JP2014194878A - Photoelectric conversion element, and solar battery - Google Patents

Photoelectric conversion element, and solar battery Download PDF

Info

Publication number
JP2014194878A
JP2014194878A JP2013070578A JP2013070578A JP2014194878A JP 2014194878 A JP2014194878 A JP 2014194878A JP 2013070578 A JP2013070578 A JP 2013070578A JP 2013070578 A JP2013070578 A JP 2013070578A JP 2014194878 A JP2014194878 A JP 2014194878A
Authority
JP
Japan
Prior art keywords
electrode
photoelectric conversion
conversion element
oxide semiconductor
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013070578A
Other languages
Japanese (ja)
Inventor
泰彰 ▲濱▼田
Yasuaki Hamada
Takayuki Yonemura
貴幸 米村
Satoshi Kimura
里至 木村
Shoko O
小興 王
Akio Konishi
晃雄 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2013070578A priority Critical patent/JP2014194878A/en
Publication of JP2014194878A publication Critical patent/JP2014194878A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel photoelectric conversion element which is improved in durability by use of a novel oxide semiconductor.SOLUTION: A photoelectric conversion element comprises: a transparent substrate; a first electrode provided on the transparent substrate; an oxide semiconductor layer provided on the first electrode; a second electrode provided to be opposed to the oxide semiconductor layer; and an electrolyte which is sealed in between the first electrode and the second electrode. The oxide semiconductor layer includes a complex oxide of a perovskite structure including bismuth and iron.

Description

本発明は、酸化物半導体を用いた光電変換素子、及び太陽電池に関する。   The present invention relates to a photoelectric conversion element using an oxide semiconductor and a solar cell.

従来、色素を吸着させた酸化物半導体を電極とする色素増感型太陽電池が知られている(特許文献1〜3参照)。かかる太陽電池は、カソード電極とアノード電極とを側壁を介して所定間隔で対向配置させることにより形成された太陽電池セルと、この太陽電池セルの内部に封入された電解質とから構成され、カソード電極は導電性ガラスなどからなり、アノード電極は導電性ガラスなどからなる導電性を有する基板と、基板の電解質側表面に形成された酸化物半導体電極とからなっている。また、アノード電極を構成する酸化物半導体電極は、表面に色素が吸着された酸化物半導体微粒子(酸化物半導体電極材)が多数堆積された多孔質層からなっている。   DESCRIPTION OF RELATED ART Conventionally, the dye-sensitized solar cell which uses the oxide semiconductor which adsorb | sucked the pigment | dye as an electrode is known (refer patent documents 1-3). Such a solar cell is composed of a solar cell formed by arranging a cathode electrode and an anode electrode so as to face each other at a predetermined interval through a side wall, and an electrolyte sealed inside the solar cell, and the cathode electrode Is made of conductive glass or the like, and the anode electrode is made of a conductive substrate made of conductive glass or the like, and an oxide semiconductor electrode formed on the electrolyte side surface of the substrate. The oxide semiconductor electrode constituting the anode electrode is composed of a porous layer on which a large number of oxide semiconductor fine particles (oxide semiconductor electrode material) having a dye adsorbed on the surface are deposited.

特許第2664194号公報Japanese Patent No. 2664194 特開平6−163966号公報JP-A-6-163966 特開平9−259943号公報JP-A-9-259943

上述した色素増感型太陽電池において、酸化物半導体微粒子としては、一般にアナターゼ型の酸化チタン(TiO)微粒子が用いられているが、TiOは可視光を吸収しないため、可視光を吸収する機能として増感色素が用いられている。しかしながら、有機物である増感色素は光により劣化し、色素増感型太陽電池の寿命が不十分であるという課題がある。
本発明は上記状況に鑑みてなされたもので、新規な酸化物半導体を用いて耐久性を向上させた新規な光電変換素子及び太陽電池を提供することを目的とする。
In the dye-sensitized solar cell described above, anatase-type titanium oxide (TiO 2 ) fine particles are generally used as the oxide semiconductor fine particles, but TiO 2 does not absorb visible light, and therefore absorbs visible light. A sensitizing dye is used as a function. However, there is a problem that a sensitizing dye that is an organic substance is deteriorated by light, and the life of the dye-sensitized solar cell is insufficient.
This invention is made | formed in view of the said condition, and it aims at providing the novel photoelectric conversion element and solar cell which improved durability using the novel oxide semiconductor.

上記課題を解決する本発明の態様は、透明基板と、該透明基板に設けられた第1電極と、該第1電極上に設けられた酸化物半導体層と、該酸化物半導体層に対向して設けられた第2電極と、前記第1電極と前記第2電極との間に封入される電解質とを具備し、前記酸化物半導体層がビスマス及び鉄を含むペロブスカイト構造の複合酸化物からなることを特徴とする光電変換素子にある。
かかる態様では、ビスマス及び鉄を含むペロブスカイト構造の複合酸化物を成分として含む酸化物半導体層が可視光を吸収し、色素増感酸化チタンと同様に動作して発電し、また、増感色素を用いる必要がないので、耐久性を有するものとなる。
An aspect of the present invention that solves the above problems includes a transparent substrate, a first electrode provided on the transparent substrate, an oxide semiconductor layer provided on the first electrode, and the oxide semiconductor layer. And an electrolyte sealed between the first electrode and the second electrode, and the oxide semiconductor layer is made of a complex oxide having a perovskite structure containing bismuth and iron. It is in the photoelectric conversion element characterized by this.
In such an embodiment, an oxide semiconductor layer containing a composite oxide having a perovskite structure containing bismuth and iron as a component absorbs visible light, operates in the same manner as dye-sensitized titanium oxide, and generates power. Since it does not need to be used, it has durability.

ここで、前記酸化物半導体層が、ビスマス及び鉄を含むペロブスカイト構造の複合酸化物を主成分として含むことが好ましい。これによれば、より高効率の発電が可能となる。   Here, the oxide semiconductor layer preferably contains a composite oxide having a perovskite structure containing bismuth and iron as a main component. According to this, more efficient power generation becomes possible.

また、前記複合酸化物が、さらにマンガンを含むことが好ましい。これによれば、より高効率の発電が可能となる。   Moreover, it is preferable that the said complex oxide contains manganese further. According to this, more efficient power generation becomes possible.

また、前記複合酸化物が、さらにランタノイド元素を含むことが好ましい。これによれば、より高効率の発電が可能となる。   The composite oxide preferably further contains a lanthanoid element. According to this, more efficient power generation becomes possible.

また、前記複合酸化物が、さらにチタンを含むことが好ましい。これによれば、より高効率の発電が可能となる。   The composite oxide preferably further contains titanium. According to this, more efficient power generation becomes possible.

また、本発明の他の態様は、上記態様の光電変換素子を用いた太陽電池にある。
かかる態様では、ビスマス及び鉄を含むペロブスカイト構造の複合酸化物を成分として含む酸化物半導体層が可視光を吸収し、色素増感酸化チタンと同様に動作して発電し、また、増感色素を用いる必要がないので、耐久性を有するものとなる。
Moreover, the other aspect of this invention exists in the solar cell using the photoelectric conversion element of the said aspect.
In such an embodiment, an oxide semiconductor layer containing a composite oxide having a perovskite structure containing bismuth and iron as a component absorbs visible light, operates in the same manner as dye-sensitized titanium oxide, and generates power. Since it does not need to be used, it has durability.

本発明の実施形態に係る光電変換素子の概略構成を示す図である。It is a figure which shows schematic structure of the photoelectric conversion element which concerns on embodiment of this invention. 実施形態の酸化物半導体層の紫外−可視光吸収スペクトルを示す図である。It is a figure which shows the ultraviolet-visible light absorption spectrum of the oxide semiconductor layer of embodiment.

以下、本発明を実施形態に基づいて詳細に説明する。かかる実施形態は、本発明の一態様を示すものであり、この発明を限定するものではなく、本発明の範囲内で任意に変更することが可能である。   Hereinafter, the present invention will be described in detail based on embodiments. Such an embodiment shows one aspect of the present invention, and is not intended to limit the present invention, and can be arbitrarily changed within the scope of the present invention.

図1は、本発明の実施形態に係る光電変換素子の概略構成を示す図である。
図1に示すように、光電変換素子10は、透明基板11上に、第1電極12と、該第1電極12上に設けられた酸化物半導体層13とを具備し、対向基板14上には第2電極15を具備する。そして、透明基板11と対向基板14とが対向して配置され、酸化物半導体層13と第2電極15との間に電解質16が封止部材17を介して封止された構造を有する。
FIG. 1 is a diagram illustrating a schematic configuration of a photoelectric conversion element according to an embodiment of the present invention.
As shown in FIG. 1, the photoelectric conversion element 10 includes a first electrode 12 and an oxide semiconductor layer 13 provided on the first electrode 12 on a transparent substrate 11. Comprises a second electrode 15. The transparent substrate 11 and the counter substrate 14 are arranged to face each other, and the electrolyte 16 is sealed between the oxide semiconductor layer 13 and the second electrode 15 via the sealing member 17.

ここで、透明基板11は、少なくとも可視光を透過する透明性を有する基板であれば、特に限定されないが、例えば、石英、ソーダ石灰ガラスなどのガラス基板を用いることができる。また、第1電極12は、透光性を有するものであり、各種透明電極、例えば、酸化インジウムスズからなる透明電極(ITO)、酸化亜鉛系透明電極、ニッケル酸ランタン(LNO)などを用いることができる。
酸化物半導体層13は、ビスマス及び鉄を含むペロブスカイト構造の複合酸化物からなるものである。
Here, the transparent substrate 11 is not particularly limited as long as it is a substrate having transparency that transmits at least visible light. For example, a glass substrate such as quartz or soda-lime glass can be used. The first electrode 12 is translucent and uses various transparent electrodes such as a transparent electrode (ITO) made of indium tin oxide, a zinc oxide-based transparent electrode, lanthanum nickelate (LNO), and the like. Can do.
The oxide semiconductor layer 13 is made of a complex oxide having a perovskite structure containing bismuth and iron.

代表的には、鉄酸ビスマス系のペロブスカイト構造の複合酸化物を挙げることができる。かかるペロブスカイト型構造の複合酸化物は、Aサイトには酸素が12配位しており、また、Bサイトには酸素が6配位して8面体(オクタヘドロン)をつくっている。このAサイトにビスマス(Bi)が、Bサイトに鉄(Fe)が位置しているが、AサイトのBi、BサイトのFeの一部を各種元素で置換したものでもよい。AサイトのBiを置換する元素としてはランタノイド元素やバリウム(Ba)などを挙げることができ、ランタノイド元素としては、例えば、ランタン(La)、サマリウム(Sm)、セリウム(Ce)などを挙げることができる。また、BサイトのFeを置換する元素としては、マンガン(Mn)、アルミニウム(Al)、コバルト(Co)、チタン(Ti)などを挙げることができる。   A typical example is a bismuth ferrate-based composite oxide having a perovskite structure. In such a complex oxide having a perovskite structure, oxygen is 12-coordinated at the A site, and oxygen is 6-coordinated at the B site to form an octahedron. Bismuth (Bi) is located at the A site and iron (Fe) is located at the B site. However, Bi at the A site and part of Fe at the B site may be substituted with various elements. Examples of the element substituting Bi at the A site include a lanthanoid element and barium (Ba). Examples of the lanthanoid element include lanthanum (La), samarium (Sm), and cerium (Ce). it can. Examples of the element that substitutes Fe at the B site include manganese (Mn), aluminum (Al), cobalt (Co), and titanium (Ti).

具体的には、鉄酸ビスマス(BiFeO)、鉄酸アルミニウム酸ビスマス(Bi(Fe,Al)O)、鉄酸マンガン酸ビスマス(Bi(Fe,Mn)O)、鉄酸マンガン酸ビスマスランタン((Bi,La)(Fe,Mn)O)、鉄酸マンガン酸チタン酸ビスマスバリウム((Bi,Ba)(Fe,Mn,Ti)O)、鉄酸コバルト酸ビスマス(Bi(Fe,Co)O)、鉄酸ビスマスセリウム((Bi,Ce)FeO)、鉄酸マンガン酸ビスマスセリウム((Bi,Ce)(Fe,Mn)O)、鉄酸ビスマスランタンセリウム((Bi,La,Ce)FeO)、鉄酸マンガン酸ビスマスランタンセリウム((Bi,La,Ce)(Fe,Mn)O)、鉄酸ビスマスサマリウム((Bi,Sm)FeO)、鉄酸マンガン酸チタン酸ビスマスバリウム((Bi,Ba)(Fe,Mn,Ti)O)、鉄酸クロム酸ビスマス(Bi(Cr,Fe)O)、鉄酸マンガン酸チタン酸ビスマスカリウム((Bi,K)(Fe,Mn,Ti)O)等が例示できる。 Specifically, bismuth ferrate (BiFeO 3 ), bismuth ferrate aluminate (Bi (Fe, Al) O 3 ), bismuth ferrate manganate (Bi (Fe, Mn) O 3 ), bismuth ferrate manganate Lanthanum ((Bi, La) (Fe, Mn) O 3 ), bismuth barium titanate manganate ((Bi, Ba) (Fe, Mn, Ti) O 3 ), bismuth ferrate cobaltate (Bi (Fe , Co) O 3 ), bismuth cerium ferrate ((Bi, Ce) FeO 3 ), bismuth cerium ferrate manganate ((Bi, Ce) (Fe, Mn) O 3 ), bismuth lanthanum cerium ferrate ((Bi , La, Ce) FeO 3 ), bismuth lanthanum cerium ferrate manganate ((Bi, La, Ce) (Fe, Mn) O 3 ), bismuth samarium ferrate ((Bi, Sm) FeO 3 ), Bismuth barium titanate manganate ((Bi, Ba) (Fe, Mn, Ti) O 3 ), bismuth ferrate chromate (Bi (Cr, Fe) O 3 ), bismuth ferrate manganate titanate Examples include potassium ((Bi, K) (Fe, Mn, Ti) O 3 ) and the like.

また、本発明の酸化物半導体層13は、上述した複合酸化物に、例えば、Bi(Zn,Ti)O、(Bi,K)TiO、(Bi,Na)TiO、(Li,Na,K)(Ta,Nb)Oを添加したものであってもよい。 In addition, the oxide semiconductor layer 13 of the present invention includes, for example, Bi (Zn, Ti) O 3 , (Bi, K) TiO 3 , (Bi, Na) TiO 3 , (Li, Na) in the composite oxide described above. , K) (Ta, Nb) O 3 may be added.

対向基板14は、第2電極15を設けることができ、電解質16を封止する機械的強度を具備していれば特に限定されないが、ガラス基板、シリコン基板、プラスチック基板などを用いることができる。   The counter substrate 14 can be provided with the second electrode 15 and is not particularly limited as long as it has mechanical strength for sealing the electrolyte 16; however, a glass substrate, a silicon substrate, a plastic substrate, or the like can be used.

かかる酸化物半導体層13は、紫外−可視領域の光を吸収するので、増感用の色素を用いる必要がない。また、酸化物半導体層13は、実質的に透明であるので、酸化物半導体層13全体で紫外〜可視光を吸収するので、さらに効率がよい。   Since the oxide semiconductor layer 13 absorbs light in the ultraviolet-visible region, it is not necessary to use a sensitizing dye. In addition, since the oxide semiconductor layer 13 is substantially transparent, the oxide semiconductor layer 13 as a whole absorbs ultraviolet to visible light, so that the efficiency is further improved.

第2電極15は、透明である必要はなく、導電性を有していればよく、例えば、白金電極を用いることができる。
電解質16は、例えば、従来の色素増感型光電変換素子に用いられている電解質を用いることができ、ヨウ素系電解液、臭素系電解液、コバルト錯体系電解液などを挙げることができる。
封止部材17は、透明基板11と対向基板14とを接合し、電解質16を封止するものであれば、特に限定されない。
The 2nd electrode 15 does not need to be transparent, and should just have electroconductivity, for example, can use a platinum electrode.
As the electrolyte 16, for example, an electrolyte used in a conventional dye-sensitized photoelectric conversion element can be used, and examples thereof include an iodine-based electrolyte solution, a bromine-based electrolyte solution, and a cobalt complex-based electrolyte solution.
The sealing member 17 is not particularly limited as long as it joins the transparent substrate 11 and the counter substrate 14 and seals the electrolyte 16.

このような光電変換素子10は、透明基板11側から光を照射すると、酸化物半導体層13中の、例えば、Feが下記式のようにFe2+からFe3+に酸化され、電子が第1電極12に流れる。また、電子を失ったFe3+は電解質16中の、例えば、ヨウ素から電子を奪って還元され、Fe2+に戻り、電子を失ったヨウ素は正極となる第2電極15から電子を受け取り元に戻る。この一連の反応により、電子が第1電極12から第2電極15へ流れ、電流が得られることになる。 When such a photoelectric conversion element 10 is irradiated with light from the transparent substrate 11 side, for example, Fe in the oxide semiconductor layer 13 is oxidized from Fe 2+ to Fe 3+ as represented by the following formula, and electrons are the first electrode. 12 flows. Further, Fe 3+ that has lost electrons is reduced by taking electrons from, for example, iodine in the electrolyte 16 and returns to Fe 2+ , and iodine that has lost electrons receives electrons from the second electrode 15 serving as the positive electrode and returns to the source. . By this series of reactions, electrons flow from the first electrode 12 to the second electrode 15 and current is obtained.

Fe2+ + 光 → Fe3+ + e Fe 2+ + light → Fe 3+ + e

(試験例1)
合成石英基板上に、BiFeO膜をスピンコート法により形成した。
まず、2−エチルヘキサン酸ビスマス、2−エチルヘキサン酸鉄のn−オクタン溶液を混合して、Bi/Fe=100/100の組成になるように調合したBiFeO原料溶液を用意した。そして、原料溶液を合成石英基板上に滴下し、2000rpmで基板を回転させてBiFeO前駆体膜を形成した。次に、180℃で2分間乾燥した。次いで、350℃で2分間脱脂を行った。次いで、窒素雰囲気中で、RTA(Rapid Thermal Annealing)装置で、650℃で5分間焼成を行った。
(Test Example 1)
A BiFeO 3 film was formed on a synthetic quartz substrate by spin coating.
First, a BiFeO 3 raw material solution prepared by mixing a bismuth 2-ethylhexanoate and an n-octane solution of iron 2-ethylhexanoate so as to have a composition of Bi / Fe = 100/100 was prepared. Then, the raw material solution was dropped on the synthetic quartz substrate, and the substrate was rotated at 2000 rpm to form a BiFeO 3 precursor film. Next, it was dried at 180 ° C. for 2 minutes. Subsequently, degreasing was performed at 350 ° C. for 2 minutes. Next, baking was performed at 650 ° C. for 5 minutes in a nitrogen atmosphere using a RTA (Rapid Thermal Annealing) apparatus.

一方、比較として、合成石英基板上に、同様に2−エチルヘキサン酸チタンのn−オクタン溶液からなる酸化チタンの前駆体溶液をスピンコートし、酸素雰囲気中で、750℃で焼成を行った以外は同様のプロセスで、酸化チタン膜を形成した。
これらについて、紫外−可視吸収スペクトルを測定した結果を図2に示す。
On the other hand, as a comparison, a titanium oxide precursor solution consisting of an n-octane solution of titanium 2-ethylhexanoate was similarly spin-coated on a synthetic quartz substrate and baked at 750 ° C. in an oxygen atmosphere. Used a similar process to form a titanium oxide film.
About these, the result of having measured the ultraviolet-visible absorption spectrum is shown in FIG.

この結果、酸化チタン膜は360nm以下の光しか吸収しないのに対し、BiFeO膜は波長360nm以上、500nm以下の光も吸収することが確認された。 As a result, it was confirmed that the titanium oxide film only absorbs light of 360 nm or less, whereas the BiFeO 3 film absorbs light of wavelength 360 nm or more and 500 nm or less.

(試験例2)
まず、(110)単結晶シリコン(Si)基板の表面に熱酸化により膜厚1070nmの酸化シリコン(SiO)膜を形成した。次に、SiO膜上にRFマグネトロンスパッター法により膜厚20nmのチタン膜を作製し、700℃で熱酸化することで膜厚40nmの酸化チタン膜を形成した。次に、酸化チタン膜上にDCスパッター法により、(111)面に配向した膜厚130nmの白金膜を形成した。
(Test Example 2)
First, a silicon oxide (SiO 2 ) film having a thickness of 1070 nm was formed on the surface of a (110) single crystal silicon (Si) substrate by thermal oxidation. Next, a titanium film with a thickness of 20 nm was formed on the SiO 2 film by RF magnetron sputtering, and a titanium oxide film with a thickness of 40 nm was formed by thermal oxidation at 700 ° C. Next, a platinum film having a thickness of 130 nm oriented on the (111) plane was formed on the titanium oxide film by DC sputtering.

次いで、白金膜上に(Bi,La)(Fe,Mn,Ti)O膜をスピンコート法により形成した。その手法は以下のとおりである。
まず、2−エチルヘキサン酸ビスマス、2−エチルヘキサン酸ランタン、2−エチルヘキサン酸鉄、2−エチルヘキサン酸マンガン、2−エチルヘキサン酸チタンのn−オクタン溶液を混合し、Bi/La/Fe/Mn/Ti=85/15/92/1/7の組成になるように調合した原料溶液を用意した。そして、原料溶液を、酸化チタン膜及び白金膜が形成された上記基板上に滴下し、2000rpmで基板を回転させて(Bi,La)(Fe,Mn,Ti)O前駆体膜を形成した(塗布工程)。次に、180℃で2分間乾燥した(乾燥工程)。次いで、350℃で2分間脱脂を行った(脱脂工程)。次いで、上記の塗布工程、乾燥工程及び脱脂工程からなる工程を4回繰り返し行った後に、窒素雰囲気中で、RTA装置で、650℃で5分間焼成を行った(焼成工程)。
Next, a (Bi, La) (Fe, Mn, Ti) O 3 film was formed on the platinum film by spin coating. The method is as follows.
First, n-octane solution of bismuth 2-ethylhexanoate, lanthanum 2-ethylhexanoate, iron 2-ethylhexanoate, manganese 2-ethylhexanoate, titanium 2-ethylhexanoate was mixed, and Bi / La / Fe A raw material solution prepared to have a composition of / Mn / Ti = 85/15/92/1/7 was prepared. The raw material solution was dropped on the substrate on which the titanium oxide film and the platinum film were formed, and the substrate was rotated at 2000 rpm to form a (Bi, La) (Fe, Mn, Ti) O 3 precursor film. (Application process). Next, it was dried at 180 ° C. for 2 minutes (drying step). Next, degreasing was performed at 350 ° C. for 2 minutes (degreasing step). Subsequently, after repeating the process which consists of said application | coating process, a drying process, and a degreasing process 4 times, baking was performed at 650 degreeC for 5 minute (s) with the RTA apparatus in nitrogen atmosphere (baking process).

その後、(Bi,La)(Fe,Mn,Ti)O膜上に、スパッター法により直径540μm、厚さ100nmの円状の白金パターンを形成した後、窒素雰囲気中で、RTA装置を用いて650℃で5分間焼成を行うことで、厚さ140nmの(Bi,La)(Fe,Mn,Ti)O膜を有する光電変換素子を形成した。 Thereafter, a circular platinum pattern having a diameter of 540 μm and a thickness of 100 nm was formed on the (Bi, La) (Fe, Mn, Ti) O 3 film by sputtering, and then using an RTA apparatus in a nitrogen atmosphere. By baking at 650 ° C. for 5 minutes, a photoelectric conversion element having a (Bi, La) (Fe, Mn, Ti) O 3 film having a thickness of 140 nm was formed.

白金パターンの間より蛍光灯を照射してON/OFFしたところ、OFF時の暗電流1pAに対して、ON時には10pAの電流が流れ、光に感応する光電変換素子であることが確認された。   When turned on / off by irradiating a fluorescent lamp from between the platinum patterns, a current of 10 pA flows at the time of ON against a dark current of 1 pA at the time of OFF, and it was confirmed that the photoelectric conversion element is sensitive to light.

(実施例1)
合成石英による透明基板11上にLNOからなる第1電極12を設けた。LNO電極は溶液法により作製した。その手法は以下のとおりである。
まず、酢酸ランタン、酢酸ニッケルの酢酸溶液を調合して原料溶液を作製した。そして、原料溶液を合成石英基板上に滴下し、1500rpmで基板を回転させてLNO前駆体膜を形成した(塗布工程)。次に、180℃で2分間乾燥した(乾燥工程)。次いで、350℃で2分間脱脂を行った(脱脂工程)。次いで、酸素雰囲気中で、RTA装置で、650℃で5分間焼成を行った(焼成工程)。上記の塗布工程、乾燥工程、脱脂工程及び焼成工程からなる工程を2回繰り返し行った。
Example 1
A first electrode 12 made of LNO was provided on a transparent substrate 11 made of synthetic quartz. The LNO electrode was produced by a solution method. The method is as follows.
First, a raw material solution was prepared by preparing an acetic acid solution of lanthanum acetate and nickel acetate. Then, the raw material solution was dropped on the synthetic quartz substrate, and the substrate was rotated at 1500 rpm to form an LNO precursor film (coating process). Next, it was dried at 180 ° C. for 2 minutes (drying step). Next, degreasing was performed at 350 ° C. for 2 minutes (degreasing step). Next, firing was performed at 650 ° C. for 5 minutes in an oxygen atmosphere using an RTA apparatus (firing step). The process consisting of the coating process, the drying process, the degreasing process and the firing process was repeated twice.

次いで、LNO電極の上に、試験例1と同様の方法により、Bi/La/Fe/Mn=85/15/92/8の組成の(Bi,La)(Fe,Mn)O膜からなる酸化物半導体層13を形成した。
次いで、(Bi,La)(Fe,Mn)O膜上に封止部材17を貼り付けて、ヨウ化銀の水溶液からなる電解質16を充填した。
Next, on the LNO electrode, a (Bi, La) (Fe, Mn) O 3 film having a composition of Bi / La / Fe / Mn = 85/15/92/8 is formed by the same method as in Test Example 1. An oxide semiconductor layer 13 was formed.
Next, a sealing member 17 was attached on the (Bi, La) (Fe, Mn) O 3 film and filled with an electrolyte 16 made of an aqueous solution of silver iodide.

さらに、表面に第2電極15として白金膜を形成した、Siからなる対向基板14を貼り合わせて、光電変換素子10を作製した。
作製した光電変換素子10に対して蛍光灯(波長420nmにおいて0.04mW/cm)を照射したところ、16mV、6μA/cmの起電力を確認した。
Furthermore, the opposing substrate 14 made of Si, on which a platinum film was formed as the second electrode 15 on the surface, was bonded to produce the photoelectric conversion element 10.
When the produced photoelectric conversion element 10 was irradiated with a fluorescent lamp (0.04 mW / cm 2 at a wavelength of 420 nm), an electromotive force of 16 mV and 6 μA / cm 2 was confirmed.

本発明の光電変換素子は、従来の色素増感型光電変換素子と比較して、有機色素を用いていないので、耐久性に優れ、耐久性が要求される用途に適用できる。   Since the photoelectric conversion element of the present invention does not use an organic dye as compared with a conventional dye-sensitized photoelectric conversion element, the photoelectric conversion element is excellent in durability and applicable to applications requiring durability.

10 光電変換素子、 11 透明基板、 12 第1電極、 13 酸化物半導体層、 14 対向基板、 15 第2電極、 16 電解質、 17 封止部材   DESCRIPTION OF SYMBOLS 10 Photoelectric conversion element, 11 Transparent substrate, 12 1st electrode, 13 Oxide semiconductor layer, 14 Opposite substrate, 15 2nd electrode, 16 Electrolyte, 17 Sealing member

Claims (6)

透明基板と、該透明基板に設けられた第1電極と、該第1電極上に設けられた酸化物半導体層と、該酸化物半導体層に対向して設けられた第2電極と、前記第1電極と前記第2電極との間に封入される電解質とを具備し、前記酸化物半導体層がビスマス及び鉄を含むペロブスカイト構造の複合酸化物を含むことを特徴とする光電変換素子。   A transparent substrate; a first electrode provided on the transparent substrate; an oxide semiconductor layer provided on the first electrode; a second electrode provided opposite to the oxide semiconductor layer; A photoelectric conversion element comprising: an electrolyte enclosed between one electrode and the second electrode, wherein the oxide semiconductor layer includes a complex oxide having a perovskite structure including bismuth and iron. 前記酸化物半導体層が、ビスマス及び鉄を含むペロブスカイト構造の複合酸化物を主成分として含むことを特徴とする請求項1記載の光電変換素子。   2. The photoelectric conversion element according to claim 1, wherein the oxide semiconductor layer contains a composite oxide having a perovskite structure containing bismuth and iron as a main component. 前記複合酸化物が、さらにマンガンを含むことを特徴とする請求項1又は2記載の光電変換素子。   The photoelectric conversion element according to claim 1, wherein the composite oxide further contains manganese. 前記複合酸化物が、さらにランタノイド元素を含むことを特徴とする請求項1〜3の何れか一項記載の光電変換素子。   The photoelectric conversion element according to claim 1, wherein the composite oxide further contains a lanthanoid element. 前記複合酸化物が、さらにチタンを含むことを特徴とする請求項1〜4の何れか一項記載の光電変換素子。   The photoelectric conversion element according to claim 1, wherein the composite oxide further contains titanium. 請求項1〜5の何れか一項記載の光電変換素子を用いた太陽電池。   The solar cell using the photoelectric conversion element as described in any one of Claims 1-5.
JP2013070578A 2013-03-28 2013-03-28 Photoelectric conversion element, and solar battery Pending JP2014194878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013070578A JP2014194878A (en) 2013-03-28 2013-03-28 Photoelectric conversion element, and solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013070578A JP2014194878A (en) 2013-03-28 2013-03-28 Photoelectric conversion element, and solar battery

Publications (1)

Publication Number Publication Date
JP2014194878A true JP2014194878A (en) 2014-10-09

Family

ID=51839980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013070578A Pending JP2014194878A (en) 2013-03-28 2013-03-28 Photoelectric conversion element, and solar battery

Country Status (1)

Country Link
JP (1) JP2014194878A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016178274A (en) * 2015-03-19 2016-10-06 三菱化学株式会社 Semiconductor device, solar cell, solar cell module, and composition
CN115044908A (en) * 2022-06-08 2022-09-13 中国科学院海洋研究所 Manganese ferrite modified titanium dioxide heterojunction photo-anode and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016178274A (en) * 2015-03-19 2016-10-06 三菱化学株式会社 Semiconductor device, solar cell, solar cell module, and composition
CN115044908A (en) * 2022-06-08 2022-09-13 中国科学院海洋研究所 Manganese ferrite modified titanium dioxide heterojunction photo-anode and preparation method and application thereof
CN115044908B (en) * 2022-06-08 2023-09-12 中国科学院海洋研究所 Manganese ferrite modified titanium dioxide heterojunction photo-anode and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Li et al. Near-infrared and ultraviolet to visible photon conversion for full spectrum response perovskite solar cells
US20110048525A1 (en) Functional device and method for producing the same
KR20130129187A (en) Transparent electrically conductive film, method for manufacturing transparent electrically conductive film, photoelectric conversion device and electronic equipment
US9748425B2 (en) Photoelectric conversion element and photovoltaic cell
De Rossi et al. Blending CoS and Pt for amelioration of electrodeposited transparent counterelectrodes and the efficiency of back-illuminated dye solar cells
US20220220368A1 (en) Method for preparing photoresponsive self-powered electrochromic precursor, method for fabricating photoresponsive self-powered electrochromic device and photoresponsive self-powered electrochromic device fabricated by the fabrication method
KR20150049279A (en) Electrode and method of manufacturing the same
JP2011054553A (en) Sealing material, dye-sensitized solar cell equipped with the cell, and method for manufacturing the cell
JP6049613B2 (en) Composite glass plate
JP4039418B2 (en) Photoelectric conversion element and photoelectric conversion module
JPWO2017056326A1 (en) Lithium ion secondary battery
JP4071428B2 (en) Dye-sensitized solar cell and method for producing the same
JP2014194878A (en) Photoelectric conversion element, and solar battery
JP2016207812A (en) Photoelectric conversion element
Luo et al. CdS modified TiO 2 films showing multicolor switching and enhanced optical contrast
JP5965258B2 (en) Electrochromic device and manufacturing method thereof
JP2013089690A (en) Method for manufacturing quantum dot sensitized type solar battery
JP2011228312A (en) Functional device
KR101088122B1 (en) Dye sensitized solar cell and method of manufacturing a dye sensitized solar cell
KR102136286B1 (en) Method of Manufacturing Anodic Electrochromic Ink Layer for Electrochromic Device and Electrochromic Device of the Same
JP5360549B2 (en) Dye-sensitized solar cell and method for producing titanium dioxide nanoparticles used therefor
JP2014165049A (en) Dye-sensitized solar cell, manufacturing method of the same and electronic apparatus
JP2002252359A (en) Light-receiving layer and solar battery
JP2006100068A (en) Photoelectric conversion device and photovoltaic power generator using the same
KR101256473B1 (en) Electrode plate and dye-sensitized solar cell having the same, and method for manufacturing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150422