JP2014192970A - 位相判別方式電力制御システム - Google Patents

位相判別方式電力制御システム Download PDF

Info

Publication number
JP2014192970A
JP2014192970A JP2013064781A JP2013064781A JP2014192970A JP 2014192970 A JP2014192970 A JP 2014192970A JP 2013064781 A JP2013064781 A JP 2013064781A JP 2013064781 A JP2013064781 A JP 2013064781A JP 2014192970 A JP2014192970 A JP 2014192970A
Authority
JP
Japan
Prior art keywords
power
signal
generated
control system
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013064781A
Other languages
English (en)
Inventor
Ryota Nakamura
亮太 中村
Akiyoshi Tominaga
哲欣 富永
Kazuhiro Matsuda
和浩 松田
Masahito Maruyama
雅人 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013064781A priority Critical patent/JP2014192970A/ja
Publication of JP2014192970A publication Critical patent/JP2014192970A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

【課題】電力のルーティングにより、環境付加価値のついた電力を供給するための、位相判別方式電力制御システムを提供する。
【解決手段】本発明は、複数電源の電力が混合された第1の電力を送電する送電部と、該第1の電力を受電する受電部と、を備えた位相判別方式電力制御システムであって、前記送電部は、第1の電力信号に基づいて基準信号を生成し、該生成された基準信号に基づいて、第1の電力信号以外の電力信号を第1の電力信号と同期させ、ユーザーによって定められた割合に従って同期信号を生成し、該生成した同期信号に基づいて前記複数の電源の電力を前記割合ごとに振り分け、該振り分けした電力を足し合わせ前記第1の電力を生成する入力制御部を備え、前記受電部は、前記生成した同期信号に基づいて前記第1の電力の波形を前記割合ごとに各々分離して、前記各々分離した第1の電力の波形を各々交流波形に変換するコンバータを備えた。
【選択図】図2

Description

本発明は、位相判別方式電力制御システムに関し、より詳細には、エネルギーネットワークにおける、位相判別方式電力制御システムに関する。
近年、環境問題に関して高い関心が寄せられる中、発電時におけるCO2の排出量がゼロのグリーン電力の需要が高まっている。グリーン電力とは太陽光、風力およびバイオマスなどの再生可能エネルギーで作った電力のことをいう。現在では、「グリーン電力証書システム」といった、「グリーン電力証書」の購入によりグリーン電力を使用しているとみなされる制度がある。
「グリーン電力証書システム」とは、再生可能エネルギーにより発電された電気の環境付加価値を、証書発行する事業者が第三者機関(グリーンエネルギー認証センター)の認証を得て、「グリーン電力証書」という形で、企業・自治体などと取引する仕組みである。「グリーン電力証書」を購入する企業・自治体などが支払う費用は、証書発行する事業者を通じてグリーン電力を発電する発電設備の維持・拡大などに利用される。
「グリーン電力証書」を購入する企業・自治体などは、「グリーン電力証書」の取得により、発電設備を持たなくても、証書に記載された電力量(kWh)相当分のグリーンエネルギーの普及に貢献し、グリーン電力を利用したとみなされるため、地球温暖化防止につながる仕組みとして関心が高まっている。
しかし、企業・自治体が、「グリーン電力証書」を購入しても、直接的に自然エネルギーで作られた電気を使用しているわけではない。「グリーン電力証書」の購入により環境付加価値を得られるが、「グリーン電力証書」の購入者がCO2の排出を伴う発電による電力を使用していた場合は、地球温暖化などの環境問題の解決に直結しない。
2010年には大手電機メーカーと大手電力会社が共同出資し、グリーン電力を送電する新会社を立ち上げようとした経緯があることからも伺えるように、世間ではグリーン電力証書の購入ではなく、実際にCO2の排出量がゼロの電力が求められている。
一方、一般にはユーザーは、グリーン電力とグリーン電力以外のどちらかを選択して購入することができず、電力会社から購入する電力は、様々な方法で発電された電力が混ざった電力である。
電力会社から購入する、様々なエネルギー資源を用いた発電には「安定性」「環境性」「経済性」の側面で様々な特長がある。例えば、火力発電なら発電の調整がし易いため「安定性」に長所がある一方、燃料を燃やすことによりCO2を排出するので「環境性」に短所がある。水力発電は、CO2を排出しない分「環境性」が良いともいえるが、ダム建設のために莫大な費用がかかり、「経済性」に欠点があるといえる。原子力発電は、少ない燃料に対して多量の電力が発電可能で「経済性」が高いといえる一方、徹底した放射能汚染の対策が必要という「環境性」に欠点があるといえる。グリーン電力の発電は、発電の際のCO2の排出量がゼロなので「環境性」に利点がある。
そこで現在の電力は、発電における「安定性」「環境性」「経済性」を最も効率的に達成するよう、原子力発電の電力をベースに火力発電の電力や水力発電の電力、そしてグリーン電力がバランスよく組み合わされている。各種発電などをバランスよく組み合わせることは、電力のベストミックスと呼ばれている。
CO2を排出する発電による電力に代えてグリーン電力を使用することは、地球温暖化などの環境問題の解決につながり、グリーン電力の提供は、環境付加価値のついた電力提供である。そこで、現在の混ざった電力からグリーン電力を取り出し提供することは、環境付加価値のついた電力提供サービスとなる。
井上淳著、「パケット電力取引に基づく革新的配電システムの提案」、平成21年度 電力技術・電力系統技術合同研究会
しかし、ユーザーが電力会社から購入する電力は、グリーン電力を含む、様々な方法で発電された電力が混ざった電力であるため、混ざった電力からグリーン電力を取り出すのは困難である。一方、混ざった電力からグリーン電力だけ取り出す試みがなされている。実際にグリーン電力とグリーン電力以外の電力を電力のパケット化により分別する、電力のルーティングを実現する方法がある(例えば、特許文献1参照)。しかし、未だ検討段階であり実用化に至っていない。
従来の送電システムにおいては、複数の電源から供給された電力を、電源が区別できない単一波形の交流電力として送電している。よって、再生可能エネルギーから発電されたグリーン電力等、特定の電源から供給された電力のみを受電して利用することが出来ないという問題点があった。
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、電力のルーティングにより、由来(発電の種類)別で各機器に電力を供給するための、位相判別方式電力制御システムを提供することにある。
上記課題を解決するための手段として、太陽光発電や燃料発電などの分散型電源と、電力系統との連系を交流電流の位相によって入力先を切り替える。また、負荷側も特定の位相から電力を取り出すことで、電力のルーティングを実現する。
本発明は、このような目的を達成するために、請求項1に記載の発明は、複数の電源で発電された電力を混合して生成された第1の電力を送電する送電部と、該第1の電力を受電する受電部と、を備えた位相判別方式電力制御システムであって、前記送電部は、前記複数の電源で発電された電力信号のうち第1の交流の電力信号に基づいて基準信号を生成し、該生成された基準信号に基づいて、前記第1の交流の電力信号以外の前記複数の電源で発電された電力信号を前記第1の交流の電力信号と同期させ、ユーザーによって定められた割合に従って同期信号を各々生成し、該各々生成した同期信号に基づいて前記複数の電源で発電された前記割合ごとに電力を各々振り分け、該各々振り分けした電力を足し合わせ前記第1の電力を生成する入力制御部を備え、前記受電部は、前記各々生成した同期信号に基づいて前記第1の電力の波形を前記割合ごとに各々分離して、前記各々分離した第1の電力の波形を各々交流波形に変換するコンバータを備えたことを特徴とする。
以上説明したように、本発明によれば、現在まで実現されていない電力のルーティングを行うことが可能となる。また本発明によれば、ユーザーは由来別の電力(例えば、太陽光発電による電力や、燃料電池による電力など)を選び、各機器において望む電力で駆動することが可能となる。よって、環境付加価値のついた電力を提供する新たなサービスをユーザーに提供することが可能となる。
本発明の一実施形態にかかる位相判別方式電力制御システムのモックアップを示す図である。 本発明の一実施形態にかかるフロー図である。 本発明の一実施形態において、位相により由来別に割り当てられた電力の送電イメージを示す図である。 本発明の一実施形態において、各由来別電力によって家電を使用する一例を示し、特定の機器を駆動させるイメージを示す図である。
以下、図面を参照しながら本発明の一実施形態について詳細に説明する。
図1に本発明の一実施形態にかかる、位相による位相判別方式電力制御システムのモックアップを示す。
(構成)
本発明にかかる一実施形態において、位相判別方式電力制御システム1は、送電部2と受電部3とを備えている。
送電部2は、電力系統10、燃料電池11、および太陽光発電12から送電された各電力を受電する。燃料電池11から送電される直流の電力信号Sfuel DCは、DC/DCコンバータ14により、燃料電池11で発電された電力が効率よく取り出され、送電部2へ送電される。太陽光発電12によって発電された直流の電力信号Ssolar DCは、MPPT(Maximum Power Point Tracking:最大電力ポイント追跡)15により、太陽光発電12で発電された電力が最大となるように取り出され、送電部2へ送電される。
送電部2は、電力系統10から送電される交流電力の位相情報Iを受信し、位相情報Iに基づいて基準信号SREF1、SREF2を生成し、生成された基準信号SREF1、SREF2をインバータ16、17へ送信する入力制御部13を含む。
また、送電部2は、DC/DCコンバータ14により取り出された直流の電力信号を、交流の電力信号Sfuel1に変換するインバータ16と、MPPT15により直流の電力信号を、交流の電力信号Ssolar1に変換するインバータ17とを含む。
さらに、送電部2は、入力制御部13から送信された同期信号Sに基づいて、交流の電力信号SEPS1(第1の交流の電力信号)をON/OFF制御するスイッチング素子18と、入力制御部13から送信された同期信号Sに基づいて、交流の電力信号Sfuel1をON/OFF制御するスイッチング素子19と、入力制御部13から送信された同期信号Sに基づいて、交流の電力信号Ssolar1をON/OFF制御するスイッチング素子20とを含む。
また、送電部2は、スイッチング素子18によりON/OFF制御され生成された交流の電力信号SEPS2、スイッチング素子19によりON/OFF制御され生成された交流の電力信号Sfuel2、およびスイッチング素子20によりON/OFF制御され生成された交流の電力信号Ssolar2を加算する加算回路21を含む。
受電部3は、加算回路21によって加算された単一波形の交流の電力信号Stotal1を、第1の所定の電力の大きさの電力信号Stotal2と、第2の所定の電力の大きさの電力信号Stotal3とに分ける入力部28を含む。
また、受電部3は、入力制御部13から送信された同期信号Sに基づいて、電力信号Stotal2をON/OFF制御するスイッチング素子22と、入力制御部13から送信された同期信号Sに基づいて、電力信号Stotal3をON/OFF制御するスイッチング素子23とを含む。
さらに、受電部3は、スイッチング素子22によりON/OFF制御され生成された電力信号Sfuel3を交流波形(例えば、正弦波)の電力信号Sfuel4に変換するコンバータ24と、スイッチング素子22によりON/OFF制御され生成された電力信号Sfuel3を交流波形の電力信号Ssolar4に変換するコンバータ24とを含む。
また、受電部3は、変換された交流波形の電力信号Sfuel4を負荷26に供給し、変換された交流波形の電力信号Ssolar4を、負荷27に供給する出力部29を含む。
電力系統10に接続された電源は、例えば、火力発電でも、グリーン電力の風力発電でもよい。図1で示した電力系統は一例で、電力系統10、燃料電池電力11、および太陽光発電電力12はそれぞれ複数あってもよい。
(動作)
図2に本発明の一実施形態にかかるフロー図を示す。
入力制御部13は、電力系統10から送電された交流の電力信号SEPS1の位相情報Iを受信して基準信号SREF1、SREF2を生成し(S101)、生成した基準信号SREF1をインバータ16に送信し、生成した基準信号SREF2をインバータ17に送信する。
インバータ16は、燃料電池11から送電され、DC/DCコンバータ14を介して取り出された直流の電力信号を交流の電力信号に変換する(S102)。また、インバータ17は、太陽光発電12から送電され、MPPT15を介して取り出された直流の電力信号を交流の電力信号に変換する(S102)。
インバータ16は、変換した交流の電力信号を、受信した基準信号SREF1に基づいて交流の電力信号SEPS1と同期させて、交流の電力信号Sfuel1を生成する(S103)。また、インバータ17は、変換した交流の電力信号を、受信した基準信号SREF2に基づいて交流の電力信号SEPS1と同期させて、交流の電力信号Ssolar1を生成する(S103)。
分散型電源からの電力は直流であるため、インバータ16、17によって交流100Vに変換される。
入力制御部13は、電力系統10から受信した位相情報Iに基づいて、ユーザーの定めた割合に応じて位相ごとに由来別に振り分ける第1の同期信号S、第2の同期信号S、第3の同期信号S、第4の同期信号S、第5の同期信号Sを生成する(S104)。
入力制御部13は、交流の電力信号SEPS1に対し、第1の同期信号Sに基づいて、スイッチング素子18によりON/OFFの操作を行う(S105)。また、入力制御部13は、交流の電力信号Sfuel1に対し、第2の同期信号Sに基づいて、スイッチング素子19によりON/OFFの操作を行う(S105)。さらに入力制御部13は、交流の電力信号Ssolar1に対し、第3の同期信号Sに基づいて、スイッチング素子20によりON/OFFの操作を行う(S105)。
入力制御部13は、スイッチング素子18〜20を操作し、3経路ある電力の経路のうち1つをON状態にし、残り2つをOFF状態にする。入力制御部13は、スイッチング素子18〜20により、ユーザーの定めた割合に応じて位相ごとに由来別に振り分ける。スイッチング素子18〜20により位相ごとに入力先を入れ替えることによって、電力を由来別に分けることが可能となる。
加算回路21は、スイッチング素子18により生成された電力信号SEPS2、スイッチング素子19により生成された電力信号Sfuel2、およびスイッチング素子20により生成された電力信号Ssolar2を加算して、単一波形の交流の電力信号Stotal1を生成する(S106)。
図3に本発明の一実施形態の単一波形の交流の電力信号Stotal1において、位相により由来別に振り分けられた電力の送電イメージを示す。図3に示す単一波形は、左から太陽光発電12の電力(A)、燃料電池11の電力(B)、電力系統10の電力(C)の順で位相により由来別に振り分けられている。
入力部28は、単一波形の交流の電力信号Stotal1を第1の所定の電力の大きさの電力信号Stotal2と、第2の所定の電力の大きさの電力信号Stotal3とに分ける(S107)。
入力制御部13は、第1の所定の電力の大きさの電力信号Stotal2に対し、第4の同期信号Sに基づいて、スイッチング素子22によりON/OFFの操作を行う(S108)。また入力制御部13は、第2の所定の電力の大きさの電力信号Stotal3に対し、第5の同期信号Sに基づいて、スイッチング素子23によりON/OFFの操作を行う(S108)。
コンバータ24は、スイッチング素子22のON/OFFの操作により生成された電力信号Sfuel3を、交流波形の電力信号Sfuel4に変換する(S109)。コンバータ25は、スイッチング素子23のON/OFFの操作により生成された電力信号Ssolar3を、交流波形の電力信号Ssolar4に変換する(S109)。なお、コンバータ24、25は、電力信号Sfuel3、電力信号Ssolar3をコンデンサなどに充電可能な信号に変換して、一度コンデンサなどで充電してから、交流波形の電力信号Sfuel4、電力信号Ssolar4に変換する機能を有してもよい。
出力部29は、変換された電力信号Sfuel4を負荷26に供給し(S110)、変換された電力信号Ssolar4を負荷27に供給する(S110)。
したがって、位相と電力の由来別情報を紐付けることにより、電力のルーティングを実現する。
図4(a)、(b)、(c)に本発明の一実施形態において、各由来別電力によって家電を使用する一例を示し、特定の機器を駆動させるイメージを示す。
太陽光発電12の電力(A)は、本発明の一実施形態により、第5の同期信号Sに基づいて、図4(a)に示す波形の交流電力をコンバータ25が取得し、電気機器に使用できる交流波形にコンバータ25で変換する。コンバータ25で変換された交流により、図4(a)に示す掃除機の駆動が可能となる。
また、燃料電池11の電力(B)は、本発明の一実施形態により、第4の同期信号Sに基づいて、図4(b)に示す波形の交流電力をコンバータ24が取得し、電気機器に使用できる交流波形にコンバータ24で変換する。コンバータ24で変換された交流により、図4(b)に示すPCの駆動が可能となる。
さらに、電力系統10の電力(C)は、本発明の一実施形態により、同期信号(図示せず)に基づいて、図4(c)に示す波形の交流電力をコンバータ(図示せず)が取得し、電気機器に使用できる交流波形にコンバータ(図示せず)で変換する。コンバータ(図示せず)で変換された交流により、図4(c)に示す洗濯機の駆動が可能となる。
なお、2つの電源が1つの電気機器を駆動させるために使用されてもよい。
以上の本発明の一実施形態によれば、現在まで実現されていない電力のルーティングを行うことが可能となる。また本発明の一実施形態によれば、ユーザーは由来別の電力を選び、各機器において望む電力で駆動することが可能となる。よって、環境付加価値のついた電力を提供する新たなサービスをユーザーに提供することが可能となる。環境付加価値のついた電力の使用により環境問題が改善され得る。
すなわち、複数の電源からの出力を混合し、通常の系統を経由した単一波形の交流送電においても、特定の電源から供給された電力のみを選択的に受電して負荷に供給することが可能となり、各電源が供給する電力と、負荷が消費する電力とを明確に関連付けることが可能となる。
言い換えれば、交流電流の位相と、電力の由来情報を紐付けることによって、各電力は由来別に割り当てられた状態で送電されることが可能となる。また、負荷側においても特定の位相から電力を取り出すことによって、望む機器もしくは建物を望む由来の電力でまかなうことが可能となる。
1 位相判別方式電力制御システム
2 送電部
3 受電部
10 電力系統
11 燃料電池
12 太陽光発電
13 入力制御部
14 DC/DCコンバータ
15 MPPT
16、17 インバータ
18、19、20、22、23 スイッチング素子
21 加算回路
24、25 コンバータ
26、27 負荷
28 入力部
29 出力部

Claims (1)

  1. 複数の電源で発電された電力を混合して生成された第1の電力を送電する送電部と、該第1の電力を受電する受電部と、を備えた位相判別方式電力制御システムであって、
    前記送電部は、
    前記複数の電源で発電された電力信号のうち第1の交流の電力信号に基づいて基準信号を生成し、該生成された基準信号に基づいて、前記第1の交流の電力信号以外の前記複数の電源で発電された電力信号を前記第1の交流の電力信号と同期させ、ユーザーによって定められた割合に従って同期信号を各々生成し、該各々生成した同期信号に基づいて前記複数の電源で発電された前記割合ごとに電力を各々振り分け、該各々振り分けした電力を足し合わせ前記第1の電力を生成する入力制御部を備え、
    前記受電部は、
    前記各々生成した同期信号に基づいて前記第1の電力の波形を前記割合ごとに各々分離して、前記各々分離した第1の電力の波形を各々交流波形に変換するコンバータを備えたことを特徴とする位相判別方式電力制御システム。
JP2013064781A 2013-03-26 2013-03-26 位相判別方式電力制御システム Pending JP2014192970A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013064781A JP2014192970A (ja) 2013-03-26 2013-03-26 位相判別方式電力制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013064781A JP2014192970A (ja) 2013-03-26 2013-03-26 位相判別方式電力制御システム

Publications (1)

Publication Number Publication Date
JP2014192970A true JP2014192970A (ja) 2014-10-06

Family

ID=51838804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013064781A Pending JP2014192970A (ja) 2013-03-26 2013-03-26 位相判別方式電力制御システム

Country Status (1)

Country Link
JP (1) JP2014192970A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015139256A (ja) * 2014-01-21 2015-07-30 公立大学法人大阪市立大学 直接中継型電力パケット配電ネットワーク
JP2017085871A (ja) * 2015-10-23 2017-05-18 パナソニックIpマネジメント株式会社 電力ルータ装置及び電力伝送システム
JP2017112821A (ja) * 2015-12-14 2017-06-22 パナソニックIpマネジメント株式会社 電力伝送システム及びコントローラ
JP2017143718A (ja) * 2016-02-09 2017-08-17 パナソニックIpマネジメント株式会社 変換器、電力伝送システム、及び、コントローラ
JP2017143719A (ja) * 2016-02-09 2017-08-17 パナソニックIpマネジメント株式会社 変換器、電力伝送システム、及び、コントローラ
JP2017216867A (ja) * 2016-05-27 2017-12-07 パナソニックIpマネジメント株式会社 電力伝送システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015139256A (ja) * 2014-01-21 2015-07-30 公立大学法人大阪市立大学 直接中継型電力パケット配電ネットワーク
JP2017085871A (ja) * 2015-10-23 2017-05-18 パナソニックIpマネジメント株式会社 電力ルータ装置及び電力伝送システム
JP2017112821A (ja) * 2015-12-14 2017-06-22 パナソニックIpマネジメント株式会社 電力伝送システム及びコントローラ
JP2017143718A (ja) * 2016-02-09 2017-08-17 パナソニックIpマネジメント株式会社 変換器、電力伝送システム、及び、コントローラ
JP2017143719A (ja) * 2016-02-09 2017-08-17 パナソニックIpマネジメント株式会社 変換器、電力伝送システム、及び、コントローラ
JP2017216867A (ja) * 2016-05-27 2017-12-07 パナソニックIpマネジメント株式会社 電力伝送システム

Similar Documents

Publication Publication Date Title
JP2014192970A (ja) 位相判別方式電力制御システム
Choudhury A comprehensive review on issues, investigations, control and protection trends, technical challenges and future directions for Microgrid technology
TWI380551B (en) Multi-input power converter system for hybrid renewable energy generation system
Zhang et al. Dual-buck half-bridge voltage balancer
JP6365550B2 (ja) 電力制御装置及び電力制御方法
WO2009073582A3 (en) Multiphase grid synchronized regulated current source inverter systems
Ustun et al. Extending IEC 61850-7-420 for distributed generators with fault current limiters
CN104917203B (zh) 基于地理分区的分布式电源联合发电系统及协调控制方法
Singh et al. Power quality issues related to distributed energy source integration to utility grids
KR20130003409A (ko) 신재생에너지 출력 안정화 시스템
Regula et al. SCADA system with power quality monitoring in Smart Grid model
Fantauzzi et al. Building DC microgrids: Planning of an experimental platform with power hardware in the loop features
US20200014211A1 (en) Power transmission system capable of preventing power transmission efficiency from degrading due to frequency mismatch and loss of synchronization
Cassiani et al. Electricity market strategies applied to microgrid development
Vosloo et al. Intelligent central energy management system for remote community microgrid
Sakagami et al. Simulation to optimize a DC microgrid in Okinawa
Parida et al. Remote area power supply through suitable solar PV augmented micro‐hydro generation: A case study
JP2011193625A (ja) 電力制御装置、電力制御システム、蓄電池制御方法、及びプログラム
Kumar et al. Solar power analysis based on light intensity
Liu et al. Novel energy router with multiple operation modes
Caruso et al. Experimental Prototyping of a Microgrid with Mechanical Point of Common Coupling
Johnston et al. Beyond power over Ethernet: The development of digital energy networks for buildings
Cova et al. Comprehensive control system for parallelable 60 Hz-2MVA harbor AC/AC converters
Sinsukthavorn et al. Grid integration strategy for multifunctional grid front-end based distributed generation
Seo Paradigm Shift: Black Start from Inverter-Based Resources-IBR-Driven Power System Black Start