JP2014193950A - Foam molding - Google Patents

Foam molding Download PDF

Info

Publication number
JP2014193950A
JP2014193950A JP2013070173A JP2013070173A JP2014193950A JP 2014193950 A JP2014193950 A JP 2014193950A JP 2013070173 A JP2013070173 A JP 2013070173A JP 2013070173 A JP2013070173 A JP 2013070173A JP 2014193950 A JP2014193950 A JP 2014193950A
Authority
JP
Japan
Prior art keywords
foamed molded
molded product
resin
particles
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013070173A
Other languages
Japanese (ja)
Inventor
Yuji Sakakibara
有史 榊原
Shingo Terasaki
慎悟 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2013070173A priority Critical patent/JP2014193950A/en
Publication of JP2014193950A publication Critical patent/JP2014193950A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a foam molding which suppresses sounding, i.e. high-frequency friction sound produced when foam moldings or a foam molding and its subsidiary constituent member come in mutual contact to be scratched.SOLUTION: A foam molding comprises 100 pts. mass of a polystyrene resin as the base resin and 2-18 pts. mass of a polyacrylic acid alkyl ester type resin. The base resin constituting the foam molding contains the polyacrylic acid alkyl ester in a particulate form, and the surface of the foam molding has an arithmetic average roughness Ra of 5.0-10.0 μm, in measurement of the surface quality by JIS B0601:2001.

Description

本発明は、音鳴りが抑制された発泡成形体に関する。本発明の発泡成形体は、部品梱包材、自動車部材及び緩衝材などに好適に用いられる。   The present invention relates to a foamed molded product in which noise is suppressed. The foamed molded product of the present invention is suitably used for component packing materials, automobile members, cushioning materials, and the like.

ポリスチレン系樹脂からなる発泡成形体は、優れた緩衝性及び断熱性を有しかつ成形が容易であることから、部品梱包材、自動車部材及び緩衝材などとして多用されている。
しかしながら、音鳴り、すなわち発泡成形体同士又は発泡成形体とそれに付随する構成部材とが接触して擦り合わされた際に発生する高周波数の摩擦音(きしみ音、異音)が発生するという問題がある。
Foam molded articles made of polystyrene resin are widely used as component packing materials, automobile members, cushioning materials and the like because they have excellent buffering properties and heat insulation properties and are easy to mold.
However, there is a problem that a high-frequency frictional sound (squeak noise, abnormal noise) is generated when sounding, that is, foamed molded products or foamed molded products and their associated structural members are brought into contact with each other and rubbed together. .

そこで、この発泡成形体の音鳴りを抑制または防止する技術が提案されている。
例えば、特開平10−298341号公報(特許文献1)には、発泡体製品の少なくとも一方の接触面に界面活性剤を塗布する方法が開示されている。
また、特開平7−246888号公報(特許文献2)には、発泡成形体である車両用内装品の接触面に低摩擦係数を有する塗膜層を形成する方法が開示されている。
Therefore, a technique for suppressing or preventing the noise of the foamed molded body has been proposed.
For example, Japanese Patent Application Laid-Open No. 10-298341 (Patent Document 1) discloses a method of applying a surfactant to at least one contact surface of a foam product.
Japanese Patent Application Laid-Open No. 7-246888 (Patent Document 2) discloses a method of forming a coating layer having a low friction coefficient on a contact surface of a vehicular interior product that is a foam-molded product.

特開平10−298341号公報JP-A-10-298341 特開平7−246888号公報JP-A-7-246888

上記の先行技術では、摩擦抵抗を減らし、擦れによる異音の発生を抑制しているが、塗布面又は形成面が使用により劣化し、長期(長日数)にわたって音鳴り防止効果や低摩擦係数を維持することができないという課題がある。また、その製造においては、塗布又は形成工程が加わるために、製造工数が増加するという課題もある。   In the above prior art, the frictional resistance is reduced and the generation of abnormal noise due to rubbing is suppressed. There is a problem that it cannot be maintained. Moreover, in the manufacture, since an application | coating or formation process is added, there also exists a subject that a manufacturing man-hour increases.

そこで、本発明は、音鳴り、すなわち発泡成形体同士又は発泡成形体とそれに付随する構成部材とが接触して擦り合わされた際に発生する高周波数の摩擦音が抑制された発泡成形体を提供することを課題とする。   Therefore, the present invention provides a foamed molded product in which high-frequency frictional noise generated when the sound is generated, that is, when foamed molded products or foamed molded products are brought into contact with each other and rubbed together is suppressed. This is the issue.

かくして、本発明によれば、基本樹脂としてのポリスチレン系樹脂100質量部と、ポリアクリル酸アルキルエステル系樹脂2〜18質量部とを含む発泡成形体であり、
前記発泡成形体を構成する前記基本樹脂が、微粒子状の前記ポリアクリル酸アルキルエステル系樹脂を含み、
前記発泡成形体の表面が、JIS B0601:2001に基づく表面性状の測定において、5.0〜10.0μmの算術平均粗さRaを有することを特徴とする発泡成形体が提供される。
Thus, according to the present invention, it is a foamed molded article comprising 100 parts by mass of a polystyrene resin as a basic resin and 2 to 18 parts by mass of a polyacrylic acid alkyl ester resin.
The basic resin constituting the foam-molded product includes the polyalkyl acrylate resin based on fine particles,
There is provided a foamed molded article, wherein the surface of the foamed molded article has an arithmetic average roughness Ra of 5.0 to 10.0 μm in measurement of surface properties based on JIS B0601: 2001.

本発明によれば、音鳴り、すなわち発泡成形体同士又は発泡成形体とそれに付随する構成部材とが接触して擦り合わされた際に発生する高周波数の摩擦音が抑制された発泡成形体を提供することができる。
本発明の効果は、発泡成形体に設けた塗布面又は形成面ではなく、発泡成形体を構成する樹脂自体に由来する効果であり、劣化がなく、音鳴りの抑制効果を持続できる。また、その製造においては、塗布又は形成工程がなく、製造においても有利である。
本発明の発泡成形体は、自動車のギヤ部品のような金属部品などの輸送(搬送)に用いる部品梱包材、及び嵩上げ材やティビアパッド、バンパー芯材などの自動車部材(内装材や緩衝材)などに好適に用いることができる。
According to the present invention, there is provided a foamed molded product in which high-frequency frictional noise generated when the sounding, that is, foamed molded products or foamed molded products and their associated constituent members are brought into contact with each other and rubbed together is suppressed. be able to.
The effect of the present invention is not an application surface or a formation surface provided on the foam molded body, but an effect derived from the resin itself constituting the foam molded body, and there is no deterioration, and the effect of suppressing noise can be sustained. In addition, there is no coating or forming process in the production, which is advantageous in the production.
The foamed molded article of the present invention includes parts packaging materials used for transportation (conveyance) of metal parts such as automobile gear parts, and automobile members (interior materials and cushioning materials) such as raising materials, tibia pads, and bumper core materials. Can be suitably used.

本発明の発泡成形体を構成する樹脂は、ゴム成分として特定量の微粒子状のポリアクリル酸アルキルエステル系樹脂を含むポリスチレン系樹脂であり、ポリアクリル酸アルキルエステル系樹脂の弾性が、発泡成形体同士又は他の部材との接触による摩擦のエネルギーを吸収するために、音鳴りを抑制できるものと考えられる。
一方、ゴム成分を含まないポリスチレン系樹脂では、樹脂自体が硬く、摩擦のエネルギーを吸収できず、音鳴りを抑制できないものと考えられる。
本発明の発泡成形体が有する物性、蒸留水に対する接触角、摩擦係数試験における静摩擦係数と動摩擦係数との差は、本発明の効果の指標となる。
The resin constituting the foamed molded article of the present invention is a polystyrene resin containing a specific amount of fine-particle alkyl acrylate ester resin as a rubber component, and the elasticity of the polyacrylate alkyl ester resin is the foam molded article. In order to absorb the energy of friction caused by contact with each other or other members, it is considered that the noise can be suppressed.
On the other hand, it is considered that a polystyrene-based resin that does not contain a rubber component is hard and cannot absorb frictional energy and cannot suppress noise.
The physical properties of the foamed molded product of the present invention, the contact angle with distilled water, and the difference between the static friction coefficient and the dynamic friction coefficient in the friction coefficient test are indicators of the effect of the present invention.

また、本発明の発泡成形体は、
(1)JIS R3257:1999に基づくぬれ性試験において、蒸留水に対する90〜100°の接触角を有する、
(2)JIS K7125に基づく摩擦係数試験において、0.02〜0.05の静摩擦係数と動摩擦係数との差を有する、
(3)30〜50倍の発泡倍数を有する、及び
(4)部品梱包材、自動車部材又は緩衝材である
のいずれか1つの条件を満たす場合に、上記の優れた効果を更に発揮する。
Further, the foamed molded article of the present invention is
(1) In a wettability test based on JIS R3257: 1999, it has a contact angle of 90-100 ° with distilled water.
(2) In a friction coefficient test based on JIS K7125, having a difference between a static friction coefficient and a dynamic friction coefficient of 0.02 to 0.05,
(3) It has an expansion ratio of 30 to 50 times, and (4) The above excellent effect is further exhibited when any one of the parts packing material, the automobile member or the cushioning material is satisfied.

実施例3の摩擦係数試験における荷重と伸びの関係を示す図である。It is a figure which shows the relationship between the load in the friction coefficient test of Example 3, and elongation. 比較例1の摩擦係数試験における荷重と伸びの関係を示す図である。It is a figure which shows the relationship between the load in the friction coefficient test of the comparative example 1, and elongation.

本発明の発泡成形体は、基本樹脂としてのポリスチレン系樹脂100質量部と、ポリアクリル酸アルキルエステル系樹脂2〜18質量部とを含む発泡成形体であり、
前記発泡成形体を構成する前記基本樹脂が、微粒子状の前記ポリアクリル酸アルキルエステル系樹脂を含み、
前記発泡成形体の表面が、JIS B0601:2001に基づく表面性状の測定において、5.0〜10.0μmの算術平均粗さRaを有することを特徴とする。
The foam molded article of the present invention is a foam molded article comprising 100 parts by mass of a polystyrene resin as a basic resin and 2 to 18 parts by mass of a polyacrylic acid alkyl ester resin.
The basic resin constituting the foam-molded product includes the polyalkyl acrylate resin based on fine particles,
The surface of the foam molded article has an arithmetic average roughness Ra of 5.0 to 10.0 μm in the measurement of surface properties based on JIS B0601: 2001.

本発明の発泡成形体は、その表面が、JIS B0601:2001に基づく表面性状の測定において、5.0〜10.0μmの算術平均粗さRa(表面粗さ)を有する。
算術平均粗さRaは、上記の方法に準拠して測定された値をいい、具体的な測定法は実施例の欄で説明する。
異音発生の観点では、算術平均粗さRaは0μmであることが理想であり、より0μmに近いことが好ましいが、製造上また異音の許容程度から、下限は5.0μmが適当である。
算術平均粗さRaが10.0μmを超えると、異音が鳴り易い傾向にある。
好ましい算術平均粗さRaの範囲は、5.6〜9.9μmである。
The surface of the foamed molded article of the present invention has an arithmetic average roughness Ra (surface roughness) of 5.0 to 10.0 μm in the measurement of surface properties based on JIS B0601: 2001.
The arithmetic average roughness Ra refers to a value measured according to the above method, and a specific measuring method will be described in the column of the examples.
From the viewpoint of abnormal noise generation, the arithmetic average roughness Ra is ideally 0 μm and is preferably closer to 0 μm, but the lower limit is suitably 5.0 μm from the viewpoint of manufacturing and the allowable degree of abnormal noise. .
When the arithmetic average roughness Ra exceeds 10.0 μm, abnormal noise tends to sound easily.
The range of preferable arithmetic mean roughness Ra is 5.6 to 9.9 μm.

本発明の発泡成形体は、JIS R3257:1999に基づくぬれ性試験において、蒸留水に対する90〜100°の接触角を有するのが好ましい。
蒸留水に対する接触角は、上記の方法に準拠して測定された値をいい、具体的な測定法は実施例の欄で説明する。
接触角が100°を超えると、異音が鳴り易い傾向にある。
好ましい接触角の範囲は、95〜100°である。
The foamed molded article of the present invention preferably has a contact angle of 90 to 100 ° with distilled water in a wettability test based on JIS R3257: 1999.
The contact angle with respect to distilled water means the value measured based on said method, and the concrete measuring method is demonstrated in the Example column.
When the contact angle exceeds 100 °, abnormal noise tends to sound.
A preferred contact angle range is 95-100 °.

本発明の発泡成形体は、JIS K7125に基づく摩擦係数試験において、0.02〜0.05の静摩擦係数と動摩擦係数との差を有するのが好ましい。
静摩擦係数と動摩擦係数との差が0.05を超えると、異音が鳴り易い傾向にある。
静摩擦係数及び動摩擦係数は、それぞれ0.35〜0.53程度及び0.33〜0.49程度である。
The foamed molded article of the present invention preferably has a difference between a static friction coefficient and a dynamic friction coefficient of 0.02 to 0.05 in a friction coefficient test based on JIS K7125.
When the difference between the coefficient of static friction and the coefficient of dynamic friction exceeds 0.05, there is a tendency that abnormal noise is likely to sound.
The static friction coefficient and the dynamic friction coefficient are about 0.35 to 0.53 and about 0.33 to 0.49, respectively.

本発明の発泡成形体は、30〜50倍の発泡倍数を有するのが好ましい。
発泡倍数は、発泡成形体の密度の逆数で表され、具体的な測定法は実施例の欄で説明する。
発泡倍数が30倍未満では、衝撃吸収性能で発生荷重が高くなることがある。一方、発泡倍数が50倍を超えると、衝撃吸収性能が満足できないことがある。
好ましい発泡倍数の範囲は、30〜45倍である。
The foamed molded product of the present invention preferably has a foaming factor of 30 to 50 times.
The expansion factor is represented by the reciprocal of the density of the foamed molded product, and a specific measurement method will be described in the column of Examples.
When the expansion ratio is less than 30 times, the generated load may increase due to the impact absorbing performance. On the other hand, when the expansion ratio exceeds 50 times, the impact absorbing performance may not be satisfied.
The range of a preferable expansion ratio is 30 to 45 times.

本発明の発泡成形体は、ポリスチレン系樹脂100質量部とポリアクリル酸アルキルエステル系樹脂2〜18質量部とを含む発泡成形体であり、ポリアクリル酸アルキルエステル系樹脂が、微粒子状でポリスチレン系樹脂中に存在する。
すなわち、本発明の発泡成形体を構成する樹脂は、ポリスチレン系樹脂とそれに対して特定量のポリアクリル酸アルキルエステル系樹脂とを組み合わせた(複合した)樹脂である。
本発明において、微粒子状のポリアクリル酸アルキルエステル系樹脂を「ポリアクリル酸アルキルエステル系樹脂微粒子」又は「樹脂微粒子」、それが存在するポリスチレン系樹脂を「改質ポリスチレン系樹脂」又は「改質樹脂」、その粒子を「改質ポリスチレン系樹脂粒子」又は「改質樹脂粒子」ともいう。
The foamed molded product of the present invention is a foamed molded product containing 100 parts by mass of a polystyrene-based resin and 2 to 18 parts by mass of a polyacrylic acid alkyl ester-based resin. Present in the resin.
That is, the resin constituting the foamed molded article of the present invention is a resin obtained by combining (combining) a polystyrene resin and a specific amount of a polyacrylic acid alkyl ester resin.
In the present invention, the particulate polyacrylic acid alkyl ester resin is referred to as “polyacrylic acid alkyl ester resin fine particles” or “resin fine particles”, and the polystyrene resin in which it is present is referred to as “modified polystyrene resin” or “modified”. Resin "and its particles are also referred to as" modified polystyrene resin particles "or" modified resin particles ".

改質樹脂は、ポリスチレン系樹脂からなる分散媒中に、ポリアクリル酸アルキルエステル系樹脂微粒子からなる分散質が分散された形態であることが好ましく、前者を「連続相」、後者を「分散相」という。
改質樹脂に発泡剤を含浸させて発泡させた発泡粒子中の分散相は、発泡粒子の気泡膜を厚み方向の断面でみたときに、ポリアクリル酸アルキルエステル系樹脂微粒子が厚み方向に複数でかつ層状に存在する構造であるのが好ましい。
すなわち、発泡粒子及び発泡成形体中の気泡膜単位でみれば、微粒子が略均一に分散しているものと考えられ、このような観点で、連続相における微粒子の分布状態は発泡粒子及び発泡成形体において略均一であるものと考えられる。
The modified resin is preferably in a form in which a dispersoid composed of polyacrylic acid alkyl ester resin fine particles is dispersed in a dispersion medium composed of a polystyrene resin. The former is a “continuous phase” and the latter is a “dispersed phase”. "
The dispersed phase in the foamed particles obtained by impregnating the modified resin with a foaming agent has a plurality of polyacrylic acid alkyl ester resin fine particles in the thickness direction when the foam film of the foamed particles is viewed in a cross section in the thickness direction. And it is preferable that the structure exists in a layered form.
That is, it is considered that the fine particles are dispersed substantially uniformly in terms of the foam film and the foam film unit in the foam molded body. From this viewpoint, the distribution state of the fine particles in the continuous phase is the foam particles and the foam molding. It is considered to be substantially uniform in the body.

本発明の発泡成形体は、上記の改質樹脂に発泡剤を含浸させて発泡性粒子を得、得られた発泡性粒子を予備(一次)発泡させて発泡粒子を得、得られた発泡粒子を公知の方法で処理することにより製造することができる。
具体的には、発泡粒子を発泡成形機に内蔵された成形型(キャビティ)に充填し、加熱して二次発泡させながら発泡粒子同士を熱融着させ一体化させることにより発泡成形体を得ることができる。
また、本発明の発泡成形体は、その表面に補強材を積層一体化させた複合体用発泡体であってもよい。
The foamed molded article of the present invention is obtained by impregnating the above-mentioned modified resin with a foaming agent to obtain foamable particles, and then preliminarily (primary) foaming the obtained foamable particles to obtain foamed particles. Can be produced by a known method.
Specifically, the foamed molded body is obtained by filling the foamed particles into a mold (cavity) built in the foam molding machine, and heat-sealing and integrating the foamed particles while secondary foaming is performed. be able to.
The foamed molded product of the present invention may be a composite foamed product in which a reinforcing material is laminated and integrated on the surface thereof.

発泡成形における条件は、用いる樹脂粒子や所望の物性等により適宜選択すればよい。例えば、圧力(ゲージ圧)は、0.06〜0.12MPa程度であり、加熱時間は、20〜60秒程度である。   The conditions for foam molding may be appropriately selected depending on the resin particles to be used, desired physical properties, and the like. For example, the pressure (gauge pressure) is about 0.06 to 0.12 MPa, and the heating time is about 20 to 60 seconds.

発泡成形体を構成するポリスチレン系樹脂としては、スチレン系単量体を主成分とする樹脂であれば特に限定されず、スチレン又はスチレン誘導体の単独又は共重合体が挙げられる。
スチレン誘導体としては、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、イソプロピルスチレン、ジメチルスチレン、ブロモスチレン等が挙げられる。これらのスチレン系単量体は、単独で用いられても、併用されてもよい。
The polystyrene resin constituting the foamed molded product is not particularly limited as long as it is a resin mainly composed of a styrene monomer, and examples thereof include a styrene or a styrene derivative alone or a copolymer.
Examples of the styrene derivative include α-methyl styrene, vinyl toluene, chlorostyrene, ethyl styrene, isopropyl styrene, dimethyl styrene, bromostyrene, and the like. These styrenic monomers may be used alone or in combination.

ポリスチレン系樹脂は、スチレン系単量体と共重合可能なビニル系単量体を併用したものであってもよい。
ビニル系単量体としては、例えば、o−ジビニルベンゼン、m−ジビニルベンゼン、p−ジビニルベンゼン等のジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート等の多官能性単量体;(メタ)アクリロニトリル、メチル(メタ)アクリレート、ブチル(メタ)アクリレート等が挙げられる。これらの中でも、多官能性モノマーが好ましく、エチレングリコールジ(メタ)アクリレート、nが4〜16のポリエチレングリコールジ(メタ)アクリレート、ジビニルベンゼンがより好ましく、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレートが特に好ましい。尚、併用される単量体は、単独で用いられても、併用されてもよい。
また、併用される単量体を使用する場合、その含有量は、スチレン系単量体が主成分となる量(例えば、50質量%以上)になるように設定されることが好ましい。
本発明において「(メタ)アクリル」とは、「アクリル」又は「メタクリル」を意味する。
The polystyrene resin may be a combination of a vinyl monomer copolymerizable with a styrene monomer.
Examples of the vinyl monomer include divinylbenzene such as o-divinylbenzene, m-divinylbenzene and p-divinylbenzene, alkylene glycol di (meth) acrylate such as ethylene glycol di (meth) acrylate and polyethylene glycol di (meth) acrylate. And polyfunctional monomers such as (meth) acrylate; (meth) acrylonitrile, methyl (meth) acrylate, butyl (meth) acrylate and the like. Among these, polyfunctional monomers are preferable, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate having n of 4 to 16 and divinylbenzene are more preferable, and divinylbenzene and ethylene glycol di (meth) acrylate are more preferable. Particularly preferred. In addition, the monomer used together may be used independently or may be used together.
Moreover, when using the monomer used together, it is preferable that the content is set so that it may become the quantity (for example, 50 mass% or more) which a styrene-type monomer becomes a main component.
In the present invention, “(meth) acryl” means “acryl” or “methacryl”.

発泡成形体を構成するポリアクリル酸アルキルエステル系樹脂微粒子としては、アクリル酸アルキルエステル系単量体を主成分とする樹脂であれば特に限定されず、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ペンチル、アクリル酸2−エチルヘキシル、アクリル酸ヘキシル等が挙げられ、これらの中でもアクリル酸エチル、アクリル酸ブチル、アクリル酸2−エチルヘキシルが好ましい。これらのアクリル酸アルキルエステル系単量体は、単独で用いられても、併用されてもよい。なお、上記「アルキル」の炭素数は1〜30を意味する。
したがって、ポリアクリル酸アルキルエステル系樹脂微粒子は、アクリル酸エチル、アクリル酸ブチル、アクリル酸2−エチルヘキシル又はこれらの混合物の重合体から形成されてなるのが好ましい。
The polyacrylic acid alkyl ester resin fine particles constituting the foam molded body are not particularly limited as long as the resin is mainly composed of an alkyl acrylate monomer, and examples thereof include methyl acrylate, ethyl acrylate, and acrylic. Examples thereof include propyl acid, butyl acrylate, pentyl acrylate, 2-ethylhexyl acrylate, hexyl acrylate and the like. Among these, ethyl acrylate, butyl acrylate and 2-ethylhexyl acrylate are preferable. These alkyl acrylate monomers may be used alone or in combination. In addition, carbon number of the said "alkyl" means 1-30.
Therefore, the polyacrylic acid alkyl ester resin fine particles are preferably formed from a polymer of ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, or a mixture thereof.

ポリアクリル酸アルキルエステル系樹脂は、ポリスチレン系樹脂100質量部に対して2〜18質量部である。
樹脂微粒子の質量割合が上記の範囲であれば、より優れた機械強度、成形性及び耐衝撃性を有する発泡成形体を提供することができる。
樹脂微粒子がポリスチレン系樹脂100質量部に対して2質量部未満では、得られた複合ポリスチレン系樹脂発泡成形体の耐衝撃性向上の効果が十分に得られないことがある。一方、樹脂微粒子がポリスチレン系樹脂100質量部に対して18質量部を超えると、発泡成形体の圧縮強度が低下することがある。
より好ましい樹脂微粒子は、ポリスチレン系樹脂100質量部に対して5〜13質量部である。
本発明において、原材料となる樹脂及び単量体の比率は、発泡粒子及び発泡成形体におけるそれらの比率と略同一である。
The polyacrylic acid alkyl ester resin is 2 to 18 parts by mass with respect to 100 parts by mass of the polystyrene resin.
When the mass ratio of the resin fine particles is within the above range, a foamed molded article having more excellent mechanical strength, moldability and impact resistance can be provided.
When the resin fine particles are less than 2 parts by mass with respect to 100 parts by mass of the polystyrene resin, the effect of improving the impact resistance of the obtained composite polystyrene resin foam molded article may not be sufficiently obtained. On the other hand, when the resin fine particles exceed 18 parts by mass with respect to 100 parts by mass of the polystyrene-based resin, the compression strength of the foamed molded product may be lowered.
More preferable resin fine particles are 5 to 13 parts by mass with respect to 100 parts by mass of the polystyrene-based resin.
In the present invention, the ratio of the raw material resin and monomer is substantially the same as the ratio of the expanded particles and the expanded molded body.

改質樹脂中の樹脂微粒子の平均粒子径は、30〜1000nmであるのが好ましい。
樹脂微粒子の平均粒子径が30nm未満では、得られた発泡成形体の耐衝撃性が不十分になることがある。一方、樹脂微粒子の平均粒子径が1000nmを超えると、発泡剤の逸散速度が早くなることがある。
より好ましい樹脂微粒子の平均粒子径は150〜600nmである。
The average particle size of the resin fine particles in the modified resin is preferably 30 to 1000 nm.
When the average particle diameter of the resin fine particles is less than 30 nm, the impact resistance of the obtained foamed molded product may be insufficient. On the other hand, when the average particle diameter of the resin fine particles exceeds 1000 nm, the dissipation rate of the foaming agent may be increased.
A more preferable average particle diameter of the resin fine particles is 150 to 600 nm.

本発明の発泡成形体の製造について、改質樹脂、発泡性粒子及び発泡粒子の製造に分けて簡単に説明する。
改質樹脂は、例えば、水性媒体中で、ポリスチレン系樹脂からなる種粒子に、アクリル酸アルキルエステルを含む単量体混合物を吸収させた後、単量体混合物を重合させて、種粒子中にポリアクリル酸アルキルエステル系樹脂微粒子を分散形成する工程、続く水性媒体中で、ポリアクリル酸アルキルエステル系樹脂微粒子が分散形成された種粒子に、スチレン系単量体を含む単量体混合物を吸収させた後、単量体混合物を重合させて、ポリスチレン系樹脂粒子をさらに成長させる工程により製造することができる。
重合には、従来からスチレン系単量体の重合に用いられる重合開始剤、スチレン系単量体の液滴及びポリスチレン系樹脂種粒子の分散性を安定させるために、公知の懸濁安定剤を用いてもよい。
The production of the foamed molded product of the present invention will be briefly described by dividing it into the production of a modified resin, expandable particles and expanded particles.
The modified resin is prepared by, for example, absorbing a monomer mixture containing an alkyl acrylate ester into a seed particle made of a polystyrene resin in an aqueous medium, and then polymerizing the monomer mixture into the seed particle. Dispersing and forming polyacrylic acid alkyl ester resin fine particles, followed by absorption of monomer mixture containing styrene monomer into seed particles in which polyacrylic acid alkyl ester resin fine particles are dispersed and formed in an aqueous medium Then, the monomer mixture can be polymerized to produce polystyrene resin particles.
In the polymerization, a known suspension stabilizer is used to stabilize the dispersibility of the polymerization initiator, the styrene monomer droplets, and the polystyrene resin seed particles conventionally used for the polymerization of styrene monomers. It may be used.

種粒子は、特に限定されず、公知の方法により製造できる。例えば、懸濁重合法や、押出機で原料樹脂を溶融混練後、ストランド状に押し出し、所望の粒子径でカットする方法が挙げられる。
種粒子の粒子径は、作成する改質樹脂粒子の平均粒子径等に応じて適宜調整でき、例えば平均粒子径1mmの改質樹脂粒子を作成する場合には、平均粒子径0.4〜0.7mm程度の種粒子を用いることが好ましい。また、種粒子の重量平均分子量は特に限定されないが、15万〜70万程度である。
The seed particles are not particularly limited and can be produced by a known method. For example, a suspension polymerization method or a method in which a raw material resin is melt-kneaded with an extruder, extruded into a strand shape, and cut with a desired particle diameter can be mentioned.
The particle diameter of the seed particles can be adjusted as appropriate according to the average particle diameter of the modified resin particles to be prepared. For example, when preparing modified resin particles having an average particle diameter of 1 mm, the average particle diameter is 0.4 to 0. It is preferable to use seed particles of about 7 mm. The weight average molecular weight of the seed particles is not particularly limited, but is about 150,000 to 700,000.

本発明の発泡成形体は、その物性を損なわない範囲内において他の添加剤を含んでいてもよい。そのような添加剤としては、可塑剤、滑剤、結合防止剤、融着促進剤、帯電防止剤、難燃剤、難燃助剤、展着剤、架橋剤、充填剤、着色剤等が挙げられる。
添加剤は、改質樹脂の製造時に添加すればよい。
The foamed molded article of the present invention may contain other additives within a range that does not impair the physical properties thereof. Examples of such additives include plasticizers, lubricants, anti-binding agents, fusion accelerators, antistatic agents, flame retardants, flame retardant aids, spreading agents, crosslinking agents, fillers, colorants, and the like. .
The additive may be added during the production of the modified resin.

また、本発明の発泡成形体は、ポリブタジエン末端アクリレート由来の成分がさらに含まれてもよい。ポリブタジエン末端アクリレート由来の成分は、ポリスチレンとの相溶化により発泡成形体の耐衝撃性の向上が期待できる。   In addition, the foam molded article of the present invention may further contain a component derived from polybutadiene-terminated acrylate. The component derived from the polybutadiene terminal acrylate can be expected to improve the impact resistance of the foamed molded article by compatibilization with polystyrene.

改質樹脂の形状は特に限定されず、例えば、球状、楕円球状、円柱状等が挙げられ、これらの中でも球状が好ましい。
本発明の改質樹脂が球状であるとき、その平均粒子径は、その後、発泡剤を含浸させて発泡させた発泡粒子の成形型内への充填性等を考慮すると、0.3〜2.0mmであるのが好ましい。
改質樹脂の重量平均分子量(MW)は、200,000〜350,000程度であり、重量平均分子量(MW)に対するZ平均分子量(MZ)の比(MZ/MW)は2〜4程度である。
The shape of the modified resin is not particularly limited, and examples thereof include a spherical shape, an elliptical spherical shape, and a cylindrical shape. Among these, a spherical shape is preferable.
When the modified resin of the present invention is spherical, the average particle size is 0.3-2. Considering the filling properties of the foamed particles impregnated with a foaming agent and then foamed into the mold. It is preferably 0 mm.
The weight average molecular weight (MW) of the modified resin is about 200,000 to 350,000, and the ratio of the Z average molecular weight (MZ) to the weight average molecular weight (MW) (MZ / MW) is about 2 to 4. .

公知の方法により改質樹脂に発泡剤を含浸させて発泡性粒子を得る。
発泡剤としては、従来からポリスチレン系樹脂の発泡に用いられているものであれば、特に限定されず、例えば、特にブタン系発泡剤、ペンタン系発泡剤が好ましく、ペンタンを主成分(例えば、50質量%以上)として含む揮発性発泡剤が特に好ましい
発泡剤の発泡性粒子中における含有量は、通常2〜10質量%程度である。
また、発泡性粒子には、発泡剤と共に発泡助剤を含有させることができ、その含有量は、通常0.2〜2.5質量%程度である。
The modifying resin is impregnated with a foaming agent by a known method to obtain expandable particles.
The foaming agent is not particularly limited as long as it is conventionally used for foaming polystyrene resins. For example, a butane-based foaming agent and a pentane-based foaming agent are particularly preferable, and pentane is a main component (for example, 50 The volatile foaming agent contained as a mass% or more) is particularly preferred. The content of the foaming agent in the foamable particles is usually about 2 to 10% by weight.
Further, the foamable particles can contain a foaming aid together with the foaming agent, and the content thereof is usually about 0.2 to 2.5% by mass.

公知の方法により発泡性粒子を発泡(予備発泡)させて発泡粒子を得る。
すなわち、発泡粒子は、本発明の発泡性粒子を、公知の方法で所定の嵩密度(例えば、0.015〜0.1g/cm3)に予備発泡させることにより得ることができる。
予備発泡においては、必要に応じて発泡する際にスチームと同時に空気を導入してもよい。
予備発泡における条件は、用いる樹脂粒子や所望の物性等により適宜選択すればよい。例えば、圧力(ゲージ圧)は、0.01〜0.10MPa程度であり、時間は、30〜240秒程度である。
発泡粒子の嵩密度は、0.033〜0.02g/cm3程度である。
The expandable particles are expanded (pre-expanded) by a known method to obtain expanded particles.
That is, the expanded particles can be obtained by pre-expanding the expandable particles of the present invention to a predetermined bulk density (for example, 0.015 to 0.1 g / cm 3 ) by a known method.
In the pre-foaming, air may be introduced simultaneously with steam when foaming as necessary.
The pre-foaming conditions may be appropriately selected depending on the resin particles to be used and desired physical properties. For example, the pressure (gauge pressure) is about 0.01 to 0.10 MPa, and the time is about 30 to 240 seconds.
The bulk density of the expanded particles is about 0.033 to 0.02 g / cm 3 .

本発明の発泡成形体は、部品梱包材、自動車部材又は緩衝材であるのが好ましい。
具体的には、本発明の発泡成形体は、自動車のギヤ部品のような金属部品などの輸送(搬送)に用いる部品梱包材、及び嵩上げ材やティビアパッド、バンパー芯材などの自動車部材(内装材や緩衝材)などに好適に用いられる。
The foamed molded product of the present invention is preferably a component packing material, an automobile member or a cushioning material.
Specifically, the foam-molded article of the present invention includes parts packaging materials used for transportation (conveyance) of metal parts such as automobile gear parts, and automobile members (interior materials) such as raising materials, tibia pads, and bumper core materials. And buffer material).

以下、実施例及び比較例により本発明を具体的に説明するが、以下の実施例は本発明の例示にすぎず、本発明は以下の実施例のみに限定されない。なお、以下において、特記しない限り、「部」及び「%」は質量基準である。
実施例及び比較例においては、得られた発泡成形体を次のようにして測定・評価した。
なお、測定・評価に用いた装置は、一例であって、同等の機能を有するものであれば特に限定されない。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, the following Examples are only illustrations of this invention and this invention is not limited only to the following Examples. In the following, “part” and “%” are based on mass unless otherwise specified.
In Examples and Comparative Examples, the obtained foamed molded products were measured and evaluated as follows.
The apparatus used for measurement / evaluation is an example, and is not particularly limited as long as it has an equivalent function.

<発泡成形体の密度及び発泡倍数>
発泡成形体の密度を次のように測定する。
発泡成形体から10cm×10cm×5cmの試験片を切り出し、その質量を小数以下2位で秤量し、得られた発泡成形体の質量(W)及び発泡成形体の体積(V)から、次式により発泡成形体の密度を求める。
発泡成形体の密度(g/cm3)=W/V
発泡成形体の発泡倍数は、上記の発泡成形体の密度の逆数で表される。
<Density and expansion ratio of foamed molded product>
The density of the foamed molded product is measured as follows.
A test piece of 10 cm × 10 cm × 5 cm was cut out from the foam molded article, and its mass was weighed in the second decimal place. From the mass (W) of the obtained foam molded article and the volume (V) of the foam molded article, To obtain the density of the foamed molded product.
Density of foamed molded product (g / cm 3 ) = W / V
The expansion ratio of the foamed molded product is represented by the reciprocal of the density of the foamed molded product.

<算術平均粗さRa>
発泡成形体の算術平均粗さRaは、JIS B0601:2001「製品の幾何特性仕様(GPS)−表面性状:輪郭曲線方式−用語、定義及び表面性状のパラメータ」に基づく表面性状の測定により得られた値を意味する。
具体的には、株式会社キーエンス製、ダブルスキャン高精度レーザー測定器LT−9500、LT−9010M、データ処理ソフト コムス株式会社、非接触輪郭形状 粗さ測定システムMAP−2DSを用いて、下記の条件で測定する。
<Arithmetic mean roughness Ra>
The arithmetic average roughness Ra of the foamed molded product is obtained by measuring the surface properties based on JIS B0601: 2001 “Product Geometrical Specification (GPS) —Surface Properties: Contour Curve Method—Terminology, Definition and Surface Properties Parameters”. Value.
Specifically, using Keyence Co., Ltd., double scan high precision laser measuring instrument LT-9500, LT-9010M, data processing software COMMS Co., Ltd., non-contact contour shape roughness measurement system MAP-2DS, the following conditions Measure with

測定範囲:18000μm
測定ピッチ:10μm
測定速度:1000μm/秒
評価長さ(ln):12.5mm
基準長さ(l):2.5mm
光量:40設定
平均フィルタ:4
ノイズフイルタ:1
測定個所:A、B面×3箇所
測定データに基づいて、平均線から測定曲線までの偏差の絶対値を合計し、基準長さで割って平均した値を算術平均粗さRa(μm)とする。
試験片は、温度20±2℃、湿度65±5%の環境下で16時間以上状態調節した後、温度20±2℃、湿度65±5%の環境下で測定を行う。
Measurement range: 18000 μm
Measurement pitch: 10 μm
Measurement speed: 1000 μm / second Evaluation length (ln): 12.5 mm
Reference length (l): 2.5 mm
Light intensity: 40 settings Average filter: 4
Noise filter: 1
Measurement location: A, B surface x 3 locations Based on the measurement data, the absolute value of the deviation from the average line to the measurement curve is summed, and the average value divided by the reference length is the arithmetic average roughness Ra (μm) To do.
The test piece is conditioned for 16 hours or more in an environment of temperature 20 ± 2 ° C. and humidity 65 ± 5%, and then measured in an environment of temperature 20 ± 2 ° C. and humidity 65 ± 5%.

<接触角>
発泡成形体の接触角は、JIS R3257:1999「基板ガラス表面のぬれ性試験方法」の静滴法に準拠した測定方法で得られた接触角θ値を意味する。
具体的には、接触角計(協和界面科学株式会社製、型式:固液界面解析装置Drop Master300)を用いて、下記の条件で接触角(°)測定する。
プローブ液:蒸留水
液量:1μL
試験数:10回(約2cm間隔で滴下測定)
試験片状態調節、試験環境:20±2℃、RH65±5%、16hr以上とする。
試験片は表面部分幅50mm×長さ150mm×厚み10mmを2個切り出し測定する。
<Contact angle>
The contact angle of the foamed molded product means a contact angle θ value obtained by a measurement method based on the sessile drop method of JIS R3257: 1999 “Testing method for wettability of substrate glass surface”.
Specifically, the contact angle (°) is measured under the following conditions using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., model: solid-liquid interface analyzer Drop Master 300).
Probe solution: distilled water, liquid volume: 1 μL
Number of tests: 10 times (drop measurement at intervals of about 2 cm)
Condition adjustment of test piece, test environment: 20 ± 2 ° C., RH65 ± 5%, 16 hr or more.
Two test pieces having a surface portion width of 50 mm × length of 150 mm × thickness of 10 mm are cut out and measured.

<静摩擦係数、動摩擦係数>
発泡成形体の静摩擦係数及び動摩擦係数とは、JIS K7125「プラスチック−フィルム及びシート−摩擦係数試験方法」に基づく測定により得られた値を意味する。具体的には、特定の材料を同一材料上に滑らせたときの摩擦係数を意味する。
すなわち、テンシロン万能試験機UCT−10T(株式会社オリエンテック製)、万能試験機データ処理(UTPS−STDソフトブレーン株式会社製)を用いて、試験片サイズは幅63mm×長さ63mmとし200gの滑り片に表皮面を表にして両面テープにて張り付け、滑り相手材料として試験片と同じ成型品の表皮面上を試験速度100mm/minで摩擦面と平行の方向に引張り、試験距離は80mmとしてスプリング無しの条件で測定し、静摩擦係数及び動摩擦係数を求め、さらにそれらの差を求める。
<Static friction coefficient, Dynamic friction coefficient>
The static friction coefficient and the dynamic friction coefficient of the foamed molded product mean values obtained by measurement based on JIS K7125 “Plastic-film and sheet-friction coefficient test method”. Specifically, it means the coefficient of friction when a specific material is slid on the same material.
That is, using Tensilon universal testing machine UCT-10T (Orientec Co., Ltd.) and universal testing machine data processing (UTPS-STD Softbrain Co., Ltd.), the test piece size is 63 mm wide x 63 mm long and 200 g slip. The surface is attached to the surface with double-sided tape, and the surface of the same molded product as the test piece is pulled as a sliding partner material at a test speed of 100 mm / min in the direction parallel to the friction surface, and the test distance is 80 mm. Measure under no conditions to determine the static friction coefficient and dynamic friction coefficient, and further determine the difference between them.

試験片は、温度23±2℃、湿度50±5%の環境下で16時間以上状態調節した後、温度23±2℃、湿度50±5%の環境下で測定を行う。
静摩擦係数及び動摩擦係数は次式により算出する。
静摩擦係数μs=Fs/Fp
動摩擦係数μk=Fk/Fp
Fs:静摩擦力(N)=最初の最大点荷重(N)
Fk:動摩擦力(N)=(極大平均荷重+極小平均荷重)/2(N)
Fp:接触力(N)=滑り片荷重(N)
The test piece is conditioned for 16 hours or more in an environment of temperature 23 ± 2 ° C. and humidity 50 ± 5%, and then measured in an environment of temperature 23 ± 2 ° C. and humidity 50 ± 5%.
The static friction coefficient and the dynamic friction coefficient are calculated by the following equations.
Static friction coefficient μs = Fs / Fp
Coefficient of dynamic friction μk = Fk / Fp
Fs: Static friction force (N) = First maximum point load (N)
Fk: dynamic friction force (N) = (maximum average load + minimum average load) / 2 (N)
Fp: Contact force (N) = Sliding piece load (N)

[実施例1]
(種粒子の製造)
内容積100リットルの撹拌機付き重合容器に、水40kg、懸濁安定剤として第三リン酸カルシウム100g及びアニオン界面活性剤としてドデシルベンゼンスルホン酸ナトリウム2.0gを供給し撹拌しながらスチレンモノマー40kg並びに重合開始剤としてベンゾイルパーオキサイド96.0g及びt−ブチルパーオキシベンゾエート28.0gを添加した上で90℃に昇温して重合した。そして、この温度で6時間保持し、更に125℃に昇温してから2時間後に冷却してポリスチレン系樹脂種粒子(A)を得た。
前記ポリスチレン系樹脂種粒子(A)を篩分けし、種粒子として粒子径0.5〜0.71mm(平均粒子径D50=0.66mm)のポリスチレン系樹脂種粒子(B)を得た。
[Example 1]
(Manufacture of seed particles)
40 kg of water, 100 g of tribasic calcium phosphate as a suspension stabilizer and 2.0 g of sodium dodecylbenzenesulfonate as an anionic surfactant are fed into a polymerization vessel equipped with a stirrer with an internal volume of 100 liters, and 40 kg of styrene monomer and polymerization are started while stirring. After adding 96.0 g of benzoyl peroxide and 28.0 g of t-butylperoxybenzoate as agents, the temperature was raised to 90 ° C. to polymerize. And it hold | maintained at this temperature for 6 hours, and also, after heating up to 125 degreeC, it cooled after 2 hours and obtained the polystyrene-type resin seed particle (A).
The polystyrene resin seed particles (A) were sieved to obtain polystyrene resin seed particles (B) having a particle diameter of 0.5 to 0.71 mm (average particle diameter D50 = 0.66 mm) as seed particles.

(改質樹脂粒子の製造)
次に、内容積5リットルの撹拌機付き重合容器に、水2000g、前記ポリスチレン系樹脂種粒子(B)500g、懸濁安定剤としてピロリン酸マグネシウム10.0g及びアニオン界面活性剤としてドデシルベンゼンスルホン酸ナトリウム0.4gを供給して撹拌しながら75℃に昇温した。
次に、重合開始剤としてジクミルパーオキサイド0.9gを溶解させたアクリル酸ブチル260gを前記5リットル重合容器に供給してから、種粒子内に吸収させ、75℃で60分保持後、130℃に昇温して2時間保持した。
その後、75℃の温度に下げ、重合開始剤としてベンゾイルパーオキサイド4.9g及びt−ブチルパーオキシベンゾエート0.75gを溶解させたスチレンモノマー200gを前記5リットル重合容器に供給してから、種粒子内にスチレンモノマーを吸収させ、75℃で60分保持した。
続いて、反応液を75℃から120℃まで180分で昇温しつつ、かつスチレンモノマー1040gを75℃から115℃まで160分間で重合容器内に一定量ずつ供給した。次いで120℃に昇温した後、更に140℃に昇温して2時間経過後に冷却し、改質樹脂粒子(C)を得た。
(Manufacture of modified resin particles)
Next, in a polymerization vessel equipped with a stirrer having an internal volume of 5 liters, 2000 g of water, 500 g of the polystyrene resin seed particles (B), 10.0 g of magnesium pyrophosphate as a suspension stabilizer and dodecylbenzenesulfonic acid as an anionic surfactant Sodium 0.4g was supplied and it heated up at 75 degreeC, stirring.
Next, 260 g of butyl acrylate in which 0.9 g of dicumyl peroxide was dissolved as a polymerization initiator was supplied to the 5 liter polymerization vessel, and then absorbed into the seed particles, held at 75 ° C. for 60 minutes, and then 130 The temperature was raised to ° C. and held for 2 hours.
Thereafter, the temperature was lowered to 75 ° C., and styrene monomer (200 g) in which 4.9 g of benzoyl peroxide and 0.75 g of t-butylperoxybenzoate were dissolved as a polymerization initiator was supplied to the 5 liter polymerization vessel. The styrene monomer was absorbed therein and kept at 75 ° C. for 60 minutes.
Subsequently, while the temperature of the reaction liquid was raised from 75 ° C. to 120 ° C. over 180 minutes, 1040 g of styrene monomer was supplied in a certain amount into the polymerization vessel from 75 ° C. to 115 ° C. over 160 minutes. Subsequently, after heating up to 120 degreeC, it heated up at 140 degreeC further, and it cooled after 2 hour passage, and obtained the modified resin particle (C).

(改質発泡性粒子の製造)
次いで、別の内容積5リットルの撹拌機付き重合容器に、水2200g、改質樹脂樹脂粒子(C)1800g、懸濁安定剤としてピロリン酸マグネシウム7.2g及びドデシルベンゼンスルホン酸ナトリウム0.36gを供給した。次に、複合ポリスチレン系樹脂粒子が分散した分散液を70℃に加熱した後、難燃剤としてテトラブロモビスフェノールAビス(2,3−ジブロモ2−メチルプロピル)エーテル(第一工業製薬株式会社製、商品名:ピロガードSR−130)14.4g及び難燃助剤としてジクミルパーオキサイド5.4gを分散液中に供給して撹拌しながら90℃に昇温した。次に、発泡剤としてn−ペンタン/i−ペンタン=75/25〜85/15のペンタン(ガス種a:コスモ石油社製、製品名ペンタン)144gを前記5リットル重合容器に圧入して5時間保持した後、30℃以下まで冷却し、重合容器内から取り出した。続いて、乾燥させ、13℃の恒温室内に7日間放置して改質発泡性粒子を得た。
(Manufacture of modified expandable particles)
Next, in another polymerization vessel equipped with a stirrer having an internal volume of 5 liters, 2200 g of water, 1800 g of the modified resin resin particles (C), 7.2 g of magnesium pyrophosphate as a suspension stabilizer and 0.36 g of sodium dodecylbenzenesulfonate were added. Supplied. Next, after heating the dispersion in which the composite polystyrene resin particles are dispersed to 70 ° C., tetrabromobisphenol A bis (2,3-dibromo-2-methylpropyl) ether (made by Daiichi Kogyo Seiyaku Co., Ltd., (Product name: Pyroguard SR-130) 14.4 g and dicumyl peroxide 5.4 g as a flame retardant aid were fed into the dispersion and heated to 90 ° C. with stirring. Next, 144 g of n-pentane / i-pentane = 75/25 to 85/15 pentane (gas type a: product name pentane, manufactured by Cosmo Oil Co., Ltd.) as a blowing agent was injected into the 5 liter polymerization vessel for 5 hours. After being held, it was cooled to 30 ° C. or lower and taken out from the polymerization vessel. Subsequently, it was dried and left in a thermostatic chamber at 13 ° C. for 7 days to obtain modified expandable particles.

(発泡粒子の製造)
次いで、改質発泡性粒子1500gを、ジンクステアレート1.2g、ヒドロキシステアリン酸トリグリセリド1.2g及びポリエチレングリコール(MW=300)0.75gからなる表面処理剤で被覆処理した。処理後、スチームで予熱した常圧予備発泡機に発泡性複合ポリスチレン系樹脂粒子を投入し、撹拌しながら約0.03MPaの設定でスチームを導入して、約2〜3分間で30倍の嵩倍数まで予備発泡させて、発泡粒子を得た。
(Manufacture of expanded particles)
Next, 1500 g of the modified expandable particles were coated with a surface treatment agent consisting of 1.2 g of zinc stearate, 1.2 g of hydroxystearic acid triglyceride and 0.75 g of polyethylene glycol (MW = 300). After the treatment, the foamable composite polystyrene resin particles are put into a normal pressure pre-foaming machine preheated with steam, and steam is introduced at a setting of about 0.03 MPa while stirring, and the volume is about 30 times in about 2-3 minutes. The foamed particles were obtained by pre-foaming up to a multiple.

(発泡成形体の製造)
予備発泡後、常温で24時間熟成した嵩倍数50倍の複合ポリスチレン系樹脂発泡粒子を、内寸300mm×400mm×50mm(厚さ)の直方体形状のキャビティを有する成形金型を備えた発泡ビーズ自動成型機(積水工機製作所社製、ACE−3SP)のキャビティ内に充填し、次の条件でスチーム加熱及び冷却した後に発泡成形体を金型から取り出し、300mm×400mm×50mmの嵩倍数50倍の発泡成形体を得た。
(成形条件)金型加熱 : 5秒
一方加熱 :10秒
逆一方加熱 : 5秒
両面加熱 :20秒
水冷 :10秒
設定スチーム圧:0.06、0.07、0.08MPa
設定スチーム圧とは、金型加熱、一方加熱、逆一方加熱、両面加熱時の加熱蒸気圧の設定値のことを指す。
得られた発泡成形体を上記の方法により測定・評価した。それらの結果を表1に示す。
(Manufacture of foam moldings)
Automatic foam bead equipped with a molding die having a rectangular parallelepiped cavity of 300 mm × 400 mm × 50 mm (thickness) inside a composite polystyrene resin expanded particle with a bulk ratio of 50 times aged for 24 hours after pre-expanding Filled into the cavity of a molding machine (ACE-3SP, manufactured by Sekisui Koki Seisakusho Co., Ltd.), heated and cooled under the following conditions, and then taken out the foamed molded product from the mold. The bulk multiple of 300 mm x 400 mm x 50 mm was 50 times The foamed molded product was obtained.
(Molding conditions) Mold heating: 5 seconds
Heating on the other hand: 10 seconds
Reverse one-side heating: 5 seconds
Double-sided heating: 20 seconds
Water cooling: 10 seconds
Set steam pressure: 0.06, 0.07, 0.08 MPa
The set steam pressure refers to a set value of the heating steam pressure during mold heating, one-side heating, reverse one-side heating, and double-sided heating.
The obtained foamed molded article was measured and evaluated by the above method. The results are shown in Table 1.

[実施例2]
発泡粒子の嵩密度を0.020g/cm3(発泡倍率50倍)とすること以外は、実施例1と同様にして、密度0.020g/cm3(発泡倍率50倍)の発泡成形体を得て、測定・評価した。それらの結果を表1に示す。
[Example 2]
Except that the 0.020 g / cm 3 a bulk density of expanded beads (expansion ratio 50 times), in the same manner as in Example 1, a foam molding having a density of 0.020 g / cm 3 (expansion ratio 50 times) Obtained, measured and evaluated. The results are shown in Table 1.

[実施例3]
アクリル酸ブチル15質量部(260g)を10質量部(180g)とし、ジクミルパーオキサイド0.54gとし、スチレンモノマー1040gを1120gとし、ベンゾイルパーオキサイド4.9gを5.3gとすること以外は、実施例1と同様にして、密度0.033g/cm3(発泡倍率30倍)の発泡成形体を得て、測定・評価した。それらの結果を表1及び図1に示す。
図1は、発泡成形体の摩擦係数試験における荷重と伸びの関係を示す図である。
[Example 3]
Except that 15 parts by mass (260 g) of butyl acrylate is 10 parts by mass (180 g), 0.54 g of dicumyl peroxide, 1040 g of styrene monomer is 1120 g, and 4.9 g of benzoyl peroxide is 5.3 g. In the same manner as in Example 1, a foamed molded article having a density of 0.033 g / cm 3 (foaming ratio: 30 times) was obtained, and measured and evaluated. The results are shown in Table 1 and FIG.
FIG. 1 is a diagram showing a relationship between load and elongation in a coefficient of friction test of a foamed molded product.

[実施例4]
発泡粒子の嵩密度を0.020g/cm3(発泡倍率50倍)とすること以外は、実施例3と同様にして、密度0.020g/cm3(発泡倍率50倍)の発泡成形体を得て、測定・評価した。それらの結果を表1に示す。
[Example 4]
Except that the 0.020 g / cm 3 a bulk density of expanded beads (expansion ratio 50 times), in the same manner as in Example 3, the foamed molded article of density 0.020 g / cm 3 (expansion ratio 50 times) Obtained, measured and evaluated. The results are shown in Table 1.

[実施例5]
アクリル酸ブチル15質量部(260g)を5質量部(100g)とし、ジクミルパーオキサイド0.3gとし、スチレンモノマー1040gを1200gとし、ベンゾイルパーオキサイド4.9gを5.6gとすること以外は、実施例1と同様にして、密度0.033g/cm3(発泡倍率30倍)の発泡成形体を得て、測定・評価した。それらの結果を表1に示す。
[Example 5]
Except that 15 parts by mass (260 g) of butyl acrylate is 5 parts by mass (100 g), 0.3 g of dicumyl peroxide, 1040 g of styrene monomer is 1200 g, and 4.9 g of benzoyl peroxide is 5.6 g. In the same manner as in Example 1, a foamed molded article having a density of 0.033 g / cm 3 (foaming ratio: 30 times) was obtained, and measured and evaluated. The results are shown in Table 1.

[実施例6]
発泡粒子の嵩密度を0.020g/cm3(発泡倍率50倍)とすること以外は、実施例5と同様にして、密度0.020g/cm3(発泡倍率50倍)の発泡成形体を得て、測定・評価した。それらの結果を表1に示す。
[Example 6]
Except that the 0.020 g / cm 3 a bulk density of expanded beads (expansion ratio 50 times), in the same manner as in Example 5, a foamed molded article of density 0.020 g / cm 3 (expansion ratio 50 times) Obtained, measured and evaluated. The results are shown in Table 1.

[実施例7]
アクリル酸ブチル15質量部(260g)を2質量部(40g)とし、ジクミルパーオキサイド0.12gとし、スチレンモノマー1040gを1260gとし、ベンゾイルパーオキサイド4.9gを5.8gとすること以外は、実施例1と同様にして、密度0.033g/cm3(発泡倍率30倍)の発泡成形体を得て、測定・評価した。それらの結果を表1に示す。
[Example 7]
Except that 15 parts by mass (260 g) of butyl acrylate is 2 parts by mass (40 g), 0.12 g of dicumyl peroxide, 1040 g of styrene monomer is 1260 g, and 4.9 g of benzoyl peroxide is 5.8 g. In the same manner as in Example 1, a foamed molded article having a density of 0.033 g / cm 3 (foaming ratio: 30 times) was obtained, and measured and evaluated. The results are shown in Table 1.

[実施例8]
発泡粒子の嵩密度を0.020g/cm3(発泡倍率50倍)とすること以外は、実施例7と同様にして、密度0.020g/cm3(発泡倍率50倍)の発泡成形体を得て、測定・評価した。それらの結果を表1に示す。
[Example 8]
Except that the 0.020 g / cm 3 a bulk density of expanded beads (expansion ratio 50 times), in the same manner as in Example 7, a foamed molded article of density 0.020 g / cm 3 (expansion ratio 50 times) Obtained, measured and evaluated. The results are shown in Table 1.

[比較例1]
アクリル酸ブチルを用いないこと以外は、実施例1と同様にして、密度0.033g/cm3(発泡倍率30倍)の発泡成形体を得て、測定・評価した。それらの結果を表1及び図2に示す。
図2は、発泡成形体の摩擦係数試験における荷重と伸びの関係を示す図である。
[Comparative Example 1]
A foamed molded article having a density of 0.033 g / cm 3 (foaming ratio 30 times) was obtained in the same manner as in Example 1 except that butyl acrylate was not used, and was measured and evaluated. The results are shown in Table 1 and FIG.
FIG. 2 is a diagram showing a relationship between load and elongation in a coefficient of friction test of a foamed molded product.

[比較例2]
アクリル酸ブチルを用いないこと、及び発泡粒子の嵩密度を0.020g/cm3(発泡倍率50倍)とすること以外は、実施例1と同様にして、密度0.020g/cm3(発泡倍率50倍)の発泡成形体を得て、測定・評価した。それらの結果を表1に示す。
[Comparative Example 2]
It is not used the butyl acrylate, and the bulk density of the expanded beads 0.020 g / cm 3, except that the (expansion ratio 50 times), in the same manner as in Example 1, a density 0.020 g / cm 3 (foaming A foamed molded article having a magnification of 50) was obtained and measured and evaluated. The results are shown in Table 1.

Figure 2014193950
Figure 2014193950

表1から、実施例1〜8の発泡成形体は、比較例1及び2の発泡成形体に比べて、静摩擦係数と動摩擦係数の差が小さく、発泡成形体同士又は発泡成形体とそれに付随する構成部材とが接触して擦り合わされた際に発生する音鳴りを抑制できることがわかる。   From Table 1, the foamed molded products of Examples 1 to 8 have a smaller difference between the static friction coefficient and the dynamic friction coefficient than the foamed molded products of Comparative Examples 1 and 2, and are associated with each other or with the foamed molded product. It can be seen that the noise generated when the component members come into contact with each other and rubbed together can be suppressed.

Claims (5)

基本樹脂としてのポリスチレン系樹脂100質量部と、ポリアクリル酸アルキルエステル系樹脂2〜18質量部とを含む発泡成形体であり、
前記発泡成形体を構成する前記基本樹脂が、微粒子状の前記ポリアクリル酸アルキルエステル系樹脂を含み、
前記発泡成形体の表面が、JIS B0601:2001に基づく表面性状の測定において、5.0〜10.0μmの算術平均粗さRaを有することを特徴とする発泡成形体。
It is a foamed molded article comprising 100 parts by weight of a polystyrene resin as a basic resin and 2 to 18 parts by weight of a polyacrylic acid alkyl ester resin.
The basic resin constituting the foam-molded product includes the polyalkyl acrylate resin based on fine particles,
The foamed molded product is characterized in that the surface of the foamed molded product has an arithmetic average roughness Ra of 5.0 to 10.0 µm in the measurement of surface properties based on JIS B0601: 2001.
前記発泡成形体が、JIS R3257:1999に基づくぬれ性試験において、蒸留水に対する90〜100°の接触角を有する請求項1に記載の発泡成形体。   The foamed molded product according to claim 1, wherein the foamed molded product has a contact angle of 90 to 100 ° with distilled water in a wettability test based on JIS R3257: 1999. 前記発泡成形体が、JIS K7125に基づく摩擦係数試験において、0.02〜0.05の静摩擦係数と動摩擦係数との差を有する請求項1又は2に記載の発泡成形体。   The foamed molded product according to claim 1 or 2, wherein the foamed molded product has a difference between a static friction coefficient and a dynamic friction coefficient of 0.02 to 0.05 in a friction coefficient test based on JIS K7125. 前記発泡成形体が、30〜50倍の発泡倍数を有する請求項1〜3のいずれか1つに記載の発泡成形体。   The foamed molded product according to any one of claims 1 to 3, wherein the foamed molded product has a foaming factor of 30 to 50 times. 前記発泡成形体が、部品梱包材、自動車部材又は緩衝材である請求項1〜4のいずれか1つに記載の発泡成形体。   The foamed molded product according to any one of claims 1 to 4, wherein the foamed molded product is a part packing material, an automobile member, or a cushioning material.
JP2013070173A 2013-03-28 2013-03-28 Foam molding Pending JP2014193950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013070173A JP2014193950A (en) 2013-03-28 2013-03-28 Foam molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013070173A JP2014193950A (en) 2013-03-28 2013-03-28 Foam molding

Publications (1)

Publication Number Publication Date
JP2014193950A true JP2014193950A (en) 2014-10-09

Family

ID=51839417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013070173A Pending JP2014193950A (en) 2013-03-28 2013-03-28 Foam molding

Country Status (1)

Country Link
JP (1) JP2014193950A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026966A1 (en) 2017-08-04 2019-02-07 株式会社カネカ Foamable polystyrene resin particles, polystyrene prefoamed particles, foam-molded article, and methods for producing these
WO2020196096A1 (en) * 2019-03-25 2020-10-01 株式会社カネカ Foamable polystyrene resin particles, polystyrene pre-foamed particles, and foamed molded product
WO2022030230A1 (en) * 2020-08-07 2022-02-10 株式会社カネカ Foamable polystyrene resin particles, polystyrene pre-foamed particles, and foamed molded product
US11312835B2 (en) 2017-08-04 2022-04-26 Kaneka Corporation Expandable polystyrene resin particles, polystyrene pre-expanded particles, and foam molded body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031462A (en) * 2005-07-22 2007-02-08 Biiboon Solutions:Kk Foamed molded article of styrenic resin containing rubbery latex and inorganic compound
JP2011068817A (en) * 2009-09-28 2011-04-07 Sekisui Plastics Co Ltd Polystyrene resin composition, polystyrene resin particle, foamable polystyrene resin particle, method for producing the same, polystyrene resin prefoamed particle and polystyrene resin foamed molded article
WO2012121084A1 (en) * 2011-03-04 2012-09-13 積水化成品工業株式会社 Expanded composite polystyrene resin particles and molded foam thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031462A (en) * 2005-07-22 2007-02-08 Biiboon Solutions:Kk Foamed molded article of styrenic resin containing rubbery latex and inorganic compound
JP2011068817A (en) * 2009-09-28 2011-04-07 Sekisui Plastics Co Ltd Polystyrene resin composition, polystyrene resin particle, foamable polystyrene resin particle, method for producing the same, polystyrene resin prefoamed particle and polystyrene resin foamed molded article
WO2012121084A1 (en) * 2011-03-04 2012-09-13 積水化成品工業株式会社 Expanded composite polystyrene resin particles and molded foam thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026966A1 (en) 2017-08-04 2019-02-07 株式会社カネカ Foamable polystyrene resin particles, polystyrene prefoamed particles, foam-molded article, and methods for producing these
US11312835B2 (en) 2017-08-04 2022-04-26 Kaneka Corporation Expandable polystyrene resin particles, polystyrene pre-expanded particles, and foam molded body
WO2020196096A1 (en) * 2019-03-25 2020-10-01 株式会社カネカ Foamable polystyrene resin particles, polystyrene pre-foamed particles, and foamed molded product
WO2022030230A1 (en) * 2020-08-07 2022-02-10 株式会社カネカ Foamable polystyrene resin particles, polystyrene pre-foamed particles, and foamed molded product

Similar Documents

Publication Publication Date Title
JP5664143B2 (en) Expandable composite thermoplastic resin particles, composite thermoplastic resin foam particles, and composite thermoplastic resin foam particles
JP5453923B2 (en) Modified resin foam particles and molded articles thereof
WO2015146529A1 (en) High-density polyethylene mixed resin particles, composite resin particles, foamed particles and foamed molded body
JP5014653B2 (en) Expandable styrene resin particles and method for producing styrene resin foam molded article
JP2014193950A (en) Foam molding
JP2012197373A (en) Foamed molded product and its use
JP6514928B2 (en) Expandable polystyrene-based resin particles, polystyrene-based pre-expanded particles and expanded molded articles
JP4066337B2 (en) Expandable styrene resin particles for building materials and foamed molded articles thereof
JP2014189769A (en) Modified polystyrenic foamable resin particles, method for manufacturing the same, foam particles, and foam molding
JP3970188B2 (en) Self-extinguishing foamable styrenic resin particles, pre-foamed particles and self-extinguishing foam
JP5447573B2 (en) Modified resin foam particles and method for producing the same
JP4653321B2 (en) Expandable rubber-modified acrylonitrile / styrene-based resin particles, process for producing the same, and foam molded article
JP2013181074A (en) Styrene-modified polyethylene resin particles, foamable composite resin particles, preliminary foamable particles, foaming molded product, and method of producing the preliminary foamable particles
JP6764364B2 (en) Composite resin foam molded product and its manufacturing method
JP5732358B2 (en) Polystyrene-based resin particles, expandable resin particles, expanded particles, expanded molded articles, and methods for producing them
JP4777677B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin foam particles and foamed molded article
JP5810007B2 (en) Styrenic resin particles, method for producing the same, expandable particles, expanded particles and expanded molded article
JP5992349B2 (en) Expandable styrenic resin particles, method for producing the same, expanded particles, and expanded molded body
JP2012188543A (en) Resin particle, foamable resin particle, method for producing the same, foamed particle and formed molding
JP5965853B2 (en) Expandable styrenic resin particles, expanded particles and expanded molded articles
JP5914080B2 (en) Expandable styrene resin particles and method for producing the same
JP2023065201A (en) Manufacturing method of panel for track gate plate, and usage of the same
JP6302670B2 (en) Polystyrene resin foam molding
JP2023048098A (en) Molded body and shock absorbing material
WO2023149207A1 (en) Polypropylene-based resin foam particles, method for producing polypropylene-based resin foam particles, and logistics packaging material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170509