JP2014193158A - Feed for farmed fish and manufacturing method of the same, and producing apparatus of feed for farmed fish - Google Patents

Feed for farmed fish and manufacturing method of the same, and producing apparatus of feed for farmed fish Download PDF

Info

Publication number
JP2014193158A
JP2014193158A JP2014040768A JP2014040768A JP2014193158A JP 2014193158 A JP2014193158 A JP 2014193158A JP 2014040768 A JP2014040768 A JP 2014040768A JP 2014040768 A JP2014040768 A JP 2014040768A JP 2014193158 A JP2014193158 A JP 2014193158A
Authority
JP
Japan
Prior art keywords
fish
feed
cultured
belonging
cultured fish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014040768A
Other languages
Japanese (ja)
Inventor
Nobumitsu Sato
信光 佐藤
Yasufumi Fukumoto
康文 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FEC KK
FEC Inc
Nagase Sanbio Co Ltd
Original Assignee
FEC KK
FEC Inc
Nagase Sanbio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FEC KK, FEC Inc, Nagase Sanbio Co Ltd filed Critical FEC KK
Priority to JP2014040768A priority Critical patent/JP2014193158A/en
Publication of JP2014193158A publication Critical patent/JP2014193158A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Feed For Specific Animals (AREA)
  • Fodder In General (AREA)
  • Apparatuses For Bulk Treatment Of Fruits And Vegetables And Apparatuses For Preparing Feeds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide feed for farmed fish, a manufacturing method of the feed, and a producing apparatus of feed for fishes with improved production efficiency in which growth of each individual of seedlings, fry and adult fish is accelerated, and a size of growing individual is also increased while occurrence of abnormal bone formation or disease is suppressed.SOLUTION: As feed for farmed fish, feed including a fish-derived material which belongs to the same genus as farmed fish is selected. Further, as a manufacturing method of feed for farmed fish, a method including a process of vacuum-drying all or a partial portion of fishes that belong to the same genus as the farmed fish to obtain powder of fishes is selected. Furthermore, as an apparatus for producing feed for farmed fish, an apparatus which comprises: a preparation tank 102 which can be tightly sealed and houses all or a partial portion of fishes that belong to the same genus as the farmed fish; and a vacuum pump 110 which communicates with the tank 102 at an upper portion of the tank via a vacuum pipe 108 is selected.

Description

本発明は、養殖魚用飼料およびその製造方法、ならびに養殖魚用飼料製造装置に関し、より詳細には、魚類の個体をより効率的に生育し得る養殖魚用飼料およびその製造方法、ならびに魚類飼料製造装置に関する。   TECHNICAL FIELD The present invention relates to a cultured fish feed, a method for producing the same, and an apparatus for producing a cultured fish feed, and more particularly, a cultured fish feed capable of growing a fish individual more efficiently, a method for producing the same, and a fish feed. It relates to a manufacturing apparatus.

海洋資源の1つで魚は今や世界中の食糧事情を支える貴重な世界的資源である。その一方で、乱獲による個体数の減少などの問題が生じており、魚種によっては、捕獲数量が世界的に制限されているものもある。   One of the marine resources, fish is now a valuable global resource that supports the food situation around the world. On the other hand, problems such as a decrease in the number of individuals due to overfishing have arisen, and some fish species have a limited number of catches worldwide.

これに対し、種苗生産および稚魚生育を含む多くの養殖魚の生産現場における研究開発が盛んである。特に養殖魚の生産現場では、限られた飼育スペースにより多くの個体を放ち、その安全性とともに効率的な生育を行うことが必要とされる。   On the other hand, research and development at the production site of many cultured fish including seedling production and fry growth is thriving. In particular, in the production site of cultured fish, it is necessary to release a large number of individuals in a limited breeding space and perform efficient growth together with their safety.

このような効率性を高める1つとして、種苗、稚魚または成魚の各個体の生育がある。奇形(骨形成の異常)や病気の発生を抑えて、より大きな個体を短期間でより多く生産することが養殖現場では特に重要な目標とされる。このような目標を達成するにあたり、従来より、当該種苗、稚魚または成魚といった各個体に投与する飼料および飼料成分の研究が多くなされてきた。   One way to increase such efficiency is the growth of seedlings, fry or adults. The production of larger individuals in a short period of time while suppressing the occurrence of malformations (abnormal bone formation) and diseases is a particularly important goal in the aquaculture field. In order to achieve such a goal, much research has been conducted on feeds and feed components to be administered to individual individuals such as seedlings, fry or adult fish.

代表的なものとして、例えば、タンパク源として脱脂酵素処理魚粉、脂質源として極性脂質動物油脂または植物油脂、および糖資源として活性デンプン、および200mg/kg以上のビタミンCを含有するマグロ属養殖魚用配合飼料が開発されている(特許文献1)。さらに、ハマチ、タイ、アジなどの養殖にあたり、イワシ、サバ、アミ、タイ、エビなどの高価な生餌に代えて、魚の残渣滓等からなる動物性原料にオカラなどの植物性原料を混ぜた混合原料を、麹菌等を用いて発酵させたものを用いた養殖魚用配合飼料(特許文献2)や、養殖水生動物の共食いを防止または抑制しかつ成長を促進させるために、トリプトファンまたはトリプトファン誘導体を含有させた水生動物用飼料(特許文献3)も知られている。   As a representative, for example, for tuna cultured fish containing defatted enzyme-treated fish meal as a protein source, polar lipid animal oil or vegetable oil as a lipid source, active starch as a sugar resource, and vitamin C of 200 mg / kg or more Formulated feed has been developed (Patent Document 1). In addition, when cultivating hamachi, thailand, horse mackerel, etc., plant raw materials such as okara were mixed with animal raw materials consisting of fish residue etc. instead of expensive raw food such as sardines, mackerel, ami, thailand, shrimp, etc. Tryptophan or tryptophan derivatives to prevent or suppress cannibalization of cultured aquatic fish using mixed fermented fermented koji molds (Patent Document 2) and to promote growth There is also known an aquatic animal feed containing Japanese Patent Application Laid-Open No. H10-228707.

しかし、これらの飼料はいずれも、養殖魚の生産効率においてある一定の向上は達成するものの、未だその効果は充分とは言えない。特に各個体のサイズをより短期間で増加させ得るような成長そのものを促進させ得る飼料は見出されていないのが現状である。   However, all of these feeds achieve a certain improvement in the production efficiency of farmed fish, but the effect is still not sufficient. In particular, no feed has been found that can promote growth that can increase the size of each individual in a shorter period of time.

特開2008−148652号公報JP 2008-148652 A 特公平7−12283号公報Japanese Examined Patent Publication No. 7-12283 特開平5−7463号公報JP-A-5-7463

本発明は、上記問題の解決を課題とするものであり、その目的とするところは、骨形成の異常や病気の発生を抑えつつ、種苗、稚魚および成魚の各個体の生育を早めかつ、成育する個体自体のサイズも向上させることにより、生産効率を高めた養殖魚用飼料およびその製造方法、ならびに魚類飼料製造装置を提供することにある。   An object of the present invention is to solve the above-mentioned problems. The object of the present invention is to accelerate the growth of each individual seedling, juvenile fish and adult fish while suppressing the occurrence of abnormal bone formation and disease. An object of the present invention is to provide a feed for cultured fish, a method for producing the same, and a fish feed production apparatus with improved production efficiency by improving the size of the individuals themselves.

本発明は、養殖魚用飼料であって、該養殖魚と同じ属に属する魚類由来の材料を含有する、飼料である。   The present invention is a feed for cultured fish, and contains a feed derived from a fish belonging to the same genus as the cultured fish.

1つの実施態様では、上記養殖魚と同じ属に属する魚類由来の材料は、該魚類の真空乾燥粉末体である。   In one embodiment, the fish-derived material belonging to the same genus as the cultured fish is a vacuum dried powder of the fish.

1つの実施態様では、上記養殖魚と同じ属に属する魚類由来の材料は、全体質量に対し、5質量%〜100質量%の割合で含有されている。   In one embodiment, the material derived from the fish which belongs to the same genus as the said cultured fish is contained in the ratio of 5 mass%-100 mass% with respect to the whole mass.

1つの実施態様では、上記養殖魚と同じ属に属する魚類由来の材料は鮮魚加工残渣から得られたものである。   In one embodiment, the fish-derived material belonging to the same genus as the cultured fish is obtained from fresh fish processing residue.

1つの実施態様では、上記養殖魚と同じ属に属する魚類由来の材料は、該養殖魚と同じ種に属する魚類由来の材料である。   In one embodiment, the material derived from fish belonging to the same genus as the cultured fish is a material derived from fish belonging to the same species as the cultured fish.

本発明はまた、養殖魚用飼料の製造方法であって、該養殖魚と同じ属に属する魚類の全部または一部の部位を真空または減圧下で乾燥して魚類粉末体を得る工程を包含する、方法である。   The present invention also relates to a method for producing a feed for cultured fish, comprising a step of drying all or a part of fish belonging to the same genus as the cultured fish under vacuum or reduced pressure to obtain a fish powder. Is the way.

1つの実施態様では、上記真空乾燥工程における上記魚類粉末体の水分含量は、該魚類粉末体の質量を基準にして0.5質量%〜10質量%である。   In one embodiment, the water content of the fish powder in the vacuum drying step is 0.5% by mass to 10% by mass based on the mass of the fish powder.

1つの実施態様では、上記養殖魚と同じ属に属する魚類の全部または一部の部位が鮮魚加工残渣である。   In one embodiment, the whole or a part of fish belonging to the same genus as the cultured fish is a fresh fish processing residue.

1つの実施態様では、上記養殖魚と同じ属に属する魚類は、該養殖魚と同じ種に属する魚類である。   In one embodiment, the fish belonging to the same genus as the cultured fish is a fish belonging to the same species as the cultured fish.

本発明はまた、養殖魚用飼料を製造するための装置であって、該養殖魚と同じ属に属する魚類の全部または一部の部位を収容する密閉可能な仕込みタンクと、該タンクの上部にて真空パイプを介して連通する真空ポンプと、を備える、装置である。   The present invention is also an apparatus for producing a feed for cultured fish, a sealable preparation tank that accommodates all or a part of fish belonging to the same genus as the cultured fish, and an upper part of the tank. And a vacuum pump communicating through a vacuum pipe.

1つの実施態様では、上記真空パイプにおいて、上記仕込みタンクと上記真空ポンプとの間にコンデンサと蒸発水回収タンクとが設けられており、該仕込みタンクから延びる第一真空パイプが該コンデンサと連通し、かつ該コンデンサから延びる第二真空パイプが該蒸発水回収タンクと連通し、そして該蒸発水回収タンクの上部に取り付けられておりかつ該蒸発水回収タンクから延びる第三真空パイプが該真空ポンプに連通し、そして該真空ポンプの稼働により、該仕込みタンク内の前記魚類から生成した蒸発水を該第一真空パイプ、該コンデンサおよび該第二真空パイプを介して、該蒸発水回収タンクに貯留させる。   In one embodiment, in the vacuum pipe, a condenser and an evaporating water recovery tank are provided between the preparation tank and the vacuum pump, and a first vacuum pipe extending from the preparation tank communicates with the condenser. And a second vacuum pipe extending from the condenser communicates with the evaporating water recovery tank, and a third vacuum pipe attached to the upper part of the evaporating water recovery tank and extending from the evaporating water recovery tank is connected to the vacuum pump. By communicating and operating the vacuum pump, the evaporated water generated from the fish in the charging tank is stored in the evaporated water recovery tank via the first vacuum pipe, the condenser and the second vacuum pipe. .

さらなる実施態様では、上記第一真空パイプの一部は、上記仕込みタンクと上記蒸発水回収タンクとの間に設けられた上記コンデンサ内を通過し、該コンデンサ内の上記第一真空パイプを通過する上記蒸発水が、該第一真空パイプに接触して配置された冷却水パイプとの熱交換によって液状化される。   In a further embodiment, a part of the first vacuum pipe passes through the capacitor provided between the charging tank and the evaporated water recovery tank and passes through the first vacuum pipe in the capacitor. The evaporated water is liquefied by heat exchange with a cooling water pipe arranged in contact with the first vacuum pipe.

1つの実施態様では、上記仕込みタンク内で上記魚類からの上記蒸発水の生成は30℃から60℃の温度で行われる。   In one embodiment, the evaporating water is produced from the fish in the charging tank at a temperature of 30 ° C to 60 ° C.

1つの実施態様では、上記養殖魚と同じ属に属する魚類は、該養殖魚と同じ種に属する魚類である。   In one embodiment, the fish belonging to the same genus as the cultured fish is a fish belonging to the same species as the cultured fish.

本発明はまた、養殖魚の養殖方法であって、該養殖魚と同じ属に属する魚類から得た上記養殖魚用飼料を、該養殖魚に給餌する工程、を包含する、方法である。   The present invention is also a method for culturing cultured fish, the method comprising feeding the cultured fish with the above feed for cultured fish obtained from fish belonging to the same genus as the cultured fish.

1つの実施態様では、上記養殖魚と同じ属に属する魚類は、該養殖魚と同じ種に属する魚類である。   In one embodiment, the fish belonging to the same genus as the cultured fish is a fish belonging to the same species as the cultured fish.

本発明の養殖魚用飼料によれば、骨形成の異常や病気の発生を抑えつつ、種苗、稚魚および成魚の各個体の生育を早め、かつ成育する個体自体のサイズを著しく向上させることができる。また、本発明においては、飼料として使用した魚類が有するタンパク質等の成分自体を変性させず、かつフィッシュオイルの分離もなされていないので、当該魚類が有する栄養価を充分保持したまま、より直接的に飼料にすることができる。   According to the feed for cultured fish of the present invention, it is possible to accelerate the growth of seedlings, juvenile fish and adult fish, and to significantly increase the size of the growing individual itself, while suppressing abnormal bone formation and the occurrence of diseases. . Further, in the present invention, since components such as proteins of fish used as feed are not denatured and fish oil is not separated, it is more direct while maintaining sufficient nutritional value of the fish. Can be used as feed.

さらに、本発明の養殖魚用飼料の製造装置によれば、比較的小規模の装置構成とすることができ、製造時に発生する臭いの発生もない。このため、例えば水産加工工場に付設して設置することができ、当該水産加工工場で生じた鮮魚加工残渣から、より鮮度が高く保持された状態のまま養殖魚用飼料を製造することもできる。これにより、水産加工工場から鮮魚加工残渣を有効利用することができ、同工場から排出される産業廃棄物の量を低減することができる。また、養殖魚飼料の製造の観点から見れば、各製造現場(水産加工工場等)で鮮魚加工残渣よりも量が低減されるので、輸送コストの低減が可能となり、最終的に養殖魚用飼料自体の製造コストも低減することが可能となる。   Furthermore, according to the apparatus for producing aquaculture fish feed of the present invention, a relatively small-scale apparatus configuration can be obtained, and no odor is generated during production. For this reason, for example, it can be attached and installed in a fishery processing factory, and the feed for cultured fish can also be manufactured from the fresh fish processing residue produced in the said fishery processing factory, with the freshness maintained more highly. Thereby, the fresh fish processing residue can be effectively used from the fish processing factory, and the amount of industrial waste discharged from the factory can be reduced. Also, from the viewpoint of production of cultured fish feed, the amount of fish is reduced compared to fresh fish processing residue at each production site (fishery processing factory, etc.), so it is possible to reduce transportation costs, and finally feed for cultured fish The manufacturing cost of itself can be reduced.

本発明の養殖魚用飼料の製造装置の一例を説明するための図であって、当該製造装置の各構成を説明する概要図である。It is a figure for demonstrating an example of the manufacturing apparatus of the feed for cultured fish of this invention, Comprising: It is a schematic diagram explaining each structure of the said manufacturing apparatus. 実施例1で得られたヒラメ由来の飼料または比較例1で得られた従来の一般魚粉から構成される配合飼料を用いてヒラメ稚魚の飼育を行った際(実施例2および比較例2)の当該ヒラメ稚魚の日間摂餌率を比較した図であって、(A)は実施例2および比較例2の稚魚における1日目〜20日目の日間摂餌率を比較するグラフであり、そして(B)は実施例2および比較例2の稚魚における21日目〜40日目の日間摂餌率を比較するグラフである。When the flounder fry was reared using the flounder-derived feed obtained in Example 1 or the mixed feed composed of the conventional general fish meal obtained in Comparative Example 1 (Example 2 and Comparative Example 2) It is the figure which compared the daily feeding rate of the said flounder fry, (A) is a graph which compares the daily feeding rate of the 1st-20th day in the fry of Example 2 and Comparative Example 2, and (B) is a graph comparing the daily feeding rate of the fry of Example 2 and Comparative Example 2 on the 21st to 40th days. 実施例1で得られたヒラメ由来の飼料または比較例1で得られた従来の一般魚粉から構成される配合飼料を用いてヒラメ稚魚の飼育を行った際(実施例2および比較例2)の当該ヒラメ稚魚の日間増重率を比較した図であって、(A)は実施例2および比較例2の稚魚における1日目〜20日目の日間増重率を比較するグラフであり、そして(B)は実施例2および比較例2の稚魚における21日目〜40日目の日間増重率を比較するグラフである。When the flounder fry was reared using the flounder-derived feed obtained in Example 1 or the mixed feed composed of the conventional general fish meal obtained in Comparative Example 1 (Example 2 and Comparative Example 2) It is the figure which compared the daily weight gain of the said flounder larva, Comprising: (A) is a graph which compares the daily weight gain of the 1st-20th day in the fry of Example 2 and Comparative Example 2, and (B) is a graph for comparing the daily weight gain rates of the fry of Example 2 and Comparative Example 2 from the 21st day to the 40th day. 実施例1で得られたヒラメ由来の飼料または比較例1で得られた従来の一般魚粉から構成される配合飼料を用いてヒラメ稚魚の飼育を行った際(実施例2および比較例2)の当該ヒラメ稚魚の飼料転換効率を比較した図であって、(A)は実施例2および比較例2の稚魚における1日目〜20日目の飼料転換効率を比較するグラフであり、そして(B)は実施例2および比較例2の稚魚における21日目〜40日目の日間増重率を比較するグラフである。When the flounder fry was reared using the flounder-derived feed obtained in Example 1 or the mixed feed composed of the conventional general fish meal obtained in Comparative Example 1 (Example 2 and Comparative Example 2) It is the figure which compared the feed conversion efficiency of the said flounder fry, (A) is a graph which compares the feed conversion efficiency of the 1st-20th day in the fry of Example 2 and Comparative Example 2, and (B ) Is a graph comparing the daily weight gains of the fry of Example 2 and Comparative Example 2 from the 21st day to the 40th day. 実施例3で得られたヒラメ魚粉配合飼料を給餌したヒラメ魚粉区(実施例4)と市販配合飼料を給餌したラブ・ラァバ区(比較例3)との間のヒラメ種苗の平均全長が15mmとなるまでの平均日齢の差を表すグラフである。The average total length of the flounder seedling between the flounder fish meal section (Example 4) fed with the flounder fish meal blended feed obtained in Example 3 and the love lava section (Comparative Example 3) fed with the commercial blended feed is 15 mm. It is a graph showing the difference of the average age until it becomes. ヒラメ種苗の平均全長が15mmとなった段階での実施例3で得られたヒラメ魚粉配合飼料を給餌したヒラメ魚粉区(実施例4)および市販配合飼料を給餌したラブ・ラァバ区(比較例3)の各ヒラメ種苗に対する、3分間、6分間、および9分間の干出耐性試験による生残率(%)を表すグラフである。Japanese flounder fish meal group fed with flounder fish meal blended feed obtained in Example 3 at the stage when the average length of flounder seedlings reached 15 mm (Example 4), and Lav Lava ward fed with commercial blended feed (Comparative Example 3) ) Is a graph showing the survival rate (%) by the dry tolerance test for 3 minutes, 6 minutes, and 9 minutes for each flounder seedling. 40日齢〜100日齢までの間の、実施例3で得られたヒラメ魚粉配合飼料を給餌したヒラメ魚粉区(実施例4)および市販配合飼料を給餌したラブ・ラァバ区(比較例3)の各ヒラメ種苗の平均全長の推移を表すグラフである。A flounder fish meal group (Example 4) fed with a flounder fish meal blended feed obtained in Example 3 between 40 days and 100 days of age and a love lava section fed with a commercial blended feed (Comparative Example 3) It is a graph showing transition of the average full length of each flounder seedling. 100日齢の段階での、実施例3で得られたヒラメ魚粉配合飼料を給餌したヒラメ魚粉区(実施例4)および市販配合飼料を給餌したラブ・ラァバ区(比較例3)の各ヒラメ種苗の生残率(%)を表すグラフである。Each flounder seedling of the flounder fish meal section (Example 4) fed with the flounder fish meal blended feed obtained in Example 3 and the Lav Lava section (Comparative Example 3) fed with the commercially available blended feed at the stage of 100 days of age It is a graph showing the survival rate (%) of.

(養殖魚用飼料)
まず、本発明の養殖魚用飼料について説明する。
(Food for cultured fish)
First, the cultured fish feed of the present invention will be described.

本明細書中に用いられる用語「養殖魚」とは、海水魚および淡水魚の両方を包含し、種苗から稚魚、および稚魚から成魚に至るまでの全ての成長段階に属する、人工的な生育が必要とされる魚類の全てを言う。養殖魚はまた、ヒト、家畜、家禽、愛玩動物のための食用とされるもの、観賞用のもののいずれをも包含する。   As used herein, the term “cultured fish” includes both saltwater and freshwater fish and requires artificial growth that belongs to all stages of growth from seedlings to fry and fry to adults. Says all the fish that are said to be. Farmed fish also includes any of those edible and ornamental for humans, livestock, poultry, pets.

このような養殖魚としては、特に限定されないが、例えば、市場価値の高い魚類または熱帯魚のような観賞魚が挙げられる。より具体的な例としては、ブリ、カンパチ、ヒラメ、マグロ、マダイ、トラフグ、オニオコゼ、カレイ、アジ類、サバ類、イワシ類、キス、メバル、サケ類、マス類、アユ、コイ、ヤマメ、フナ、またはキンギョなどが挙げられる。   Such cultured fish is not particularly limited, and examples thereof include fish with high market value and ornamental fish such as tropical fish. More specific examples include yellowtail, amberjack, flounder, tuna, red sea bream, tiger pufferfish, sea bream, flounder, horse mackerel, mackerel, sardines, kisses, sea bream, salmon, trout, sweetfish, carp, yamame, crucian carp Or goldfish.

本発明においては、目的の養殖魚飼料を得るために、当該養殖魚と同じ属に属する魚類由来の材料を含有する。   In the present invention, in order to obtain a target cultured fish feed, a material derived from fish belonging to the same genus as the cultured fish is contained.

ここで、「養殖魚と同じ属に属する魚類」とは、養殖魚が属する分類学上の属と同一の属に属する魚類、すなわち、分類学上の同一の科、目および属に属する魚類をいう。例えば、養殖魚としてカンパチを選択する場合、本発明の養殖魚用飼料は、当該カンパチが属するのと同じ、スズキ目アジ科ブリ属に属する魚類由来の材料が採用される。その他の例としては、ヒラメの養殖においてはカレイ目ヒラメ科ヒラメ属のものが採用され、マダイの養殖においては、スズキ目タイ科マダイ属のものが採用される。   Here, “fish belonging to the same genus as cultured fish” refers to fish belonging to the same genus as taxonomic to which the cultured fish belongs, that is, fish belonging to the same taxonomy, eye and genus. Say. For example, when an amberjack is selected as a cultured fish, the same material derived from a fish belonging to the genus Periwinkle, which is the same as the amberjack, is employed for the cultured fish feed of the present invention. As another example, the flounder of the flounder family is used in the culture of flounder, and the genus of the sea bream family is used in the cultivation of red sea bream.

このような養殖魚と同じ属に属する魚類を積極的に使用することにより、本発明の養殖魚用飼料は、目的の養殖魚の成長を著しく向上させることができる。なお、本発明においいては、この「養殖魚と同じ属に属する魚類」は、養殖魚と同じ種に属する魚類であることが好ましい。例えば、カンパチを養殖する場合、スズキ目アジ科ブリ属カンパチであることが好ましく、ヒラメを養殖する場合、カレイ目ヒラメ科ヒラメ属ヒラメであることが好ましく、マダイを養殖する場合は、スズキ目タイ科マダイ属マダイであることが好ましい。   By actively using fish belonging to the same genus as such cultured fish, the cultured fish feed of the present invention can significantly improve the growth of the target cultured fish. In the present invention, the “fish belonging to the same genus as the cultured fish” is preferably a fish belonging to the same species as the cultured fish. For example, when cultivating amberjack, it is preferable to be a periwinkle genus Amberaceae, when cultivating a flounder, preferably a flatfish flounder flounder, and when cultivating red sea bream, It is preferable to be a family red sea bream.

このように、本発明においては養殖魚と少なくとも同じ属に属する魚類由来の材料が、養殖魚に給餌される。通常このような給餌を「共食い」とも言うが、自然界において奇異な状況を作り出すものではない。むしろ、「共食い」は自然界、特に魚類の幼少段階(種苗または稚魚の段階)では、頻繁に観察され得る現状である。魚類と問わず、水中の生態系では特に共食いは一般的であり、例えば、最大9割もの生物がライフサイクルの何処かで共食いに関与しているとも考えられている。「共食い」は自らとほぼ同じ成分で構成された個体を食すため、栄養摂取の観点から見れば、成長にあたり最も効率的とも考えられる。   Thus, in the present invention, fish-derived materials belonging to at least the same genus as the cultured fish are fed to the cultured fish. Usually, such feeding is also called “cannibalism”, but it does not create a strange situation in nature. Rather, “cannibalism” is a current situation that can be frequently observed in nature, particularly in the early stages of fish (seedling or juvenile stage). Regardless of fish, cannibalism is particularly common in underwater ecosystems. For example, up to 90% of organisms are thought to be involved in cannibalism somewhere in the life cycle. Since “cannibalism” eats individuals composed of almost the same ingredients as themselves, it can be considered the most efficient in terms of growth from the point of view of nutrition.

従来の養殖現場では生産効率を高めるために、様々な工夫がなされている。特に「共食い」は養殖魚自体の個体数を低減させるものであるため、最も積極的に回避すべき事項とされてきた。そして、この回避のために充分または時には過剰な飼料の給餌が行われ、養殖魚の個体数を維持することが重要であると考えられてきた。   In the conventional aquaculture site, various ideas have been made to increase production efficiency. In particular, “cannibalism” has been considered to be the most actively avoided matter because it reduces the number of individual fish. In order to avoid this, it has been thought that it is important to maintain a sufficient number of cultured fish by supplying sufficient or sometimes excessive feed.

これに対し、上記のような共食いに対する対策を余り充分に取らない場合では、個体数は低減するものの、時折、養殖魚の中に特に成長度合いの高い(すなわち周囲の養殖魚と比較して体長が明らかに大きい)個体が出現することが知られている。一般に「トビ」と言われるこの現象は、特に食欲が旺盛で飼料を良く食べる個体に見られるものである。   On the other hand, if the measures against cannibalism are not taken sufficiently, the number of individuals will be reduced, but occasionally there will be a particularly high degree of growth among the cultured fish (i.e. It is known that an apparently large) individual appears. This phenomenon, commonly referred to as “Tobi”, is particularly seen in individuals who have a strong appetite and eat well.

本発明においては、積極的に飼料を通じて共食いの機会を増加させ、養殖魚自らの体内成分とほぼ同じ成分を積極的に摂取させることにより、養殖魚の個体間でこの「トビ」の増大を図ろうというものである。その一方で、従来と同様に、養殖魚の間での共食いを避けて全体的な生産効率の向上を達成することができる。   In the present invention, by actively increasing the chances of cannibalism through the feed, and actively taking in the same components as the body components of the cultured fish itself, this “tobi” will be increased among the individual cultured fish. That's it. On the other hand, as in the past, it is possible to avoid cannibalism between farmed fish and achieve an improvement in overall production efficiency.

本発明において、上記養殖魚と同じ属に属する魚類由来の材料は、当該魚類の真空乾燥粉末体、あるいは加熱によって予めフィッシュソルブル(可溶性成分)を含む水、およびフィッシュオイル(魚油)が除かれた魚粉のいずれであってもよい。当該養殖魚自体が有する体内成分により近い成分が含まれるという点から、上記養殖魚と同じ属に属する魚類由来の材料には、当該魚類の真空乾燥粉末体を用いることが好ましい。当該真空乾燥粉末体は、例えば後述するように魚類から、所定の水分(蒸発水)のみを除いて製造され得る粉末である。   In the present invention, the fish-derived material belonging to the same genus as the above-mentioned cultured fish is obtained by removing the vacuum-dried powder of the fish, water containing fish solve (soluble component) and fish oil (fish oil) in advance by heating. It may be any fish meal. From the viewpoint that components closer to the in-vivo components of the cultured fish itself are included, it is preferable to use a vacuum-dried powder of the fish as the material derived from fish belonging to the same genus as the cultured fish. The vacuum-dried powder is a powder that can be produced from fish, for example, by removing only predetermined moisture (evaporated water) as described later.

さらに、上記養殖魚と同じ属に属する魚類の部位は、特に限定されず、全体の部位(例えば、魚全体)または一部の部位(例えば、切り身)のいずれであってもよい。具体的には、例えば水産加工工場から排出される当該養殖魚の残渣である鮮魚加工残渣が挙げられる。鮮魚加工残渣の具体的な例としては、頭部、鰭(尾鰭を含む尾部)、内臓、皮、骨、水産加工上特に不要とされた身など、ならびにこれらの組合せが挙げられる。   Furthermore, the site | part of the fish which belongs to the same genus as the said cultured fish is not specifically limited, Either the whole site | part (for example, whole fish) or the one part site | part (for example, fillet) may be sufficient. Specifically, fresh fish processing residue which is the residue of the said cultured fish discharged | emitted from a fish processing factory is mentioned, for example. Specific examples of fresh fish processing residues include the head, sea bream (tail including tail fin), internal organs, skin, bone, body that is not particularly necessary for fish processing, and combinations thereof.

本発明の養殖魚用飼料においては、養殖魚と同じ属に属する魚類由来の材料が、全体質量に対し、好ましくは5質量%〜100質量%、より好ましくは15質量%〜95質量%の割合で含有されている。このような含有量を満足することによって、本発明の養殖魚用飼料を摂取した養殖魚は、その生産効率が高まり、一層の増体を期待することができる。   In the feed for cultured fish of the present invention, the ratio of the material derived from fish belonging to the same genus as the cultured fish is preferably 5% by mass to 100% by mass, more preferably 15% by mass to 95% by mass, with respect to the total mass. It is contained in. By satisfying such a content, the aquaculture fish that has ingested the aquaculture fish feed of the present invention has an increased production efficiency and can be expected to increase further.

本発明の養殖魚用飼料は、上記養殖魚と同じ属に属する魚類由来の材料以外に、養殖産業一般において通常に使用される他の成分を含有していてもよい。このような他の成分の例としては、養殖魚の生育に必要な栄養成分全般を包含し、例えば、ワムシ、アルテミア、コペポーダなどの餌料生物;大豆粉、米粉などの穀粉;大豆油、魚油などの脂質分;魚粉、サナギ粉、生魚肉ミンチなどの魚介系飼料;麩;α化澱粉、デキストリン、小麦グルテン、カゼインナトリウム、アルギン酸ナトリウム、ポリアクリル酸ナトリウム、カルボキシメチルセルロースナトリウム、各種植物ガム、ダイズホエイなどの公知の粘結剤;各種のビタミン源;各種のミネラル源;各種のタンパク源、アミノ酸;フラクトオリゴ糖、乳糖、オリゴ糖、ガラクトオリゴ糖などのプレビオティクス成分;などが挙げられるが、必ずしもこれらに限定されない。複数の飼料要素が用いられる場合、各要素の構成比は、上記養殖魚と同じ属に属する魚類由来の材料が奏する効果を阻害しない範囲において、当業者によって適宜選択され得る。   The feed for cultured fish of the present invention may contain other components usually used in the aquaculture industry in general, in addition to fish-derived materials belonging to the same genus as the cultured fish. Examples of such other ingredients include all nutritional ingredients necessary for the growth of farmed fish, such as feed organisms such as rotifers, artemia, and copepods; flours such as soy flour and rice flour; Lipid content; fish-based feed such as fish meal, willow powder, and raw minced fish; Known binders; various vitamin sources; various mineral sources; various protein sources, amino acids; prebiotic components such as fructooligosaccharides, lactose, oligosaccharides, galactooligosaccharides, etc., but are not necessarily limited thereto. . When a plurality of feed elements are used, the constituent ratio of each element can be appropriately selected by those skilled in the art within a range that does not impair the effects of the fish-derived material belonging to the same genus as the cultured fish.

(養殖魚用飼料の製造方法)
本発明の養殖魚用飼料は例えば、以下のようにして製造される。
(Method for producing feed for cultured fish)
The feed for cultured fish of this invention is manufactured as follows, for example.

まず、養殖魚と同じ属に属する魚類の全部または一部の部位が真空または減圧下で乾燥される。   First, all or a part of fish belonging to the same genus as the cultured fish is dried under vacuum or reduced pressure.

上記の通り、使用原料となるこの全部または一部の部位としては、例えば水産加工工場から排出される当該養殖魚の残渣である鮮魚加工残渣が挙げられる。鮮魚加工残渣の具体的な例としては、頭部、鰭(尾鰭を含む尾部)、内臓、皮、骨、水産加工上特に不要とされた身など、ならびにこれらの組合せが挙げられる。   As described above, examples of the whole or a part of the raw material used include fresh fish processing residues that are residues of the cultured fish discharged from the fish processing factory. Specific examples of fresh fish processing residues include the head, sea bream (tail including tail fin), internal organs, skin, bone, body that is not particularly necessary for fish processing, and combinations thereof.

真空または減圧下での乾燥(以下、真空等乾燥という)にあたっては、この魚類の使用原料には可能な限り熱を付与しないことが好ましい。使用原料中に含まれるタンパク質等の変性や分解を回避して、できるだけ使用原料中の成分変化を防止するためである。この真空等乾燥において設定することができる温度の例としては、必ずしも限定されないが、例えば30℃〜60℃、好ましくは35℃〜45℃である。   In drying under vacuum or reduced pressure (hereinafter referred to as drying such as vacuum), it is preferable not to apply heat to the raw materials used for fish as much as possible. This is to avoid denaturation and decomposition of proteins and the like contained in the used raw material, and to prevent component changes in the used raw material as much as possible. Examples of temperatures that can be set in the drying such as vacuum are not necessarily limited, but are, for example, 30 ° C to 60 ° C, preferably 35 ° C to 45 ° C.

真空等乾燥に要する時間もまた、上記魚類の使用原料の量や部位の種類等によって変動するため、必ずしも限定されないが、例えば2時間〜24時間、好ましくは2時間〜12時間である。   The time required for drying such as vacuum also varies depending on the amount of the raw material used for the fish and the kind of the part, and is not necessarily limited. For example, it is 2 hours to 24 hours, preferably 2 hours to 12 hours.

真空等乾燥に付与される負圧もまた、上記魚類の使用原料の量や部位の種類等によって変動するため、必ずしも限定されないが、例えば−97KPa〜−82KPa、好ましくは−97KPa〜−92KPaである。   The negative pressure applied to drying such as vacuum also varies depending on the amount of the raw material used for the fish and the type of the part, and is not necessarily limited, but is, for example, -97 KPa to -82 KPa, preferably -97 KPa to -92 KPa. .

上記真空等乾燥は、例えば、この魚類の使用原料自体を予め所定の大きさに切断し、必要に応じてミンチの状態した段階で行われる。さらに真空等乾燥を行っている間は、この魚類の使用原料から均一に水分(蒸発水)が除去されるように攪拌下で行われることが好ましい。   The drying such as vacuum is performed, for example, in a stage where the raw material of the fish itself is cut into a predetermined size in advance and minced as necessary. Further, while drying such as vacuum is performed, it is preferably performed with stirring so that water (evaporated water) is uniformly removed from the raw material used for the fish.

この真空等乾燥により魚類粉末体が製造される。なお、この真空等乾燥を通じて得られる魚類粉末体の水分含量は、該魚類粉末体の質量を基準にして好ましくは0.5質量%〜10質量%、より好ましくは3質量%〜8質量%である。このような水分含量にまで低下させることにより、本発明の養殖魚用飼料は腐敗の進行が抑制され、より長期保存が可能となる。   Fish powder is produced by drying under vacuum. The water content of the fish powder obtained through drying such as vacuum is preferably 0.5% by mass to 10% by mass, more preferably 3% by mass to 8% by mass based on the mass of the fish powder. is there. By reducing the water content to such a level, the feed for cultured fish of the present invention can be prevented from decaying and can be stored for a longer period of time.

得られた魚類粉末体には、必要に応じて上記他の成分が添加されてもよく、添加された場合は適宜攪拌される。   The obtained fish powder may be added with the above-mentioned other components as necessary, and when added, they are appropriately stirred.

その後、さらに必要に応じてペレット等の任意の形状に成形が施されてもよい。   Thereafter, if necessary, molding may be performed into an arbitrary shape such as a pellet.

このようにして本発明の養殖魚用飼料を製造することができる。   In this way, the feed for cultured fish of the present invention can be produced.

(養殖魚用飼料の製造装置)
次に、本発明の養殖魚用飼料の製造装置を図面を用いて説明する。
(Production equipment for cultured fish feed)
Next, an apparatus for producing cultured fish feed according to the present invention will be described with reference to the drawings.

図1は、本発明の養殖魚用飼料の製造装置の一例を説明するための図であって、当該製造装置の各構成を説明する概要図である。   FIG. 1 is a diagram for explaining an example of a production apparatus for cultured fish feed according to the present invention, and is a schematic diagram for explaining each configuration of the production apparatus.

図1に示されるように、本発明の養殖魚用飼料の製造装置100は、該養殖魚と同じ属に属する魚類の全部または一部の部位を収容する密閉可能な仕込みタンク102と、該タンクの上部にて真空パイプ104、106、108を介して連通する真空ポンプ110とを備える。   As shown in FIG. 1, an apparatus 100 for producing cultured fish feed according to the present invention includes a sealable preparation tank 102 that accommodates all or part of fish belonging to the same genus as the cultured fish, and the tank. And a vacuum pump 110 communicating with each other via vacuum pipes 104, 106, and 108.

図1において、仕込みタンク102は、例えば、熱伝導性に優れた材料で構成されており、そして開閉可能な上蓋124を開くことにより、上記魚類の全部または一部の部位120をタンク102内に仕込むことができる。仕込みタンク102はまた、内部に攪拌翼128が設けられており、飼料の製造の間、必要に応じて当該翼128が回転し、より均質な飼料を製造することができる。なお、上記仕込みにあたっては、仕込みタンク102に上記養殖魚と同じ属に属する魚類の全部または一部の部位を投入し、真空ポンプ110を稼働させず、仕込みタンク102の上蓋124を軽く閉じるか、開いたまま大気圧下で低圧蒸気を仕込みタンク102外周に設けられたジャケット126に流し、仕込みタンク102内の内容物を例えば、80℃で5分間、または60℃で30分間の煮沸消毒を行うことにより、内容物の殺菌を行うことができる。   In FIG. 1, the charging tank 102 is made of, for example, a material having excellent heat conductivity, and the upper or lower lid 124 that can be opened and closed is opened to place all or part of the fish 120 in the tank 102. Can be charged. The charging tank 102 is also provided with a stirring blade 128 inside, and the blade 128 can be rotated as necessary during the production of feed to produce more uniform feed. In addition, in the preparation, all or part of the fish belonging to the same genus as the cultured fish is put into the preparation tank 102, the vacuum pump 110 is not operated, and the upper lid 124 of the preparation tank 102 is lightly closed, While being open, low-pressure steam is flowed to the jacket 126 provided on the outer periphery of the charging tank 102 under atmospheric pressure, and the contents in the charging tank 102 are boiled and disinfected at, for example, 80 ° C. for 5 minutes or 60 ° C. for 30 minutes Thus, the contents can be sterilized.

図1に示すように、本発明の製造装置100では、仕込みタンク102から延びる第一真空パイプ104の一部が、仕込みタンク102と蒸発水回収タンク132との間に設けられたコンデンサ130内を通過する。コンデンサ130内では、第一真空パイプ104に接近して冷却パイプ112が配置されており、この冷却パイプ112は冷却ユニット134と連通している。コンデンサ130は、第二真空パイプ106を介して蒸発水回収タンク132に接続されている。   As shown in FIG. 1, in the manufacturing apparatus 100 of the present invention, a part of the first vacuum pipe 104 extending from the preparation tank 102 passes through the condenser 130 provided between the preparation tank 102 and the evaporated water recovery tank 132. pass. In the condenser 130, a cooling pipe 112 is disposed close to the first vacuum pipe 104, and the cooling pipe 112 communicates with the cooling unit 134. The capacitor 130 is connected to the evaporated water recovery tank 132 via the second vacuum pipe 106.

さらに図1に示すように、蒸発水回収タンク132は第三真空パイプ108を介して真空ポンプ110に接続されている。第三真空パイプ108は、蒸発水回収タンク132に対し、当該蒸発水回収タンク132内に貯留された蒸発水とは隔離された位置(例えば、蒸発水回収タンク132の上部)に設けられている。   Further, as shown in FIG. 1, the evaporating water recovery tank 132 is connected to the vacuum pump 110 via the third vacuum pipe 108. The third vacuum pipe 108 is provided at a position separated from the evaporated water recovery tank 132 from the evaporated water stored in the evaporated water recovery tank 132 (for example, an upper portion of the evaporated water recovery tank 132). .

ここで、仕込みタンク120の上蓋124を閉じて密閉し、かつ真空ポンプ100を稼動することにより、第三真空パイプ108を介して蒸発水回収タンク132内が真空状態となる。これに伴って、第二真空パイプ106、第一真空パイプ104および仕込みタンク102もまた真空状態となる。この状態において、仕込みタンク102の外周に設けられたジャケット126内に例えば、蒸気を導入することにより、当該蒸気の熱エネルギーが仕込みタンク102に熱伝導し、仕込みタンク102内の水分は低温であっても蒸発し得る。その後、蒸発した蒸気(蒸発水)は、通常気体(蒸気)の性状のまま第一真空パイプ104を通過するが、コンデンサ130に入ると、冷却ユニット134から冷却パイプ112を通じて循環する冷却媒体によって熱交換により急速に冷却され、液状化される。その結果、液状化した蒸発水は第二真空パイプ106を通り、蒸発水回収タンク132内に貯留される。   Here, the upper lid 124 of the preparation tank 120 is closed and sealed, and the vacuum pump 100 is operated, whereby the inside of the evaporated water recovery tank 132 is brought into a vacuum state via the third vacuum pipe 108. Along with this, the second vacuum pipe 106, the first vacuum pipe 104, and the charging tank 102 are also in a vacuum state. In this state, for example, when steam is introduced into a jacket 126 provided on the outer periphery of the charging tank 102, the thermal energy of the steam is thermally transferred to the charging tank 102, and the moisture in the charging tank 102 is low. Can evaporate. Thereafter, the evaporated vapor (evaporated water) normally passes through the first vacuum pipe 104 in the form of gas (vapor), but when entering the condenser 130, heat is generated by the cooling medium circulated from the cooling unit 134 through the cooling pipe 112. It is rapidly cooled and liquefied by exchange. As a result, the liquefied evaporated water passes through the second vacuum pipe 106 and is stored in the evaporated water recovery tank 132.

本発明において、上記冷却ユニット134および冷却パイプ112を通じて循環される冷却媒体は、好ましくは冷却水である。冷却水の設定温度は蒸発温度より5℃以上低く設定されており、例えば、20℃〜30℃に設定されている。冷却水の水量は処理量いわゆる蒸発量によって異なる。本発明の製造装置100は、仕込みタンク102内を極めて低温(例えば、30℃〜60℃)に保ったまま、その内部の魚類の全部または一部の部位120を真空乾燥することができる。その結果、材料となる魚類の全部または一部の部位120を構成するタンパク質等の変性や分解を抑制したまま、すなわち、水を除く魚類の全部または一部の部位120の成分を可能な限り保持したまま、養殖魚用飼料を製造することができる。   In the present invention, the cooling medium circulated through the cooling unit 134 and the cooling pipe 112 is preferably cooling water. The set temperature of the cooling water is set to be 5 ° C. or more lower than the evaporation temperature, for example, 20 ° C. to 30 ° C. The amount of cooling water varies depending on the amount of so-called evaporation. The manufacturing apparatus 100 of the present invention can vacuum dry all or part of the fish 120 inside the charging tank 102 while keeping the inside of the preparation tank 102 at an extremely low temperature (for example, 30 ° C. to 60 ° C.). As a result, while keeping the denaturation and decomposition of the protein constituting the whole or part of the part 120 of the fish as a material, that is, retaining all or part of the part of the part of the fish except the water as much as possible. The feed for cultured fish can be manufactured as it is.

本発明の養殖魚用飼料の製造装置は、比較的小規模の装置構成とすることができる。このため、例えば水産加工工場に付設して設置することができ、当該水産加工工場で生じた鮮魚加工残渣から、より鮮度が高く保持された状態のまま養殖魚用飼料を製造することもできる。   The apparatus for producing feed for cultured fish of the present invention can have a relatively small-scale apparatus configuration. For this reason, for example, it can be attached and installed in a fishery processing factory, and the feed for cultured fish can also be manufactured from the fresh fish processing residue produced in the said fishery processing factory, with the freshness maintained more highly.

(養殖魚の養殖方法)
本発明においては、上記養殖魚用飼料が養殖魚の水槽に適宜散布されることにより給餌が行われる。給餌間隔および給餌量等の給餌条件は、その養殖魚の種類、成育段階等によって変動するため、当業者が適宜設定することができる。その他の養殖条件(例えば水温、個体密度)もまた同様に、当業者によって適宜設定され得る。
(Culture method of cultured fish)
In the present invention, feeding is performed by appropriately spraying the cultured fish feed in the aquaculture fish tank. Feeding conditions such as feeding interval and feeding amount vary depending on the type of the cultured fish, the growth stage, etc., and thus can be appropriately set by those skilled in the art. Other aquaculture conditions (for example, water temperature, individual density) can also be appropriately set by those skilled in the art.

このようにして得られた養殖魚は、従来の配合飼料などの飼料を用いた場合と比較して、養殖魚の増体が観察されるとともに、水槽内での養殖魚同士の共食い等も回避される。その結果、養殖生産の生産を向上させることができる。   The cultured fish thus obtained is observed to increase the number of cultured fish compared to the case of using a conventional feed such as a mixed feed, and cannibalism between the cultured fish in the aquarium is also avoided. The As a result, aquaculture production can be improved.

以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited by these Examples.

(実施例1:ヒラメ由来のヒラメ用魚粉飼料の製造(1))
飼料の作製にあたり、飼料のエネルギー含量を同じにするため、粗タンパク質含量と粗脂質含量が同じになるように、まず表1に示す原料の組成を定めた。次いで、表1に示すヒラメ魚粉を主体とした各種原料を混合し、水を加えて造粒した。その後、送風乾燥機を用いて60℃にて3時間の乾燥を行うことにより、ヒラメ用魚粉飼料を得た。
(Example 1: Production of flounder fish meal feed derived from flounder (1))
In preparing the feed, in order to make the energy content of the feed the same, first, the composition of the raw materials shown in Table 1 was determined so that the crude protein content and the crude lipid content were the same. Next, various raw materials mainly composed of Japanese flounder fish meal shown in Table 1 were mixed and granulated by adding water. Then, the fish meal feed for Japanese flounder was obtained by drying at 60 degreeC for 3 hours using a ventilation dryer.

得られたヒラメ用魚粉飼料の粗タンパク質含量は、乾燥質量を基準として49.6質量%であり、粗脂質含量は乾燥質量を基準として15.7質量%であった。一般成分は水分が約5質量%であり、残量は灰分であった。   The crude protein content of the obtained flounder fish meal feed was 49.6% by mass based on the dry mass, and the crude lipid content was 15.7% by mass based on the dry mass. The general component had a water content of about 5% by mass and the remaining amount was ash.

Figure 2014193158
Figure 2014193158

(比較例1:一般魚粉由来のヒラメ用魚粉飼料の製造(2))
ヒラメ魚粉の代わりに一般魚粉を主体として使用し、かつその他についても表1に示す原料の含量を採用したこと以外は、実施例1と同様にして、ヒラメ用魚粉飼料を得た。
(Comparative Example 1: Production of fish meal feed for flounder derived from general fish meal (2))
A flatfish fish meal feed was obtained in the same manner as in Example 1 except that general fish meal was mainly used instead of flounder fish meal and the contents of the raw materials shown in Table 1 were adopted for the others.

得られたヒラメ用魚粉飼料の粗タンパク質含量は、実施例1と同様に、乾燥質量を基準として49.6質量%であり、粗脂質含量は乾燥質量を基準として15.6質量%であった。一般成分は水分が約5質量%であり、残量は灰分であった。   The crude protein content of the obtained flounder fish meal feed was 49.6% by mass, based on the dry mass, and the crude lipid content was 15.6% by mass, based on the dry mass, as in Example 1. . The general component had a water content of about 5% by mass and the remaining amount was ash.

(実施例2および比較例2:ヒラメ稚魚に対する配合飼料の効果(1))
ヒラメ稚魚を用意し、馴致飼育開始時には試験区として33尾、および対照区として32尾を収容した。
(Example 2 and Comparative Example 2: Effect of Formula Feed on Flounder Fry (1))
Flounder flounder was prepared, and 33 fish were housed as a test group and 32 fishes as a control group at the start of familiar breeding.

最初の10日間を馴致飼育期間に設定し、1日につき1回、午前9:30〜10:00の給餌スケジュールにて、試験区の稚魚には実施例1で製造したヒラメ用魚粉飼料を給餌し(実施例2)、対照区の稚魚には比較例1で製造したヒラメ用魚粉飼料を給餌した(比較例2)。なお、各給餌にあたり、蛋白含量、エネルギー量は試験区および対象区とも同じとなるように揃えた。馴致飼育期間の終了後、実験開始日には試験区および対照区の収容尾数をそれぞれ25尾に調整した。   The first 10 days are set as the acclimatized breeding period, and once a day, the fry fish in the test area is fed the flounder fish meal feed produced in Example 1 with a feeding schedule of 9:30 to 10:00 am (Example 2), fry fish in the control ward was fed the flounder fish meal feed produced in Comparative Example 1 (Comparative Example 2). In each feeding, the protein content and the energy amount were adjusted to be the same in the test group and the target group. After the habituation breeding period, the number of accommodated fish in the test group and the control group was adjusted to 25 on the starting day of the experiment.

実験開始日以降も上記と同様の給餌スケジュールを維持した。実験開始後の10日日経過(11日目)の段階で、稚魚の全長と体重の全数計測を行い、体成分分析用標本10個体を採取し、冷凍保存した。   The same feeding schedule as above was maintained after the experiment start date. At the stage of 10 days after the start of the experiment (11th day), the total length and total body weight of the fry were measured, and 10 specimens for body component analysis were collected and stored frozen.

上記馴致飼育期間の後(11日目)より正規の飼育期間(1日目)とした。まず1日目〜20日目(馴致飼育開始から、11日目〜30日目に対応)も上記と同様の給餌スケジュールにて試験区および対照区の稚魚に実施例1または比較例1で製造した飼料をそれぞれ給餌した。この実験開始後の20日経過(馴致飼育開始から31日目)の段階で、上記と同様にして、稚魚の全長と体重の全数計測を行い、体成分分析用標本10個体を採取し、冷凍保存した。   The regular breeding period (1st day) was started after the above familiar breeding period (11th day). First of all, the first day to the 20th day (corresponding to the 11th day to the 30th day from the start of the habituation breeding) are prepared in Example 1 or Comparative Example 1 for the test and control fry in the same feeding schedule as above. Each feed was fed. At the stage of 20 days after the start of this experiment (31st day from the start of habituation breeding), the total length and the total body weight of the fry were measured in the same manner as described above, and 10 body component analysis specimens were collected and frozen. saved.

さらに21日目〜40日目(馴致飼育開始から、31日目〜50日目に対応)も上記と同様の給餌スケジュールにて試験区および対照区の稚魚に実施例1または比較例1で製造した飼料をそれぞれ給餌した。この実験開始後の40日経過(馴致飼育開始から51日目)の段階で、上記と同様にして、稚魚の全長と体重の全数計測を行い、体成分分析用標本10個体を採取し、冷凍保存した。   Further, on the 21st to 40th days (corresponding to the 31st to 50th days from the start of the habituation breeding), it was produced in Example 1 or Comparative Example 1 for the test and control larvae according to the same feeding schedule as above. Each feed was fed. At the stage of 40 days after the start of this experiment (the 51st day from the start of familiar breeding), the total length and the total body weight of the fry are measured in the same manner as described above, and 10 body component analysis specimens are collected and frozen. saved.

上記1日目〜20日目および21日目〜40日目のそれぞれの日間摂餌率、日間増重率および飼料転換効率を以下の式より算出した:
日間摂餌率 f = F / { t ( W0 + Wt ) / 2 }
日間増重率 r = ( Wt − W0 ) / { t ( W0 + Wt ) / 2 }
飼料転換効率 FCR = f / r
(ここで、Fは総摂餌量であり、W0は飼育試験開始時の総重量であり、tは飼育期間(日数)であり、そしてWは飼育試験終了時の総重量である)。得られた結果を図2〜4に示す。
The daily feeding rate, the daily weight gain rate, and the feed conversion efficiency of the first day to the 20th day and the 21st day to the 40th day were calculated from the following formulas:
Daily feeding rate f = F / {t (W 0 + W t ) / 2}
Daily weight gain r = (W t − W 0 ) / {t (W 0 + W t ) / 2}
Feed conversion efficiency FCR = f / r
(Where F is the total food intake, W 0 is the total weight at the start of the rearing test, t is the rearing period (days), and W t is the total weight at the end of the rearing test) . The obtained results are shown in FIGS.

図2の(A)および(B)に示されるように、1日目〜20日目の日間摂餌率および21日目〜40日目の日間摂餌率はいずれも、比較例1の飼料を与えた稚魚(比較例2)と比較して実施例1の飼料を与えた稚魚(実施例2)の方がわずかに低下しているものの、実質的に有意な差異は生じていないことがわかる。むしろ、この差異は、先に行った馴致を考慮すると、ヒラメ稚魚の嗜好性の差異であると考えられる。   As shown in (A) and (B) of FIG. 2, both the daily feeding rate from day 1 to day 20 and the daily feeding rate from day 21 to day 40 are the feed of Comparative Example 1. The fry (Example 2) fed the feed of Example 1 was slightly lower compared to the fry fed (Comparative Example 2), but there was no substantial difference. Recognize. Rather, this difference is considered to be a difference in palatability of Japanese flounder larvae, considering the previous adaptation.

図3の(A)に示されるように、1日目〜20日目の日間増重率は、実施例1の飼料を与えた稚魚と比較例1の飼料を与えた稚魚との間で大差は見られなかった。これに対し、21日目〜40日目の日間増重率は、実施例1の飼料を与えた稚魚が比較例1の飼料を与えた稚魚の約1.6倍となり大きく上回っていることがわかる(図3の(B))。その結果、図2に示される摂餌率では比較例1の飼料を与えた稚魚の方が高い値を示していたことと合わせて、摂餌率に大きな差異が生じていなくても、実施例1の飼料を長く用いることにより、稚魚の体重増加は著しく向上することがわかる。   As shown in (A) of FIG. 3, the daily weight increase rate from the first day to the twentieth day is greatly different between the fry fed with the feed of Example 1 and the fry fed with the feed of Comparative Example 1. Was not seen. On the other hand, the daily weight increase rate from the 21st day to the 40th day is about 1.6 times that of the fry fed with the feed of Example 1 and greatly surpassing that of the fry fed with the feed of Comparative Example 1. I understand ((B) of FIG. 3). As a result, in addition to the fact that the fry fed with the feed of Comparative Example 1 showed a higher value in the feeding rate shown in FIG. It can be seen that the weight gain of fry is significantly improved by using 1 feed for a long time.

図4の(A)に示されるように、1日目〜20日目の飼料転換効率が実施例1の飼料を与えた稚魚よりも比較例1の飼料を与えた稚魚の方が高い値を示していた。これに対し、21日目〜40日目の飼料変換効率においては、実施例1の飼料を与えた稚魚の結果が比較例1の飼料を与えた稚魚の結果を約2.3倍にまで上回る結果となった(図4の(B))。このことにより、実施例1で得られた飼料は、ヒラメ稚魚の飼育において極めて高い飼料変換効率を奏するものであることがわかる。   As shown in FIG. 4 (A), the feed conversion efficiency on the first day to the 20th day is higher in the fry fed with the feed of Comparative Example 1 than the fry fed with the feed of Example 1. Was showing. On the other hand, in the feed conversion efficiency on the 21st to 40th days, the result of the fry fed with the feed of Example 1 exceeds the result of the fry fed with the feed of Comparative Example 1 by about 2.3 times. Results were obtained ((B) of FIG. 4). This shows that the feed obtained in Example 1 exhibits extremely high feed conversion efficiency in the breeding of Japanese flounder fry.

(実施例3:ヒラメ由来のヒラメ用魚粉飼料の製造(2))
後述する市販配合飼料「ラブ・ラァバ」(林兼産業株式会社製)との対比を行うため、林兼産業株式会社に委託して同配合飼料に使用する魚粉の代わりにヒラメ魚粉を用いたこと以外は、市販配合飼料「ラブ・ラァバ」と同様の原料成分にて、ヒラメ用魚粉配合飼料を得た。
(Example 3: Production of flounder fish meal feed derived from flounder (2))
To contrast with the commercially available mixed feed “Love Lava” (manufactured by Hayashi and Sangyo Co., Ltd.) described later, except that flounder fish meal was used instead of the fish meal used for the mixed feed by entrusting to Hayashi Kane Sangyo Co., Ltd. A flounder fish meal blended feed was obtained using the same raw material components as the commercially available blended feed "Love Lava".

(実施例4および比較例3:ヒラメ稚魚に対する配合飼料の効果(2))
ヒラメ受精卵を有限会社まる阿水産から入手し、これを3つのポリエチレン製黒色円形水槽(1m)に、ふ化仔魚がそれぞれ20,000尾となるように収容した。ふ化した日を0日齢に設定し、以後1日毎に日齢を加齢した。
(Example 4 and Comparative Example 3: Effect of Formula Feed on Flounder Fry (2))
Flounder fertilized eggs were obtained from Maru Asui Co., Ltd., and stored in three polyethylene black circular tanks (1 m 3 ) so that the number of hatched larvae was 20,000 each. The day of hatching was set to 0 days of age, and thereafter the ages were aged every day.

デサンクロレラ(Daesang Corporation製)を餌料として連続培養したミオミズツボワムシ(ワムシ、L型小浜株)を、INVE社製Seleo−S-Pressoを用いて栄養強化し、これを0日齢〜12日齢までふ化したヒラメ種苗に給餌した。14日齢からは、S−Presso(INVE社製)で栄養強化したアルテミアノープリウス(アルテミア)を併用給餌した。   The worm rotifer (Rotifer, L-type Obama strain) continuously cultured using desan chlorella (Daesang Corporation) as a feed is fortified with INVE's Seleo-S-Presso, which is 0 to 12 days old. Feeding flounder seedlings hatched until age. From the age of 14 days, Artemia nauplii (Artemia) fortified with S-Presso (INVE) was fed together.

水槽の中のヒラメ種苗の平均全長が11mmに達したとき(25日齢)から100日齢まで、上記ワムシおよびアルテミアの給餌に代えて、1つの水槽には実施例3で製造したヒラメ用魚粉配合飼料を給餌(実施例)し、他方の水槽には、市販配合飼料「ラブ・ラァバ」(林兼産業株式会社製)を給餌した。各配合飼料の給餌は、全期間を通じ、午前7時から午後6時まで1時間毎に1回行った。   From the time when the average length of the flounder seeds in the aquarium reached 11 mm (25 days old) to 100 days of age, instead of feeding the above rotifer and artemia, one aquarium fish powder for flounder produced in Example 3 was used. The blended feed was fed (Example), and the other aquarium was fed with a commercial blended feed “Love Lava” (manufactured by Hayashi and Sangyo Co., Ltd.). Feeding of each mixed feed was performed once every hour from 7 am to 6 pm throughout the entire period.

ヒラメ種苗の平均全長が15mmとなるまでの平均日齢の差をヒラメ魚粉区(実施例4)とラブ・ラァバ区(比較例3)のそれぞれについて、図5に示す。   The difference in average age until the average length of the flounder seedlings reaches 15 mm is shown in FIG. 5 for each of the flounder fish meal group (Example 4) and the Lav Lava group (Comparative Example 3).

図5に示すように、実施例3で得られたヒラメ用魚粉配合飼料を給餌したヒラメ魚粉区(実施例4)の平均全長15mm到達時の平均日齢は、ラブ・ラァバ区(比較例3)の平均日齢と比較して短縮されており、より短期間でヒラメ種苗が成長していたことがわかる。   As shown in FIG. 5, the average age of the flounder fish meal group (Example 4) fed with the flounder fish meal blended feed obtained in Example 3 when reaching an average total length of 15 mm is the Lav Lava District (Comparative Example 3). It is shortened compared with the average age of), and it can be seen that flounder seedlings grew in a shorter period of time.

上記ヒラメ種苗の平均全長が15mmとなった段階で、20尾のヒラメ種苗を黒色円形水槽から取り上げ、ストレス耐性を測定した。具体的には、取り上げたヒラメ種苗を飼育水槽から金魚手網を用いて無作為に1群あたり20尾ずつすくい取り、空気中に、各群について3分間、6分間、または9分間露出して、干出耐性試験を行った。その後、各群のヒラメ種苗毎に、ウォーターバスを用いて飼育水槽と同様の水温に調整した1Lのガラスビーカーに収容した。死亡時間を計測しながら死亡魚を取り除き、24時間後の生存個体数を計数した。24時間後の生存尾数の試験に用いた20尾に対する百分率を算出した。当該百分率をストレス耐性の指標として用いた。   At the stage where the average total length of the flounder seeds was 15 mm, 20 flounder seeds were picked up from the black circular aquarium, and the stress resistance was measured. Specifically, the pickled flounder seeds were randomly scooped from the rearing tank using a goldfish net, 20 fish per group, and exposed to the air for 3 minutes, 6 minutes, or 9 minutes for each group. A dry resistance test was conducted. Then, each flatfish seedling of each group was housed in a 1 L glass beaker adjusted to the same water temperature as that of the breeding water tank using a water bath. The dead fish was removed while measuring the death time, and the number of surviving animals after 24 hours was counted. The percentage of the 20 fish used in the test for the number of surviving fish after 24 hours was calculated. The percentage was used as an index of stress tolerance.

図6に示すように、ヒラメ魚粉区(実施例4)とラブ・ラァバ区(比較例3)との間の3分間および9分間の干出耐性には大差は特に見出せなかったものの、6分間の干出耐性についてはヒラメ魚粉区(実施例4)の方が生存率が高かった。このことから、実施例3で製造したヒラメ魚粉配合飼料は、給餌するヒラメ種苗のストレス耐性を向上させることがわかる。   As shown in FIG. 6, although no significant difference was found in the resistance to drying for 3 minutes and 9 minutes between the flounder fish meal group (Example 4) and the Lav Lava group (Comparative Example 3), it was 6 minutes. As for the resistance to drying, the survival rate was higher in the flounder fish meal section (Example 4). From this, it can be seen that the flounder fish meal mixed feed produced in Example 3 improves the stress tolerance of the flounder seedlings to be fed.

次いで、上記平均全長が15mmとなったヒラメ魚粉区およびラブ・ラァバ区のそれぞれのヒラメ種苗を、屋外に設置された2つの300Lダイライト水槽にそれぞれ800尾ずつ収容して上記飼育を100日齢まで継続した。40日齢〜100日齢までの間に定期的に20尾のヒラメ種苗を取り出して全長を測定し、平均全長を算出した。得られた結果を図7に示す。   Next, each of the flounder seedlings of the flounder fish meal and the love lava ward having an average total length of 15 mm was housed in two 300 L dilite tanks installed outdoors, and the breeding was continued until the age of 100 days. Continued. Twenty flatfish seedlings were periodically taken out from 40 days to 100 days of age, the total length was measured, and the average total length was calculated. The obtained results are shown in FIG.

図7に示すように、取り出したすべての日齢において、ヒラメ魚粉区(実施例4)の平均全長がラブ・ラァバ区(比較例3)の平均全長を上回り、実施例3で得られたヒラメ用魚粉配合飼料は、市販配合飼料よりもヒラメ種苗の成長を早める効果を有していたことがわかる。   As shown in FIG. 7, the average total length of the flounder fish meal (Example 4) exceeds the average total length of the Lav Lava (Comparative Example 3), and the flounder obtained in Example 3 at all the ages taken out. It can be seen that the fish meal blended feed has an effect of accelerating the growth of Japanese flounder seedlings than the commercially available blended feed.

100日齢の段階で、各ダイライト水槽中のヒラメ魚粉区(実施例4)とラブ・ラァバ区(比較例3)とのヒラメ種苗の生存尾数をカウントし、ダイライト水槽に収容したヒラメ種苗の尾数に対する生残率(%)を算出した。得られた結果を図8に示す。   At the age of 100 days, the number of surviving flounder seedlings in the flounder fish meal area (Example 4) and the Lav Lava area (Comparative Example 3) in each dilite tank was counted, and the number of flounder seeds contained in the dilite tank was counted. The survival rate (%) relative to was calculated. The obtained result is shown in FIG.

図8に示すように、100日齢到達時のヒラメ種苗の生残率(%)は、ヒラメ魚粉区(実施例4)とラブ・ラァバ区(比較例3)との間で大差が見出せなかったことがわかる。   As shown in FIG. 8, the survival rate (%) of Japanese flounder seedlings when reaching the age of 100 days was not found to be large between the Japanese flounder fish meal (Example 4) and the Lav Lava (Comparative Example 3). I understand that.

本発明によれば、骨形成の異常や病気の発生がなく、種苗、稚魚および成魚の各個体の生育を早め、かつ成育する個体自体のサイズを著しく向上させることができる。本発明の養殖魚用飼料は比較的小規模の装置を通じて製造することができるので、例えば水産加工工場に付設して設置することができ、当該水産加工工場で生じた鮮魚加工残渣から、より鮮度が高く保持された状態のまま養殖魚用飼料を製造することもできる。これにより、水産加工工場から鮮魚加工残渣を有効利用することができ、同工場から排出される産業廃棄物の量を低減することができる。また、養殖魚用飼料の製造の観点から見れば、各製造現場(水産加工工場等)で鮮魚加工残渣よりも量が低減されるので、輸送コストの低減が可能となり、最終的に養殖魚用飼料自体の製造コストも低減することが可能となる。   According to the present invention, there is no abnormality in bone formation or occurrence of disease, the growth of seedlings, juveniles and adults can be accelerated, and the size of the growing individuals themselves can be remarkably improved. Since the feed for cultured fish of the present invention can be produced through a relatively small-scale apparatus, it can be installed and installed in a fishery processing factory, for example. However, it is also possible to produce feed for cultured fish while maintaining a high level. Thereby, the fresh fish processing residue can be effectively used from the fish processing factory, and the amount of industrial waste discharged from the factory can be reduced. In addition, from the viewpoint of production of feed for cultured fish, the amount can be reduced from the fresh fish processing residue at each production site (fishery processing factory, etc.), so that the transportation cost can be reduced, and finally for cultured fish. The production cost of the feed itself can also be reduced.

100 養殖魚用飼料の製造装置
102 仕込みタンク
104 第一真空パイプ
106 第二真空パイプ
108 第三真空パイプ
110 真空ポンプ
112 冷却水パイプ
124 上蓋
126 ジャケット
128 攪拌翼
130 コンデンサ
132 蒸発水回収タンク
134 冷却ユニット
DESCRIPTION OF SYMBOLS 100 Production apparatus for cultured fish feed 102 Charging tank 104 First vacuum pipe 106 Second vacuum pipe 108 Third vacuum pipe 110 Vacuum pump 112 Cooling water pipe 124 Upper lid 126 Jacket 128 Stirring blade 130 Capacitor 132 Evaporating water recovery tank 134 Cooling unit

Claims (16)

養殖魚用飼料であって、該養殖魚と同じ属に属する魚類由来の材料を含有する、飼料。   A feed for cultured fish, comprising a fish-derived material belonging to the same genus as the cultured fish. 前記養殖魚と同じ属に属する魚類由来の材料が、該魚類の真空乾燥粉末体である、請求項1に記載の養殖魚用飼料。   The feed for cultured fish according to claim 1, wherein the fish-derived material belonging to the same genus as the cultured fish is a vacuum-dried powder of the fish. 前記養殖魚と同じ属に属する魚類由来の材料が、全体質量に対し、5質量%〜100質量%の割合で含有されている、請求項1または2に記載の養殖魚用飼料。   The feed for cultured fish according to claim 1 or 2, wherein a material derived from fish belonging to the same genus as the cultured fish is contained at a ratio of 5% by mass to 100% by mass with respect to the total mass. 前記養殖魚と同じ属に属する魚類由来の材料が鮮魚加工残渣から得られたものである、請求項1から3のいずれかに記載の養殖魚用飼料。   The feed for cultured fish according to any one of claims 1 to 3, wherein a material derived from fish belonging to the same genus as the cultured fish is obtained from a fresh fish processing residue. 前記養殖魚と同じ属に属する魚類由来の材料が、該養殖魚と同じ種に属する魚類由来の材料である、請求項1から4のいずれかに記載の養殖魚用飼料。   The feed for cultured fish according to any one of claims 1 to 4, wherein the material derived from fish belonging to the same genus as the cultured fish is a material derived from fish belonging to the same species as the cultured fish. 養殖魚用飼料の製造方法であって、該養殖魚と同じ属に属する魚類の全部または一部の部位を真空または減圧下で乾燥して魚類粉末体を得る工程を包含する、方法。   A method for producing a feed for cultured fish, comprising a step of drying all or part of a fish belonging to the same genus as the cultured fish under vacuum or reduced pressure to obtain a fish powder. 前記真空乾燥工程における前記魚類粉末体の水分含量が、該魚類粉末体の質量を基準にして0.5質量%〜10質量%である、請求項6に記載の方法。   The method according to claim 6, wherein the water content of the fish powder body in the vacuum drying step is 0.5 mass% to 10 mass% based on the mass of the fish powder body. 前記養殖魚と同じ属に属する魚類の全部または一部の部位が鮮魚加工残渣である、請求項6または7に記載の方法。   The method according to claim 6 or 7, wherein all or part of fish belonging to the same genus as the cultured fish is a fresh fish processing residue. 前記養殖魚と同じ属に属する魚類が、該養殖魚と同じ種に属する魚類である、請求項6から8のいずれかに記載の方法。   The method according to any one of claims 6 to 8, wherein the fish belonging to the same genus as the cultured fish is a fish belonging to the same species as the cultured fish. 養殖魚用飼料を製造するための装置であって、
該養殖魚と同じ属に属する魚類の全部または一部の部位を収容する密閉可能な仕込みタンクと、
該タンクの上部にて真空パイプを介して連通する真空ポンプと、を備える、装置。
An apparatus for producing aquaculture fish feed,
A sealable preparation tank that accommodates all or part of fish belonging to the same genus as the cultured fish;
A vacuum pump communicating with the upper part of the tank via a vacuum pipe.
前記真空パイプにおいて、前記仕込みタンクと前記真空ポンプとの間にコンデンサと蒸発水回収タンクとが設けられており、該仕込みタンクから延びる第一真空パイプが該コンデンサと連通し、かつ該コンデンサから延びる第二真空パイプが該蒸発水回収タンクと連通し、そして該蒸発水回収タンクの上部に取り付けられておりかつ該蒸発水回収タンクから延びる第三真空パイプが該真空ポンプに連通し、そして該真空ポンプの稼働により、該仕込みタンク内の前記魚類から生成した蒸発水を該第一真空パイプ、該コンデンサおよび該第二真空パイプを介して、該蒸発水回収タンクに貯留させる、請求項10に記載の装置。   In the vacuum pipe, a condenser and an evaporating water recovery tank are provided between the charging tank and the vacuum pump, and a first vacuum pipe extending from the charging tank communicates with and extends from the capacitor. A second vacuum pipe communicates with the evaporative water recovery tank, and a third vacuum pipe attached to the top of the evaporative water recovery tank and extending from the evaporative water recovery tank communicates with the vacuum pump, and the vacuum The evaporated water generated from the fish in the charging tank is stored in the evaporated water recovery tank through the first vacuum pipe, the condenser, and the second vacuum pipe by operating a pump. Equipment. 前記第一真空パイプの一部が、前記仕込みタンクと前記蒸発水回収タンクとの間に設けられた前記コンデンサ内を通過し、該コンデンサ内の前記第一真空パイプを通過する前記蒸発水が、該第一真空パイプに接触して配置された冷却水パイプとの熱交換によって液状化される、請求項11に記載の装置。   A part of the first vacuum pipe passes through the condenser provided between the charging tank and the evaporated water recovery tank, and the evaporated water passing through the first vacuum pipe in the condenser is, The apparatus according to claim 11, wherein the apparatus is liquefied by heat exchange with a cooling water pipe disposed in contact with the first vacuum pipe. 前記仕込みタンク内で前記魚類からの前記蒸発水の生成が30℃から60℃の温度で行われる、請求項12に記載の装置。   The apparatus according to claim 12, wherein the generation of the evaporating water from the fish is performed at a temperature of 30 ° C. to 60 ° C. in the charging tank. 前記養殖魚と同じ属に属する魚類が、該養殖魚と同じ種に属する魚類である、請求項10から13のいずれかに記載の装置。   The apparatus according to any one of claims 10 to 13, wherein the fish belonging to the same genus as the cultured fish is a fish belonging to the same species as the cultured fish. 養殖魚の養殖方法であって、該養殖魚と同じ属に属する魚類から得た請求項1から5のいずれかに記載の養殖魚用飼料を、該養殖魚に給餌する工程、を包含する、方法。   A method for culturing cultured fish, the method comprising feeding the cultured fish with the feed for cultured fish according to any one of claims 1 to 5 obtained from fish belonging to the same genus as the cultured fish. . 前記養殖魚と同じ属に属する魚類が、該養殖魚と同じ種に属する魚類である、請求項15に記載の方法。   The method according to claim 15, wherein the fish belonging to the same genus as the cultured fish is a fish belonging to the same species as the cultured fish.
JP2014040768A 2013-03-01 2014-03-03 Feed for farmed fish and manufacturing method of the same, and producing apparatus of feed for farmed fish Pending JP2014193158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014040768A JP2014193158A (en) 2013-03-01 2014-03-03 Feed for farmed fish and manufacturing method of the same, and producing apparatus of feed for farmed fish

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013040348 2013-03-01
JP2013040348 2013-03-01
JP2014040768A JP2014193158A (en) 2013-03-01 2014-03-03 Feed for farmed fish and manufacturing method of the same, and producing apparatus of feed for farmed fish

Publications (1)

Publication Number Publication Date
JP2014193158A true JP2014193158A (en) 2014-10-09

Family

ID=51838956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014040768A Pending JP2014193158A (en) 2013-03-01 2014-03-03 Feed for farmed fish and manufacturing method of the same, and producing apparatus of feed for farmed fish

Country Status (1)

Country Link
JP (1) JP2014193158A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017029070A (en) * 2015-07-31 2017-02-09 学校法人北里研究所 Production method of salmon growth hormone-containing feed, salmon growth hormone-containing feed obtained by production method, and salmon growth hormone-containing liquid
JP2018007654A (en) * 2016-06-30 2018-01-18 株式会社F・E・C Method for acquiring organism derived-liquid
WO2018134968A1 (en) * 2017-01-20 2018-07-26 三陸飼料株式会社 Method for manufacturing feed containing salmon growth hormone, feed containing salmon growth hormone, and liquid containing salmon growth hormone
CN115500428A (en) * 2022-09-24 2022-12-23 山东大学 Low-temperature production method of white fish meal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51107996A (en) * 1975-03-13 1976-09-24 Otake Shigeo
JPS5754559A (en) * 1980-09-17 1982-04-01 Setsuo Iwatsuki Dehydrating and drying treating method of waste fish
WO2000049888A1 (en) * 1999-02-23 2000-08-31 Seagrain As Process for the production of a nutritional composition
JP2004016191A (en) * 2002-06-20 2004-01-22 Otaka Kensetsu Kk Feed

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51107996A (en) * 1975-03-13 1976-09-24 Otake Shigeo
JPS5754559A (en) * 1980-09-17 1982-04-01 Setsuo Iwatsuki Dehydrating and drying treating method of waste fish
WO2000049888A1 (en) * 1999-02-23 2000-08-31 Seagrain As Process for the production of a nutritional composition
JP2004016191A (en) * 2002-06-20 2004-01-22 Otaka Kensetsu Kk Feed

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017029070A (en) * 2015-07-31 2017-02-09 学校法人北里研究所 Production method of salmon growth hormone-containing feed, salmon growth hormone-containing feed obtained by production method, and salmon growth hormone-containing liquid
JP2018007654A (en) * 2016-06-30 2018-01-18 株式会社F・E・C Method for acquiring organism derived-liquid
JP7054084B2 (en) 2016-06-30 2022-04-13 株式会社F・E・C Biological liquid acquisition method
WO2018134968A1 (en) * 2017-01-20 2018-07-26 三陸飼料株式会社 Method for manufacturing feed containing salmon growth hormone, feed containing salmon growth hormone, and liquid containing salmon growth hormone
CN115500428A (en) * 2022-09-24 2022-12-23 山东大学 Low-temperature production method of white fish meal

Similar Documents

Publication Publication Date Title
Mohan et al. Use of black soldier fly (Hermetia illucens L.) larvae meal in aquafeeds for a sustainable aquaculture industry: A review of past and future needs
Hodar et al. Fish meal and fish oil replacement for aqua feed formulation by using alternative sources: a review.
Barragan-Fonseca et al. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed–a review
Ssepuuya et al. Use of insects for fish and poultry compound feed in sub-Saharan Africa–a systematic review
Makkar et al. State-of-the-art on use of insects as animal feed
JP5759895B2 (en) Fish feed
Riddick Insect protein as a partial replacement for fishmeal in the diets of juvenile fish and crustaceans
JP2014193158A (en) Feed for farmed fish and manufacturing method of the same, and producing apparatus of feed for farmed fish
Odjo et al. Organic waste management for the Maggots production used as source of protein in animal feed: A review
Sverguzova et al. Use of fly larvae Hermetia illucens in poultry feeding: a review paper
KR102296970B1 (en) Composition comprising slaughter waste for feed of insect, or, livestock, fish, shellfish and pet feed composition comprising the insect breeded thereby
Jafari et al. Effects of different diets on growth, survival and body composition of Rutilus frisii kutum larvae
Kiessling Feed—The key to sustainable fish farming
Tan Application of dried shrimp head in the diets of sea cucumber Holothuria scabra
KR20220090804A (en) Feedstuffs Using Black Soldier Fly and Method of Manufacturing The Same
JP5594603B2 (en) Formula feed for tuna fry
Nadtochii et al. Investigation of fly larvae Lucilia caesar application in pet feed composition
GB2588595A (en) Insect-based feed
Malla et al. Prospects of insects as alternative protein source: broiler chicken and growing pigs
JP6618109B2 (en) Feed for larvae containing raw shirasu and method for producing the same
Bjone et al. Which insect species and why?
Belsare et al. Feeding ration and frequency influences growth, feed utilization and body composition of goldfish (Carassius auratus)
Omoyinmi et al. A Review of the Efficiency of Alternative Feed Sources for Cultured Catfish Species in Nigeria
Jonsson Evaluation of the feeding methods of alligators kept under farm conditions (A review)
Abasubong Housefly Maggot Meal: A Review on Sustainable Protein Source for Feed ingredient in Aquaculture Production: Status and Trends

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181016