JP2014194296A - Multi-tube heat exchanger - Google Patents

Multi-tube heat exchanger Download PDF

Info

Publication number
JP2014194296A
JP2014194296A JP2013070653A JP2013070653A JP2014194296A JP 2014194296 A JP2014194296 A JP 2014194296A JP 2013070653 A JP2013070653 A JP 2013070653A JP 2013070653 A JP2013070653 A JP 2013070653A JP 2014194296 A JP2014194296 A JP 2014194296A
Authority
JP
Japan
Prior art keywords
heat transfer
cooling water
flat heat
tube
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013070653A
Other languages
Japanese (ja)
Other versions
JP6143335B2 (en
Inventor
Kazuyoshi Takigawa
一儀 滝川
Yuji Miyauchi
祐治 宮内
Tadahiro Goto
忠弘 後藤
Kazuma Takigawa
一真 滝川
Toshitaka Ito
豪孝 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Kokusai Sangyo Kaisha Ltd
Original Assignee
Usui Kokusai Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Kokusai Sangyo Kaisha Ltd filed Critical Usui Kokusai Sangyo Kaisha Ltd
Priority to JP2013070653A priority Critical patent/JP6143335B2/en
Publication of JP2014194296A publication Critical patent/JP2014194296A/en
Application granted granted Critical
Publication of JP6143335B2 publication Critical patent/JP6143335B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/005Other auxiliary members within casings, e.g. internal filling means or sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/228Oblique partitions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multi-tube heat exchanger configured so that a group of heat transfer tubes are flat tubes, and capable of improving an action of preventing boiling of cooling water on an exhaust gas inlet by further improving directivity of a cooling water flow introduced into a case or a shell with respect to a direction of an internal surface of a tube sheet or a direction of an exhaust gas inlet.SOLUTION: A multi-tube heat exchanger in which a plurality of stacked flat heat transfer tubes are fixedly attached in a casing, and in which heat exchange is conducted between exhaust gas flowing in the flat heat transfer tubes and cooling water flowing in the casing, comprises a cooling water distributor on an exhaust gas inlet side; and a guide member provided in a space between the flat heat transfer tubes or in each of the space between the flat heat transfer tubes and a space portion between the flat heat transfer tubes and an internal surface of the casing, a tip end of the guide member directing to an internal surface of a tube sheet on the exhaust gas inlet or an end portion near the exhaust gas inlet.

Description

本発明は、ディーゼルエンジンあるいはガソリンエンジン等の冷却水等の液体状の冷却媒体によってエンジンの排気ガスからの熱回収や、EGRガスを冷却する多管式熱交換器に関するものである。   The present invention relates to a heat recovery from engine exhaust gas or a multi-tube heat exchanger that cools EGR gas with a liquid cooling medium such as cooling water of a diesel engine or a gasoline engine.

この種の多管式の熱交換器としては、例えば以下に記載するEGRガス冷却装置(特許文献1〜7)が提案されている。   As this type of multi-tube heat exchanger, for example, EGR gas cooling devices (Patent Documents 1 to 7) described below have been proposed.

即ち、特許文献1には、図36、図37にその概略を示すように、両端部に冷却媒体流入口201−1a及び冷却媒体流出口201−2aが設けられた胴管201の両端部付近に固定されたチューブシート203に伝熱管群202が固着配列され、さらに胴管201の両端部に端部キャップ204が固着され、該端部キャップ204にはEGRガスの流入口204−1と及び流出口204−2が設けられ、該端部キャップ204のEGRガスの流入口204−1と及び流出口204−2の外側開口端部に締結用フランジ205が外嵌固着された構造の多管式のEGRガス冷却装置において、EGRガスの流入口204−1側に設ける複数個の冷却媒体流入口201−1aを、胴管201内に流入した冷却媒体がEGRガス流入口204−1側のチューブシート203に沿って流れるように胴管201の軸芯に対する垂直線に対し傾斜させて設けたEGRガス冷却装置が示されている。   That is, in Patent Document 1, as shown schematically in FIG. 36 and FIG. 37, near both ends of the body tube 201 provided with the cooling medium inlet 201-1a and the cooling medium outlet 201-2a at both ends. The heat transfer tube group 202 is fixedly arranged on the tube sheet 203 fixed to the tube tube, and end caps 204 are fixed to both ends of the trunk tube 201. The end cap 204 has an EGR gas inlet 204-1 and An outlet 204-2 is provided, and a multi-tube having a structure in which a fastening flange 205 is fitted and fixed to an EGR gas inlet 204-1 of the end cap 204 and an outer opening end of the outlet 204-2. In the EGR gas cooling device of the type, a plurality of cooling medium inlets 201-1a provided on the EGR gas inlet 204-1 side are connected to the EGR gas inlet 204-1 side. EGR gas cooling device provided with an inclination with respect to the vertical line with respect to the axis of Dokan 201 to flow along the tube sheet 203 is shown.

特許文献2には、図38、図39にその概略を示すように、複数並設された扁平チューブ212と、該扁平チューブ212の外周を囲繞するように形成されたケース213と、該ケース213の両端部に設けられ各扁平チューブの両端部が貫設されたヘッダプレート(チューブシート)214とを備え、扁平チューブ212内を流通する排気ガスと、ケース213内を流通する冷却水との間で熱交換を行うように構成されたEGRクーラ211であって、基端部221がケース213に接続されると共に、先端部220に冷却水入口管216が接続される冷却水供給チャンバ215を備え、該冷却水供給チャンバ215は先端部220から基端部221に向って漸次幅広となる形状と成し、基端部221の幅がケース213の幅に略等しくなるように形成され、ケース213の他端部には冷却水出口管222が設けられたEGRクーラが示されている。図中、217は端部キャップ、218は締結用フランジである。   In Patent Document 2, as schematically shown in FIGS. 38 and 39, a plurality of flat tubes 212, a case 213 formed so as to surround the outer periphery of the flat tubes 212, and the case 213 Header plates (tube sheets) 214 provided at both ends of each flat tube, and between the exhaust gas flowing through the flat tube 212 and the cooling water flowing through the case 213 The EGR cooler 211 is configured to perform heat exchange with the cooling water supply chamber 215 in which the base end 221 is connected to the case 213 and the cooling water inlet pipe 216 is connected to the tip 220. The cooling water supply chamber 215 has a shape that gradually becomes wider from the distal end portion 220 toward the proximal end portion 221, and the width of the proximal end portion 221 is substantially equal to the width of the case 213. It is formed as, the other end portion of the case 213 is illustrated EGR cooler cooling water outlet pipe 222 is provided. In the figure, 217 is an end cap, and 218 is a fastening flange.

特許文献3には、図40、図41にその概略を示すように、熱交換器のシェル231にチューブアセンブリ234を内蔵し、両端部をエンドプレート(チューブシート)233に支持された各扁平チューブ232の内部に高温のEGRガスを通し、その外部に冷却水を通して熱交換するEGRクーラ用熱交換器において、シェル231内に冷却水を導入する冷却水入口231−1を2箇所以上設け、シェル231内から冷却水を排出する冷却水出口231−2を1箇所設け、冷却水入口231−1に冷却水入口パイプアダプタ235を設ける構成となしたEGRクーラ用熱交換器が示されている。図中、231−1aは冷却水入口パイプ、231−2aは冷却水出口パイプである。   In Patent Document 3, as shown schematically in FIGS. 40 and 41, each flat tube in which a tube assembly 234 is built in a shell 231 of a heat exchanger and both ends are supported by end plates (tube sheets) 233. In the heat exchanger for EGR cooler in which high-temperature EGR gas is passed through the interior of 232 and heat is exchanged through the exterior of the cooling water, two or more cooling water inlets 231-1 for introducing cooling water are provided in the shell 231. A heat exchanger for an EGR cooler is shown in which one cooling water outlet 231-2 for discharging cooling water from the inside of H.231 is provided, and a cooling water inlet pipe adapter 235 is provided at the cooling water inlet 231-1. In the figure, reference numeral 231-1a denotes a cooling water inlet pipe, and 231-2a denotes a cooling water outlet pipe.

特許文献4には、図42、図43にその概略を示すように、冷却水導入口241−1及び排出口241−2を備えた中空状のシェル241と、シェル241内部に配置されたEGRガスが通過する複数の扁平チューブ242とを備えたEGRクーラ240において、シェル241の下側面部241−3に設けた冷却水導入口241−1に冷却水を導入するアダプタ部材243を開口243−1を有して配置した構成のEGRクーラが示されている。   In Patent Document 4, as schematically shown in FIGS. 42 and 43, a hollow shell 241 having a cooling water inlet 241-1 and a discharge outlet 241-2, and an EGR disposed inside the shell 241 are disclosed. In an EGR cooler 240 including a plurality of flat tubes 242 through which gas passes, an adapter member 243 that introduces cooling water into the cooling water introduction port 241-1 provided in the lower side surface portion 241-3 of the shell 241 has an opening 243- An EGR cooler having a configuration with 1 is shown.

特許文献5には、図44、図45にその概略を示すように、冷却水導入口251−1及び排出口251−2を備えた中空状のシェル251と、シェル251内部に配置されたエンドプレート(チューブシート)253及びEGRガスが通過する複数の扁平チューブ252とを備えたEGRクーラ250において、冷却水導入口251−1に取り付けられシェル251内に冷却水を導入するアダプタ部材254を備え、このアダプタ部材254は当該アダプタ部材内部からシェル251内まで延設され、冷却水導入口251−1からシェル251内に導入される冷却水の流入方向を調整する案内板255を備えたEGRクーラが示されている。   In Patent Document 5, as schematically shown in FIGS. 44 and 45, a hollow shell 251 provided with a cooling water inlet 251-1 and an outlet 251-2, and an end disposed inside the shell 251 are disclosed. In an EGR cooler 250 including a plate (tube sheet) 253 and a plurality of flat tubes 252 through which EGR gas passes, an adapter member 254 that is attached to the cooling water inlet 251-1 and introduces cooling water into the shell 251 is provided. The adapter member 254 extends from the inside of the adapter member to the inside of the shell 251 and includes an EGR cooler provided with a guide plate 255 for adjusting the inflow direction of the cooling water introduced into the shell 251 from the cooling water introduction port 251-1. It is shown.

特許文献6には、図46、図47にその概略を示すように、円筒状の冷却水入口パイプ261−1及び排出口(図面省略)を備えた中空状のシェル261と、該シェル261内部に配置されたEGRガスが通過する複数の扁平チューブ262とを備えたEGRクーラ260において、冷却水入口パイプ261−1のシェル261内の出口に接合される有底筒状のプレス成形品であって、底面あるいは側面下部に冷却水を任意の方向に向けて放出する放出口261−2aを形成したアタッチメント261−2を設けたEGRクーラが示されている。   In Patent Document 6, as schematically shown in FIGS. 46 and 47, a hollow shell 261 having a cylindrical cooling water inlet pipe 261-1 and a discharge port (not shown), and the inside of the shell 261 are disclosed. The EGR cooler 260 includes a plurality of flat tubes 262 through which EGR gas is disposed, and is a bottomed cylindrical press-molded product joined to the outlet in the shell 261 of the cooling water inlet pipe 261-1. In addition, an EGR cooler provided with an attachment 261-2 in which a discharge port 261-2a for discharging cooling water in an arbitrary direction is provided on a bottom surface or a lower side surface is shown.

上記特許文献1〜6は、いずれも複数積層された扁平伝熱管の両端部を組付けるためのチューブシート(ヘッダプレート、エンドプレート等)を備えた構成となしたものであるが、例えば特許文献7には複数積層された扁平伝熱管を本体部(胴管、ケース、外管等)内に気密性を保持して収容した、チューブシートレスタイプあるいはヘッダプレートレスタイプの多管式熱交換器(図面省略)が提案されている。この種の多管式熱交換器は、複数積層される扁平伝熱管の両端部に拡張部を設けて相互に当接させて本体部(胴管、ケース、外管等)に収容するとともに、その扁平伝熱管の両端部を気密的に本体部に組付けて構成することにより、チューブシート(ヘッダプレート、エンドプレート等)を省略することができて、製造コストの低減をはかったものである。   The above Patent Documents 1 to 6 are all provided with a tube sheet (header plate, end plate, etc.) for assembling both end portions of a plurality of laminated flat heat transfer tubes. 7 is a tube sheetless type or header plateless type multitubular heat exchanger in which a plurality of flattened heat transfer tubes are accommodated in the main body (body tube, case, outer tube, etc.) while maintaining airtightness. (Drawing omitted) has been proposed. This type of multi-tube heat exchanger is provided with expansion portions at both ends of flat heat transfer tubes that are stacked in a plurality and brought into contact with each other and housed in a main body (body tube, case, outer tube, etc.) The tube sheet (header plate, end plate, etc.) can be omitted by forming both ends of the flat heat transfer tube in an airtight manner in the main body, thereby reducing the manufacturing cost. .

特許第4386215号Japanese Patent No. 4386215 特開2007−154683号JP 2007-154683 A 特開2008−231929号JP 2008-231929 A 特開2009−114924号JP 2009-114924 A 特開2009−91948号JP 2009-91948 A 特開2012−47105号JP 2012-47105 A 特開2007−225190号JP 2007-225190 A

しかしながら、上記した従来の多管式の熱交換器には、以下に記載する欠点がある。
即ち、前記特許文献1に記載されたEGRガス冷却装置は、冷却媒体流入口201−1aを複数個設けることによりチューブシート203付近のオーバーヒートエリアをほとんど皆無にできるので冷却媒体の沸騰の解消に有効であるが、冷却媒体流入口201−1aの流入方向に直角な断面積は冷却媒体流入口へ流入する配管の断面積とは略等しく、冷却媒体流入口から流入する冷却媒体の流速を冷却媒体流入口へ流入する配管内の流速より増速させる作用を有しないため、チューブシート203内面に沿って流れる流速の増速作用が十分に得られず、沸騰防止作用の不足が危惧されている。
However, the above-described conventional multi-tube heat exchanger has the following drawbacks.
That is, the EGR gas cooling device described in Patent Document 1 is effective in eliminating the boiling of the cooling medium because the overheating area near the tube sheet 203 can be eliminated by providing a plurality of cooling medium inlets 201-1a. However, the cross-sectional area perpendicular to the inflow direction of the cooling medium inlet 201-1a is substantially equal to the cross-sectional area of the pipe flowing into the cooling medium inlet, and the flow rate of the cooling medium flowing in from the cooling medium inlet is determined as the cooling medium. Since it does not have an effect of increasing the flow velocity in the pipe flowing into the inflow port, the effect of increasing the flow velocity flowing along the inner surface of the tube sheet 203 cannot be sufficiently obtained, and there is a fear that the boiling prevention effect is insufficient.

特許文献2に記載されたEGRガス冷却装置は、冷却水供給チャンバ215がヘッダプレート214と平行に位置していることから、流入冷却水流にヘッダプレート214内面に対する指向性がなく、冷却水供給チャンバ215の先端部220から流入した冷却水は単に冷却水出口管222に向ってケース213の軸方向に流れるだけであるから、排気ガス(EGRガス)流入口側での冷却水の沸騰防止作用が十分に得られないという欠点がある。   In the EGR gas cooling device described in Patent Document 2, since the cooling water supply chamber 215 is positioned in parallel with the header plate 214, the incoming cooling water flow has no directivity with respect to the inner surface of the header plate 214, and the cooling water supply chamber Since the cooling water flowing in from the front end 220 of the 215 simply flows in the axial direction of the case 213 toward the cooling water outlet pipe 222, the cooling water boiling prevention function on the exhaust gas (EGR gas) inlet side is provided. There is a drawback that it cannot be obtained sufficiently.

特許文献3に記載されたEGRクーラ用熱交換器は、冷却水入口231−1よりシェル231内に多くの流れが流水方向を左右に変えながら流入すると共に、前記特許文献2に記載されたEGRガス冷却装置と同様に、冷却水流にエンドプレート(チューブシート)233内面に対する指向性がなく、単に冷却水出口231−2aに向ってシェル231の軸方向に流れるだけであるから、EGRガス流入口側での冷却水の沸騰防止作用が十分に得られないという欠点がある。   In the EGR cooler heat exchanger described in Patent Document 3, a large amount of flow flows into the shell 231 from the cooling water inlet 231-1 while changing the direction of flowing water to the left and right, and the EGR described in Patent Document 2 described above. Similarly to the gas cooling device, the cooling water flow has no directivity with respect to the inner surface of the end plate (tube sheet) 233, and simply flows in the axial direction of the shell 231 toward the cooling water outlet 231-2a. There is a drawback that the cooling water boiling prevention action on the side cannot be sufficiently obtained.

特許文献4に記載されたEGRクーラの場合は、開口243−1から流入した冷却水はアダプタ部材243を通過して冷却水導入口241−1よりシェル241内に多くの流れが流水方向を左右に変えながら流入しチューブ列の各チューブの間に導入され、シェル241内の各チューブの軸方向を側面に沿い、排出口241−2に向って流れるだけでありその冷却水流にエンドプレート(チューブシート)245内面に対する指向性がないため、前記特許文献2、3に記載されたEGRガス冷却装置及びEGRクーラ用熱交換器と同様に、EGRガス流入口側での冷却水の沸騰防止作用が十分に得られないという欠点がある。又、このEGRクーラは、扁平伝熱管列として扁平伝熱管の長寸方向が上下方向を向くように垂直に配置された構成のものに限られ、扁平伝熱管が水平に配置されて積層された構造のEGRクーラの場合は、局所的な冷却水の沸騰を防止する効果がほとんど得られないという難点がある。   In the case of the EGR cooler described in Patent Document 4, the cooling water flowing in from the opening 243-1 passes through the adapter member 243, and a large amount of flow in the shell 241 from the cooling water inlet 241-1 changes the flow direction. It is introduced into between the tubes of the tube row while being changed to the flow direction, and only flows in the axial direction of each tube in the shell 241 along the side surface toward the discharge port 241-2. Sheet) Since there is no directivity with respect to the inner surface of 245, the boiling water preventing action of cooling water on the EGR gas inlet side is the same as the EGR gas cooling device and the heat exchanger for EGR cooler described in Patent Documents 2 and 3 above. There is a drawback that it cannot be obtained sufficiently. In addition, this EGR cooler is limited to a configuration in which the flat heat transfer tubes are arranged vertically so that the longitudinal direction of the flat heat transfer tubes faces the vertical direction, and the flat heat transfer tubes are horizontally arranged and stacked. In the case of an EGR cooler having a structure, there is a drawback that an effect of preventing local boiling of cooling water is hardly obtained.

特許文献5に記載されたEGRクーラの場合は、冷却水導入口251−1からシェル251内に流入する冷却水流は、流入する直前にエルボ状アダプタ部材254にて流れ方向を略90度変えられた後、さらに案内板255により扁平チューブ252の積層方向に指向(一部の流れは案内方向とは逆方向)されるが、急激に流れ方向が変えられるのみでその冷却水流にエンドプレート253内面に対する指向性に乏しいため、前記特許文献2〜4に記載されたものと同様に、単にシェル251の軸方向を排出口251−2に向って流れるだけであるから、EGRガス流入口側での冷却水の沸騰防止作用が十分に得られないという欠点がある。   In the case of the EGR cooler described in Patent Document 5, the flow direction of the cooling water flowing into the shell 251 from the cooling water inlet 251-1 can be changed by about 90 degrees at the elbow adapter member 254 immediately before flowing. After that, the guide plate 255 further directs the flat tube 252 in the stacking direction (a part of the flow is opposite to the guide direction). Since the directivity with respect to the gas is poor, the axial direction of the shell 251 simply flows toward the discharge port 251-2 in the same manner as described in Patent Documents 2 to 4. There is a drawback that the cooling water boiling prevention effect cannot be obtained sufficiently.

特許文献6に記載されたEGRクーラの場合は、円筒状の冷却水入口パイプ261−1からシェル261内に流入する冷却水は、冷却水入口パイプ261−1のシェル261内の出口に接合された有底筒状のアタッチメント261−2によりガス入口側のエンドプレート264付近に向けて放出され、かつシェル261の幅方向の左右両側に多少は広がりながら放出されることとなるが、円筒状の冷却水入口パイプ261−1はシェル261の端部付近に設置されてはいるものの、冷却水の沸騰防止作用は冷却水入口パイプ261−1の近傍が最も大きく、冷却水入口パイプ261−1より離れるほど小さく、シェル261の幅方向全体にわたって均一な冷却水の沸騰防止効果が得られないという問題がある。このために冷却水入口パイプ261−1はエンドプレート264より離す必要があるが、冷却水量はエンドプレート264付近に達するまでに減速される傾向があり、この傾向はシェル261の幅方向の両端側への流れに特に顕著となり、冷却水の放出口261−2aをエンドプレート264付近に向けて形成したアタッチメント261−2であっても、シェル261の幅方向全体にわたって冷却水の放出量及び流入速度を適切に制御することができないため、排気ガス(EGRガス)流入口側での冷却水の沸騰防止作用を均一にかつ十分に高めることができないという欠点があり、特に大型のEGRクーラには適さないという難点がある。図中、262は扁平チューブ、263は入口ヘッダである。   In the case of the EGR cooler described in Patent Document 6, the cooling water flowing into the shell 261 from the cylindrical cooling water inlet pipe 261-1 is joined to the outlet in the shell 261 of the cooling water inlet pipe 261-1. The bottomed cylindrical attachment 261-2 is discharged toward the vicinity of the end plate 264 on the gas inlet side, and is released while being slightly expanded to the left and right sides in the width direction of the shell 261. Although the cooling water inlet pipe 261-1 is installed in the vicinity of the end of the shell 261, the cooling water boiling prevention action is the largest in the vicinity of the cooling water inlet pipe 261-1, which is greater than the cooling water inlet pipe 261-1. There is a problem that the effect of preventing the boiling of the cooling water from being uniform over the entire width direction of the shell 261 cannot be obtained as the distance increases. For this reason, the cooling water inlet pipe 261-1 needs to be separated from the end plate 264, but the amount of cooling water tends to be decelerated until it reaches the vicinity of the end plate 264, and this tendency is the both ends of the shell 261 in the width direction. Even in the attachment 261-2 in which the cooling water discharge port 261-2a is formed near the end plate 264, the discharge amount and the inflow speed of the cooling water over the entire width direction of the shell 261. Therefore, it is not suitable for a large EGR cooler in particular, because it cannot uniformly and sufficiently enhance the cooling water boiling prevention function on the exhaust gas (EGR gas) inlet side. There is no difficulty. In the figure, 262 is a flat tube and 263 is an inlet header.

又、特許文献7に記載されたチューブシートレスタイプあるいはヘッダプレートレスタイプの多管式熱交換器の場合は、前記特許文献1〜6に共通のチューブシートあるいはヘッダプレート自体が存在しないのでその内表面から沸騰するという問題はないものの、本体部(胴管、ケース、シェル等)内に流入した冷却水は、本体部内の各扁平伝熱管の側面に沿って流れるだけでありその冷却水流に複数積層された扁平伝熱管の排気ガス(EGRガス)流入口側方向に対する指向性がないため、扁平伝熱管の拡張部に近接する外表面の排気ガス(EGRガス)流入口側での冷却水の沸騰防止作用が十分に得られないという欠点がある。   In the case of a tube sheetless type or header plateless type multi-tube heat exchanger described in Patent Document 7, there is no tube sheet or header plate common to Patent Documents 1 to 6, and therefore Although there is no problem of boiling from the surface, the cooling water that has flowed into the main body (body tube, case, shell, etc.) only flows along the side surface of each flat heat transfer tube within the main body. Since there is no directivity in the direction of the exhaust gas (EGR gas) inlet side of the laminated flat heat transfer tubes, the cooling water on the exhaust gas (EGR gas) inlet side of the outer surface close to the extended portion of the flat heat transfer tubes There is a drawback that the boiling prevention effect cannot be obtained sufficiently.

本発明は上記した従来の多管式熱交換器の問題を解決するためになされたもので、特に伝熱管群を扁平チューブで構成した多管式熱交換器において、ケースあるいはシェル内に導入される冷却水流に、チューブシート(ヘッダプレート、エンドプレート等)内面、あるいは扁平伝熱管の排気ガス(EGRガス)流入口側方向に対する指向性を高めて排気ガス(EGRガス)流入口側での冷却水の沸騰防止作用を十分に高めることができる多管式熱交換器を提供しようとするものである。   The present invention has been made to solve the above-described problems of the conventional multi-tube heat exchanger, and in particular, in a multi-tube heat exchanger in which the heat transfer tube group is constituted by flat tubes, the heat transfer tube group is introduced into a case or a shell. Cooling on the exhaust gas (EGR gas) inlet side by increasing the directivity of the inner surface of the tube sheet (header plate, end plate, etc.) or the flat heat transfer tube toward the exhaust gas (EGR gas) inlet side An object of the present invention is to provide a multitubular heat exchanger capable of sufficiently enhancing the water boiling prevention effect.

本発明に係る多管式熱交換器は、複数積層された扁平伝熱管と、該扁平伝熱管の外周を囲繞するように形成されたケーシングと、該ケーシングの両端部に設けられ、前記扁平伝熱管の両端部が貫設されたチューブシートとを備え、前記扁平伝熱管内を流通する排気ガスと前記ケーシング内を流通する冷却媒体との間で熱交換を行う方式の多管式熱交換器において、端部に冷却水配管を接続する冷却水流入管を設けると共に基端部を前記ケーシングの排気ガス流入口側端部に前記ケーシング長手方向と略直交する方向に設けられた長孔からなる冷却水流入用開口部を覆うように接続する冷却水分配器を備え、かつ前記積層された各扁平伝熱管の間の空間もしくは該空間に加えて扁平伝熱管とケーシング内面との間の空間部内に、先端が排気ガス流入口側のチューブシート内面を指向した少なくとも1箇のガイド部材を有し、さらに前記ガイド部材が前記扁平伝熱管に少なくとも1箇所で固定されていることを特徴とするものである。   A multitubular heat exchanger according to the present invention includes a plurality of stacked flat heat transfer tubes, a casing formed so as to surround an outer periphery of the flat heat transfer tubes, and both ends of the casing. A multi-tubular heat exchanger that exchanges heat between the exhaust gas that circulates in the flat heat transfer tube and the cooling medium that circulates in the casing. The cooling water inflow pipe for connecting the cooling water pipe to the end portion is provided, and the base end portion is formed of a long hole provided in the exhaust gas inlet side end portion of the casing in a direction substantially orthogonal to the casing longitudinal direction. In the space between the flat heat transfer tubes and the inner surface of the casing, in addition to the space between the stacked flat heat transfer tubes, or in addition to the space, a cooling water distributor connected to cover the water inflow opening, Exhaust gas at the tip At least 1 箇 guide member is directed to the inlet side of the tubesheet inner surface, and is characterized in that it is further secured in at least one location the guide member is in the flattened heat transfer tubes.

本発明に係る多管式熱交換器は又、複数積層された扁平伝熱管と、該扁平伝熱管の外周を囲繞するように形成されたケーシングを備え、前記扁平伝熱管内を流通する排気ガスと前記ケーシング内を流通する冷却水との間で熱交換を行う方式のチューブシートレスタイプの多管式熱交換器において、端部に冷却水配管を接続する冷却水流入管を設けると共に基端部を前記ケーシングの排気ガス流入口側端部に前記ケーシング長手方向と略直交する方向に設けられた長孔からなる冷却水流入用開口部を覆うように接続する冷却水分配器を備え、かつ前記積層された各扁平伝熱管の間の空間もしくは該空間に加えて扁平伝熱管とケーシング内面との間の空間部内に、先端が排気ガス流入口側を指向した少なくとも1箇のガイド部材を有し、さらに前記ガイド部材が前記扁平伝熱管に少なくとも1箇所で固定されていることを特徴とするものである。   The multi-tube heat exchanger according to the present invention also includes a plurality of stacked flat heat transfer tubes and a casing formed so as to surround an outer periphery of the flat heat transfer tubes, and an exhaust gas that circulates in the flat heat transfer tubes. Tube tubeless type multi-tubular heat exchanger that exchanges heat between the cooling water flowing in the casing and a cooling water inflow pipe for connecting a cooling water pipe to the end and a base end A cooling water distributor that connects to the exhaust gas inlet side end portion of the casing so as to cover a cooling water inflow opening formed of a long hole provided in a direction substantially perpendicular to the casing longitudinal direction, and the lamination In the space between each flat heat transfer tube made or in addition to the space, the space between the flat heat transfer tube and the inner surface of the casing has at least one guide member whose tip is directed to the exhaust gas inlet side, Before It is characterized in that the guide member is fixed at at least one location in the flattened heat transfer tubes.

本発明のチューブシートを備えた多管式熱交換器及びチューブシートレスタイプの多管式熱交換器における、前記ガイド部材は、短冊状もしくは櫛歯状であることを好ましい態様とするものである。   In the multitubular heat exchanger provided with the tube sheet of the present invention and the tubesheetless type multitubular heat exchanger, the guide member preferably has a strip shape or a comb shape. .

さらに、前記ガイド部材は前記扁平伝熱管と該扁平伝熱管に固着された支持部材の双方に固定されていること、又、前記支持部材は短冊状もしくは櫛歯状であること、そして又、前記短冊状支持部材は当該短冊状部の先端近傍部が扁平伝熱管に固定されていること、前記櫛歯状支持部材は当該櫛歯状部の先端近傍部が扁平伝熱管に固定されていること、を好ましい態様とするものである。   Further, the guide member is fixed to both the flat heat transfer tube and a support member fixed to the flat heat transfer tube, the support member is in a strip shape or a comb shape, and In the strip-shaped support member, the vicinity of the tip of the strip-shaped portion is fixed to the flat heat transfer tube, and in the comb-shaped support member, the vicinity of the tip of the comb-shaped portion is fixed to the flat heat transfer tube. Is a preferred embodiment.

ここで、前記短冊状ガイド部材は片端が櫛歯状支持部材の基端部に固定され、前記櫛歯状ガイド部材の基端部は短冊状支持部材の片端もしくは櫛歯状支持部材の基端部に固定されていることを好ましい態様とするものである。   Here, one end of the strip-shaped guide member is fixed to the base end portion of the comb-shaped support member, and the base end portion of the comb-shaped guide member is one end of the strip-shaped support member or the base end of the comb-shaped support member It is a preferred embodiment that it is fixed to the part.

又、本発明においては、前記積層された扁平伝熱管の間の空間もしくは該空間に加えて扁平伝熱管とケーシング内面との間の空間部内に、扁平伝熱管の軸方向に複数のガイド部材を有すること、及び、前記積層された扁平伝熱管群が扁平伝熱管の扁平方向に複数群設けられ、かつ少なくとも一つの前記ガイド部材が前記複数群の扁平伝熱管に跨って配置されていることを好ましい態様とするものである。   Further, in the present invention, a plurality of guide members are provided in the axial direction of the flat heat transfer tubes in the space between the laminated flat heat transfer tubes or in the space between the flat heat transfer tube and the casing inner surface in addition to the space. And a plurality of the laminated flat heat transfer tube groups are provided in the flat direction of the flat heat transfer tubes, and at least one guide member is disposed across the flat heat transfer tubes of the plurality of groups. This is a preferred embodiment.

さらに、前記ガイド部材の短冊状ガイド部が扁平伝熱管の平坦面に対しほぼ直角に設けられていることを好ましい態様とするものである。   Furthermore, it is preferable that the strip-shaped guide portion of the guide member is provided substantially perpendicular to the flat surface of the flat heat transfer tube.

又、前記ガイド部材には扁平伝熱管に固定される少なくとも一つのフィン部を有すること、及び、前記フィン部は前記ガイド部材の先端部近傍に設けられていることを好ましい態様とするものである。   The guide member preferably includes at least one fin portion fixed to the flat heat transfer tube, and the fin portion is provided in the vicinity of the tip end portion of the guide member. .

本発明は又、前記積層された扁平伝熱管群が扁平伝熱管の扁平方向に複数群設けられ、かつ前記ガイド部材が前記複数群の扁平伝熱管に跨って少なくとも一つ配置され、さらに前記ガイド部材は各々の扁平伝熱管に固定される複数のフィン部を有すること、及び、前記フィン部は前記扁平伝熱管の扁平部に固定されていることを好ましい態様とするものである。   According to the present invention, a plurality of the laminated flat heat transfer tube groups are provided in the flat direction of the flat heat transfer tubes, and at least one guide member is disposed across the plurality of groups of flat heat transfer tubes, and the guide Preferably, the member has a plurality of fin portions fixed to each flat heat transfer tube, and the fin portions are fixed to the flat portions of the flat heat transfer tubes.

又さらに、本発明は前記冷却水流入用開口部付近に前記積層された各扁平伝熱管の間の空間もしくは該空間に加えて扁平伝熱管とケーシング内面との間の空間部内に冷却水が指向するように前記積層された各扁平伝熱管の間の空間もしくは該空間に加えて扁平伝熱管とケーシング内面との間の空間とに対応した位置に複数の噴出孔を有するノズル部材を設けること、及び、前記ノズル部材の噴出孔の断面積の総和が冷却水分配器内の冷却水の流れ直角方向断面積より小さいこと、さらに前記ノズル部材の噴出孔における冷却水の噴出流速が前記冷却水分配器内の平均流速より増速さていることを好ましい態様とするものである。   Still further, in the present invention, the cooling water is directed in the space between the stacked flat heat transfer tubes near the cooling water inflow opening or in the space between the flat heat transfer tube and the inner surface of the casing in addition to the space. Providing a nozzle member having a plurality of ejection holes at a position corresponding to the space between the laminated flat heat transfer tubes or the space between the flat heat transfer tube and the casing inner surface in addition to the space, And the sum of the cross-sectional areas of the nozzle member ejection holes is smaller than the cross-sectional area in the direction perpendicular to the flow of the cooling water in the cooling water distributor, and the flow rate of the cooling water in the nozzle hole of the nozzle member is within the cooling water distributor It is preferable that the speed is higher than the average flow velocity.

さらに又、前記ノズル部材は扁平伝熱管側に断面略V字状もしくはU字状で扁平伝熱管の積層幅に応じて突出した凸状部を有し、該凸状部のチューブシート側(排気ガス流入口側)に前面側傾斜面を形成し該凸状部の両端部に両端部傾斜面を形成し、かつ前記前面側傾斜面の各扁平伝熱管の間の空間に対応した位置及び前記両端部傾斜面の扁平伝熱管とケーシング間の空間に対応した位置に各の空間を指向した噴出孔を設けたことを好ましい態様とするものである。   Further, the nozzle member has, on the flat heat transfer tube side, a convex portion that has a substantially V-shaped or U-shaped cross section and protrudes in accordance with the laminated width of the flat heat transfer tubes, and the tube portion side of the convex portion (exhaust gas) A position corresponding to a space between each flat heat transfer tube on the front side inclined surface, and a front side inclined surface is formed on the gas inlet side), both end inclined surfaces are formed on both ends of the convex portion, and It is a preferred embodiment that the ejection holes directed to the respective spaces are provided at positions corresponding to the spaces between the flat heat transfer tubes and the casings on the inclined surfaces on both ends.

本発明は、排気ガス(EGRガス)流入口側での冷却水の沸騰防止作用を十分に高める手段として、冷却水をチューブシート内面、あるいは扁平伝熱管の排気ガス(EGRガス)流入口側方向を指向して流入させるよう冷却水分配器及びガイド部材を設ける手段をこうじたもので、これによりチューブシート、又は扁平伝熱管の排気ガス(EGRガス)流入口側方向への指向性がより高められ、排気ガス(EGRガス)流入口側での冷却水の沸騰防止効果を向上させることが可能となる。
即ち、本発明に係る多管式熱交換器は、以下に記載する効果を奏する。
1.冷却水がチューブシート内面、あるいは扁平伝熱管の排気ガス(EGRガス)流入口側を指向してケーシング内に流入することにより、ケーシング内に流入した冷却水が排気ガス流入口側のチューブシート内表面に沿って流れるので、チューブシート内表面付近、あるいは扁平伝熱管の排気ガス(EGRガス)流入口側付近での冷却水沸騰をより効果的に防止することができる。
2.前記ガイド部材が扁平伝熱管の外壁面、特に扁平面に接触固定されていることにより、以下に記載する効果を奏する。
・排気ガスからの熱が固定部からガイド部材に伝播し、ガイド部材が放熱フィンとしての機能を発揮して、冷却水流の確実な誘導と相俟って扁平管外壁面からの交換熱量を増加させて外壁面温度を低下させ、固定部付近からの沸騰を効果的に防止するとともに、熱応力を緩和させることができる。
・ガイド部材が対向する扁平管外壁の互いに平行な扁平(平坦)面間に配置・固定されるとガイド面は扁平管の各外壁の扁平面に対し何れもほぼ直角に配設されることなり補強リブの機能を発揮して、温度上昇やエンジン振動などに伴う扁平伝熱管の特に積層方向に対する変形に対して抑制力を発揮してチューブシートと扁平伝熱管との固定部、もしくは扁平伝熱管の各拡管部相互の固定部及びケーシングとの固定部の振動応力や熱応力の上昇を効果的に防止する。
・扁平管とガイド部材は当接させて固定するのであるから組み立て時に扁平管外壁面との間に微小な隙間を確保する高精度の組み立て・固定技術は必要がなく少ない工数で安価に製作することができる。
・短冊状ガイド部材は長尺であってもその先端付近は扁平管外壁面に固定されているので、冷却水流速や圧力の変化あるいは装着されるエンジン自身もしくはエンジンが搭載される車両の路面からの振動により加振されても先端位置が変動することがなく、冷却水流がチューブシートに向かって確実に流れ、チューブシートに沿った流れが確保され、扁平伝熱管やチューブシートとの干渉を生じフレッティング磨耗が発生することがない。
・前記短冊状ガイド部材はその先端付近を扁平伝熱管の平坦面等の外壁面に固定させているので先端の振動が抑制されていて長尺化が可能であり、扁平伝熱管群の積層配列が複数列におよぶ大型のEGRクーラであっても、冷却水流入開口部から離れた位置に配置されている扁平伝熱管群のチューブシート側(EGRガス流入側)のチューブシート内面付近(拡径部の当接部付近)にも冷却水流を確実に到達させることができ、該扁平伝熱管群のチューブシート内面(拡径部の当接部付近)付近及びその近傍の扁平伝熱管の外表面での冷却水沸騰を効果的に防止することができる。
・扁平伝熱管の間の1つの空間部に複数の短冊状ガイド部材を配置した場合には、冷却水の整流ガイド作用がさらにきめ細かく発揮され、例えば扁平伝熱管群の積層配列を複数配列した大型EGRクーラにあっては、EGRガス流入側(チューブシート側)から離れた位置のガイド部材を冷却水流入開口部から離れた位置に配置された扁平伝熱管群の各扁平伝熱管の壁面にまで達する長尺のガイド部材とし、冷却水流入開口部に近い扁平伝熱管には当該扁平伝熱管の扁平位置におさまる短尺のガイド部材をよりチューブシート付近(拡径部の当接部付近)に配置し、前記長尺ガイド部材と短尺のガイド部材とを組合わせることにより、EGRガス流入側の広い範囲にわたって冷却水の流れ方向、流速、流量を制御して冷却水沸騰をより効果的に防止することができる。
・EGRガス流入側の広い範囲にわたって冷却水の流れ方向、流速、流量を制御して冷却水の沸騰をより効果的に防止することができることになり、冷却水流入開口部の設置位置をチューブシート側(EGRガス流入側)から離すことが可能となることによってレイアウト性が向上すると共に、扁平伝熱管(拡管部を含む)、チューブシート、ケーシング、ボンネットの組立・固定作業性も極めて良好となる。
3.ケーシングに設けられた冷却水流入用開口部付近に、前記積層された各扁平伝熱管の間の空間もしくは該空間に加えて扁平伝熱管とケーシング内面との間の空間部内に冷却水が指向するように前記積層された各扁平伝熱管の間の空間もしくは該空間に加えて扁平伝熱管とケーシング内面との間の空間とに対応した位置に複数の噴出孔を設けたノズル部材を設けることにより、チューブシート内表面付近、あるいは扁平伝熱管の排気ガス(EGRガス)流入口側付近でのより大きな冷却水沸騰防止効果が得られる。
4.前記噴出孔の断面積の総和を前記冷却水分配器内の冷却水の流れ直角方向断面積より小さくすることにより、前記噴出孔からの冷却水の噴出速度が前記冷却水分配器内の軸直角方向断面における平均流速より増速されてチューブシート内表面付近、あるいは扁平伝熱管の排気ガス(EGRガス)流入口側付近での冷却水沸騰防止作用をより高めることが可能となる。
In the present invention, as a means for sufficiently enhancing the boiling prevention effect of cooling water on the exhaust gas (EGR gas) inlet side, the cooling water is directed to the inner surface of the tube sheet or the exhaust gas (EGR gas) inlet side of the flat heat transfer tube. This means that the cooling water distributor and the guide member are provided so as to flow in the direction of the gas, and the directivity of the tube sheet or the flat heat transfer tube toward the exhaust gas (EGR gas) inlet side is further enhanced. It is possible to improve the effect of preventing the cooling water from boiling on the exhaust gas (EGR gas) inlet side.
That is, the multitubular heat exchanger according to the present invention has the following effects.
1. The cooling water flows into the casing while facing the inner surface of the tube sheet or the exhaust gas (EGR gas) inlet side of the flat heat transfer tube, so that the cooling water flowing into the casing enters the tube sheet on the exhaust gas inlet side. Since it flows along the surface, it is possible to more effectively prevent cooling water boiling near the inner surface of the tube sheet or near the exhaust gas (EGR gas) inlet side of the flat heat transfer tube.
2. The guide member is brought into contact with and fixed to the outer wall surface of the flat heat transfer tube, in particular, the flat surface, thereby providing the following effects.
・ The heat from the exhaust gas propagates from the fixed part to the guide member, and the guide member functions as a radiating fin to increase the exchange heat from the outer wall surface of the flat tube, coupled with the reliable induction of the cooling water flow. It is possible to reduce the outer wall surface temperature, effectively prevent boiling from the vicinity of the fixed portion, and relieve the thermal stress.
・ When the guide member is placed and fixed between the parallel flat (flat) surfaces of the opposing flat tube outer walls, the guide surfaces are arranged at almost right angles to the flat surfaces of the outer walls of the flat tube. Demonstrates the function of the reinforcing ribs, and suppresses the deformation of the flat heat transfer tube, particularly in the stacking direction, caused by temperature rise and engine vibration, etc., or the fixed part of the tube sheet and the flat heat transfer tube, or the flat heat transfer tube It is possible to effectively prevent an increase in vibration stress and thermal stress of the fixed part between the expanded parts and the fixed part with the casing.
・ Since the flat tube and guide member are abutted and fixed, high-precision assembly and fixing technology that secures a minute gap between the flat tube outer wall surface during assembly is not necessary, and it can be manufactured inexpensively with less man-hours. be able to.
-Even if the strip-shaped guide member is long, the vicinity of its tip is fixed to the outer wall surface of the flat tube, so the change in the cooling water flow velocity or pressure or the mounted engine itself or the road surface of the vehicle on which the engine is mounted The tip position does not fluctuate even if it is vibrated due to vibrations, and the cooling water flow surely flows toward the tube sheet, ensuring the flow along the tube sheet and causing interference with the flat heat transfer tube and the tube sheet. No fretting wear occurs.
-The strip-shaped guide member has its tip and its vicinity fixed to an outer wall surface such as a flat surface of a flat heat transfer tube, so that vibration at the tip is suppressed and the length can be increased, and a laminated arrangement of flat heat transfer tube groups Even if it is a large EGR cooler with multiple rows, the inner surface of the tube sheet side (EGR gas inflow side) of the flat heat transfer tube group disposed at a position away from the cooling water inflow opening (expanded diameter) Near the inner surface of the tube sheet of the flat heat transfer tube group (near the contact portion of the enlarged diameter portion) and the outer surface of the flat heat transfer tube in the vicinity thereof It is possible to effectively prevent cooling water boiling at
-When a plurality of strip-shaped guide members are arranged in one space between flat heat transfer tubes, the cooling water rectifying guide action is more finely demonstrated. For example, a large-sized large heat transfer tube group with a plurality of stacked arrangements In the EGR cooler, the guide member located away from the EGR gas inflow side (tube sheet side) is placed on the wall surface of each flat heat transfer tube of the flat heat transfer tube group arranged away from the cooling water inflow opening. It is a long guide member that reaches, and for the flat heat transfer tube near the cooling water inflow opening, a short guide member that fits in the flat position of the flat heat transfer tube is placed closer to the tube sheet (near the abutting portion of the expanded diameter portion) In addition, by combining the long guide member and the short guide member, the cooling water flow direction, flow velocity, and flow rate are controlled over a wide range on the EGR gas inflow side, thereby making cooling water boiling more effective. It is possible to prevent.
・ Cooling water flow direction, flow velocity and flow rate can be controlled over a wide range on the EGR gas inflow side to prevent the cooling water from boiling more effectively. It becomes possible to separate from the EGR gas inflow side, and the layout is improved. Also, the assembly and fixing workability of the flat heat transfer tube (including the expanded portion), the tube sheet, the casing, and the bonnet is extremely good. .
3. In the vicinity of the cooling water inflow opening provided in the casing, the cooling water is directed in the space between the stacked flat heat transfer tubes or in the space between the flat heat transfer tube and the casing inner surface in addition to the space. By providing a nozzle member provided with a plurality of ejection holes at positions corresponding to the space between the laminated flat heat transfer tubes or the space between the flat heat transfer tube and the inner surface of the casing in addition to the space Further, a greater cooling water boiling prevention effect can be obtained near the inner surface of the tube sheet or near the exhaust gas (EGR gas) inlet side of the flat heat transfer tube.
4). By making the sum of the cross-sectional areas of the ejection holes smaller than the cross-sectional area in the direction perpendicular to the flow of the cooling water in the cooling water distributor, the ejection speed of the cooling water from the ejection holes is cross-sectional in the direction perpendicular to the axis in the cooling water distributor. Thus, the cooling water boiling preventing action near the inner surface of the tube sheet or near the exhaust gas (EGR gas) inlet of the flat heat transfer tube can be further enhanced.

本発明の第1実施例に係る多管式熱交換器を一部省略して示す要部破断概略側面図である。It is a principal part fracture | rupture schematic side view which abbreviate | omits and shows the multitubular heat exchanger which concerns on 1st Example of this invention. 図1A−A矢視図である。It is a 1A-A arrow directional view. 図1に示す多管式熱交換器の短冊状ガイド部材単体を示す拡大斜視図である。It is an expansion perspective view which shows the strip-shaped guide member single-piece | unit of the multi-tube heat exchanger shown in FIG. 図1に示す多管式熱交換器の短冊状ガイド部材単体の変形例を示す拡大斜視図である。It is an expansion perspective view which shows the modification of the strip-shaped guide member single-piece | unit of the multi-tube heat exchanger shown in FIG. 図3に示す短冊状ガイド部材を採用した場合の図2点円部を拡大して示す断面図である。It is sectional drawing which expands and shows the dotted-circle part of FIG. 2 at the time of employ | adopting the strip-shaped guide member shown in FIG. 図3、図4に示す左右両側に固定用フィンを有する短冊状ガイド部材と、片側のみに固定用フィンを有する短冊状ガイド部材を用いた場合の図1B−B拡大断面図で、図(A)は左右両側に固定用フィンを有する短冊状ガイド部材を用いた場合、図(B)は片側のみに固定用フィンを有する短冊状ガイド部材を用いた場合をそれぞれ示す。FIG. 1B is an enlarged cross-sectional view of FIG. 1B-B when the strip-shaped guide member having fixing fins on both the left and right sides shown in FIGS. 3 and 4 and the strip-shaped guide member having fixing fins only on one side are used. ) Shows a case where a strip-shaped guide member having fixing fins on the left and right sides is used, and FIG. 7B shows a case where a strip-shaped guide member having fixing fins on only one side is used. 図1に示す多管式熱交換器のガイド部材として用いる櫛歯状ガイド部材の一例を示す拡大斜視図である。It is an expansion perspective view which shows an example of the comb-tooth shaped guide member used as a guide member of the multitubular heat exchanger shown in FIG. 本発明の第2実施例に係る多管式熱交換器の要部を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the principal part of the multitubular heat exchanger which concerns on 2nd Example of this invention. 図8に示す多管式熱交換器のガイド部材の要部を示す斜視図である。It is a perspective view which shows the principal part of the guide member of the multi-tube heat exchanger shown in FIG. 図8に示す多管式熱交換器の他のガイド部材の要部を示す斜視図である。It is a perspective view which shows the principal part of the other guide member of the multitubular heat exchanger shown in FIG. 本発明の第3実施例に係る多管式熱交換器の要部を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the principal part of the multitubular heat exchanger which concerns on 3rd Example of this invention. 図11に示す多管式熱交換器のガイド部材を示す斜視図である。It is a perspective view which shows the guide member of the multitubular heat exchanger shown in FIG. 図11A矢視図である。It is FIG. 11A arrow directional view. 図11B−B矢視図である。It is FIG. 11B-B arrow line view. 本発明の第4実施例に係る多管式熱交換器の要部を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the principal part of the multitubular heat exchanger which concerns on 4th Example of this invention. 図15に示す多管式熱交換器のガイド部材を示す斜視図である。It is a perspective view which shows the guide member of the multitubular heat exchanger shown in FIG. 本発明の第5実施例に係る多管式熱交換器の要部を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the principal part of the multitubular heat exchanger which concerns on 5th Example of this invention. 図17に示す多管式熱交換器のガイド部材を示す斜視図である。It is a perspective view which shows the guide member of the multitubular heat exchanger shown in FIG. 本発明の第6実施例に係る多管式熱交換器の櫛歯状ガイド部材を示す斜視図である。It is a perspective view which shows the comb-tooth shaped guide member of the multitubular heat exchanger which concerns on 6th Example of this invention. 図19に示す櫛歯状ガイド部材の要部を拡大して示す斜視図である。It is a perspective view which expands and shows the principal part of the comb-tooth shaped guide member shown in FIG. 本発明の第7実施例に係る多管式熱交換器の要部を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the principal part of the multitubular heat exchanger which concerns on 7th Example of this invention. 図21C−C矢視図である。It is a 21C-C arrow line view. 本発明の第8実施例に係る多管式熱交換器の要部を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the principal part of the multitubular heat exchanger which concerns on 8th Example of this invention. 図23D−D矢視図である。FIG. 23D is a view as viewed from arrow D-D. 本発明の第9実施例に係る多管式熱交換器の要部を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the principal part of the multitubular heat exchanger which concerns on 9th Example of this invention. 図25に示すガイド部材の要部を拡大して示す斜視図である。It is a perspective view which expands and shows the principal part of the guide member shown in FIG. 本発明の第10実施例に係る多管式熱交換器の要部を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the principal part of the multitubular heat exchanger which concerns on 10th Example of this invention. (ア)は図27E−E矢視図で、(イ)は図27、図28(ア)に示すノズル部材の拡大斜視図である。(A) is an arrow view of FIGS. 27E-E, (A) is an enlarged perspective view of the nozzle member shown in FIGS. 27 and 28 (A). 本発明の第11実施例に係る多管式熱交換器の要部を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the principal part of the multitubular heat exchanger which concerns on 11th Example of this invention. 図29F−F矢視図である。It is a 29F-F arrow line view. 図29に示す多管式熱交換器のノズル板を一部省略して示す斜視図である。It is a perspective view which abbreviate | omits and shows a part of nozzle plate of the multitubular heat exchanger shown in FIG. 本発明の第12実施例に係る多管式熱交換器(チューブシートレスタイプ)の要部を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the principal part of the multitubular heat exchanger (tube sheetless type) which concerns on 12th Example of this invention. 図32G−G矢視図である。FIG. 32G is a view on arrow G-G. 図32に示す多管式熱交換器の扁平伝熱管群を概略的に示す斜視図である。It is a perspective view which shows roughly the flat heat exchanger tube group of the multitubular heat exchanger shown in FIG. 図34H−H矢視拡大図である。FIG. 34 is an enlarged view taken along line HH. 従来の多管式熱交換器の第1例を中央部を省略して示す概略平面図である。It is a schematic plan view which abbreviate | omits the center part and shows the 1st example of the conventional multitubular heat exchanger. 図36に示す多管式熱交換器の中央部を省略して示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which abbreviate | omits the center part of the multitubular heat exchanger shown in FIG. 従来の多管式熱交換器の第2例を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the 2nd example of the conventional multitubular heat exchanger. 図38のイ−イ線上の概略図である。It is the schematic on the II line | wire of FIG. 従来の多管式熱交換器の第3例を斜め下方から見た概略斜視図である。It is the schematic perspective view which looked at the 3rd example of the conventional multitubular heat exchanger from diagonally downward. 図40に示す多管式熱交換器の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the multitubular heat exchanger shown in FIG. 従来の多管式熱交換器の第4例を斜め下方から見た概略斜視図である。It is the schematic perspective view which looked at the 4th example of the conventional multitubular heat exchanger from diagonally downward. 図42に示す多管式熱交換器の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the multitubular heat exchanger shown in FIG. 従来の多管式熱交換器の第5例を示す概略斜視図である。It is a schematic perspective view which shows the 5th example of the conventional multitubular heat exchanger. 図44に示す多管式熱交換器の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the multi-tube heat exchanger shown in FIG. 従来の多管式熱交換器の第6例を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the 6th example of the conventional multitubular heat exchanger. 図46に示す多管式熱交換器の概略横縦面図である。FIG. 47 is a schematic horizontal and vertical view of the multitubular heat exchanger shown in FIG. 46.

図1〜図6に示す本発明の第1実施例に係る多管式熱交換器は、好ましくは伝熱フィンが内挿固着された複数本の扁平伝熱管2が並設されて積層された扁平伝熱管群と、該扁平伝熱管群の外周を囲繞するように形成されたケーシング1と、該ケーシング1の両端部に設けられ、各扁平伝熱管2の両端部が貫通支持されたチューブシート3を備え、ケーシング1の片側の端部には排気ガス流入ボンネット4が、他端には排気ガス流出ボンネット5がそれぞれ設けられ、さらにケーシング外周壁面の排気ガス流入ボンネット4側端部付近には扁平伝熱管2の積層方向に略平行な略矩形の長孔からなる冷却水流入用開口部6が設けられ、排気ガス流出ボンネット5側端部には冷却水流出管7が接続されている。   The multitubular heat exchanger according to the first embodiment of the present invention shown in FIGS. 1 to 6 is preferably formed by stacking a plurality of flat heat transfer tubes 2 having heat transfer fins inserted and fixed in parallel. A flat heat transfer tube group, a casing 1 formed so as to surround the outer periphery of the flat heat transfer tube group, and a tube sheet that is provided at both ends of the casing 1 and through which both end portions of each flat heat transfer tube 2 are supported. 3, an exhaust gas inflow bonnet 4 is provided at one end of the casing 1, an exhaust gas outflow bonnet 5 is provided at the other end, and an exhaust gas inflow bonnet 4 side end near the outer peripheral wall surface of the casing 1 is provided. A cooling water inflow opening 6 comprising a substantially rectangular long hole substantially parallel to the laminating direction of the flat heat transfer tubes 2 is provided, and a cooling water outflow tube 7 is connected to an end of the exhaust gas outflow bonnet 5.

前記冷却水流入用開口部6には、該冷却水流入用開口部6を覆うように基端部(底部)が開口されたボックス形の冷却水分配器8をケーシング1の軸芯に対する垂直線に対し平行に(又は傾斜させて)設ける。この冷却水分配器8は、基端部に前記冷却水流入用開口部6を覆うフランジ部8−1を有し、該基端部と反対側端部に冷却水配管(図面省略)に接続する冷却水流入管9がケーシング外壁面と略平行に横設されている。この冷却水流入管9には、前記冷却水分配器8内に連通する長孔からなる冷却水流入口9−1が設けられ、他端はキャップ(図示せず)により閉鎖されている。   In the cooling water inflow opening 6, a box-shaped cooling water distributor 8 having a base end (bottom part) opened so as to cover the cooling water inflow opening 6 is arranged perpendicular to the axis of the casing 1. It is provided in parallel (or inclined). The cooling water distributor 8 has a flange portion 8-1 that covers the cooling water inflow opening 6 at a base end portion, and is connected to a cooling water pipe (not shown) at an end opposite to the base end portion. A cooling water inflow pipe 9 is provided in parallel with the outer wall surface of the casing. The cooling water inflow pipe 9 is provided with a cooling water inlet 9-1 having a long hole communicating with the cooling water distributor 8, and the other end is closed by a cap (not shown).

ケーシング1内には、該ケーシング内に流入した冷却水が扁平伝熱管2の排気ガス流入ボンネット4方向に指向してチューブシート3内面に沿うように又は積層された扁平伝熱管2の間の空間部を流れるようにするための短冊状ガイド部材10a又は10bを配設する。この短冊状ガイド部材10aは、図3に拡大して示すように、ガイド面10a−1の上部に扁平伝熱管2の平坦面又はケーシング1内壁との固定用フィン10a−2が当該ガイド部材10aの側面よりその厚み分外側に突出するように背面側に直角に折曲げられて形成され、又、図4に拡大して示す短冊状ガイド部材10bは、当該ガイド部材10bの側面と面一に形成された固定用フィン10b−2がガイド面10b−1の略中間部と下部の二箇所に形成されている。ここでは、図3に示す短冊状ガイド部材10aを扁平伝熱管2の平坦面に取着した多管式熱交換器を例示したもので、図5に拡大して示すように、短冊状ガイド部材10aは固定用フィン10a−2を介して扁平伝熱管2の平坦面に例えばNiろう付けされて取付けられている。
また、10a−2、10b−2は、必ずしも両側に設ける必要はなく、片側フィンによる片面固定、あるいは片面の交互固定(図示せず)でも特に問題はない。図6は両面固定方式と片面固定方式を示す説明図で、図(A)は短冊状ガイド部材10a、10bをそれぞれ両側に設けられた固定用フィン10a−2、10b−2を介して扁平伝熱管2の平坦面にろう付けにて取付ける方式を、図(B)は固定用フィン10a−2、10b−2を片側のみしか有しない短冊状ガイド部材(図示せず)を、片側のみの固定用フィン10a−2、10b−2を介して扁平伝熱管2の平坦面にろう付けにて取付ける方式を、それぞれ示す。
In the casing 1, the space between the flat heat transfer tubes 2 in which the cooling water flowing into the casing is oriented in the direction of the exhaust gas inflow bonnet 4 of the flat heat transfer tube 2 and along the inner surface of the tube sheet 3. A strip-shaped guide member 10a or 10b for flowing through the section is disposed. As shown in an enlarged view in FIG. 3, the strip-shaped guide member 10a has a fin 10a-2 for fixing to the flat surface of the flat heat transfer tube 2 or the inner wall of the casing 1 at the upper portion of the guide surface 10a-1. The strip-shaped guide member 10b shown in an enlarged view in FIG. 4 is flush with the side surface of the guide member 10b. The formed fixing fins 10b-2 are formed at two locations, the substantially middle portion and the lower portion of the guide surface 10b-1. Here, a strip-shaped guide member 10a shown in FIG. 3 is illustrated as an example of a multi-tube heat exchanger in which the flat heat transfer tube 2 is attached to the flat heat transfer tube 2. As shown in an enlarged view in FIG. 10a is attached to the flat surface of the flat heat transfer tube 2 by, for example, Ni brazing via fixing fins 10a-2.
Moreover, 10a-2 and 10b-2 do not necessarily need to be provided on both sides, and there is no particular problem even if single-sided fixing with one-side fins or alternate fixing of one side (not shown). FIG. 6 is an explanatory view showing a double-sided fixing method and a single-sided fixing method, and FIG. 6A is a flat transmission through strip-shaped guide members 10a and 10b via fixing fins 10a-2 and 10b-2 provided on both sides, respectively. The method of attaching to the flat surface of the heat tube 2 by brazing, FIG. (B) shows a strip-shaped guide member (not shown) having fixing fins 10a-2 and 10b-2 only on one side, and fixing only on one side. The method of attaching to the flat surface of the flat heat exchanger tube 2 via the fins 10a-2 and 10b-2 for soldering is shown, respectively.

上記図1〜図6に示す構成の多管式熱交換器の場合は、冷却水流入管9より冷却水分配器8及び冷却水流入用開口部6を介してケーシング1内に流入した冷却水が短冊状ガイド部材10a、10bのガイド面10a−1、10b−1に沿って流れて各扁平伝熱管2の間の空間及び扁平伝熱管2の排気ガス流入ボンネット4方向を指向してチューブシート3内表面に速やかにかつ確実に達して冷却し冷却水の沸騰がより効果的に防止される。そして、冷却水の沸騰を伴わずに、ケーシング1内を流れる冷却水と扁平伝熱管2内を流れる排気ガスとが熱交換される。又、図3に示す短冊状ガイド部材10aを用いた場合には、図5に示すように扁平伝熱管2の平坦面と当該短冊状ガイド部材10aとの間に形成される隙間10a−3から冷却水が前記平坦面に沿いかつ渦を伴って乱れながら流出管7側へも流れるので当該短冊状ガイド部材10a裏側の澱みが防止される。更に、短冊状ガイド部材10a、10bがろう付けなどで固定されていることにより排気ガスの熱がその固定部より伝熱して放熱フィンとしても作用し、扁平伝熱管2の平坦面の温度を低下させて沸騰を抑制するとともに交換熱量を増加させる(排気ガスの温度が下げられる)。なお、扁平伝熱管2の平坦部に位置するガイド部材を平坦面に対しほぼ直角に設け、隣接する扁平伝熱管2の平坦部に跨がってフィンを固定することにより、扁平伝熱管2の積層方向等への変形等に対する補強リブ作用を発揮し、耐振動性や耐熱性(熱応力による変形防止)を向上できる。   In the case of the multitubular heat exchanger configured as shown in FIGS. 1 to 6, the cooling water flowing into the casing 1 from the cooling water inflow pipe 9 through the cooling water distributor 8 and the cooling water inflow opening 6 is a strip. In the tube sheet 3 along the guide surfaces 10a-1 and 10b-1 of the guide members 10a and 10b and directed toward the space between the flat heat transfer tubes 2 and the direction of the exhaust gas inflow bonnet 4 of the flat heat transfer tubes 2 Boiling of cooling water is more effectively prevented by reaching the surface quickly and reliably and cooling. Then, the cooling water flowing in the casing 1 and the exhaust gas flowing in the flat heat transfer tube 2 are heat-exchanged without boiling the cooling water. When the strip-shaped guide member 10a shown in FIG. 3 is used, as shown in FIG. 5, from the gap 10a-3 formed between the flat surface of the flat heat transfer tube 2 and the strip-shaped guide member 10a. Since the cooling water flows along the flat surface and turbulently with the vortex and also flows to the outflow pipe 7 side, stagnation on the back side of the strip-shaped guide member 10a is prevented. Further, since the strip-shaped guide members 10a and 10b are fixed by brazing or the like, the heat of the exhaust gas is transferred from the fixed portion to act as a heat radiating fin, and the temperature of the flat surface of the flat heat transfer tube 2 is lowered. To suppress boiling and increase the amount of exchange heat (the temperature of the exhaust gas is lowered). In addition, the guide member located in the flat part of the flat heat transfer tube 2 is provided at a substantially right angle with respect to the flat surface, and the fin is fixed across the flat part of the adjacent flat heat transfer tube 2, thereby Reinforcing rib action against deformation in the laminating direction and the like is exhibited, and vibration resistance and heat resistance (preventing deformation due to thermal stress) can be improved.

図7に示すガイド部材は、前記短冊状ガイド部材10a、10bに替えて用いる櫛歯状ガイド部材10cを例示したもので、その構造は図示のように、ガイド面10c−1の略中間部と下部の二箇所に形成された固定用フィン10c−2を有する複数個の短冊状ガイド部材10c−3をその基端部(冷却水流入口側端部)10c−4と共に一体成形した構造となしたもので、前記短冊状ガイド部材10a、10bと同様に、短冊状ガイド部材10c−3を扁平伝熱管2の間に配置させて各固定用フィン10c−2を介して扁平伝熱管2の平坦面に例えばNiろう付けにて取付ける。この図7に示す櫛歯状ガイド部材の場合は、ケーシング1内に流入した冷却水がその基端部10c−4に沿って流れてケーシング1内面に沿って排気ガスの出口方向に向かって漏洩して沸騰防止に寄与しない冷却水の流量を減少させ、短冊状ガイド部材10c−3の先端に向って各扁平伝熱管2の間の空間及び扁平伝熱管2の排気ガス流入ボンネット方向を指向してチューブシート3内表面に速やかにかつ確実に達して冷却し冷却水の沸騰が効果的に防止される。   The guide member shown in FIG. 7 exemplifies a comb-shaped guide member 10c used in place of the strip-shaped guide members 10a and 10b, and its structure is substantially the same as that shown in FIG. A plurality of strip-shaped guide members 10c-3 having fixing fins 10c-2 formed at two lower portions are integrally formed together with their base end portions (end portions on the cooling water inlet side) 10c-4. In the same manner as the strip-shaped guide members 10a and 10b, the strip-shaped guide member 10c-3 is disposed between the flat heat transfer tubes 2 and the flat surface of the flat heat transfer tubes 2 via the fixing fins 10c-2. For example, it is attached by Ni brazing. In the case of the comb-shaped guide member shown in FIG. 7, the cooling water flowing into the casing 1 flows along the base end portion 10c-4 and leaks along the inner surface of the casing 1 toward the outlet direction of the exhaust gas. Then, the flow rate of the cooling water that does not contribute to the prevention of boiling is reduced, and the space between the flat heat transfer tubes 2 and the exhaust gas inflow bonnet direction of the flat heat transfer tubes 2 are directed toward the tip of the strip-shaped guide member 10c-3. As a result, the inner surface of the tube sheet 3 is quickly and surely cooled and the cooling water is effectively prevented from boiling.

図8〜図10に示す本発明の第2実施例に係る多管式熱交換器は、前記第1実施例に係る多管式熱交換器と同様に、短冊状ガイド部材を各扁平伝熱管2の間に配置させる方式において、例えば図9に示す複数の短冊状ガイド部材10dをその基端部(冷却水流入口側端部)10d−3において背面側に円弧状溝部11a−2を有する短冊状ステー11a−1を設けた櫛歯状ステー11aの基端部11a−3にろう付け又は溶接により一体化したガイド部材を、図8に示すように扁平伝熱管2の側面にろう付け又は溶接により固定した構造となしたものである。10d−1はガイド面、10d−2は固定フィンである。又、図10に示すガイド部材は、複数の短冊状ガイド部材10dをその基端部(冷却水流入口側端部)10d−3において背面側に円弧状溝部11b−2を有する短冊状ステー11b−1を設けた断面L字状の櫛歯状ステー11bの基端部11b−3にろう付け又は溶接により一体化したものである。この図10に示すガイド部材も前記櫛歯状ステー11aと同様に、図8に示すように扁平伝熱管2の側面の平坦面及び凸状面にろう付け又は溶接により固定する。   The multitubular heat exchanger according to the second embodiment of the present invention shown in FIGS. 8 to 10 is similar to the multitubular heat exchanger according to the first embodiment. 9, a plurality of strip-shaped guide members 10d shown in FIG. 9, for example, a strip having an arc-shaped groove 11a-2 on the back side at the base end (cooling water inlet side end) 10d-3. A guide member integrated by brazing or welding with the base end portion 11a-3 of the comb-like stay 11a provided with the braided stay 11a-1 is brazed or welded to the side surface of the flat heat transfer tube 2 as shown in FIG. The structure is fixed by the above. 10d-1 is a guide surface, 10d-2 is a fixed fin. Further, the guide member shown in FIG. 10 has a strip-like stay 11b− having a plurality of strip-shaped guide members 10d having arc-shaped groove portions 11b-2 on the back side at the base end portion (end portion on the cooling water inlet side) 10d-3. 1 is integrated by brazing or welding to a base end portion 11b-3 of an L-shaped comb-like stay 11b. The guide member shown in FIG. 10 is also fixed to the flat surface and the convex surface of the flat heat transfer tube 2 by brazing or welding, as shown in FIG. 8, similarly to the comb-like stay 11a.

上記図8〜図10に示す構成の本発明の多管式熱交換器の場合は、前記第2実施例に係る多管式熱交換器と同様に冷却水流の整流及びガイド作用に伴う沸騰防止・交換熱量の増大(排気ガス温度の低下)効果が得られるのみならず、前記第2実施例に係る多管式熱交換器のガイド部材より各基端部11a−3、11b−3及び円弧状溝部11a−2、11b−2を有する短冊状ステー11a−1、11b−1の扁平管2の凸状側面への固定箇所の存在により、更に櫛歯状ステーの剛性が向上すると共に放熱性も向上し、より高い耐久信頼性が得られる。   In the case of the multitubular heat exchanger of the present invention having the configuration shown in FIGS. 8 to 10, as in the multitubular heat exchanger according to the second embodiment, the boiling prevention associated with the rectification of the cooling water flow and the guide action. -Not only the effect of increasing the amount of exchange heat (decreasing the exhaust gas temperature) is obtained, but also the base ends 11a-3, 11b-3 and the circle from the guide member of the multi-tube heat exchanger according to the second embodiment. The rigidity of the comb-like stay is further improved and the heat dissipation is achieved by the presence of the fixing portion to the convex side surface of the flat tube 2 of the strip-like stays 11a-1 and 11b-1 having the arc-shaped groove portions 11a-2 and 11b-2. And higher durability and reliability can be obtained.

図11〜図14に示す本発明の第3実施例に係る多管式熱交換器は、前記図7に示す櫛歯状ガイド部材10cと略同様の構造を有する櫛歯状ガイド部材10eと、短冊状ステー11cとで構成したガイド部材を採用したもので、そのガイド部材の構造は図示のように、ガイド面10e−1に形成された固定用フィン10e−2を有する複数個の短冊状ガイド部材をその基端部(冷却水流入口側端部)10e−3において一体成形した構造となした櫛歯状ガイド部材10eの基端部10e−3背面に、扁平伝熱管2と同じ数でかつ各扁平伝熱管2の側面の凸状面と対応する位置に円弧状溝部11c−1を有する短冊状ステー11cの基端部11c−2をろう付け又は溶接により一体化した構造となしたものである。本実施例は、このガイド部材を各扁平伝熱管2の側面の平坦面及び凸状面にろう付け又は溶接により固定した構造となしたものである。なお、櫛歯状ガイド部材10eのガイド面10e−1部の長さは、特に限定するものではなく適宜定めることとする。   A multitubular heat exchanger according to a third embodiment of the present invention shown in FIGS. 11 to 14 has a comb-shaped guide member 10e having a structure substantially similar to the comb-shaped guide member 10c shown in FIG. A guide member constituted by a strip-like stay 11c is adopted, and the structure of the guide member is a plurality of strip-shaped guides having fixing fins 10e-2 formed on the guide surface 10e-1 as shown in the figure. On the back surface of the base end portion 10e-3 of the comb-shaped guide member 10e having a structure in which the member is integrally molded at the base end portion (end portion on the cooling water inlet side) 10e-3, the same number as the flat heat transfer tubes 2 A structure in which the base end portion 11c-2 of the strip-like stay 11c having the arc-shaped groove portion 11c-1 at a position corresponding to the convex surface of the side surface of each flat heat transfer tube 2 is integrated by brazing or welding. is there. In this embodiment, the guide member is fixed to the flat and convex surfaces of the flat heat transfer tubes 2 by brazing or welding. In addition, the length of the guide surface 10e-1 part of the comb-tooth shaped guide member 10e is not specifically limited, and shall be determined suitably.

上記図11〜図14に示す構成の本発明の第3実施例に係る多管式熱交換器の場合は、前記第1、第2実施例に係る多管式熱交換器と同様に冷却水流の整流及びガイド作用に伴う沸騰防止・交換熱量の増大(排気ガス温度の低下)効果が得られるのみならず、前記第2実施例に係る多管式熱交換器のガイド部材よりさらに短冊状ステー11c(櫛歯状ステー11bに相当する)の存在により櫛歯状ガイド部材10eの剛性が向上し、より高い耐久信頼性が得られる。   In the case of the multitubular heat exchanger according to the third embodiment of the present invention having the configuration shown in FIGS. 11 to 14, the cooling water flow is the same as the multitubular heat exchanger according to the first and second embodiments. In addition to the effect of preventing boiling and increasing the amount of exchange heat (decreasing the exhaust gas temperature) associated with the rectification and guide action of the pipe, the strip-like stay is further improved than the guide member of the multi-tube heat exchanger according to the second embodiment. The presence of 11c (corresponding to the comb-like stay 11b) improves the rigidity of the comb-like guide member 10e, and higher durability reliability is obtained.

図15〜図16に示す本発明の第4実施例に係る多管式熱交換器は、前記第3実施例に係る多管式熱交換器のガイド部材と略同様の形状を有するガイド部材を採用したもので、そのガイド部材の構造は図示のように、ガイド面10f−1に形成された固定用フィン10f−2を有する複数個の短冊状ガイド部材をその基端部(冷却水流入口側端部)10f−3において一体成形した構造の櫛歯状ガイド部材10fの基端部背面に、同櫛歯状ガイド部材と一体成形(扁平伝熱管用溝部に位置する材料を背面側に湾曲させて成形)されて基端部に連なって円弧状溝部10f−5を有する櫛歯状ステー10f−4を有する構造となしたものである。本実施例は、このガイド部材を各扁平伝熱管2の側面にろう付け又は溶接により固定した構造となしたものである。   The multitubular heat exchanger according to the fourth embodiment of the present invention shown in FIGS. 15 to 16 includes a guide member having a shape substantially similar to the guide member of the multitubular heat exchanger according to the third embodiment. As shown in the figure, the guide member is structured such that a plurality of strip-shaped guide members having fixing fins 10f-2 formed on the guide surface 10f-1 are arranged at the base end (cooling water inlet side). On the rear surface of the base end portion of the comb-shaped guide member 10f having a structure integrally formed at the end portion 10f-3, the material is positioned integrally with the comb-shaped guide member (the material located in the groove portion for the flat heat transfer tube is curved to the back side. And a comb-like stay 10f-4 having an arcuate groove portion 10f-5 connected to the base end portion. In this embodiment, the guide member is fixed to the side surface of each flat heat transfer tube 2 by brazing or welding.

上記図15〜図16に示す構成の本発明の第4実施例に係る多管式熱交換器の場合は、前記第2、第3実施例に係る多管式熱交換器と同様に冷却水流の整流及びガイド作用に伴う沸騰防止・交換熱量の増大(排気ガス温度の低下)効果が得られるのみならず、櫛歯状ガイド部材の櫛歯状ステー10f−4が扁平伝熱管用溝部に位置する材料を背面側に湾曲させて一体成形されているので、前記第2、第3実施例に係る多管式熱交換器で採用したガイド部材に比べ材料歩留が良くかつ櫛歯状ステー10f−4の剛性も向上し、より高い耐久信頼性が得られる。   In the case of the multitubular heat exchanger according to the fourth embodiment of the present invention having the configuration shown in FIGS. 15 to 16, the cooling water flow is similar to the multitubular heat exchanger according to the second and third embodiments. Bout prevention / increase in heat exchange (decrease in exhaust gas temperature) due to the rectification and guide action of the gas, and the comb-like stay 10f-4 of the comb-like guide member is located in the groove for the flat heat transfer tube Since the material to be bent is integrally formed on the back side, the material yield is better than the guide member employed in the multi-tube heat exchanger according to the second and third embodiments, and the comb-like stay 10f. The rigidity of -4 is also improved, and higher durability reliability is obtained.

図17〜図18に示す本発明の第5実施例に係る多管式熱交換器は、前記第3実施例に係る多管式熱交換器のガイド部材と類似の形状を有するガイド部材を採用したもので、そのガイド部材の構造は図示のように、ガイド面10g−1に形成された固定用フィン10g−2を有する複数個の短冊状ガイド部材をその基端部(冷却水流入口側端部)10g−3において一体成形した構造の櫛歯状ガイド部材10gの基端部背面に、同櫛歯状ガイド部材と一体成形(扁平伝熱管用溝部と同位相に位置する材料を背面側に湾曲させて成形)されて基端部に連なって円弧状溝部10g−5を有する櫛歯状ステー10g−4を設けた構造となしたものである。本実施例は、このガイド部材を各扁平伝熱管2の側面にろう付け又は溶接により固定した構造となしたものである。   The multi-tube heat exchanger according to the fifth embodiment of the present invention shown in FIGS. 17 to 18 employs a guide member having a shape similar to the guide member of the multi-tube heat exchanger according to the third embodiment. As shown in the figure, the guide member has a structure in which a plurality of strip-shaped guide members having fixing fins 10g-2 formed on the guide surface 10g-1 are arranged at the base end (cooling water inlet side end). Part) 10g-3, integrally formed with the comb-shaped guide member on the rear surface of the base end of the comb-shaped guide member 10g formed integrally (with the material located in the same phase as the flat heat transfer tube groove on the back side) This is a structure in which a comb-like stay 10g-4 having an arcuate groove portion 10g-5 connected to the base end portion is provided. In this embodiment, the guide member is fixed to the side surface of each flat heat transfer tube 2 by brazing or welding.

上記図17〜図18に示す構成の本発明の第5実施例に係る多管式熱交換器の場合は、前記第2、第3実施例に係る多管式熱交換器と同様に冷却水流の整流及びガイド作用に伴う沸騰防止・交換熱量の増大(排気ガス温度の低下)効果が得られるのみならず、櫛歯状ガイド部材10gの櫛歯状ステー10g−4が扁平伝熱管用溝部と同位相に位置する材料を背面側に湾曲させて一体成形されているので、前記第4実施例に係る多管式熱交換器と同様に、前記第2、第3実施例に係る多管式熱交換器で採用したガイド部材に比べ製作工数が少なく、材料歩留も良く、かつ櫛歯状ステー10g−4の剛性も向上し、より高い耐久信頼性が得られる。   In the case of the multitubular heat exchanger according to the fifth embodiment of the present invention having the configuration shown in FIGS. 17 to 18, the cooling water flow is the same as the multitubular heat exchanger according to the second and third embodiments. In addition to the effect of preventing boiling and increasing the exchange heat amount (decreasing the exhaust gas temperature) associated with the rectification and guide action of the guide, the comb-like stay 10g-4 of the comb-like guide member 10g is connected to the flat heat transfer tube groove portion. Since the material positioned in the same phase is bent to the back side and integrally molded, the multitubular type according to the second and third embodiments is the same as the multitubular heat exchanger according to the fourth example. Compared to the guide member employed in the heat exchanger, the number of manufacturing steps is small, the material yield is good, the rigidity of the comb-like stay 10g-4 is improved, and higher durability reliability is obtained.

図19〜図20に示す本発明の第6実施例に係る多管式熱交換器は、前記第2実施例に係る多管式熱交換器のガイド部材と類似の形状を有するガイド部材を採用したもので、そのガイド部材の構造は図示のように、短冊状ガイド部材を各扁平伝熱管2の間に配置させる方式において、図19及び図20に示す複数の短冊状ガイド部材10dをその基端部(冷却水流入口側端部)10d−3において背面側に、各扁平伝熱管2を跨ぐ断面円弧状の湾曲部10h−2と該湾曲部をつなぐ繋ぎ部10h−3及び繋ぎ部10h−3の部分に形成した舌状部10h−4を有する帯状ステー10h−1の前記舌状部10h−4をろう付け又は溶接により一体化したガイド部材を、扁平伝熱管2の側面にろう付け又は溶接により固定した構造となしたものである。   The multi-tube heat exchanger according to the sixth embodiment of the present invention shown in FIGS. 19 to 20 employs a guide member having a shape similar to the guide member of the multi-tube heat exchanger according to the second embodiment. As shown in the drawing, the structure of the guide member is a method in which strip-shaped guide members are arranged between the flat heat transfer tubes 2 as shown in the drawing, and a plurality of strip-shaped guide members 10d shown in FIGS. On the back side at the end (cooling water inflow side end) 10d-3, a curved portion 10h-2 having an arcuate cross section straddling each flat heat transfer tube 2, a connecting portion 10h-3 and a connecting portion 10h- connecting the curved portions. Brazing or welding the guide member in which the tongue-like portion 10h-4 of the belt-like stay 10h-1 having the tongue-like portion 10h-4 formed in the portion 3 is brazed or welded to the side surface of the flat heat transfer tube 2 or A structure that is fixed by welding. That.

上記図19〜図20に示す構成の本発明の第6実施例に係る多管式熱交換器の場合は、前記の各多管式熱交換器と同様に冷却水流の整流及びガイド作用に伴う沸騰防止・交換熱量の増大(排気ガス温度の低下)効果が得られるのみならず、ガイド部材の帯状ステー10h−1が湾曲部10h−2により各扁平伝熱管と強固に固定されることにより振動等による扁平伝熱管の変形を効果的に防止できるという効果を奏する。   In the case of the multitubular heat exchanger according to the sixth embodiment of the present invention having the configuration shown in FIGS. 19 to 20, the cooling water flow is rectified and guided in the same manner as each of the multitubular heat exchangers. Not only is the effect of preventing boiling / increasing exchange heat (decreasing exhaust gas temperature) obtained, but vibration is also caused when the belt-like stay 10h-1 of the guide member is firmly fixed to each flat heat transfer tube by the curved portion 10h-2. The effect that the deformation | transformation of the flat heat exchanger tube by etc. can be prevented effectively is produced.

図21〜図22に示す本発明の第7実施例に係る多管式熱交換器は、扁平伝熱管の積層配列が複数列に及ぶ場合、各ガイド部材を冷却水流入口側から各列に跨設した実施例を示したもので、その構造は、ケーシング1内に複数本の扁平伝熱管2が並設されて積層された上下2段に配列された扁平伝熱管群2a、2bを有する多管式熱交換器において、例えば図7に示すものと略同様のガイド部材、即ち、上下2段に配列された扁平伝熱管群に対応する長さを有するガイド面10i−1の略中間部と下部の二箇所に形成された固定用フィン10i−2を有する複数個の短冊状ガイド部材をその基端部(冷却水流入口側端部)において一体成形した構造となした櫛歯状ガイド部材10iを用い、短冊状ガイド部材がそれぞれ扁平伝熱管2の間に位置するように各固定用フィン10i−2を介して扁平伝熱管2の平坦面に例えばNiろう付けにて取付けて構成したものである。   In the multi-tube heat exchanger according to the seventh embodiment of the present invention shown in FIGS. 21 to 22, when the laminated arrangement of flat heat transfer tubes extends over a plurality of rows, each guide member is extended from the cooling water inlet side to each row. In this embodiment, the structure includes a plurality of flat heat transfer tube groups 2a and 2b arranged in two upper and lower stages in which a plurality of flat heat transfer tubes 2 are arranged side by side in a casing 1 and stacked. In the tubular heat exchanger, for example, a guide member substantially similar to that shown in FIG. 7, that is, a substantially intermediate portion of the guide surface 10 i-1 having a length corresponding to the flat heat transfer tube group arranged in two upper and lower stages, A comb-shaped guide member 10i having a structure in which a plurality of strip-shaped guide members having fixing fins 10i-2 formed at two lower portions are integrally formed at the base end portion (end portion on the cooling water inlet side). The strip-shaped guide members are positioned between the flat heat transfer tubes 2 respectively. Is constructed by mounting at flat surface such as Ni brazing the flat heat transfer tubes 2 via the respective fixing fins 10i-2 to.

この図21〜図22に示す本発明の第7実施例に係る多管式熱交換器の場合は、前記の各多管式熱交換器と同様に冷却水流の整流及びガイド作用に伴う沸騰防止・交換熱量の増大(排気ガス温度の低下)効果が得られるのみならず、冷却水流入用開口部6側から離れた位置に積層配列されている扁平伝熱管群2bの各扁平伝熱管の平坦面まで各短冊状ガイド部材が延長配設されているので、冷却水流入口側から離れた位置のチューブシート3内面並びに各扁平伝熱管2の排気ガス流入ボンネット側及び扁平伝熱管表面まで確実に冷却水を導くことができるという効果を奏する。   In the case of the multitubular heat exchanger according to the seventh embodiment of the present invention shown in FIGS. 21 to 22, the boiling prevention associated with the rectification of the cooling water flow and the guide action as in the case of the above multitubular heat exchangers. The flat heat transfer tubes of the flat heat transfer tube group 2b that are stacked and arranged not only at the effect of increasing the amount of exchange heat (decreasing the exhaust gas temperature) but also from the cooling water inflow opening 6 side. Since each strip-shaped guide member is extended to the surface, it is surely cooled to the inner surface of the tube sheet 3 at a position away from the cooling water inlet side, the exhaust gas inflow bonnet side of each flat heat transfer tube 2, and the flat heat transfer tube surface. There is an effect that water can be guided.

図23〜図24に示す本発明の第8実施例に係る多管式熱交換器は、積層された扁平伝熱管2の間の各空間部にガイド部材を複数配設した実施例を示したもので、ここでは前記第7実施例に係る多管式熱交換器と同様の扁平伝熱管の積層配列が上下2列の多管式熱交換器を例にとり説明する。
即ち、この第8実施例に係る多管式熱交換器は、ケーシング1内に複数本の扁平伝熱管2が並設されて積層された上下2段に配列された扁平伝熱管群2a、2bを有する多管式熱交換器において、例えば前記図21、図22に示すものと同様のガイド部材、即ち、上下2段に配列された扁平伝熱管群2a、2bに対応する長さを有するガイド面10j−1の略中間部と下部の二箇所に形成された固定用フィン10j−2を有する複数個の短冊状ガイド部材をその基端部(冷却水流入口側端部)において一体成形した構造となした長尺の櫛歯状ガイド部材(第1ガイド部材)10jと、扁平伝熱管の平坦面の幅より長さの短いガイド面10k−1の中間部に固定用フィン10k−2を有する短尺の短冊状ガイド部材(第2ガイド部材)10kを用い、長尺の櫛歯状ガイド部材(第1ガイド部材)10jと短尺の短冊状ガイド部材(第2ガイド部材)10kがそれぞれ扁平伝熱管2の間に位置するように、かつ短尺の短冊状ガイド部材10kは排気ガス流入ボンネット4側に近い位置に、それぞれ各固定用フィン10j−2、10k−2を介して扁平伝熱管2の平坦面に例えばNiろう付けにて取付けて構成したものである。
The multi-tube heat exchanger according to the eighth embodiment of the present invention shown in FIGS. 23 to 24 shows an embodiment in which a plurality of guide members are arranged in each space between the stacked flat heat transfer tubes 2. Therefore, here, a multi-tube heat exchanger having two upper and lower rows of flat heat transfer tubes similar to the multi-tube heat exchanger according to the seventh embodiment will be described as an example.
That is, in the multi-tube heat exchanger according to the eighth embodiment, the flat heat transfer tube groups 2a and 2b arranged in two upper and lower stages in which a plurality of flat heat transfer tubes 2 are arranged side by side in the casing 1 and stacked. , A guide member similar to that shown in FIGS. 21 and 22, for example, a guide having a length corresponding to the flat heat transfer tube groups 2a and 2b arranged in two upper and lower stages. A structure in which a plurality of strip-shaped guide members having fixing fins 10j-2 formed at two substantially lower and lower portions of the surface 10j-1 are integrally formed at the base end (cooling water inlet side end). The long comb-teeth guide member (first guide member) 10j and the fixing fin 10k-2 are provided in the middle of the guide surface 10k-1 having a length shorter than the width of the flat surface of the flat heat transfer tube. A short strip-shaped guide member (second guide member) 10k A long strip-shaped guide member (first guide member) 10j and a short strip-shaped guide member (second guide member) 10k are positioned between the flat heat transfer tubes 2 and are short strip-shaped. The guide member 10k is configured to be attached to the flat surface of the flat heat transfer tube 2 by, for example, Ni brazing, through the fixing fins 10j-2 and 10k-2, respectively, at a position close to the exhaust gas inflow bonnet 4 side. is there.

この図23〜図24に示す本発明の第8実施例に係る多管式熱交換器の場合は、前記の各多管式熱交換器と同様に冷却水流の整流及びガイド作用に伴う沸騰防止・交換熱量の増大(排気ガス温度の低下)効果、耐振性の向上効果が得られるのみならず、特に冷却水流入口側から離れた位置まで積層配列されている櫛歯状ガイド部材(第1ガイド部材)10jと冷却水流入用開口部側に近い位置に配設されている短冊状ガイド部材(第2ガイド部材)10kとの併用により、広い範囲のチューブシート3内面並びに各扁平伝熱管2の排気ガス流入ボンネット4側及び扁平伝熱管表面まで確実に冷却水を導くことができるという効果と、冷却水流入用開口部をチューブシート3から軸方向に少し離れた位置に配置してもチューブシート内面並びに各扁平伝熱管2の排気ガス流入ボンネット4側及び扁平伝熱管表面まで確実に冷却水を導くことができるという効果を奏する。   In the case of the multitubular heat exchanger according to the eighth embodiment of the present invention shown in FIGS. 23 to 24, as in the case of each of the multitubular heat exchangers described above, boil prevention due to the rectification of the cooling water flow and the guide action. -Comb-shaped guide members (first guides) that are stacked and arranged not only from the cooling water inlet side, but also from the effect of increasing the amount of exchange heat (decreasing exhaust gas temperature) and improving vibration resistance Member) 10j and a strip-shaped guide member (second guide member) 10k disposed at a position close to the cooling water inflow opening side, a wide range of inner surfaces of the tube sheet 3 and each flat heat transfer tube 2 The effect of being able to reliably guide the cooling water to the exhaust gas inflow bonnet 4 side and the flat heat transfer tube surface, and the tube sheet even if the cooling water inflow opening is disposed at a position slightly away from the tube sheet 3 in the axial direction Inside as well as An effect that can be guided reliably cooling water to the exhaust gas inlet hood 4 side and the flat heat-transfer tube surface of the flat heat transfer tubes 2.

図25〜図26に示す本発明の第9実施例に係る多管式熱交換器は、前記図1〜図6に示す第1実施例に係る多管式熱交換器と同様の構成を有する多管式熱交換器において、固定用フィン10l−2を有する短冊状ガイド部材10lのガイド面10l−1に小孔10l−3を穿設し、ケーシング1内に流入した冷却水の一部を積極的に流出管7側へ流すことにより、広い範囲で沸騰防止効果を得ようとするものである。即ち、この第9実施例に係る多管式熱交換器の場合は、前記の各多管式熱交換器と同様に冷却水流の整流及びガイド作用に伴う沸騰防止・交換熱量の増大(排気ガス温度の低下)効果、耐振性の向上効果が得られるのみならず、短冊状ガイド部材10lの小孔10l−3から背面側に流出した冷却水がチューブシート3から軸方向に少し離れた位置の扁平伝熱管の平坦面にまで速やかに到達して広い範囲にわたり冷却を促進するので、排気ガス温度が上昇しかつ排気ガス流量が増大し高速化した場合でも沸騰を防止するという効果が得られる。   The multitubular heat exchanger according to the ninth embodiment of the present invention shown in FIGS. 25 to 26 has the same configuration as the multitubular heat exchanger according to the first embodiment shown in FIGS. In the multi-tube heat exchanger, a small hole 10l-3 is formed in the guide surface 10l-1 of the strip-shaped guide member 10l having the fixing fins 10l-2, and a part of the cooling water flowing into the casing 1 is obtained. By actively flowing to the outflow pipe 7 side, the boiling prevention effect is obtained in a wide range. That is, in the case of the multitubular heat exchanger according to the ninth embodiment, as in the case of each of the multitubular heat exchangers described above, the boil prevention / exchange heat quantity increase (exhaust gas) associated with the rectification of the cooling water flow and the guide action. Not only the effect of lowering the temperature) and the improvement of vibration resistance, but also the cooling water flowing out from the small hole 10l-3 of the strip-shaped guide member 10l to the back side is slightly away from the tube sheet 3 in the axial direction. Since it reaches the flat surface of the flat heat transfer tube quickly and promotes cooling over a wide range, the effect of preventing boiling can be obtained even when the exhaust gas temperature rises and the exhaust gas flow rate increases and speeds up.

図27〜図28に示す本発明の第10実施例に係る多管式熱交換器は、前記図1〜図6に示す第1実施例に係る多管式熱交換器と同様の構成を有する多管式熱交換器において、冷却水分配器8が設けられるケーシング1の冷却水流入用開口部6付近に前記積層された各扁平伝熱管2の間の空間もしくは該空間に加えて扁平伝熱管2とケーシング1内面との間の空間部内に冷却水が指向するように前記積層された各扁平伝熱管2の間の空間もしくは該空間に加えて扁平伝熱管2とケーシング1内面との間の空間とに対応した位置に複数の噴出孔13−1を設けたノズル部材13をケーシング1内壁又は外壁(図示せず)に設ける方式となしたものである。ここで、ノズル部材13は噴出孔13−1の断面積の総和が冷却水分配器8内の冷却水の流れ方向断面積より小さくなっていることにより該噴出孔13−1における冷却水の噴出流速が冷却水分配器8内の軸直角方向断面における平均流速より増速させることができる。この第10実施例に係る多管式熱交換器の場合は、前記の各多管式熱交換器と同様に冷却水流の整流及びガイド作用に伴う沸騰防止・交換熱量の増大(排気ガス温度の低下)効果が得られるのみならず、噴出孔13−1から好ましくは増速されてケーシング1内に流入した冷却水がチューブシート3内表面並びに各扁平伝熱管2の排気ガス流入ボンネット側や扁平伝熱管の平坦面にまで速やかに到達して冷却し沸騰を防止するという効果と、冷却水流入口をチューブシート3から軸方向に少し離れた位置に配置してもチューブシート3内表面並びに各扁平伝熱管2の排気ガス流入ボンネット側及び扁平伝熱管表面まで確実に冷却水を導くことができるという優れた効果が得られる。なお、ノズル部材13の扁平伝熱管2とケーシング1内面との間の空間とに対応した位置に設ける噴出孔13−1は必ずしも全周縁が繋がった孔形状とする必要はなく、開口部を有して全周縁が繋がっていない例えば図28(ア)、(イ)に示すようにU字状の切欠形状として設けておいてケーシング1の内面又は外面(図示せず)に設置されることにより、冷却水流入用開口部6の周縁によって前記開口部が塞がって該噴出孔13−1の全周縁が孔状に繋がるように設けてもよい。   The multitubular heat exchanger according to the tenth embodiment of the present invention shown in FIGS. 27 to 28 has the same configuration as the multitubular heat exchanger according to the first embodiment shown in FIGS. In the multi-tube heat exchanger, a space between the stacked flat heat transfer tubes 2 in the vicinity of the cooling water inflow opening 6 of the casing 1 provided with the cooling water distributor 8 or the flat heat transfer tubes 2 in addition to the spaces. The space between the laminated flat heat transfer tubes 2 or the space between the flat heat transfer tubes 2 and the inner surface of the casing 1 so that the cooling water is directed in the space between the inner surface of the casing 1 and the inner surface of the casing 1. And a nozzle member 13 provided with a plurality of ejection holes 13-1 at positions corresponding to the above is provided on the inner wall or outer wall (not shown) of the casing 1. Here, in the nozzle member 13, the sum of the cross-sectional areas of the ejection holes 13-1 is smaller than the cross-sectional area in the flow direction of the cooling water in the cooling water distributor 8, whereby the cooling water ejection flow rate in the ejection holes 13-1 is achieved. Can be increased more than the average flow velocity in the cross section perpendicular to the axis in the cooling water distributor 8. In the case of the multitubular heat exchanger according to the tenth embodiment, as in the case of each of the multitubular heat exchangers described above, the boil prevention / exchange heat amount (exhaust gas temperature The cooling water that is preferably increased in speed from the ejection holes 13-1 and flows into the casing 1 flows into the inner surface of the tube sheet 3 as well as the exhaust gas inflow bonnet side of each flat heat transfer tube 2 and the flat The effect of promptly reaching the flat surface of the heat transfer tube and cooling it to prevent boiling, and the inner surface of the tube sheet 3 and each flat surface even if the cooling water inlet is located slightly away from the tube sheet 3 in the axial direction An excellent effect is obtained that the cooling water can be reliably guided to the exhaust gas inflow bonnet side of the heat transfer tube 2 and the flat heat transfer tube surface. In addition, the ejection hole 13-1 provided in the position corresponding to the space between the flat heat exchanger tube 2 of the nozzle member 13 and the inner surface of the casing 1 does not necessarily need to be a hole shape in which the entire periphery is connected, and has an opening. When the entire periphery is not connected, for example, as shown in FIGS. 28A and 28A, it is provided as a U-shaped notch and is installed on the inner surface or outer surface (not shown) of the casing 1. The opening may be closed by the periphery of the cooling water inflow opening 6, and the entire periphery of the ejection hole 13-1 may be connected in a hole shape.

図29〜図31に示す本発明の第11実施例に係る多管式熱交換器は、冷却水分配器8の冷却水流入用開口部付近に冷却水の流速が冷却水分配器8内より増速されるように複数の噴出孔を設けたノズル部材をケーシング1内壁又は外壁(図示せず)に設ける方式において、前記第10実施例に係る多管式熱交換器のノズル部材13に替えて、扁平伝熱管2側に断面略V字状もしくはU字状で扁平伝熱管2の積層幅に応じて突出した凸状部23−1を有するノズル部材23を採用したもので、その構造は断面略V字状の凸状部23−1の両端部に、チューブシート側(排気ガス流入口側)を指向した傾斜面を形成し、凸状部23−1の前面側傾斜面23−1aには各扁平伝熱管2の間の空間に対応して位置し該空間を指向した噴出孔23−2aを、凸状部23−1の両端部の両端部傾斜面23−1bには扁平伝熱管2とケーシング1間の空間に対応して位置し該空間を指向した噴出孔23−2bをそれぞれ設けたものである。ここで、ノズル部材23も前記ノズル部材13と同様に、噴出孔23−2a、23−2bの断面積の総和が冷却水分配器8内の冷却水の流れ直角方向断面積より小さい。なお、噴出孔23−2a、23−2bの形状は真円又は楕円もしくは長円形状のいずれでもよい。この第11実施例に係る多管式熱交換器の場合は、ノズル部材23の凸状部23−1の前面側傾斜面23−1aの噴出孔23−2aからは各扁平伝熱管2の間の空間を、両側の両端部傾斜面23−1bに設けられている噴出孔23−2bからは積層された扁平伝熱管群の最もケーシング内壁に近い扁平伝熱管2とケーシング1の間の空間を指向して噴出した冷却水が、各扁平伝熱管の間の空間に配設された短冊状ガイド部材10a〜10lに沿って確実に流れることにより、該空間部分を含めた広い範囲における冷却水の沸騰がより効果的に防止される。なお断面略V字状のノズル部材であって前面側傾斜面が略平坦面の例を示したが、ノズル部材は断面略U字状であって前面側傾斜面が湾曲面であっても良いことは云うまでも無い。   In the multi-tube heat exchanger according to the eleventh embodiment of the present invention shown in FIGS. 29 to 31, the cooling water flow rate is increased in the vicinity of the cooling water inflow opening of the cooling water distributor 8 from the inside of the cooling water distributor 8. In the method of providing a nozzle member provided with a plurality of ejection holes on the inner wall or outer wall (not shown) of the casing 1 in place of the nozzle member 13 of the multitubular heat exchanger according to the tenth embodiment, A nozzle member 23 having a convex portion 23-1 that has a substantially V-shaped or U-shaped cross section and protrudes in accordance with the lamination width of the flat heat transfer tube 2 is employed on the flat heat transfer tube 2 side. An inclined surface directed to the tube sheet side (exhaust gas inlet side) is formed at both ends of the V-shaped convex portion 23-1, and the front-side inclined surface 23-1a of the convex portion 23-1 Ejection holes 23-2a which are located corresponding to the spaces between the flat heat transfer tubes 2 and are directed to the spaces The both-end inclined surfaces 23-1b at both ends of the convex portion 23-1 are respectively provided with ejection holes 23-2b that are positioned corresponding to the space between the flat heat transfer tube 2 and the casing 1 and are directed to the space. Is. Here, similarly to the nozzle member 13, the sum total of the sectional areas of the ejection holes 23-2 a and 23-2 b is smaller than the sectional area in the direction perpendicular to the flow of the cooling water in the cooling water distributor 8. The shape of the ejection holes 23-2a and 23-2b may be a perfect circle, an ellipse, or an ellipse. In the case of the multi-tube heat exchanger according to the eleventh embodiment, each flat heat transfer tube 2 is connected from the ejection hole 23-2a of the front side inclined surface 23-1a of the convex portion 23-1 of the nozzle member 23. The space between the flat heat transfer tube 2 and the casing 1 that is closest to the inner wall of the casing of the laminated flat heat transfer tube group from the ejection holes 23-2b provided on the inclined surfaces 23-1b at both ends on both sides. The cooling water jetted in the direction of flow surely flows along the strip-shaped guide members 10a to 10l disposed in the spaces between the flat heat transfer tubes, so that the cooling water in a wide range including the space portion is obtained. Boiling is more effectively prevented. Although an example in which the nozzle member has a substantially V-shaped cross section and the front side inclined surface is a substantially flat surface is shown, the nozzle member may have a substantially U-shaped cross section and the front side inclined surface may be a curved surface. Needless to say.

図32〜図35に示す本発明の第12実施例に係る多管式熱交換器は、複数本の扁平伝熱管が並設されて積層された扁平伝熱管群を支持するチューブシート3を有さない、いわゆるチューブシートレスタイプの多管式熱交換器であり、その構造は伝熱フィンが内挿固着された複数本の扁平伝熱管12が並設されて積層された扁平伝熱管群と、該扁平伝熱管群の外周を囲繞するように形成されたケーシング11とからなり、各扁平伝熱管12の両端部がケーシング11の両端部に気密に組込まれ、ケーシング11の片側の端部には排気ガス流入ボンネット14が、他端には排気ガス流出ボンネット15がそれぞれ設けられ、さらにケーシング外周壁面の排気ガス流入ボンネット14側端部には扁平伝熱管12の積層方向に略平行な略矩形の長孔からなる冷却水流入用開口部16が設けられ、排気ガス流出ボンネット15側端部には冷却水流出管17が接続されている。このチューブシートレスタイプの多管式熱交換器の扁平伝熱管12は、図32〜図35に示すように、両端部に膨出した拡管部12−1を有する扁平な中空角柱状の管体にインナーフィン12−2が介装された構成となし、この多数の扁平伝熱管12が厚み方向に積層されて扁平伝熱管群が形成されている。   A multi-tube heat exchanger according to a twelfth embodiment of the present invention shown in FIGS. 32 to 35 has a tube sheet 3 that supports a flat heat transfer tube group in which a plurality of flat heat transfer tubes are arranged side by side. Is a so-called tube sheetless type multi-tube heat exchanger, the structure of which is a flat heat transfer tube group in which a plurality of flat heat transfer tubes 12 with heat transfer fins inserted and fixed therein are arranged and stacked The casing 11 is formed so as to surround the outer periphery of the flat heat transfer tube group, and both end portions of each flat heat transfer tube 12 are airtightly incorporated into both end portions of the casing 11, and at one end portion of the casing 11. The exhaust gas inflow bonnet 14 is provided at the other end, and the exhaust gas outflow bonnet 15 is provided at the other end, and the exhaust gas inflow bonnet 14 side end of the outer peripheral wall surface of the casing is substantially rectangular parallel to the stacking direction of the flat heat transfer tubes 12. Long hole Ranaru coolant inlet opening 16 is provided, the cooling water outlet pipe 17 is connected to the exhaust gas outlet hood 15 side end portion. The flat heat transfer tube 12 of this tube sheetless type multi-tube heat exchanger is a flat hollow prismatic tube body having expanded tube portions 12-1 bulging at both ends as shown in FIGS. The inner fin 12-2 is interposed, and the flat heat transfer tubes 12 are laminated in the thickness direction to form a flat heat transfer tube group.

前記冷却水流入用開口部16には、前記チューブシート付きの多管式熱交換器と同様に、該冷却水流入用開口部16を覆うように基端部(底部)が開口されたボックス形の冷却水分配器18をケーシング11の軸芯に対する垂直線に対し平行に(又は傾斜させて)設けている。この冷却水分配器18も前記のものと同様に、基端部に前記冷却水流入用開口部16を覆うフランジ部18−1を有し、該基端部と反対側端部に冷却水配管(図面省略)に接続する冷却水流入管19がケーシング外壁面と平行に横設されている。この冷却水流入管19には、前記冷却水分配器18内に連通する長孔からなる冷却水流入口19−1が設けられ、他端はキャップ(図示せず)により閉鎖されている。   The cooling water inflow opening 16 has a box shape with a base end (bottom) opened so as to cover the cooling water inflow opening 16 in the same manner as the multi-tube heat exchanger with the tube sheet. The cooling water distributor 18 is provided in parallel (or inclined) with respect to a vertical line with respect to the axis of the casing 11. This cooling water distributor 18 also has a flange portion 18-1 covering the cooling water inflow opening 16 at the base end portion, and the cooling water pipe ( A cooling water inflow pipe 19 connected to (not shown) is provided in parallel with the outer wall surface of the casing. The cooling water inflow pipe 19 is provided with a cooling water inlet 19-1 having a long hole communicating with the cooling water distributor 18, and the other end is closed by a cap (not shown).

ケーシング11内には、前記チューブシート付きの多管式熱交換器と同様に、該ケーシング内に流入した冷却水が積層された扁平伝熱管12の間の空間部を通流して当該扁平伝熱管の排気ガス流入口側方向を指向して流れるようにするための短冊状ガイド部材20aが配設されている。この短冊状ガイド部材20aは、ガイド面20a−1の上部と下部の二箇所に扁平伝熱管12の平坦面との固定用フィン20a−2が当該ガイド部材20aの側面よりその厚み分外側に突出するように背面側に直角に折曲げられて形成されている。この短冊状ガイド部材20aも前記のものと同様に、固定用フィン20a−2を介して扁平伝熱管2側面の平坦面に例えばNiろう付けされて取付けられている。なおこの場合も、固定用フィン20a−2は必ずしも両側に設ける必要はなく、片側フィンによる片面固定でも特に問題はない。   In the casing 11, similarly to the tube-tube heat exchanger with the tube sheet, the flat heat transfer tube flows through the space between the flat heat transfer tubes 12 in which the cooling water flowing into the casing is stacked. A strip-shaped guide member 20a is arranged to flow in the direction toward the exhaust gas inlet side. In this strip-shaped guide member 20a, fixing fins 20a-2 with the flat surface of the flat heat transfer tube 12 protrude outward from the side surface of the guide member 20a by two thicknesses at an upper portion and a lower portion of the guide surface 20a-1. In this way, it is bent at a right angle on the back side. This strip-shaped guide member 20a is also attached by, for example, Ni brazing to the flat surface on the side surface of the flat heat transfer tube 2 via the fixing fins 20a-2 in the same manner as described above. Also in this case, the fixing fins 20a-2 do not necessarily have to be provided on both sides, and there is no particular problem even if one-side fixing with one-side fins.

上記図32〜図35に示す構成の多管式熱交換器の場合は、冷却水流入管19より冷却水分配器18及び冷却水流入用開口部16を介してケーシング11内に流入した冷却水が短冊状ガイド部材20aのガイド面20a−1に沿って流れて各扁平伝熱管12の間の空間及び当該扁平伝熱管の排気ガス流入口側端部付近に速やかにかつ確実に達して冷却し、各扁平伝熱管12の間の空間及び当該扁平伝熱管の排気ガス流入口側端部付近での冷却水の沸騰が効果的に防止される。そして、冷却水の沸騰を伴わずに、ケーシング11内を流れる冷却水と扁平伝熱管12内を流れる排気ガスとが熱交換される。   In the case of the multi-tube heat exchanger configured as shown in FIGS. 32 to 35, the cooling water flowing into the casing 11 from the cooling water inflow pipe 19 through the cooling water distributor 18 and the cooling water inflow opening 16 is a strip. Flow along the guide surface 20a-1 of the guide member 20a and quickly and surely reach the space between the flat heat transfer tubes 12 and near the exhaust gas inlet side end of the flat heat transfer tubes, Boiling of the cooling water in the space between the flat heat transfer tubes 12 and the vicinity of the exhaust gas inlet side end of the flat heat transfer tubes is effectively prevented. Then, heat exchange is performed between the cooling water flowing in the casing 11 and the exhaust gas flowing in the flat heat transfer tube 12 without boiling the cooling water.

なお、積層された扁平伝熱管群の最もケーシング内壁に近い扁平伝熱管とケーシングの間の空間に短冊状ガイド部材を配設した例、及び、ガイド部材に凸状部を設け、その凸状部の両端部傾斜面に噴出孔を配設した例などを示したが、ケーシングの外表面がエンジン冷却用ファン(図示せず)による冷却が充分に期待できる場合など、積層された扁平伝熱管群の最もケーシング内壁に近い扁平伝熱管とケーシングの間の空間部における沸騰が危惧されない場合には必ずしも配置しなくても良い。   In addition, the example which arrange | positioned the strip-shaped guide member in the space between the flat heat-transfer tube closest to the inner wall of a casing and the casing of the laminated flat heat-transfer tube group, and provided the convex part in the guide member, the convex part An example in which ejection holes are provided on the inclined surfaces at both ends of the tube is shown. However, when the outer surface of the casing can be sufficiently cooled by an engine cooling fan (not shown), the laminated flat heat transfer tube group When the boiling in the space between the flat heat transfer tube closest to the inner wall of the casing and the casing is not a concern, it may not be necessarily arranged.

1、11 ケーシング
2、12 扁平伝熱管
2a、2b 扁平伝熱管群
3 チューブシート
4、14 排気ガス流入ボンネット
5、15 排気ガス流出ボンネット
6、16 冷却水流入用開口部
7、17 冷却水流出管
8、18 冷却水分配器
8−1、18−1 フランジ部
9、19 冷却水流入管
9−1、19−1 冷却水流入口
10a、10b、10c−3、10d、10k、10l、20a 短冊状ガイド部材
10a−1、10b−1、10c−1、10d−1、10e−1、10f−1、10g−1、10i−1、10j−1、10k−1、10l−1、20a−1 ガイド面
10a−2、10b−2、10c−2、10d−2、10e−2、10f−2、10g−2、10i−2、10j−2、10k−2、10l−2、20a−2 固定用フィン
10a−3 隙間
10c、10e、10f、10g、10i、10j 櫛歯状ガイド部材
10c−4、10d−3、10e−3、10e−4、10f−3、10g−3、11a−3、11b−3、11c−2 基端部
10h−1 帯状ステー
10h−2 湾曲部
10h−3 繋ぎ部
10h−4 舌状部
10l−3 小孔
11a、11b、10f−4、10g−4 櫛歯状ステー
11a−1、11b−1、11c 短冊状ステー
10f−5、10g−5、11a−2、11b−2、11c−1 円弧状溝部
12−1 拡管部
12−2 インナーフィン
13、23 ノズル部材
13−1、23−2a、23−2b 噴出孔
23−1 凸状部
23−1a 前面側傾斜面
23−1b 両端部傾斜面
DESCRIPTION OF SYMBOLS 1,11 Casing 2,12 Flat heat exchanger tube 2a, 2b Flat heat exchanger tube group 3 Tube sheet | seat 4,14 Exhaust gas inflow bonnet 5,15 Exhaust gas outflow bonnet 6,16 Cooling water inflow opening 7,17 Cooling water outflow tube 8, 18 Cooling water distributors 8-1, 18-1 Flange portions 9, 19 Cooling water inflow pipes 9-1, 19-1 Cooling water inlets 10a, 10b, 10c-3, 10d, 10k, 10l, 20a Strip-shaped guide members 10a-1, 10b-1, 10c-1, 10d-1, 10e-1, 10f-1, 10g-1, 10i-1, 10j-1, 10k-1, 10l-1, 20a-1 Guide surface 10a -2, 10b-2, 10c-2, 10d-2, 10e-2, 10f-2, 10g-2, 10i-2, 10j-2, 10k-2, 10l-2, 20a-2 fixing fin 10 -3 gaps 10c, 10e, 10f, 10g, 10i, 10j comb-shaped guide members 10c-4, 10d-3, 10e-3, 10e-4, 10f-3, 10g-3, 11a-3, 11b-3 , 11c-2 Base end portion 10h-1 Band-shaped stay 10h-2 Curved portion 10h-3 Connecting portion 10h-4 Tongue portion 10l-3 Small holes 11a, 11b, 10f-4, 10g-4 Comb-shaped stay 11a- 1, 11b-1, 11c Strip-like stays 10f-5, 10g-5, 11a-2, 11b-2, 11c-1 Arc-shaped groove portion 12-1 Expanded tube portion 12-2 Inner fin 13, 23 Nozzle member 13-1 , 23-2a, 23-2b Ejection hole 23-1 Convex part 23-1a Front side inclined surface 23-1b Both end inclined surface

Claims (22)

複数積層された扁平伝熱管と、該扁平伝熱管の外周を囲繞するように形成されたケーシングと、該ケーシングの両端部に設けられ、前記扁平伝熱管の両端部が貫設されたチューブシートとを備え、前記扁平伝熱管内を流通する排気ガスと前記ケーシング内を流通する冷却水との間で熱交換を行う方式の多管式熱交換器において、端部に冷却水配管を接続する冷却水流入管を設けると共に基端部を前記ケーシングの排気ガス流入口側端部に前記ケーシング長手方向と略直交する方向に設けられた長孔からなる冷却水流入用開口部を覆うように接続する冷却水分配器を備え、かつ前記積層された各扁平伝熱管の間の空間もしくは該空間に加えて扁平伝熱管とケーシング内面との間の空間部内に、先端が排気ガス流入口側のチューブシート内面を指向した少なくとも1箇のガイド部材を有し、さらに前記ガイド部材が前記扁平伝熱管に少なくとも1箇所で固定されていることを特徴とする多管式熱交換器。   A plurality of laminated flat heat transfer tubes, a casing formed so as to surround the outer periphery of the flat heat transfer tubes, a tube sheet provided at both ends of the casing and through which both ends of the flat heat transfer tubes are penetrated; A multi-tubular heat exchanger of a type that performs heat exchange between the exhaust gas that flows through the flat heat transfer tube and the cooling water that flows through the casing. Cooling in which a water inflow pipe is provided and a base end portion is connected to an end portion on the exhaust gas inlet side of the casing so as to cover a cooling water inflow opening made of a long hole provided in a direction substantially orthogonal to the casing longitudinal direction. In the space between the laminated flat heat transfer tubes or the space between the flat heat transfer tubes and the casing inner surface in addition to the stacked flat heat transfer tubes, the tip of the tube sheet inner surface on the exhaust gas inlet side finger And had at least 1 箇 guide member, further multitubular heat exchanger in which the guide member is characterized in that it is fixed at at least one location in the flattened heat transfer tubes. 複数積層された扁平伝熱管と、該扁平伝熱管の外周を囲繞するように形成されたケーシングを備え、前記扁平伝熱管内を流通する排気ガスと前記ケーシング内を流通する冷却水との間で熱交換を行う方式のチューブシートレスタイプの多管式熱交換器において、端部に冷却水配管を接続する冷却水流入管を設けると共に基端部を前記ケーシングの排気ガス流入口側端部に前記ケーシング長手方向と略直交する方向に設けられた長孔からなる冷却水流入用開口部を覆うように接続する冷却水分配器を備え、かつ前記積層された各扁平伝熱管の間の空間もしくは該空間に加えて扁平伝熱管とケーシング内面との間の空間部内に、先端が排気ガス流入口側を指向した少なくとも1箇のガイド部材を有し、さらに前記ガイド部材が前記扁平伝熱管に少なくとも1箇所で固定されていることを特徴とする多管式熱交換器。   A plurality of stacked flat heat transfer tubes and a casing formed so as to surround the outer periphery of the flat heat transfer tubes, and between exhaust gas flowing through the flat heat transfer tubes and cooling water flowing through the casing In the tube sheetless type multi-tube heat exchanger of the type for performing heat exchange, a cooling water inflow pipe for connecting a cooling water pipe is provided at an end portion, and a base end portion is provided at an end portion on the exhaust gas inlet side of the casing. A space between the stacked flat heat transfer tubes, or the space, including a cooling water distributor connected to cover a cooling water inflow opening formed of a long hole provided in a direction substantially orthogonal to the longitudinal direction of the casing In addition, in the space between the flat heat transfer tube and the inner surface of the casing, there is at least one guide member whose tip is directed to the exhaust gas inlet side, and the guide member is small in the flat heat transfer tube. Multitubular heat exchanger, characterized in that it is fixed in Kutomo one place. 前記ガイド部材が短冊状であることを特徴とする請求項1又は2に記載の多管式熱交換器。   The multitubular heat exchanger according to claim 1 or 2, wherein the guide member has a strip shape. 前記ガイド部材が櫛歯状であることを特徴とする請求項1又は2に記載の多管式熱交換器。   The multitubular heat exchanger according to claim 1 or 2, wherein the guide member has a comb-teeth shape. 前記ガイド部材は前記扁平伝熱管と該扁平伝熱管に固着された支持部材の双方に固定されていることを特徴とする請求項1〜4のいずれか1項に記載の多管式熱交換器。   The multi-tube heat exchanger according to any one of claims 1 to 4, wherein the guide member is fixed to both the flat heat transfer tube and a support member fixed to the flat heat transfer tube. . 前記支持部材が短冊状であることを特徴とする請求項5に記載の多管式熱交換器。   The multitubular heat exchanger according to claim 5, wherein the support member has a strip shape. 前記支持部材が櫛歯状であることを特徴とする請求項5に記載の多管式熱交換器。   The multi-tube heat exchanger according to claim 5, wherein the support member has a comb-teeth shape. 前記短冊状支持部材は当該短冊状部の先端近傍部が扁平伝熱管に固定されていることを特徴とする請求項6に記載の多管式熱交換器。   The multitubular heat exchanger according to claim 6, wherein the strip-shaped support member has a portion near the tip of the strip-shaped portion fixed to a flat heat transfer tube. 前記櫛歯状支持部材は当該櫛歯状部の先端近傍部が扁平伝熱管に固定されていることを特徴とする請求項7に記載の多管式熱交換器。   The multi-pipe heat exchanger according to claim 7, wherein the comb-like support member has a comb-like portion near a tip thereof fixed to a flat heat transfer tube. 前記短冊状ガイド部材は片端が櫛歯状支持部材の基端部に固定されていることを特徴とする請求項3に記載の多管式熱交換器。   The multitubular heat exchanger according to claim 3, wherein one end of the strip-shaped guide member is fixed to a base end portion of a comb-like support member. 前記櫛歯状ガイド部材の基端部は短冊状支持部材の片端もしくは櫛歯状支持部材の基端部に固定されていることを特徴とする請求項4に記載の多管式熱交換器。   The multitubular heat exchanger according to claim 4, wherein a base end portion of the comb-shaped guide member is fixed to one end of the strip-shaped support member or a base end portion of the comb-shaped support member. 前記積層された扁平伝熱管の間の空間もしくは該空間に加えて扁平伝熱管とケーシング内面との間の空間部内に、扁平伝熱管の軸方向に複数のガイド部材を有することを特徴とする請求項1〜11のいずれか1項に記載の多管式熱交換器。   A plurality of guide members are provided in the axial direction of the flat heat transfer tube in the space between the stacked flat heat transfer tubes or in the space between the flat heat transfer tube and the casing inner surface in addition to the space. Item 12. The multitubular heat exchanger according to any one of Items 1 to 11. 前記積層された扁平伝熱管群が扁平伝熱管の扁平方向に複数群設けられ、かつ少なくとも1つの前記ガイド部材が前記複数群の扁平伝熱管に跨って配置されていることを特徴とする請求項1〜11のいずれか1項に記載の多管式熱交換器。   The stacked flat heat transfer tube group is provided in a plurality of groups in a flat direction of the flat heat transfer tube, and at least one guide member is disposed across the multiple groups of flat heat transfer tubes. The multitubular heat exchanger according to any one of 1 to 11. 前記ガイド部材の短冊状ガイド部が扁平伝熱管の平坦面に対しほぼ直角に設けられていることを特徴とする請求項3又は10に記載の多管式熱交換器。   The multitubular heat exchanger according to claim 3 or 10, wherein the strip-shaped guide portion of the guide member is provided substantially perpendicular to the flat surface of the flat heat transfer tube. 前記ガイド部材には扁平伝熱管に固定される少なくとも1つのフィン部を有することを特徴とする請求項1〜14のいずれか1項に記載された多管式熱交換器。   The multi-tube heat exchanger according to claim 1, wherein the guide member has at least one fin portion fixed to the flat heat transfer tube. 前記フィン部は前記ガイド部材の先端部近傍に設けられていることを特徴とする請求項15に記載の多管式熱交換器。   The multi-tube heat exchanger according to claim 15, wherein the fin portion is provided in the vicinity of a tip portion of the guide member. 前記積層された扁平伝熱管群が扁平伝熱管の扁平方向に複数群設けられ、かつ前記ガイド部材が前記複数群の扁平伝熱管に跨って少なくとも1つ配置され、さらに前記ガイド部材は各々の扁平伝熱管に固定される複数のフィン部を有することを特徴とする請求項13〜16のいずれか1項に記載の多管式熱交換器。   A plurality of the laminated flat heat transfer tube groups are provided in the flat direction of the flat heat transfer tubes, and at least one guide member is disposed across the flat heat transfer tubes of the plurality of groups. The multitubular heat exchanger according to any one of claims 13 to 16, further comprising a plurality of fin portions fixed to the heat transfer tubes. 前記フィン部は前記扁平伝熱管の扁平部に固定されていることを特徴とする請求項17に記載の多管式熱交換器。   The multi-tube heat exchanger according to claim 17, wherein the fin portion is fixed to a flat portion of the flat heat transfer tube. 前記冷却水流入用開口部付近に前記積層された各扁平伝熱管の間の空間もしくは該空間に加えて扁平伝熱管とケーシング内面との間の空間部内に冷却水が指向するように前記積層された各扁平伝熱管の間の空間もしくは該空間に加えて扁平伝熱管とケーシング内面との間の空間とに対応した位置に複数の噴出孔を有するノズル部材を設けたことを特徴とする請求項1又は2に記載の多管式熱交換器。   In the vicinity of the cooling water inflow opening, the layers are stacked so that the cooling water is directed into the space between the stacked flat heat transfer tubes or in the space between the flat heat transfer tube and the casing inner surface in addition to the space. A nozzle member having a plurality of ejection holes is provided at a position corresponding to the space between the flat heat transfer tubes or the space between the flat heat transfer tube and the casing inner surface in addition to the space. The multitubular heat exchanger according to 1 or 2. 前記ノズル部材は扁平伝熱管側に断面略V字状もしくはU字状で扁平伝熱管の積層幅に応じて突出した凸状部を有し、該凸状部のチューブシート側(排気ガス流入口側)に前面側傾斜面を形成し該凸状部の両端部に両端部傾斜面を形成し、かつ前記前面側傾斜面の各扁平伝熱管の間の空間に対応した位置及び前記両端部傾斜面の扁平伝熱管とケーシング間の空間に対応した位置に各の空間を指向した噴出孔を設けたことを特徴とする請求項19に記載の多管式熱交換器。   The nozzle member has a substantially V-shaped or U-shaped cross section on the flat heat transfer tube side and has a convex portion that protrudes in accordance with the lamination width of the flat heat transfer tube, and the tube portion side of the convex portion (exhaust gas inlet) The front side inclined surface is formed on both sides of the convex portion, and both end inclined surfaces are formed on both ends of the convex portion, and the positions corresponding to the spaces between the flat heat transfer tubes on the front side inclined surface and the both end inclined The multi-tube heat exchanger according to claim 19, wherein a jet hole directed to each space is provided at a position corresponding to the space between the flat heat transfer tube and the casing on the surface. 前記ノズル部材の噴出孔の断面積の総和が冷却水分配器内の冷却水の流れ直角方向断面積より小さいことを特徴とする請求項19又は20に記載の多管式熱交換器。   21. The multitubular heat exchanger according to claim 19 or 20, wherein the sum of the sectional areas of the ejection holes of the nozzle member is smaller than the sectional area in the direction perpendicular to the flow of the cooling water in the cooling water distributor. 前記ノズル部材の噴出孔における冷却水の噴出流速が前記冷却水分配器内の平均流速より増速されていることを特徴とする請求項19又は21に記載の多管式熱交換器。   The multi-tube heat exchanger according to claim 19 or 21, wherein a jetting flow rate of the cooling water in the nozzle hole of the nozzle member is increased from an average flow rate in the cooling water distributor.
JP2013070653A 2013-03-28 2013-03-28 Multi-tube heat exchanger Active JP6143335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013070653A JP6143335B2 (en) 2013-03-28 2013-03-28 Multi-tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013070653A JP6143335B2 (en) 2013-03-28 2013-03-28 Multi-tube heat exchanger

Publications (2)

Publication Number Publication Date
JP2014194296A true JP2014194296A (en) 2014-10-09
JP6143335B2 JP6143335B2 (en) 2017-06-07

Family

ID=51839653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013070653A Active JP6143335B2 (en) 2013-03-28 2013-03-28 Multi-tube heat exchanger

Country Status (1)

Country Link
JP (1) JP6143335B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016140068A1 (en) * 2015-03-04 2016-09-09 株式会社 三五 Heat exchanger, and exhaust heat recovery device provided with said heat exchanger
EP3193120A1 (en) * 2016-01-14 2017-07-19 Borgwarner Emissions Systems Spain, S.L.U. Heat exchange device
WO2017122832A1 (en) * 2016-01-12 2017-07-20 株式会社ティラド Exhaust gas heat exchanger having stacked flat tubes
EP3246647A1 (en) 2016-05-19 2017-11-22 Borgwarner Emissions Systems Spain, S.L.U. Heat exchange device
JP2018035804A (en) * 2016-08-30 2018-03-08 株式会社三五 Heat exchanger and exhaust heat recovery device with the heat exchanger
EP3309381A1 (en) * 2016-10-13 2018-04-18 Mahle International GmbH Exhaust gas recirculation cooler for an internal combustion engine
DE102017206201A1 (en) * 2016-10-13 2018-04-19 Mahle International Gmbh Exhaust gas recirculation cooler for an internal combustion engine
JP2018063076A (en) * 2016-10-13 2018-04-19 株式会社ティラド Heat exchanger
WO2018230741A1 (en) * 2017-06-12 2018-12-20 株式会社ティラド Heat exchanger
JP2019095077A (en) * 2017-11-17 2019-06-20 株式会社ティラド Cooling water inlet structure of header plate-less heat exchanger
KR20190115145A (en) * 2018-03-29 2019-10-11 주식회사 코웰 Heat exchanger of exhaust heat recovery system
WO2020003949A1 (en) * 2018-06-29 2020-01-02 カルソニックカンセイ株式会社 Heat exchanger
JP2020016237A (en) * 2018-07-24 2020-01-30 フォルシア・システム・デシャプモン Heat exchanger and corresponding manufacturing method
USD879153S1 (en) 2018-03-14 2020-03-24 Sango Co., Ltd. Exhaust heat recovery apparatus for automobiles
WO2021131613A1 (en) * 2019-12-23 2021-07-01 マレリ株式会社 Heat exchanger
CN114111386A (en) * 2021-12-01 2022-03-01 浙江银轮机械股份有限公司 EGR cooler

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028469A (en) * 2002-06-26 2004-01-29 Toyo Radiator Co Ltd Heat exchanger core
JP2007154683A (en) * 2005-12-01 2007-06-21 T Rad Co Ltd Exhaust gas recirculation cooler
JP2007225190A (en) * 2006-02-23 2007-09-06 Maruyasu Industries Co Ltd Heat exchanger
JP2008196319A (en) * 2007-02-08 2008-08-28 Tokyo Radiator Mfg Co Ltd Tube support structure of heat exchanger for egr cooler
JP2008231929A (en) * 2007-03-16 2008-10-02 Tokyo Radiator Mfg Co Ltd Cooling water inlet structure of heat exchanger for egr cooler
JP2009091948A (en) * 2007-10-05 2009-04-30 Tokyo Radiator Mfg Co Ltd Egr cooler
JP2009114924A (en) * 2007-11-05 2009-05-28 Tokyo Radiator Mfg Co Ltd Egr cooler
JP4386215B2 (en) * 1999-02-15 2009-12-16 臼井国際産業株式会社 EGR gas cooling device
JP2011232020A (en) * 2010-04-09 2011-11-17 Denso Corp Exhaust heat exchanger
JP2012047105A (en) * 2010-08-26 2012-03-08 Tokyo Radiator Mfg Co Ltd Egr cooler
JP2013053620A (en) * 2011-08-10 2013-03-21 Usui Kokusai Sangyo Kaisha Ltd Multi-tube type heat exchanger

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4386215B2 (en) * 1999-02-15 2009-12-16 臼井国際産業株式会社 EGR gas cooling device
JP2004028469A (en) * 2002-06-26 2004-01-29 Toyo Radiator Co Ltd Heat exchanger core
JP2007154683A (en) * 2005-12-01 2007-06-21 T Rad Co Ltd Exhaust gas recirculation cooler
JP2007225190A (en) * 2006-02-23 2007-09-06 Maruyasu Industries Co Ltd Heat exchanger
JP2008196319A (en) * 2007-02-08 2008-08-28 Tokyo Radiator Mfg Co Ltd Tube support structure of heat exchanger for egr cooler
JP2008231929A (en) * 2007-03-16 2008-10-02 Tokyo Radiator Mfg Co Ltd Cooling water inlet structure of heat exchanger for egr cooler
JP2009091948A (en) * 2007-10-05 2009-04-30 Tokyo Radiator Mfg Co Ltd Egr cooler
JP2009114924A (en) * 2007-11-05 2009-05-28 Tokyo Radiator Mfg Co Ltd Egr cooler
JP2011232020A (en) * 2010-04-09 2011-11-17 Denso Corp Exhaust heat exchanger
JP2012047105A (en) * 2010-08-26 2012-03-08 Tokyo Radiator Mfg Co Ltd Egr cooler
JP2013053620A (en) * 2011-08-10 2013-03-21 Usui Kokusai Sangyo Kaisha Ltd Multi-tube type heat exchanger

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016140068A1 (en) * 2015-03-04 2017-12-14 株式会社三五 Heat exchanger and exhaust heat recovery apparatus equipped with the heat exchanger
CN106460625A (en) * 2015-03-04 2017-02-22 株式会社三五 Heat exchanger, and exhaust heat recovery device provided with said heat exchanger
KR101977824B1 (en) * 2015-03-04 2019-05-13 상고 컴패니, 리미티드 Heat exchanger, and exhaust heat recovery device provided with said heat exchanger
US10253671B2 (en) 2015-03-04 2019-04-09 Sango Co., Ltd. Heat exchanger, and exhaust heat recovery apparatus having the heat exchanger
CN106460625B (en) * 2015-03-04 2020-05-12 株式会社三五 Heat exchanger and exhaust heat recovery device provided with same
KR20170124951A (en) * 2015-03-04 2017-11-13 상고 컴패니, 리미티드 Heat exchanger, and exhaust heat recovery device provided with said heat exchanger
WO2016140068A1 (en) * 2015-03-04 2016-09-09 株式会社 三五 Heat exchanger, and exhaust heat recovery device provided with said heat exchanger
WO2017122832A1 (en) * 2016-01-12 2017-07-20 株式会社ティラド Exhaust gas heat exchanger having stacked flat tubes
US10563624B2 (en) 2016-01-12 2020-02-18 T.Rad Co., Ltd. Exhaust gas heat exchanger having stacked flat tubes
CN106968843A (en) * 2016-01-14 2017-07-21 博格华纳排放系统西班牙有限责任公司 Heat-exchange device
CN106968843B (en) * 2016-01-14 2020-02-14 博格华纳排放系统西班牙有限责任公司 Heat exchange device
EP3193120A1 (en) * 2016-01-14 2017-07-19 Borgwarner Emissions Systems Spain, S.L.U. Heat exchange device
EP3246647A1 (en) 2016-05-19 2017-11-22 Borgwarner Emissions Systems Spain, S.L.U. Heat exchange device
JP2018035804A (en) * 2016-08-30 2018-03-08 株式会社三五 Heat exchanger and exhaust heat recovery device with the heat exchanger
JP2018063076A (en) * 2016-10-13 2018-04-19 株式会社ティラド Heat exchanger
US10415515B2 (en) 2016-10-13 2019-09-17 Mahle International Gmbh Exhaust gas recirculation cooler for an internal combustion engine
EP3309381A1 (en) * 2016-10-13 2018-04-18 Mahle International GmbH Exhaust gas recirculation cooler for an internal combustion engine
DE102017206201A1 (en) * 2016-10-13 2018-04-19 Mahle International Gmbh Exhaust gas recirculation cooler for an internal combustion engine
JP7086953B2 (en) 2017-06-12 2022-06-20 株式会社ティラド Heat exchanger
WO2018230741A1 (en) * 2017-06-12 2018-12-20 株式会社ティラド Heat exchanger
JPWO2018230741A1 (en) * 2017-06-12 2020-04-16 株式会社ティラド Heat exchanger
JP2019095077A (en) * 2017-11-17 2019-06-20 株式会社ティラド Cooling water inlet structure of header plate-less heat exchanger
USD879153S1 (en) 2018-03-14 2020-03-24 Sango Co., Ltd. Exhaust heat recovery apparatus for automobiles
KR102041536B1 (en) * 2018-03-29 2019-11-07 주식회사 코웰 Heat exchanger of exhaust heat recovery system
KR20190115145A (en) * 2018-03-29 2019-10-11 주식회사 코웰 Heat exchanger of exhaust heat recovery system
WO2020003949A1 (en) * 2018-06-29 2020-01-02 カルソニックカンセイ株式会社 Heat exchanger
CN112219083A (en) * 2018-06-29 2021-01-12 马瑞利株式会社 Heat exchanger
KR20200011373A (en) * 2018-07-24 2020-02-03 포르시아 쥐스뗌 데샤피망 Heat exchanger and corresponding manufacturing method
FR3084408A1 (en) * 2018-07-24 2020-01-31 Faurecia Systemes D'echappement HEAT EXCHANGER AND MANUFACTURING METHOD THEREOF
JP2020016237A (en) * 2018-07-24 2020-01-30 フォルシア・システム・デシャプモン Heat exchanger and corresponding manufacturing method
KR102295272B1 (en) * 2018-07-24 2021-08-27 포르시아 쥐스뗌 데샤피망 Heat exchanger and method of manufacturing same
WO2021131613A1 (en) * 2019-12-23 2021-07-01 マレリ株式会社 Heat exchanger
CN114111386A (en) * 2021-12-01 2022-03-01 浙江银轮机械股份有限公司 EGR cooler

Also Published As

Publication number Publication date
JP6143335B2 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
JP6143335B2 (en) Multi-tube heat exchanger
JP5988296B2 (en) Multi-tube heat exchanger
US7527088B2 (en) Exhaust gas heat exchanger
JP6397411B2 (en) Improved exhaust gas recirculation device and method for forming the same
US10101096B2 (en) Heat exchanger
US10508865B2 (en) Heat exchanger
JP2015534030A (en) Heat exchanger
US7774937B2 (en) Heat exchanger with divided coolant chamber
JP4938610B2 (en) EGR cooler
JP5395783B2 (en) Heat exchanger with tube bundle
US9874407B2 (en) Heat exchanger
JP4941398B2 (en) Stacked cooler
JP4041437B2 (en) Semiconductor device cooling device
JP5162538B2 (en) Liquid cooling system
JP6460281B2 (en) Intercooler
JP5985387B2 (en) Combined heat exchanger
JP6577282B2 (en) Heat exchanger
JP5071181B2 (en) Heat exchanger
US11454460B2 (en) Exhaust gas recirculation heat exchanger assembly
JP6463993B2 (en) Tube for heat exchanger
WO2015107814A1 (en) Heat transfer pipe for heat exchanger and heat exchanger
JP2011185489A (en) Complex type heat exchanger
JP2001304049A (en) Multiple pipe type egr gas cooling device
EP3982075A1 (en) Heat exchanger
JP4764738B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170508

R150 Certificate of patent or registration of utility model

Ref document number: 6143335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150