JP2014193432A - Hybrid photocatalyst and production method thereof - Google Patents

Hybrid photocatalyst and production method thereof Download PDF

Info

Publication number
JP2014193432A
JP2014193432A JP2013070396A JP2013070396A JP2014193432A JP 2014193432 A JP2014193432 A JP 2014193432A JP 2013070396 A JP2013070396 A JP 2013070396A JP 2013070396 A JP2013070396 A JP 2013070396A JP 2014193432 A JP2014193432 A JP 2014193432A
Authority
JP
Japan
Prior art keywords
photocatalyst
zeolite
hybrid
mechanochemical reaction
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013070396A
Other languages
Japanese (ja)
Inventor
Toru Wakihara
徹 脇原
Junichi Tadami
純一 多々見
Masatoshi Hotta
雅敏 堀田
Shuichi Sugita
修一 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Showa KK
Yokohama National University NUC
Original Assignee
Union Showa KK
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Showa KK, Yokohama National University NUC filed Critical Union Showa KK
Priority to JP2013070396A priority Critical patent/JP2014193432A/en
Publication of JP2014193432A publication Critical patent/JP2014193432A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalyst having high photocatalytic activity and its production method.SOLUTION: (1) A hybrid photocatalyst is obtained by a mechano-chemical reaction of a photocatalyst with zeolite. (2) A method of producing the hybrid photocatalyst includes a step of subjecting a photocatalyst and zeolite to a mechano-chemical reaction.

Description

本発明は、ハイブリッド光触媒及びその製造方法に関し、光触媒とゼオライトとを複合化したハイブリッド触媒及びその製造方法に関する。   The present invention relates to a hybrid photocatalyst and a method for producing the same, and relates to a hybrid catalyst in which a photocatalyst and zeolite are combined and a method for producing the same.

酸化チタンなどの光触媒は、光触媒作用を発揮して、例えば、有機物を分解することは広く知られている。さらに、これらの能力を利用して、空気中に含まれる微量の有機物を生活空間から分解・除去し、いわゆる「シックハウス症候群」などに代表されるアレルギー性疾患の対策とする検討が行われている。   It is widely known that photocatalysts such as titanium oxide exhibit a photocatalytic action and, for example, decompose organic substances. Furthermore, using these capabilities, studies are being conducted to resolve and remove trace amounts of organic substances contained in the air from living spaces, and to deal with allergic diseases such as so-called “sick house syndrome”. .

例えば、特許文献1では、殺菌速度と有害ガス分解速度に優れる酸化チタン化合物として、抗菌活性金属種を担持した二種の触媒成分を含んでなる光触媒が開示されている。   For example, Patent Document 1 discloses a photocatalyst comprising two kinds of catalyst components carrying an antibacterial active metal species as a titanium oxide compound having excellent sterilization rate and harmful gas decomposition rate.

特開2012−096152号公報JP 2012-096152 A

光触媒と吸着剤とを組み合わせることによって、吸着剤が光触媒で分解される有機化合物を吸着し、光触媒のみを用いて反応させるよりも環境中の有機化合物を速やかに低下させることができると考えられる。
本発明は、高い光触媒活性の得られる光触媒及びその製造方法を提供することを目的とする。
By combining the photocatalyst and the adsorbent, it is considered that the organic compound in the environment can be reduced more rapidly than the adsorbent adsorbs the organic compound decomposed by the photocatalyst and reacts using only the photocatalyst.
An object of this invention is to provide the photocatalyst from which high photocatalytic activity is obtained, and its manufacturing method.

本発明者らは鋭意検討した結果、光触媒とゼオライトとをメカノケミカル反応させることで、光触媒粒子単体はもとより、光触媒と吸着剤であるゼオライトとを単純混合するよりも高い活性を示す光触媒が得られることを見出した。   As a result of intensive studies, the present inventors have obtained a mechanochemical reaction between a photocatalyst and zeolite, and a photocatalyst exhibiting higher activity than a simple mixture of a photocatalyst particle and an adsorbent zeolite is obtained. I found out.

すなわち、本発明は、以下の[1]〜[10]に関する。
[1]光触媒とゼオライトとをメカノケミカル反応させて得られる、ハイブリッド光触媒。
[2]前記ゼオライト表面への光触媒の被覆率が30〜300%である、[1]に記載のハイブリッド光触媒。
[3]前記メカノケミカル反応の付加エネルギーが0.1〜300kWである、[1]又は[2]に記載のハイブリッド光触媒。
[4]前記光触媒が、酸化チタンを含む、[1]〜[3]のいずれかに記載のハイブリッド光触媒。
[5]前記光触媒の平均一次粒子径が、5〜50nmである、[1]〜[4]のいずれかに記載のハイブリッド光触媒。
[6]前記ゼオライトが、Y型、及びZSM−5型から選ばれる少なくとも一種である、[1]〜[5]のいずれかに記載のハイブリッド光触媒。
[7]前記ゼオライトの細孔径が4〜10Åである、[1]〜[6]のいずれかに記載のハイブリッド光触媒。
[8]光触媒とゼオライトとをメカノケミカル反応させる工程を有する、ハイブリッド光触媒の製造方法。
[9]前記メカノケミカル反応の付加エネルギーが0.1〜300kWである、[8]に記載のハイブリッド光触媒の製造方法。
[10]前記反応させる工程の前に、光触媒に対して機械的な前処理を行なう工程を有する、[8]又は[9]に記載のハイブリッド光触媒の製造方法。
That is, the present invention relates to the following [1] to [10].
[1] A hybrid photocatalyst obtained by a mechanochemical reaction between a photocatalyst and zeolite.
[2] The hybrid photocatalyst according to [1], wherein a coverage of the photocatalyst on the zeolite surface is 30 to 300%.
[3] The hybrid photocatalyst according to [1] or [2], wherein the added energy of the mechanochemical reaction is 0.1 to 300 kW.
[4] The hybrid photocatalyst according to any one of [1] to [3], wherein the photocatalyst includes titanium oxide.
[5] The hybrid photocatalyst according to any one of [1] to [4], wherein an average primary particle size of the photocatalyst is 5 to 50 nm.
[6] The hybrid photocatalyst according to any one of [1] to [5], wherein the zeolite is at least one selected from Y-type and ZSM-5 type.
[7] The hybrid photocatalyst according to any one of [1] to [6], wherein the zeolite has a pore diameter of 4 to 10 mm.
[8] A method for producing a hybrid photocatalyst, comprising a step of causing a mechanochemical reaction between the photocatalyst and zeolite.
[9] The method for producing a hybrid photocatalyst according to [8], wherein the added energy of the mechanochemical reaction is 0.1 to 300 kW.
[10] The method for producing a hybrid photocatalyst according to [8] or [9], wherein the photocatalyst is subjected to a mechanical pretreatment before the reacting step.

本発明は、高い光触媒活性の得られる光触媒及びその製造方法を提供することができる。   The present invention can provide a photocatalyst having high photocatalytic activity and a method for producing the photocatalyst.

図1は実施例1、2及び比較例1の結果(TiO2+Y型(SiO2/Al23=5) アセトアルデヒド分解反応におけるCO2発生経時変化)を示す。FIG. 1 shows the results of Examples 1 and 2 and Comparative Example 1 (TiO 2 + Y type (SiO 2 / Al 2 O 3 = 5) CO 2 generation time course in acetaldehyde decomposition reaction). 図2は実施例3、4及び比較例2の結果(TiO2+Y型(SiO2/Al23=70) アセトアルデヒド分解反応におけるCO2発生経時変化)を示す。FIG. 2 shows the results of Examples 3 and 4 and Comparative Example 2 (TiO 2 + Y type (SiO 2 / Al 2 O 3 = 70) CO 2 generation time-dependent change in acetaldehyde decomposition reaction). 図3は実施例1の結果(メカノケミカル反応 被覆率200% Y型(SiO2/Al23=5)SEM写真)を示す。FIG. 3 shows the results of Example 1 (mechanochemical reaction coverage 200% Y-type (SiO 2 / Al 2 O 3 = 5) SEM photograph). 図4は比較例1の結果(単純混合 被覆率200%相当 Y型(SiO2/Al23=5)SEM写真)を示す。FIG. 4 shows the results of Comparative Example 1 (simple mixed coverage ratio equivalent to 200% Y-type (SiO 2 / Al 2 O 3 = 5) SEM photograph). 図5は実施例3の結果(メカノケミカル反応 被覆率200% Y型(SiO2/Al23=70)SEM写真)を示す。FIG. 5 shows the results of Example 3 (mechanochemical reaction coverage 200% Y-type (SiO 2 / Al 2 O 3 = 70) SEM photograph). 図6は比較例2の結果(単純混合 被覆率200%相当 Y型(SiO2/Al23=70)SEM写真)を示す。FIG. 6 shows the result of Comparative Example 2 (Y-type (SiO 2 / Al 2 O 3 = 70) SEM photograph corresponding to a simple mixed coverage of 200%)). 図7は実施例2の結果(TiO2+Y型(SiO2/Al23=5)メカノケミカル被覆率100% 粒子界面複合化SEM写真)を示す。FIG. 7 shows the results of Example 2 (TiO 2 + Y type (SiO 2 / Al 2 O 3 = 5) mechanochemical coverage 100% particle interface composite SEM photograph). 図8は実施例1の結果(TiO2+Y型(SiO2/Al23=5) メカノケミカル 被覆率200% 粒子界面複合化SEM写真)を示す。FIG. 8 shows the results of Example 1 (TiO 2 + Y type (SiO 2 / Al 2 O 3 = 5) mechanochemical coverage 200%, particle interface composite SEM photograph). 図9は実施例1の結果(TiO2+Y型(SiO2/Al23=5) 単純混合 被覆率200% 粒子界面SEM写真)を示す。FIG. 9 shows the results of Example 1 (TiO 2 + Y type (SiO 2 / Al 2 O 3 = 5) simple mixing coverage 200% particle interface SEM photograph).

本発明のハイブリッド光触媒は、光触媒とゼオライトとをメカノケミカル反応させて得られるものである。
本発明によれば、光触媒とゼオライトとをメカノケミカル反応させることで、光触媒とゼオライトとの相乗効果を発揮して単純混合した場合よりも高い光触媒活性が得られる。
The hybrid photocatalyst of the present invention is obtained by a mechanochemical reaction between a photocatalyst and zeolite.
According to the present invention, the photocatalytic activity of the photocatalyst and the zeolite is higher than that obtained when the photocatalyst and the zeolite are mixed simply by exhibiting the synergistic effect of the zeolite.

[光触媒]
本発明に用いられる光触媒は、特に限定されないが、例えば、酸化チタンが挙げられる。酸化チタンの結晶形態としては、ルチル、アナターゼ、ブルッカイトが挙げられる。本発明で用いられる光触媒は、これらの結晶相のいずれが混合した状態でもよいが、光触活性の観点から、ブルッカイト結晶相を含む酸化チタンが好ましい。中でも、ブルッカイト結晶相を有する酸化チタンが、酸化チタン全体の70質量%以上であるとさらに好ましい。
[photocatalyst]
Although the photocatalyst used for this invention is not specifically limited, For example, a titanium oxide is mentioned. Examples of the crystalline form of titanium oxide include rutile, anatase, and brookite. The photocatalyst used in the present invention may be in a state where any of these crystal phases is mixed, but from the viewpoint of photocatalytic activity, titanium oxide containing a brookite crystal phase is preferred. Among these, titanium oxide having a brookite crystal phase is more preferably 70% by mass or more of the entire titanium oxide.

光触媒は、粒子であることが好ましい。光触媒の平均一次粒子径は、1nm〜100nmが好ましく、1nm〜80nmがより好ましく、5〜70nmが更に好ましく、5〜50nmが更に好ましい。ここで平均粒子径は一次粒子を真球と仮定してBET比表面積から求めた値である。   The photocatalyst is preferably a particle. The average primary particle size of the photocatalyst is preferably 1 nm to 100 nm, more preferably 1 nm to 80 nm, still more preferably 5 to 70 nm, and further preferably 5 to 50 nm. Here, the average particle diameter is a value obtained from the BET specific surface area assuming that the primary particles are true spheres.

[ゼオライト]
本発明において用いられるゼオライトは、特に制限されるものではないが、フォージャサイト、A型ゼオライト、L型ゼオライト、ゼオライトβ、モルデナイト、チャバサイト、フェリエライト、クリノプチロライト、ZSM−5型ゼオライト、ZSM−11型ゼオライト、ZSM−22型ゼオライト、ZSM−48型ゼオライトが挙げられる。なお、フォージャサイトとしては、X型ゼオライト、Y型ゼオライト、超安定化Y型ゼオライト(Ultra Stable Y;USY)が挙げられる。ゼオライトは、天然であっても、合成であってもよい。これらの中でも、ZSM−5型ゼオライト、Y型ゼオライトが好ましい。
[Zeolite]
The zeolite used in the present invention is not particularly limited, but faujasite, A-type zeolite, L-type zeolite, zeolite β, mordenite, chabasite, ferrierite, clinoptilolite, ZSM-5 type zeolite ZSM-11 type zeolite, ZSM-22 type zeolite, ZSM-48 type zeolite. Examples of the faujasite include X-type zeolite, Y-type zeolite, and ultra-stabilized Y-type zeolite (Ultra Stable Y; USY). The zeolite may be natural or synthetic. Among these, ZSM-5 type zeolite and Y type zeolite are preferable.

本発明に用いるゼオライトのシリカ/アルミナ比は、特に制限はないが、通常ゼオライトの種類によりその値が決定される。例えば、2〜1000が好ましく、2〜900がより好ましく、5〜800が更に好ましい。   The silica / alumina ratio of the zeolite used in the present invention is not particularly limited, but is usually determined by the type of zeolite. For example, 2-1000 is preferable, 2-900 is more preferable, and 5-800 is still more preferable.

本発明に使用するゼオライトの有効細孔径は、例えば、3〜20Åが好ましく、3〜15Åがより好ましく、4〜10Åが更に好ましい。有効細孔径は、定容量式ガス吸着法により測定される細孔径である。前記定容量式ガス吸着法に使用する吸着ガスとしては、N2、CO2、CH4、H2等が挙げられる。
本発明に使用するゼオライトの比表面積は、特に制限されないが、200m2/g以上が好ましく、250m2/g以上がより好ましく、300m2/g以上がより好ましく、400m2/g以上が更に好ましい。なお、比表面積の上限は特に制限されないが、例えば、1000m2/gである。なお、比表面積は窒素吸着BET法(なお、有効細孔径3Å以下のゼオライトはヘリウム吸着BET法)により求められる。
The effective pore diameter of the zeolite used in the present invention is, for example, preferably 3 to 20 mm, more preferably 3 to 15 mm, and still more preferably 4 to 10 mm. The effective pore diameter is a pore diameter measured by a constant volume gas adsorption method. Examples of the adsorption gas used in the constant volume gas adsorption method include N 2 , CO 2 , CH 4 , and H 2 .
The specific surface area of the zeolite used in the present invention is not particularly limited, but is preferably 200 m 2 / g or more, more preferably 250 m 2 / g or more, more preferably 300 m 2 / g or more, and still more preferably 400 m 2 / g or more. . The upper limit of the specific surface area is not particularly limited, but is, for example, 1000 m 2 / g. The specific surface area is determined by a nitrogen adsorption BET method (for zeolites having an effective pore diameter of 3 mm or less, the helium adsorption BET method).

ゼオライトは一般に金属カチオン又はプロトンを含有する。本発明に使用されるゼオライトの含有金属は任意の金属を用いることができ、例えば、アルカリ金属、アルカリ土類金属、遷移金属が挙げられ、より具体的には、ナトリウム、カリウム、カルシウム、マグネシウム、銅、亜鉛等が挙げられる。   Zeolites generally contain metal cations or protons. Any metal can be used as the metal contained in the zeolite used in the present invention, and examples thereof include alkali metals, alkaline earth metals, and transition metals. More specifically, sodium, potassium, calcium, magnesium, Examples include copper and zinc.

有機物の分解に用いる観点からは疎水化処理したゼオライトを用いることが好ましい。疎水化処理としては、例えば、ゼオライトとテトラアルコキシシラン等のシラン化合物を接触させる方法が挙げられる。   From the viewpoint of use in decomposing organic substances, it is preferable to use hydrophobized zeolite. Examples of the hydrophobizing treatment include a method in which zeolite and a silane compound such as tetraalkoxysilane are brought into contact with each other.

ゼオライトの平均粒径は、0.1〜50μmが好ましく、0.3〜30μmがより好ましく、0.3〜10μmがさらに好ましい。   The average particle size of the zeolite is preferably 0.1 to 50 μm, more preferably 0.3 to 30 μm, and still more preferably 0.3 to 10 μm.

[製造方法]
本発明のハイブリッド光触媒の製造方法は、光触媒とゼオライトとをメカノケミカル反応させる工程(以下「反応工程」とも称する)を有する。本発明の製造方法では、反応工程の前に、よりメカノケミカル反応をスムーズにさせること並びに反応装置保護の観点から、光触媒に対して機械的な前処理を行なう工程(以下「前処理工程」とも称する)を有することが好ましい。
メカノケミカル反応とは、複数の異なる素材粒子を固体物質の粉砕過程での摩擦、圧縮等の機械的エネルギーを加え、局部的に生じる高いエネルギーを利用して、異なる粒子間において分子レベルで結合させ、複合微粒子を創出する結晶化反応、固溶反応、相転位反応等の化学反応をいう。
[Production method]
The method for producing a hybrid photocatalyst of the present invention includes a step of causing a mechanochemical reaction between the photocatalyst and zeolite (hereinafter also referred to as “reaction step”). In the production method of the present invention, before the reaction step, from the viewpoint of smoothing the mechanochemical reaction and protecting the reactor, a step of performing mechanical pretreatment on the photocatalyst (hereinafter referred to as “pretreatment step”). Preferably).
In mechanochemical reaction, mechanical particles such as friction and compression in the process of pulverizing solid materials are added to a plurality of different material particles, and high energy generated locally is used to bond different particles at the molecular level. This refers to chemical reactions such as crystallization reaction, solid solution reaction, and phase transition reaction that create composite fine particles.

<反応工程>
反応工程におけるメカノケミカル反応の方式としては、特に制限されないが、例えば、圧縮せん断処理方式、高速衝撃処理方式、混合せん断摩擦方式が挙げられ、これらの中では圧縮せん断処理方式が好ましい。
圧縮せん断処理方式としては、具体的には、ケーシング内部に多数のブレードを設置したローターを有し、そのローターが高速回転することによって、内部に導入された粒子に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、表面処理を行なう装置を用いることが好ましい。当該装置は、通常、機械的粒子複合化装置や精密微細混合機等と呼ばれ、市販品としては、例えば、メカノフュージョンシステムAMS(ホソカワミクロン社製)、ノビルタNOB−130(ホソカワミクロン社製)、シータコンポーザ(徳寿工作所社製)等が挙げられる。例えば、当該メカノフュージョンシステムは、高速回転容器内壁にインナーピースで粒子を圧縮し、間隙部で強力せん断を付与することでメカノケミカル反応させる。
<Reaction process>
The method of the mechanochemical reaction in the reaction step is not particularly limited, and examples thereof include a compression shear treatment method, a high-speed impact treatment method, and a mixed shear friction method, and among these, the compression shear treatment method is preferable.
Specifically, the compression shearing method has a rotor with a large number of blades installed inside the casing, and when the rotor rotates at high speed, impact compression, friction, and shear are applied to the particles introduced inside. It is preferable to use an apparatus that applies a mechanical action such as force to perform surface treatment. The apparatus is usually called a mechanical particle compounding apparatus, a precision fine mixer, or the like, and examples of commercially available products include Mechano-Fusion System AMS (manufactured by Hosokawa Micron), Nobilta NOB-130 (manufactured by Hosokawa Micron), and Theta. A composer (manufactured by Tokuju Kosakusha Co., Ltd.) is listed. For example, the mechanofusion system causes mechanochemical reaction by compressing particles with an inner piece on the inner wall of a high-speed rotating container and applying strong shear at a gap.

メカノケミカル反応における、光触媒のゼオライト100質量部に対する混合量は、目的とする被覆率に応じて適宜設定可能であるが、例えば、1〜100質量部が好ましく、2〜50質量部がより好ましく、3〜30質量部が好ましい。   In the mechanochemical reaction, the mixing amount of the photocatalyst with respect to 100 parts by mass of zeolite can be appropriately set according to the target coverage, but is preferably 1 to 100 parts by mass, more preferably 2 to 50 parts by mass, 3-30 mass parts is preferable.

メカノケミカル反応の付加エネルギーは、光触媒の活性を維持して、ゼオライトに担持させるため、機械的粒子複合化装置等のスケールによって適宜選択することができ、0.1kw〜300kwが好ましく、0.5kw〜200kwが更に好ましい。付加エネルギーとは、当該複合化装置等におけるモーターの動力を意味する。
メカノケミカル反応における回転速度は、上記付加エネルギーの範囲にあわせて適宜設定可能であるが、500〜8000rpmが好ましく、1000〜6000rpmがより好ましく、1000〜4000rpmが更に好ましい。
メカノケミカル反応における処理時間は、上記付加エネルギーの範囲にあわせて適宜設定可能であるが、0.5〜60分が好ましく、1〜30分がより好ましく、1〜15分が更に好ましい。
前処理工程を行うとメカノケミカル反応がスムーズに行われることの他に、機械的粒子複合化装置の回転部分をゼオライトが研磨し、当該複合化装置の構成金属成分が目的物に混入することを防ぐことができる。
The additional energy of the mechanochemical reaction can be appropriately selected depending on the scale of the mechanical particle compounding device, etc. in order to maintain the photocatalytic activity and carry it on the zeolite, and is preferably 0.1 kW to 300 kW, preferably 0.5 kW -200kw is more preferable. The added energy means the power of the motor in the composite device or the like.
The rotational speed in the mechanochemical reaction can be appropriately set according to the range of the added energy, but is preferably 500 to 8000 rpm, more preferably 1000 to 6000 rpm, and still more preferably 1000 to 4000 rpm.
The treatment time in the mechanochemical reaction can be appropriately set according to the range of the added energy, but is preferably 0.5 to 60 minutes, more preferably 1 to 30 minutes, and further preferably 1 to 15 minutes.
In addition to the smooth mechanochemical reaction when the pretreatment process is performed, the rotating part of the mechanical particle composite device is polished by the zeolite, and the constituent metal components of the composite device are mixed into the target product. Can be prevented.

<前処理工程>
前処理の方法としては、メカノケミカル反応と同様の方式で、機械的な処理を行なうことができる。
前処理における付加エネルギーは、機械的粒子複合化装置等のスケールによって適宜選択することができ、0.1kw〜300kwが好ましく、0.5kw〜200kwが更に好ましい。
前処理における回転速度は、上記付加エネルギーの範囲にあわせて適宜設定可能であるが、500〜8000rpmが好ましく、1000〜6000rpmがより好ましく、1000〜4000rpmが更に好ましい。
前処理における処理時間は、上記付加エネルギーの範囲にあわせて適宜設定可能であるが、0.5〜60分が好ましく、1〜30分がより好ましく、1〜15分が更に好ましい。
<Pretreatment process>
As a pretreatment method, mechanical treatment can be performed in the same manner as the mechanochemical reaction.
The added energy in the pretreatment can be appropriately selected depending on the scale of a mechanical particle composite device or the like, preferably 0.1 kw to 300 kw, more preferably 0.5 kw to 200 kw.
The rotation speed in the pretreatment can be appropriately set according to the range of the added energy, but is preferably 500 to 8000 rpm, more preferably 1000 to 6000 rpm, and still more preferably 1000 to 4000 rpm.
The treatment time in the pretreatment can be appropriately set according to the range of the added energy, but is preferably 0.5 to 60 minutes, more preferably 1 to 30 minutes, and further preferably 1 to 15 minutes.

[ハイブリッド光触媒]
上記のメカノケミカル反応により、光触媒とゼオライトとのハイブリッド光触媒が得られる。当該ハイブリッド光触媒は、光触媒とゼオライトの界面が融合している。
得られるハイブリッド光触媒における被覆率は、30〜300%が好ましく、50〜250%がより好ましく、75〜200%が更に好ましい。
なお、ここでの被覆率とは、ゼオライト表面積に対する光触媒の被覆面積率を意味する。メカノケミカル反応によれば、ゼオライト表面積に対して全面を被覆することによって被覆率を100%とすることの他に、被覆した光触媒の上にさらに光触媒を被覆することによって、被覆率200%といった100%超の被覆率が実現できる。
[Hybrid photocatalyst]
By the above mechanochemical reaction, a hybrid photocatalyst of photocatalyst and zeolite is obtained. In the hybrid photocatalyst, the interface between the photocatalyst and the zeolite is fused.
The coverage in the resulting hybrid photocatalyst is preferably 30 to 300%, more preferably 50 to 250%, and still more preferably 75 to 200%.
In addition, a coverage here means the coverage area ratio of the photocatalyst with respect to a zeolite surface area. According to the mechanochemical reaction, in addition to covering the entire surface with respect to the zeolite surface area, the coverage is 100%, and by further coating the photocatalyst on the coated photocatalyst, the coverage is 200%. A coverage of over% can be achieved.

本発明のハイブリッド光触媒は、光触媒とゼオライトの複合化により、紫外光を照射することで、高い光触媒活性が得られる。
ハイブリッド光触媒の用途は、特に制限されないが、消臭剤、防汚塗料、抗菌剤、水素発生用光触媒などの様々な分野に応用できる。
The hybrid photocatalyst of the present invention can obtain high photocatalytic activity by irradiating with ultraviolet light by combining the photocatalyst and zeolite.
The application of the hybrid photocatalyst is not particularly limited, but can be applied to various fields such as a deodorant, an antifouling paint, an antibacterial agent, and a photocatalyst for hydrogen generation.

次に、実施例を挙げて、ハイブリッド光触媒について具体的に説明する。   Next, an example is given and a hybrid photocatalyst is demonstrated concretely.

[光分解実験方法]
内径27mmのシャーレ内に実施例又は比較例で調製した触媒0.01gを入れ、少量の水を添加して超音波をかけて分散させ、120℃乾燥器内で乾燥させた。
500mlガラス製チャンバー内に上記のシャーレを入れ、チャンバー内を合成空気で置換し、コックを閉めた。
チャンバー内にアセトアルデヒド標準ガスと少量の水を注入し、チャンバー内アセトアルデヒド濃度を200ppm、湿度を50%RHにした。
1時間暗所に置き、暗所吸着を確認した後に、光(キセノン光源、0.2mW/cm2)を照射し、CO2濃度を一定時間ごとに47.3時間後までガスクロマトグラフで測定した。
[Photolysis experiment method]
0.01 g of the catalyst prepared in Example or Comparative Example was placed in a petri dish having an inner diameter of 27 mm, a small amount of water was added and dispersed by applying ultrasonic waves, and dried in a 120 ° C. drier.
The petri dish was placed in a 500 ml glass chamber, the inside of the chamber was replaced with synthetic air, and the cock was closed.
Acetaldehyde standard gas and a small amount of water were injected into the chamber, and the acetaldehyde concentration in the chamber was 200 ppm and the humidity was 50% RH.
Placed in a dark place for 1 hour and confirmed adsorption in the dark place, irradiated with light (xenon light source, 0.2 mW / cm 2 ) and measured CO 2 concentration by gas chromatograph every 47.3 hours after a certain time. .

[走査型電子顕微鏡写真]
調製した触媒について、高分解能走査型電子顕微鏡・SEM(日立ハイテクノロジーズ社 S−5200)にて加速電圧 3kV、倍率 20〜450K、及び新形走査型電子顕微鏡(日立ハイテクノロジーズ社 S−5500)にて加速電圧 2kV、倍率 100〜400Kで観察した。
[Scanning electron micrograph]
The prepared catalyst was subjected to an acceleration voltage of 3 kV, a magnification of 20 to 450 K, and a new scanning electron microscope (Hitachi High-Technologies S-5500) using a high-resolution scanning electron microscope / SEM (Hitachi High-Technologies S-5200). And observed at an acceleration voltage of 2 kV and a magnification of 100 to 400K.

(実施例1)
機械的粒子複合化装置(ホソカワミクロン社製、商品名:NOB130)に表1に示したゼオライトの表面への被覆率が200%となるようにTiO2(昭和タイタニウム社製 商品名:FP−6 平均粒子径15nm)を投入し、3000rpmにて3分間処理した後、表1に示した所定量のSiO2/Al23比=5のY型ゼオライト(UOP社製 平均粒子径3μm、細孔径9Å、BET比表面積765m2/g)を投入し、3000rpmにて3kw、3分間でメカノケミカル反応させてハイブリッド紫外光型光触媒を得た。光分解実験を行い、評価結果を表1に示した。
Example 1
TiO 2 (manufactured by Showa Titanium Co., Ltd., trade name: FP-6 average) so that the coating ratio on the surface of the zeolite shown in Table 1 is 200% in a mechanical particle compounding device (manufactured by Hosokawa Micron, trade name: NOB130) After a 3 minute treatment at 3000 rpm, a predetermined amount of SiO 2 / Al 2 O 3 ratio = 5 Y-type zeolite shown in Table 1 (UOP average particle diameter 3 μm, pore diameter) 9 kg, a BET specific surface area of 765 m 2 / g) was added and a mechanochemical reaction was carried out at 3000 rpm for 3 kw for 3 minutes to obtain a hybrid ultraviolet photocatalyst. A photolysis experiment was conducted, and the evaluation results are shown in Table 1.

(実施例2)
ゼオライトに対するTiO2の被覆率が100%となるようにした以外は実施例1と同様にして、メカノケミカル反応によるハイブリッド紫外光型光触媒を得た。光分解実験を行い、評価結果を表1に示した。
(Example 2)
A hybrid ultraviolet photocatalyst by mechanochemical reaction was obtained in the same manner as in Example 1 except that the coverage of TiO 2 on zeolite was 100%. A photolysis experiment was conducted, and the evaluation results are shown in Table 1.

(実施例3)
ゼオライトに既存の方法で合成されたSiO2/Al23比=70のY型ゼオライト(平均粒子径3μm、細孔径9Å、BET比表面積820m2/g)を使用した以外は実施例1と同様にして、メカノケミカル反応によるハイブリッド紫外光型光触媒を得た。光分解実験を行い、評価結果を表1に示した。
(Example 3)
Example 1 with the exception of using a zeolite Y of SiO 2 / Al 2 O 3 ratio = 70 (average particle diameter 3 μm, pore diameter 9 mm, BET specific surface area 820 m 2 / g) synthesized by an existing method for zeolite. Similarly, a hybrid ultraviolet photocatalyst by mechanochemical reaction was obtained. A photolysis experiment was conducted, and the evaluation results are shown in Table 1.

(実施例4)
ゼオライトに対するTiO2の被覆率が100%となるようにした以外は実施例3と同様にして、メカノケミカル反応によるハイブリッド紫外光型光触媒を得た。光分解実験を行い、評価結果を表1に示した。
Example 4
A hybrid ultraviolet photocatalyst by mechanochemical reaction was obtained in the same manner as in Example 3 except that the coverage of TiO 2 with respect to zeolite was 100%. A photolysis experiment was conducted, and the evaluation results are shown in Table 1.

(比較例1)
TiO2(昭和タイタニウム社製 FP−6)と実施例1で使用したY型ゼオライトを表1に示した200%被覆率と同じ比率になるように乳鉢に取り粉砕混合し、TiO2とゼオライトを単純混合させたものを調製した。光分解実験を行い、評価結果を表1に示した。
(Comparative Example 1)
TiO 2 (FP-6 manufactured by Showa Titanium Co., Ltd.) and the Y-type zeolite used in Example 1 were collected in a mortar so as to have the same ratio as the 200% coverage shown in Table 1, and mixed with TiO 2 and zeolite. A simple mixture was prepared. A photolysis experiment was conducted, and the evaluation results are shown in Table 1.

(比較例2)
ゼオライトに実施例3で使用したY型ゼオライトを使用した以外は比較例1と同様にして、TiO2とゼオライトを単純混合させたものを調製した。光分解実験を行い、評価結果を表1に示した。
(Comparative Example 2)
A simple mixture of TiO 2 and zeolite was prepared in the same manner as in Comparative Example 1 except that the zeolite Y used in Example 3 was used. A photolysis experiment was conducted, and the evaluation results are shown in Table 1.

実施例1、実施例2及び比較例1の触媒を用いた場合、メカノケミカル反応によるハイブリッド光触媒は、TiO2が同量の単純混合した光触媒との比較においてCO2発生速度の向上が見られた。また、TiO2量が半分のメカノケミカル反応したものは、TiO2量が2倍の単純混合したものと同等のCO2発生量となり、メカノケミカル反応の効果が確認された(表1及び図1)。
実施例3、実施例4及び比較例2の触媒を用いた場合、TiO2量が半分のメカノケミカル反応したハイブリッド光触媒は、TiO2量が2倍の単純混合したものと同等のCO2発生量となり、メカノケミカル反応の効果が確認された(表1及び図2)。
When the catalysts of Example 1, Example 2 and Comparative Example 1 were used, the hybrid photocatalyst by mechanochemical reaction showed an improvement in the CO 2 generation rate in comparison with the photocatalyst with the same amount of TiO 2 mixed. . Further, the mechanochemical reaction with half the amount of TiO 2 resulted in a CO 2 generation amount equivalent to that obtained by simple mixing with twice the amount of TiO 2 , and the effect of the mechanochemical reaction was confirmed (Table 1 and FIG. 1). ).
Example 3, when using the catalyst of Example 4 and Comparative Example 2, a hybrid photocatalyst TiO 2 amount was mechanochemical reaction half, which TiO 2 amount was simply mixed twice equivalent amount of produced CO 2 Thus, the effect of the mechanochemical reaction was confirmed (Table 1 and FIG. 2).

実施例1〜4並びに比較例1及び2で調製した触媒について、高分解能走査型電子顕微鏡・SEMにて観察した。メカノケミカル反応したハイブリッド光触媒は、ゼオライト表面に均一にTiO2が分散し、かつゼオライト表面のTiO2との界面が融合し、複合酸化物が形成されていることが確認された(図3,5,7,8)。
一方、単純混合したものは、TiO2の塊が確認され、ゼオライトとTiO2との複合酸化物の形成は確認されなかった(図4,6,9)。
The catalysts prepared in Examples 1 to 4 and Comparative Examples 1 and 2 were observed with a high resolution scanning electron microscope / SEM. It was confirmed that the hybrid photocatalyst subjected to the mechanochemical reaction uniformly dispersed TiO 2 on the zeolite surface and fused with the TiO 2 interface on the zeolite surface to form a composite oxide (FIGS. 3 and 5). , 7, 8).
On the other hand, in the case of simple mixing, a lump of TiO 2 was confirmed, and formation of a composite oxide of zeolite and TiO 2 was not confirmed (FIGS. 4, 6, and 9).

本発明のハイブリッド光触媒は、高い光触媒活性が得られ、消臭剤、防汚塗料、抗菌剤、水素発生用光触媒などの様々な分野に応用が期待される。   The hybrid photocatalyst of the present invention has high photocatalytic activity and is expected to be applied in various fields such as deodorants, antifouling paints, antibacterial agents, and hydrogen generating photocatalysts.

Claims (10)

光触媒とゼオライトとをメカノケミカル反応させて得られる、ハイブリッド光触媒。   Hybrid photocatalyst obtained by mechanochemical reaction of photocatalyst and zeolite. 前記ゼオライト表面への光触媒の被覆率が30〜300%である、請求項1に記載のハイブリッド光触媒。   The hybrid photocatalyst according to claim 1, wherein a coverage of the photocatalyst on the zeolite surface is 30 to 300%. 前記メカノケミカル反応の付加エネルギーが0.1〜300kWである、請求項1又は2に記載のハイブリッド光触媒。   The hybrid photocatalyst according to claim 1 or 2, wherein an additional energy of the mechanochemical reaction is 0.1 to 300 kW. 前記光触媒が、酸化チタンを含む、請求項1〜3のいずれかに記載のハイブリッド光触媒。   The hybrid photocatalyst according to claim 1, wherein the photocatalyst contains titanium oxide. 前記光触媒の平均一次粒子径が、5〜50nmである、請求項1〜4のいずれかに記載のハイブリッド光触媒。   The hybrid photocatalyst according to any one of claims 1 to 4, wherein an average primary particle size of the photocatalyst is 5 to 50 nm. 前記ゼオライトが、Y型、及びZSM−5型から選ばれる少なくとも一種である、請求項1〜5のいずれかに記載のハイブリッド光触媒。   The hybrid photocatalyst according to any one of claims 1 to 5, wherein the zeolite is at least one selected from Y-type and ZSM-5 type. 前記ゼオライトの細孔径が4〜10Åである、請求項1〜6のいずれかに記載のハイブリッド光触媒。   The hybrid photocatalyst according to any one of claims 1 to 6, wherein the zeolite has a pore diameter of 4 to 10 mm. 光触媒とゼオライトとをメカノケミカル反応させる工程を有する、ハイブリッド光触媒の製造方法。   A method for producing a hybrid photocatalyst, comprising a step of causing a mechanochemical reaction between a photocatalyst and zeolite. 前記メカノケミカル反応の付加エネルギーが0.1〜300kWである、請求項8に記載のハイブリッド光触媒の製造方法。   The method for producing a hybrid photocatalyst according to claim 8, wherein the added energy of the mechanochemical reaction is 0.1 to 300 kW. 前記反応させる工程の前に、光触媒に対して機械的な前処理を行なう工程を有する、請求項8又は9に記載のハイブリッド光触媒の製造方法。   The method for producing a hybrid photocatalyst according to claim 8 or 9, further comprising a step of mechanically pretreating the photocatalyst prior to the reacting step.
JP2013070396A 2013-03-28 2013-03-28 Hybrid photocatalyst and production method thereof Pending JP2014193432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013070396A JP2014193432A (en) 2013-03-28 2013-03-28 Hybrid photocatalyst and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013070396A JP2014193432A (en) 2013-03-28 2013-03-28 Hybrid photocatalyst and production method thereof

Publications (1)

Publication Number Publication Date
JP2014193432A true JP2014193432A (en) 2014-10-09

Family

ID=51839118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013070396A Pending JP2014193432A (en) 2013-03-28 2013-03-28 Hybrid photocatalyst and production method thereof

Country Status (1)

Country Link
JP (1) JP2014193432A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018502718A (en) * 2014-11-17 2018-02-01 ポートランド ステイト ユニバーシティ Composition comprising diatom shell and use thereof
JP2019025377A (en) * 2017-07-25 2019-02-21 国立大学法人横浜国立大学 Catalyst used for oxidation coupling reaction of methane and method for producing same, and method and apparatus for oxidation coupling reacting methane

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182218A (en) * 1992-03-27 1994-07-05 Pentel Kk Method for oxidation and reduction using composite photocatalyst powder
JPH1199384A (en) * 1997-09-29 1999-04-13 Matsushita Electric Ind Co Ltd Water purifying system
JP2003225572A (en) * 2002-02-04 2003-08-12 Takuya Kitaoka Photocatalyst inorganic composite sheet
JP2005219048A (en) * 2004-01-08 2005-08-18 Showa Denko Kk Composite particle, and production method therefor and its application
JP2007160138A (en) * 2005-12-09 2007-06-28 Arisu Kagaku Kk Photocatalyst composition, resin composition containing the photocatalyst composition, and molding thereof
JP2007167699A (en) * 2005-12-19 2007-07-05 Toyota Central Res & Dev Lab Inc Deodorant
JP2008148726A (en) * 2006-12-14 2008-07-03 Catalysts & Chem Ind Co Ltd Deodorizing and antibacterial composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182218A (en) * 1992-03-27 1994-07-05 Pentel Kk Method for oxidation and reduction using composite photocatalyst powder
JPH1199384A (en) * 1997-09-29 1999-04-13 Matsushita Electric Ind Co Ltd Water purifying system
JP2003225572A (en) * 2002-02-04 2003-08-12 Takuya Kitaoka Photocatalyst inorganic composite sheet
JP2005219048A (en) * 2004-01-08 2005-08-18 Showa Denko Kk Composite particle, and production method therefor and its application
JP2007160138A (en) * 2005-12-09 2007-06-28 Arisu Kagaku Kk Photocatalyst composition, resin composition containing the photocatalyst composition, and molding thereof
JP2007167699A (en) * 2005-12-19 2007-07-05 Toyota Central Res & Dev Lab Inc Deodorant
JP2008148726A (en) * 2006-12-14 2008-07-03 Catalysts & Chem Ind Co Ltd Deodorizing and antibacterial composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018502718A (en) * 2014-11-17 2018-02-01 ポートランド ステイト ユニバーシティ Composition comprising diatom shell and use thereof
US10899938B2 (en) 2014-11-17 2021-01-26 Portland State University Compositions comprising diatom frustules and applications thereof
JP2019025377A (en) * 2017-07-25 2019-02-21 国立大学法人横浜国立大学 Catalyst used for oxidation coupling reaction of methane and method for producing same, and method and apparatus for oxidation coupling reacting methane
JP7066159B2 (en) 2017-07-25 2022-05-13 国立大学法人横浜国立大学 A catalyst used for the oxidative coupling reaction of methane and its production method, as well as an oxidative coupling reaction method of methane and an oxidative coupling reactor.

Similar Documents

Publication Publication Date Title
Mousavinia et al. Novel nanorose-like Ce (III)-doped and undoped Cu (II)–biphenyl-4, 4-dicarboxylic acid (Cu (II)–BPDCA) MOSs as visible light photocatalysts: synthesis, characterization, photodegradation of toxic dyes and optimization
Assayehegn et al. Fabrication of tunable anatase/rutile heterojunction N/TiO2 nanophotocatalyst for enhanced visible light degradation activity
Li et al. Comparative study of sol–gel-hydrothermal and sol–gel synthesis of titania–silica composite nanoparticles
Huang et al. Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NO x
Ikeue et al. Photocatalytic reduction of CO2 with H2O on Ti− β zeolite photocatalysts: effect of the hydrophobic and hydrophilic properties
Yu et al. Direct sonochemical preparation and characterization of highly active mesoporous TiO2 with a bicrystalline framework
JP5156009B2 (en) Titanium oxide photocatalyst and method for producing the same
Wang et al. Room temperature synthesis of hollow CdMoO4 microspheres by a surfactant-free aqueous solution route
WO2000046153A1 (en) Method for producing anatase type titanium dioxide and titanium dioxide coating material
KR101420983B1 (en) Fabrication of visible light photocatalyst containing graphene quantum dot and silver nanoparticles decorated titania nanoparticles
Katsumata et al. Synthesis of amphiphilic brookite nanoparticles with high photocatalytic performance for wide range of application
Abebe et al. Synthesis and Characterization of Ti‐Fe Oxide Nanomaterials for Lead Removal
Iwamoto et al. XANES and XPS study of silica-modified titanias prepared by the glycothermal method
Liang et al. Catalytic oxidation of dimethyl phthalate over titania-supported noble metal catalysts
JP2013527118A (en) Organic templated nano metal oxyhydroxide
Yamashita et al. Efficient adsorption and photocatalytic degradation of organic pollutants diluted in water using the fluoride-modified hydrophobic titanium oxide photocatalysts: Ti-containing Beta zeolite and TiO2 loaded on HMS mesoporous silica
Li et al. Efficient photocatalytic degradation of acrylonitrile by Sulfur-Bismuth co-doped F-TiO2/SiO2 nanopowder
JP2004250239A (en) Active tubular titanium oxide particle, and catalyst and deodorant containing the same
KR20160011725A (en) THE MANUFACTURING METHOD OF TiO2/GRAPHENE COMPOSITE FOR PHOTOCATALYST
JP2009166022A (en) Photocatalytic agent having titanium oxide-iron titanate joint structure, and its producing method
Xie et al. Synthesis and Photocatalytic Activity of Cerium‐Modified CdS‐TiO2 Photocatalyst for the Formaldehyde Degradation at Room Temperature
JP2014193432A (en) Hybrid photocatalyst and production method thereof
Sinha et al. Preparation and characterization of mesostructured γ-manganese oxide and its application to VOCs elimination
Ojok et al. Facile synthesis and characterization of multi-walled carbon nanotubes decorated with hydroxyapatite from cattle horns for adsorptive removal of fluoride
Einafshar et al. Nanocomposite with high adsorption activity developed using stabilized silver modified alumina and TiO2-NPs incorporated into β-cyclodextrin-graphene oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180828