング株式会社 Garbage relay facility

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2647804B2 (en) * 1994-09-30 1997-08-27 工業技術院長 Garbage disposal method
JP2000271559A (en) * 1999-03-26 2000-10-03 Osaka Gas Co Ltd Method for methane-fermenting treatment of organic waste
JP3801499B2 (en) * 2001-07-19 2006-07-26 三菱重工業株式会社 Method and apparatus for treating organic waste
JP3736397B2 (en) * 2001-07-26 2006-01-18 栗田工業株式会社 Method for treating organic matter containing nitrogen component
JP2003245628A (en) * 2002-02-25 2003-09-02 Ishikawajima Harima Heavy Ind Co Ltd Treatment method for waste generated in food material processing process and treatment apparatus using the same
ATE502903T1 (en) * 2002-10-22 2011-04-15 Osaka Ind Promotion Org PRODUCTION PROCESS FOR MEthane GAS

Also Published As

Publication number Publication date
JP2007111673A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
Kumar et al. Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review
Monfet et al. Nutrient removal and recovery from digestate: a review of the technology
Yao et al. Anaerobic digestion of livestock manure in cold regions: Technological advancements and global impacts
Muhammad Nasir et al. Production of biogas from solid organic wastes through anaerobic digestion: a review
JP4822800B2 (en) Methane fermentation treatment method for garbage or food residue
JP5288730B2 (en) Method and apparatus for treating organic waste
Cruz et al. Valorization of cassava residues for biogas production in Brazil based on the circular economy: An updated and comprehensive review
Beevi et al. Performance and kinetic study of semi-dry thermophilic anaerobic digestion of organic fraction of municipal solid waste
Park et al. Optimization and comparison of methane production and residual characteristics in mesophilic anaerobic digestion of sewage sludge by hydrothermal treatment
Parralejo et al. Small scale biogas production with animal excrement and agricultural residues
Rajagopal et al. Anaerobic hydrolysis and acidification of organic substrates: determination of anaerobic hydrolytic potential
Huang et al. Low-temperature hydrothermal pretreatment followed by dry anaerobic digestion: A sustainable strategy for manure waste management regarding energy recovery and nutrients availability
Narasimmalu et al. Food processing Industry waste and circular economy
Saritpongteeraka et al. Solid state co-fermentation as pretreatment of lignocellulosic palm empty fruit bunch for organic acid recovery and fiber property improvement
Mu et al. Enhancement of anaerobic digestion of phoenix tree leaf by mild alkali pretreatment: Optimization by Taguchi orthogonal design and semi-continuous operation
Sganzerla et al. Dry anaerobic digestion of food industry by-products and bioenergy recovery: a perspective to promote the circular economy transition
Cantrell et al. Green farming systems for the Southeast USA using manure-to-energy conversion platforms
Panigrahi et al. Thermo-chemo-sonic pretreatment of lignocellulosic waste: Evaluating anaerobic biodegradability and environmental impacts
Ayodele et al. Application of biomass-derived hydrochar in process stability of anaerobic digestion
Viancelli et al. Unlocking the value of biomass: Exploring microbial strategies for biogas and volatile fatty acids generation
JP2004237246A (en) Methane fermentation treating apparatus and method
Zhang et al. Biorefinery-oriented full utilization of food waste and sewage sludge by integrating anaerobic digestion and combustion: Synergistic enhancement and energy evaluation
JP2009178657A (en) Subcritical water treatment method for organic sludge of oil refinery waste water
Liu et al. Waste biorefinery development toward circular bioeconomy with a focus on life-cycle assessment
Rose et al. Food industry waste: potential pollutants and their bioremediation strategies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4822800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250