JP2014192171A - Semiconductor device and manufacturing method of the same - Google Patents

Semiconductor device and manufacturing method of the same Download PDF

Info

Publication number
JP2014192171A
JP2014192171A JP2013063320A JP2013063320A JP2014192171A JP 2014192171 A JP2014192171 A JP 2014192171A JP 2013063320 A JP2013063320 A JP 2013063320A JP 2013063320 A JP2013063320 A JP 2013063320A JP 2014192171 A JP2014192171 A JP 2014192171A
Authority
JP
Japan
Prior art keywords
chip
wiring board
semiconductor chips
chips
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013063320A
Other languages
Japanese (ja)
Inventor
Osamu Kanefuji
修 金藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PS4 Luxco SARL
Original Assignee
PS4 Luxco SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PS4 Luxco SARL filed Critical PS4 Luxco SARL
Priority to JP2013063320A priority Critical patent/JP2014192171A/en
Publication of JP2014192171A publication Critical patent/JP2014192171A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device which can reduce the occurrence of voids in gaps among a plurality of semiconductor chips and a gap between a wiring board and a semiconductor chip.SOLUTION: A semiconductor device comprises: N (N is a positive integer)-stage semiconductor chips 21-24, 30 laminated on a wiring board 10; and an encapsulation resin 50 which is formed on the wiring board, and covers the semiconductor chips, and fills gaps among the N-stage semiconductor chips and a gap between the wiring board and the bottom stage semiconductor chip. The wiring board and at least the semiconductor chips to the (N-1)th stage among the n-stage semiconductor chips have through holes and the encapsulation resin is arranged in each through hole.

Description

本発明は半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device and a manufacturing method thereof.

近年、携帯端末のような小型電子機器の普及に伴う小型化の要求に応えるために複数の半導体チップを積層した構造を持つ半導体装置が提供されている。   2. Description of the Related Art In recent years, semiconductor devices having a structure in which a plurality of semiconductor chips are stacked have been provided in order to meet the demand for downsizing with the spread of small electronic devices such as portable terminals.

特許文献1には、複数の半導体チップを積層して半導体チップ間の隙間にアンダーフィル材を充填することによりチップ積層体を形成した後、チップ積層体を配線基板に搭載し、前記チップ積層体を覆うように配線基板上に封止樹脂を形成する技術が開示されている。   In Patent Document 1, a plurality of semiconductor chips are stacked and a chip stack is formed by filling an underfill material in a gap between the semiconductor chips, and then the chip stack is mounted on a wiring board. A technique for forming a sealing resin on a wiring board so as to cover the substrate is disclosed.

一方、特許文献2には、半導体チップ間にアンダーフィル材を充填せずに、配線基板上に積層された複数の半導体チップを樹脂封止する技術が開示されている。   On the other hand, Patent Document 2 discloses a technique for resin-sealing a plurality of semiconductor chips stacked on a wiring board without filling an underfill material between semiconductor chips.

更に、特許文献3には、回路基板上にフリップチップ実装したICを、含有されるフィラーの大きさが10μm以下のトランスファ成形樹脂を用いて封止する技術が開示されている。   Further, Patent Document 3 discloses a technique for sealing an IC flip-chip mounted on a circuit board using a transfer molding resin having a filler size of 10 μm or less.

特開2010−251347号公報JP 2010-251347 A 特開2007−036104号公報JP 2007-036104 A 特開2000−294692号公報JP 2000-294692 A

特許文献1の技術の場合、チップ積層体へのアンダーフィル材の充填は、毛細管現象により充填するため、充填に時間を要して処理効率が悪く、半導体装置の組立コストが高くなる。   In the case of the technique of Patent Document 1, filling of the chip stack with the underfill material is performed by a capillary phenomenon, so that time is required for filling, the processing efficiency is poor, and the assembly cost of the semiconductor device is increased.

これに対し、特許文献2の技術によれば、半導体チップ間に予めアンダーフィル材を充填する工程が無いので半導体装置の組立コストの低減を図ることができるが、樹脂封止の際に半導体チップ間へボイドの発生するおそれがある。   On the other hand, according to the technique of Patent Document 2, since there is no step of filling the underfill material between the semiconductor chips in advance, the assembly cost of the semiconductor device can be reduced. There is a risk of voids.

本発明の態様による半導体装置は、配線基板と、前記配線基板上に積層されたN(Nは正の整数)段の半導体チップと、前記配線基板上に形成され、前記N段の半導体チップを覆うと共に前記N段の半導体チップ間の隙間及び前記配線基板と最下段の前記半導体チップとの間の隙間を充填する封止樹脂とからなり、前記配線基板と前記N段の半導体チップのうちの少なくとも(N−1)段までの半導体チップは貫通孔を有し、前記貫通孔に前記封止樹脂が配置されることを特徴とする。前記封止樹脂はフィラーを含有しても良く、この場合、前記フィラーは10μm以下の大きさで構成されるのが望ましい。   A semiconductor device according to an aspect of the present invention includes a wiring board, an N (N is a positive integer) stage semiconductor chip stacked on the wiring board, and the N stage semiconductor chip formed on the wiring board. A sealing resin that covers and fills a gap between the N-stage semiconductor chip and a gap between the wiring board and the lowermost semiconductor chip, and includes the wiring board and the N-stage semiconductor chip. At least (N-1) stages of semiconductor chips have through holes, and the sealing resin is disposed in the through holes. The sealing resin may contain a filler. In this case, it is desirable that the filler has a size of 10 μm or less.

本発明の別の態様によれば、積層されたN(Nは正の整数)段の半導体チップから成るチップ積層体を配線基板上に搭載する工程と、前記配線基板上に搭載された前記チップ積層体を覆うと共に前記N段の半導体チップ間の隙間及び前記配線基板と最下段の前記半導体チップとの間の隙間を充填するように溶融樹脂で封止する工程と、を含み、前記配線基板と前記N段の半導体チップのうちの少なくとも(N−1)段までの半導体チップには貫通孔を設けることにより、前記溶融樹脂による封止工程に際し、前記N段の半導体チップ間の隙間及び前記配線基板と最下段の前記半導体チップとの間の隙間に生じた気泡を、前記貫通孔を通して排気するようにした半導体装置の製造方法が提供される。   According to another aspect of the present invention, a step of mounting a chip stack composed of stacked N (N is a positive integer) semiconductor chips on a wiring board, and the chip mounted on the wiring board Covering the laminate and sealing with a molten resin so as to fill a gap between the N-stage semiconductor chips and a gap between the wiring board and the lowermost semiconductor chip, and the wiring board. And at least (N-1) stages of the N-stage semiconductor chips, through holes are provided, so that the gap between the N-stage semiconductor chips and the gap between the N-stage semiconductor chips during the sealing step with the molten resin A method of manufacturing a semiconductor device is provided in which bubbles generated in a gap between a wiring board and the lowermost semiconductor chip are exhausted through the through hole.

上記により、配線基板とこの配線基板上に積層された複数の半導体チップに貫通孔を設け、貫通孔に前記封止樹脂が配置されることで、複数の半導体チップ間の隙間及び配線基板と半導体チップの隙間へのボイドの発生を低減でき、半導体装置の信頼性を向上できる。特に、封止樹脂に含有されるフィラーを10μm以下の大きさとすることで、半導体チップ間の隙間及び貫通孔にフィラーを詰まらせることなく、良好に封止樹脂を充填できる。   As described above, through holes are provided in the wiring substrate and the plurality of semiconductor chips stacked on the wiring substrate, and the sealing resin is disposed in the through holes, so that the gaps between the plurality of semiconductor chips and the wiring substrate and the semiconductor are arranged. The generation of voids in the gap between the chips can be reduced, and the reliability of the semiconductor device can be improved. In particular, by setting the filler contained in the sealing resin to a size of 10 μm or less, the sealing resin can be satisfactorily filled without clogging the gaps and through holes between the semiconductor chips.

本発明の第1の実施形態に係るCoC型半導体装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the CoC type semiconductor device which concerns on the 1st Embodiment of this invention. 図1に示された半導体装置に用いる半導体チップ(メモリチップ、IFチップ)に形成されるバンプ、貫通孔について説明するための平面図である。It is a top view for demonstrating the bump and through-hole which are formed in the semiconductor chip (memory chip, IF chip) used for the semiconductor device shown in FIG. 図1に示された半導体装置の変形例を示す断面図である。FIG. 10 is a cross-sectional view showing a modification of the semiconductor device shown in FIG. 1. 図1に示された半導体装置の組立工程の一部である、半導体チップの積層工程を説明するための断面図である。FIG. 7 is a cross-sectional view for explaining a semiconductor chip stacking process, which is a part of the assembly process of the semiconductor device shown in FIG. 1. 図4に続く、半導体装置の組立工程の一部である、チップ積層体の樹脂封止工程を説明するための断面図である。FIG. 5 is a cross-sectional view for explaining a resin sealing process of a chip stack, which is a part of the assembly process of the semiconductor device, following FIG. 4. 図5の樹脂封止工程においてボイドの生成が低減される理由を説明するための断面図である。It is sectional drawing for demonstrating the reason that the production | generation of a void is reduced in the resin sealing process of FIG.

以下に、図面を参照して本発明の実施形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の第1の実施形態に係るCoC(Chip on Chip)型半導体装置の概略構成を示す断面図であり、図2は、図1に示された半導体装置に用いる半導体チップに形成されるバンプ、貫通孔について説明するための平面図である。   FIG. 1 is a cross-sectional view showing a schematic configuration of a CoC (Chip on Chip) type semiconductor device according to the first embodiment of the present invention. FIG. 2 shows a semiconductor chip used in the semiconductor device shown in FIG. It is a top view for demonstrating the bump and through-hole which are formed.

第1の実施形態に係る半導体装置では、図1に示すように、複数の半導体チップが積層されて成るチップ積層体が、配線基板10上に搭載されている。配線基板10は、絶縁基材10−1の両面に絶縁膜(ソルダーレジスト)10−2が形成されている。チップ積層体は、ここでは4つのメモリチップ21〜24とこれら4つのメモリチップを制御するためのIFチップ30とから構成される。最上に位置するメモリチップ24は、他のメモリチップ21〜23と同一構成のメモリ回路と同一配置の複数の表面バンプ24−1が形成されているが、メモリチップ23に形成されているような貫通電極23−3と裏面バンプ23−2が形成されない点で他のメモリチップと異なる。   In the semiconductor device according to the first embodiment, as shown in FIG. 1, a chip stacked body in which a plurality of semiconductor chips are stacked is mounted on a wiring substrate 10. As for the wiring board 10, the insulating film (solder resist) 10-2 is formed in both surfaces of the insulating base material 10-1. Here, the chip stack includes four memory chips 21 to 24 and an IF chip 30 for controlling these four memory chips. The uppermost memory chip 24 is formed with a plurality of surface bumps 24-1 having the same arrangement as the memory circuit having the same configuration as the other memory chips 21 to 23. However, as shown in FIG. It differs from other memory chips in that the through electrode 23-3 and the back bump 23-2 are not formed.

各メモリチップは、メモリチップ23について言えば、例えばシリコン基板の一面に所定のメモリ回路が形成されている。そして、シリコン基板の一面側には前記メモリ回路に電気的に接続された複数の電極パッドが所定の配置で形成されている。また、前記メモリ回路が形成された回路層の上には絶縁性の保護膜が形成されて回路形成面を保護している。前記保護膜には開口部が設けられて前記電極パッドが露出される。更に、前記シリコン基板の一面には、前記複数の電極パッド上にそれぞれ形成された複数の表面バンプ23−1が形成されている。表面バンプ23−1は、例えばCuからなる柱状体であり、メモリチップ表面から突出するように形成されている。そして、表面バンプ23−1上にはCu拡散防止用のNiメッキ層と酸化防止用のAuメッキ層が形成されている。表面バンプ23−1は、例えば図2(a)に示すように、メモリチップ23の一面の略中央部位に1列で配置されており、表面バンプ23−1の列と平行な2つの辺に沿ってそれぞれ複数のダミーバンプ23−4が配置されている。   As for each memory chip, for the memory chip 23, for example, a predetermined memory circuit is formed on one surface of a silicon substrate. A plurality of electrode pads electrically connected to the memory circuit are formed in a predetermined arrangement on one surface side of the silicon substrate. An insulating protective film is formed on the circuit layer on which the memory circuit is formed to protect the circuit formation surface. The protective film is provided with an opening to expose the electrode pad. Furthermore, a plurality of surface bumps 23-1 formed on the plurality of electrode pads are formed on one surface of the silicon substrate. The surface bump 23-1 is a columnar body made of Cu, for example, and is formed so as to protrude from the surface of the memory chip. An Ni plating layer for preventing Cu diffusion and an Au plating layer for preventing oxidation are formed on the surface bump 23-1. For example, as shown in FIG. 2A, the surface bumps 23-1 are arranged in one row at a substantially central portion of one surface of the memory chip 23, and are arranged on two sides parallel to the row of the surface bumps 23-1. A plurality of dummy bumps 23-4 are arranged along each of them.

メモリチップ23におけるシリコン基板の他面上には複数の裏面バンプ(図1の23−2)が形成されており、前記複数の裏面バンプはそれぞれ対応する表面バンプ23−1に貫通電極(図1の23−3)を介して電気的に接続されている。前記裏面バンプは例えばCuからなる柱状体であり、メモリチップ裏面から突出するように形成されている。そして裏面バンプの表面上にはSn/Agはんだメッキ層が形成されている。シリコン基板の他面にはまた複数のダミーバンプ23−6(図1)が配置されており、裏面バンプと同様、貫通電極23−7(図1)を介して表面側のダミーバンプ23−4と電気的に接続されている。   A plurality of back surface bumps (23-2 in FIG. 1) are formed on the other surface of the silicon substrate in the memory chip 23, and each of the plurality of back surface bumps has a through electrode (see FIG. 1) corresponding to the corresponding front surface bump 23-1. 23-3). The back bump is a columnar body made of Cu, for example, and is formed so as to protrude from the back surface of the memory chip. An Sn / Ag solder plating layer is formed on the surface of the back bump. A plurality of dummy bumps 23-6 (FIG. 1) are also arranged on the other surface of the silicon substrate. Like the rear surface bumps, the dummy bumps 23-4 on the front surface side are electrically connected to the front surface via the through electrodes 23-7 (FIG. 1). Connected.

メモリチップ23における表面バンプ列とダミーバンプ列の間の略中央部位には、貫通孔23−5が形成されている。貫通孔23−5は、貫通電極23−3(図1)を形成する際の貫通孔と同時に形成するため、貫通電極を形成する際の貫通孔と同じ径、例えば15μmで構成される。   A through hole 23-5 is formed at a substantially central portion between the surface bump row and the dummy bump row in the memory chip 23. Since the through hole 23-5 is formed at the same time as the through hole in forming the through electrode 23-3 (FIG. 1), it has the same diameter as the through hole in forming the through electrode, for example, 15 μm.

最上段に位置するメモリチップ24は、前述したように、他のメモリチップとほぼ同じメモリチップであり、シリコン基板の一面に形成された複数の表面バンプ24−1、ダミーバンプ24−4を有しているが、シリコン基板を貫通する貫通電極が形成されておらず、他面には裏面バンプが形成されていない。最上段のメモリチップ24は、例えば100μm厚で構成され、他のメモリチップ21〜23の厚さ、例えば50μmと比べて大きい厚さを持つように構成されている。最上段のメモリチップ24はまた、他のメモリチップ21〜23と同様に、表面バンプ列とダミーバンプ列の間の略中央部位に、貫通孔24−5が形成されている。   As described above, the memory chip 24 located at the top is substantially the same memory chip as the other memory chips, and has a plurality of surface bumps 24-1 and dummy bumps 24-4 formed on one surface of the silicon substrate. However, the through electrode penetrating the silicon substrate is not formed, and the back surface bump is not formed on the other surface. The uppermost memory chip 24 is configured to have a thickness of 100 μm, for example, and is configured to have a thickness larger than the thicknesses of the other memory chips 21 to 23, for example, 50 μm. Similarly to the other memory chips 21 to 23, the uppermost memory chip 24 has a through hole 24-5 formed at a substantially central portion between the surface bump row and the dummy bump row.

尚、最上段のメモリチップ24と隣接するメモリチップ23との間に生ずるボイド(気泡)は、隣接するメモリチップ23の貫通孔23−5から抜けることができる。それ故、IFチップを含むメモリチップの積層段数をN(Nは正の整数)段とした場合、図3に示すように、少なくとも(N−1)段までのメモリチップに貫通孔を設け、N段、すなわち最上段のメモリチップ24は貫通孔を設けないように構成しても良い。また、N段の半導体チップのうちの少なくとも(N−1)段までの半導体チップの貫通孔は、平面視で互いに重なる位置に配置されるのが好ましいが、これに限らない。   A void (bubble) generated between the uppermost memory chip 24 and the adjacent memory chip 23 can escape from the through hole 23-5 of the adjacent memory chip 23. Therefore, when the number of stacked layers of memory chips including IF chips is N (N is a positive integer), as shown in FIG. 3, through-holes are provided in at least (N−1) stages of memory chips, The N-stage, that is, the uppermost memory chip 24 may be configured not to provide a through hole. Further, it is preferable that the through holes of at least (N−1) stages of the N-stage semiconductor chips are arranged at positions overlapping each other in plan view, but the present invention is not limited to this.

図1に戻って、配線基板10と複数のメモリチップとの間には、IFチップ30が積層配置されている。IFチップ30は、各メモリチップを制御する制御回路が形成されており、メモリチップより小さいサイズで構成されている。   Returning to FIG. 1, IF chips 30 are stacked between the wiring substrate 10 and the plurality of memory chips. The IF chip 30 is formed with a control circuit that controls each memory chip, and has a smaller size than the memory chip.

図2(b)に示されるように、IFチップ30においては、他面側の裏面バンプ30−2がメモリチップ(例えば23)の表面バンプ(例えば23−1)に対応して配置されている。裏面バンプ30−2には、表面側に至る貫通電極30−3(図1)が接続されている。IFチップ30における複数の表面バンプ30−1は、配線基板10上に2列に並設された接続パッド11(図1)に搭載するために、200μm以上の広いピッチで2列に並設され、表面の回路層の配線(破線で示す)により貫通電極と接続するように再配線されている。IFチップ30は、メモリチップの貫通孔(例えば23−5)に対応した位置に、貫通孔30−5が形成されている。IFチップ30の貫通孔30−5もメモリチップの貫通孔と同様に構成されている。   As shown in FIG. 2B, in the IF chip 30, the back surface bump 30-2 on the other surface side is arranged corresponding to the surface bump (for example, 23-1) of the memory chip (for example, 23). . A through electrode 30-3 (FIG. 1) reaching the front surface side is connected to the back bump 30-2. The plurality of surface bumps 30-1 in the IF chip 30 are arranged in two rows at a wide pitch of 200 μm or more in order to be mounted on the connection pads 11 (FIG. 1) arranged in two rows on the wiring substrate 10. The wiring is rewired so as to be connected to the through electrode by wiring on the surface circuit layer (indicated by a broken line). The IF chip 30 has a through hole 30-5 at a position corresponding to a through hole (for example, 23-5) of the memory chip. The through hole 30-5 of the IF chip 30 is configured similarly to the through hole of the memory chip.

図1に戻って、前記チップ積層体の搭載される配線基板10にも貫通孔10−5が形成されており、配線基板10の貫通孔10−5は、前記チップ積層体のそれぞれのメモリチップ21〜24、IFチップ30に形成された貫通孔の近傍位置にそれぞれ配置されている。   Returning to FIG. 1, a through hole 10-5 is also formed in the wiring board 10 on which the chip stack is mounted. The through hole 10-5 of the wiring board 10 is formed in each memory chip of the chip stack. 21 to 24 and are arranged in the vicinity of the through holes formed in the IF chip 30.

そして、配線基板10の一面には封止樹脂50が形成されており、前記チップ積層体は封止樹脂50で覆われる。封止樹脂50は、例えば10μm以下のフィラーを含有しているモールドアンダーフィル材が用いられ、配線基板10とチップ積層体の間の隙間及びメモリチップ間(メモリチップとIFチップとの間を含む)の隙間、それぞれのメモリチップの貫通孔と配線基板の貫通孔も良好に充填される。寸法例を挙げると、表面バンプと裏面バンプは、それぞれ約10μmの高さで構成され、メモリチップ間の隙間は20μm程度とされる。   A sealing resin 50 is formed on one surface of the wiring substrate 10, and the chip stack is covered with the sealing resin 50. For the sealing resin 50, for example, a mold underfill material containing a filler of 10 μm or less is used, and includes a gap between the wiring substrate 10 and the chip stack and between the memory chips (between the memory chip and the IF chip). ), The through-holes of the respective memory chips and the through-holes of the wiring board are also satisfactorily filled. As an example of dimensions, the front surface bump and the back surface bump each have a height of about 10 μm, and the gap between the memory chips is about 20 μm.

以上のように、第1の実施形態による半導体装置は、配線基板と、前記配線基板上に積層された複数の半導体チップと、前記配線基板上に形成され前記複数の半導体チップを覆うと共に前記複数の半導体チップ間の隙間を充填する封止樹脂とからなり、前記配線基板と前記複数の半導体チップに貫通孔を配置するように構成している。このような構成による半導体装置は、樹脂モールドに際して、配線基板とチップ積層体との間の隙間、複数の半導体チップ間の隙間にボイドが発生しようとしても、複数の半導体チップに形成された貫通孔及び配線基板の貫通孔を通してパッケージ外にボイドを排気できるため、ボイドの残留を低減できる。これにより半導体装置の信頼性を向上できる。さらに、半導体チップ間に予めアンダーフィル材を充填する工程が必要ないため、半導体装置の組立コストを低減できる。また前記封止樹脂に含有されるフィラーを、チップ間の隙間を20μmとした場合に、その半分以下、例えば10μm以下の大きさで構成することで、半導体チップ間の隙間にフィラーを詰まらせることなく、良好に封止樹脂を充填できる。また半導体チップ間に予め供給されるアンダーフィル材を無くすことができるため、チップ積層体の側面に形成されるフィレット部等の樹脂溜りがなくなるため、アンダーフィル材の硬化収縮等により半導体チップにかかる応力を低減できる。   As described above, the semiconductor device according to the first embodiment includes a wiring board, a plurality of semiconductor chips stacked on the wiring board, and the plurality of semiconductor chips formed on the wiring board and covering the plurality of semiconductor chips. And a through hole is disposed in the wiring substrate and the plurality of semiconductor chips. In the semiconductor device having such a configuration, through holes formed in a plurality of semiconductor chips even when a void is generated in a gap between the wiring substrate and the chip stack and a gap between the plurality of semiconductor chips during resin molding. Since voids can be exhausted outside the package through the through holes of the wiring board, residual voids can be reduced. Thereby, the reliability of the semiconductor device can be improved. Furthermore, since a step of filling an underfill material between semiconductor chips in advance is not necessary, the assembly cost of the semiconductor device can be reduced. In addition, when the gap between the chips is set to 20 μm, the filler contained in the sealing resin is configured to have a size of less than half, for example, 10 μm or less, thereby filling the gap between the semiconductor chips. The sealing resin can be satisfactorily filled. In addition, since the underfill material supplied in advance between the semiconductor chips can be eliminated, there is no resin accumulation in the fillet portion formed on the side surface of the chip stack, and the semiconductor chip is applied due to curing shrinkage of the underfill material. Stress can be reduced.

図4〜図6は、第1の実施形態に係る半導体装置の組立工程を示す断面図である。   4 to 6 are cross-sectional views illustrating the assembly process of the semiconductor device according to the first embodiment.

はじめに、図4を参照して、メモリチップ(半導体チップ)の積層工程について説明する。   First, with reference to FIG. 4, a process of stacking memory chips (semiconductor chips) will be described.

図4(a)において、ボンディングステージ100上に、チップ積層体の最上段となるメモリチップ24を、表面バンプ24−1を上側にして搭載する。メモリチップ24は、吸着孔100−1を通した真空チャックでボンディングステージ100上に保持される。   In FIG. 4A, the memory chip 24 which is the uppermost stage of the chip stack is mounted on the bonding stage 100 with the surface bump 24-1 on the upper side. The memory chip 24 is held on the bonding stage 100 by a vacuum chuck that passes through the suction hole 100-1.

図4(b)において、ボンディングツール200による吸着孔200−1を通した真空チャックで、チップ積層体の上から2段目となるメモリチップ23を保持し、メモリチップ24上に積層する。積層に際しては、メモリチップ23の裏面バンプ23−2側を下向きにし、フリップチップボンディングにより裏面バンプ23−2をメモリチップ24の表面バンプ24−1に、ダミーバンプ23−6をメモリチップ24のダミーバンプ24−4にそれぞれ接続する。このようにして、図4(b)では、メモリチップ24−23−22−21の順でメモリチップ21まで積層した状態を示している。   In FIG. 4B, the second-stage memory chip 23 from the top of the chip stack is held and stacked on the memory chip 24 by a vacuum chuck through the suction hole 200-1 by the bonding tool 200. At the time of stacking, the back surface bump 23-2 side of the memory chip 23 is faced down, the back surface bump 23-2 is applied to the front surface bump 24-1 of the memory chip 24 by flip chip bonding, and the dummy bump 23-6 is connected to the dummy bump 24 of the memory chip 24. -4 respectively. In this way, FIG. 4B shows a state in which the memory chips 21 are stacked in the order of the memory chips 24-23-22-21.

図4(c)において、上記と同様、ボンディングツール200による真空チャックで、チップ積層体の最下段となるIFチップ30を保持し、メモリチップ21上に積層する。   In FIG. 4C, the IF chip 30 which is the lowest stage of the chip stack is held and stacked on the memory chip 21 by the vacuum chuck by the bonding tool 200 as described above.

図4(d)は上記積層工程で得られたチップ積層体を示し、メモリチップ間(メモリチップとIFチップとの間を含む)に予めアンダーフィル材を充填する工程は必要ない。   FIG. 4D shows the chip stack obtained in the above-described stacking process, and it is not necessary to fill the underfill material in advance between the memory chips (including between the memory chip and the IF chip).

次に、図5を参照して、図4に続く、チップ積層体の樹脂封止工程について説明する。   Next, with reference to FIG. 5, the resin sealing process of the chip stack following FIG. 4 will be described.

まず、図5(a)に示すように、チップ積層体が搭載される配線基板10’が準備される。配線基板10’は、例えばガラスエポキシ配線基板であり、マトリックス状に配置された複数の製品形成領域ARを有している。図5(a)では、便宜上、1つの製品形成領域ARとその両隣の製品形成領域の一部を示し、以下では、主に、1つの製品形成領域ARとそこに搭載されるチップ積層体について説明する。   First, as shown in FIG. 5A, a wiring board 10 'on which a chip stack is mounted is prepared. The wiring board 10 ′ is, for example, a glass epoxy wiring board, and has a plurality of product formation regions AR arranged in a matrix. FIG. 5 (a) shows one product formation area AR and a part of the product formation areas on both sides thereof for convenience. In the following, one product formation area AR and a chip stack mounted thereon will be mainly described. explain.

製品形成領域ARには、それぞれ所定の配線パターンが形成され、配線12は、部分的に絶縁膜(例えばソルダーレジスト、図1の10−1,10−2)で覆われている。隣り合う製品形成領域AR間は、ダイシングラインDLとなる。製品形成領域ARの一面側の配線12の絶縁膜から露出された部位には、複数の接続パッド11、11’が形成されている。ここでは、IFチップ30の2列の表面バンプ30−1に対応するように接続パッド11が2列並設され、配線12による接続のために接続パッド11’が形成されている。製品形成領域ARの他面の配線12の絶縁膜から露出された部位には、複数のランド13が形成されている。接続パッド11’とこれに対応するランド13とが、配線12により電気的に接続されている。   A predetermined wiring pattern is formed in each product formation area AR, and the wiring 12 is partially covered with an insulating film (for example, solder resist, 10-1 and 10-2 in FIG. 1). A dicing line DL is formed between adjacent product formation regions AR. A plurality of connection pads 11, 11 ′ are formed in a portion exposed from the insulating film of the wiring 12 on one surface side of the product formation region AR. Here, two rows of connection pads 11 are arranged in parallel so as to correspond to two rows of surface bumps 30-1 of the IF chip 30, and connection pads 11 ′ are formed for connection by the wiring 12. A plurality of lands 13 are formed in a portion exposed from the insulating film of the wiring 12 on the other surface of the product formation region AR. The connection pad 11 ′ and the land 13 corresponding to the connection pad 11 ′ are electrically connected by the wiring 12.

次に、図5(b)に示すように、配線基板10’は、ボンディング工程に移行される。このボンディング工程では、例えばボンディング装置(図示しない)のボンディングツール(図示しない)により、チップ積層体をその最上段のメモリチップ24の裏面側で吸着保持する。そして、配線基板10’の各製品形成領域ARに、チップ積層体を、ボンディングツールにより高温、例えば300℃程度で荷重を印加し、フリップチップボンディングする。これにより、図5(b)に示すように、配線基板10’の各製品形成領域ARに、チップ積層体が搭載され、IFチップ30の表面バンプ30−1と配線基板10’の接続パッド11とが電気的に接続される。なお、チップ積層体の接合は、荷重だけでなく、超音波を印加するように構成してもよい。   Next, as shown in FIG. 5B, the wiring board 10 'is transferred to a bonding process. In this bonding step, for example, the chip stack is sucked and held on the back surface side of the uppermost memory chip 24 by a bonding tool (not shown) of a bonding apparatus (not shown). Then, the chip stack is flip-chip bonded to each product formation area AR of the wiring substrate 10 ′ by applying a load at a high temperature, for example, about 300 ° C. with a bonding tool. As a result, as shown in FIG. 5B, the chip stack is mounted in each product formation area AR of the wiring board 10 ′, and the surface bump 30-1 of the IF chip 30 and the connection pad 11 of the wiring board 10 ′. Are electrically connected. In addition, you may comprise the joining of a chip laminated body so that not only a load but an ultrasonic wave may be applied.

次に、図5(c)に示すように、チップ積層体が搭載された配線基板10’は、モールド(樹脂封止)工程に移行される。このモールド工程では、配線基板10’は、トランスファモールド装置(図示しない)の上型と下型からなる成型金型(図示しない)にセットされる。成型金型の上型には複数のチップ搭載部を一括的に覆うようにキャビティが形成されており、このキャビティ内に配線基板10’上のチップ積層体が配置される。そして、成型金型のゲート部からキャビティ内に加熱溶融された封止樹脂50を注入し、配線基板10’上のチップ積層体の搭載面側を封止する。この封止樹脂50としては、例えばエポキシ樹脂等の熱硬化性樹脂が用いられる。そして、配線基板10’の一面側のキャビティが封止樹脂50で充填された状態で、所定の温度、例えば180℃程度でキュアすることで、封止樹脂50が熱硬化され、図5(c)に示すように、配線基板10’の複数の製品形成領域ARを一括的に覆う封止樹脂50の層が形成される。その後、封止樹脂50の層が形成された配線基板10’を、所定の温度でベークすることで、封止樹脂50が完全に硬化される。   Next, as shown in FIG. 5C, the wiring board 10 'on which the chip stack is mounted is transferred to a molding (resin sealing) process. In this molding process, the wiring board 10 'is set in a molding die (not shown) including an upper mold and a lower mold of a transfer mold apparatus (not shown). A cavity is formed in the upper mold of the molding die so as to collectively cover a plurality of chip mounting portions, and a chip stack on the wiring substrate 10 ′ is disposed in the cavity. Then, the sealing resin 50 melted by heating is injected into the cavity from the gate portion of the molding die, and the mounting surface side of the chip stack on the wiring substrate 10 ′ is sealed. As the sealing resin 50, for example, a thermosetting resin such as an epoxy resin is used. Then, with the cavity on one side of the wiring substrate 10 ′ filled with the sealing resin 50, the sealing resin 50 is cured by curing at a predetermined temperature, for example, about 180 ° C., and FIG. ), A layer of the sealing resin 50 that collectively covers the plurality of product formation regions AR of the wiring board 10 ′ is formed. Thereafter, the wiring substrate 10 ′ on which the sealing resin 50 layer is formed is baked at a predetermined temperature, whereby the sealing resin 50 is completely cured.

続いて、図5(d)を参照して、封止樹脂50の層が形成された配線基板10’は、ボールマウント工程に移行され、配線基板10’の他面に形成されたランド13に、導電性の金属ボール、例えば半田ボール15を搭載し、外部端子を形成する。このボールマウント工程では、配線基板10’上に配置された複数のランド13に合せて、複数の吸着孔が形成されたボールマウンター(図示しない)のマウントツール(図示しない)を用いて、金属からなる半田ボール15をマウントツールで吸着保持し、吸着保持された半田ボール15にフラックスを転写形成し、配線基板10’上の複数のランド13に一括搭載する。そして、全ての製品形成領域ARへの半田ボール15搭載後、配線基板10’をリフローすることで外部端子が形成される。   Subsequently, referring to FIG. 5D, the wiring board 10 ′ on which the layer of the sealing resin 50 is formed is transferred to the ball mounting process, and the land 13 formed on the other surface of the wiring board 10 ′ is transferred. A conductive metal ball, for example, a solder ball 15 is mounted to form an external terminal. In this ball mounting process, a mounting tool (not shown) of a ball mounter (not shown) in which a plurality of suction holes are formed in accordance with the plurality of lands 13 arranged on the wiring board 10 'is used to remove the metal from the metal. The solder balls 15 to be formed are sucked and held by a mounting tool, and flux is transferred and formed on the sucked and held solder balls 15 to be collectively mounted on a plurality of lands 13 on the wiring board 10 ′. Then, after mounting the solder balls 15 in all the product formation areas AR, the external terminals are formed by reflowing the wiring board 10 '.

次に、図5(e)に示すように、半田ボール15が搭載された配線基板10’は、基板ダイシング工程に移行され、配線基板10’を切断し、個々の製品形成領域ARに分離する。この基板ダイシング工程では、配線基板10’の封止樹脂50の層側にダイシングテープ(図示しない)を貼着し、ダイシングテープによって配線基板10’を支持する。その後、ダイシング装置(図示しない)のダイシングブレード(図示しない)により縦横に切断して、製品形成領域AR毎に分離する。そして配線基板10’の切断分離後、ダイシングテープから樹脂封止体をピックアップすることで、図5(e)に示すような複数のCoC型の半導体装置が得られる。   Next, as shown in FIG. 5E, the wiring board 10 ′ on which the solder balls 15 are mounted is transferred to a substrate dicing process, and the wiring board 10 ′ is cut and separated into individual product formation regions AR. . In this substrate dicing process, a dicing tape (not shown) is attached to the layer side of the sealing resin 50 of the wiring substrate 10 ', and the wiring substrate 10' is supported by the dicing tape. Thereafter, the product is cut into vertical and horizontal directions by a dicing blade (not shown) of a dicing apparatus (not shown) and separated into product formation areas AR. Then, after cutting and separating the wiring substrate 10 ′, a plurality of CoC type semiconductor devices as shown in FIG. 5E are obtained by picking up the resin sealing body from the dicing tape.

図6は、図5の樹脂封止工程においてボイドの生成が低減される理由を説明するための断面図である。   FIG. 6 is a cross-sectional view for explaining the reason why the generation of voids is reduced in the resin sealing step of FIG.

図6(a)に示すように、樹脂封止に際して、成型金型の上型300−1と下型300−2の間のキャビティ内に溶融状態の封止樹脂50を注入した際、隣り合うメモリチップの間、メモリチップとIFチップの間、IFチップと配線基板10’の間にボイドが生成されようとしたとする。   As shown in FIG. 6A, when resin sealing is performed, when a sealing resin 50 in a molten state is injected into the cavity between the upper mold 300-1 and the lower mold 300-2 of the molding die, they are adjacent to each other. It is assumed that voids are generated between the memory chips, between the memory chip and the IF chip, and between the IF chip and the wiring substrate 10 ′.

この場合、図6(b)に示すように、ボイド(気泡)は、それぞれのメモリチップ、IFチップに形成された貫通孔(例えば21−5、30−5)と、配線基板10’に形成された貫通孔10−5を介して封止パッケージ外に排気できる。   In this case, as shown in FIG. 6B, voids (bubbles) are formed in the through holes (for example, 21-5 and 30-5) formed in the respective memory chips and IF chips and in the wiring board 10 ′. The air can be exhausted outside the sealed package through the formed through hole 10-5.

これにより、図6(c)に示すように、配線基板10’とチップ積層体との間、メモリチップ相互間の隙間へのボイドの残留を低減できる。またチップ積層体の複数のメモリチップ間へのアンダーフィルを充填する工程を無くすことができることで、半導体装置の組立コストを低減できる。   As a result, as shown in FIG. 6C, it is possible to reduce voids remaining in the gap between the wiring substrate 10 'and the chip stack and between the memory chips. In addition, since it is possible to eliminate the process of filling the underfill between the plurality of memory chips of the chip stack, the assembly cost of the semiconductor device can be reduced.

以上、本発明を好ましい実施形態に基づき説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。例えば、上記実施形態では、配線基板と複数のメモリチップ(IFチップを含む)にそれぞれ2つの貫通孔を形成、配置する場合について説明したが、貫通孔は1つ又は3つ以上形成、配置するように構成しても良い。またメモリチップの貫通孔と配線基板の貫通孔の形成位置がずれている場合について説明したが、平面的に重なる位置に配置するように構成しても良い。   As mentioned above, although this invention was demonstrated based on preferable embodiment, this invention is not limited to the said embodiment, It cannot be overemphasized that it can change variously in the range which does not deviate from the summary. For example, in the above embodiment, the case where two through holes are formed and arranged in the wiring board and the plurality of memory chips (including IF chips) has been described, but one or three or more through holes are formed and arranged. You may comprise as follows. Further, the case where the formation positions of the through holes of the memory chip and the through holes of the wiring board are deviated from each other has been described.

さらに上記実施形態では、4つのメモリチップとIFチップとからなるチップ積層体について説明したが、複数のメモリチップのチップ積層体やメモリチップとロジックチップのチップ積層体等、どのような半導体チップの組合せに適用しても良い。また4段以下、或いは6段以上のチップ積層体に適用しても良い。   Furthermore, in the above embodiment, a chip stack including four memory chips and an IF chip has been described. However, any semiconductor chip such as a chip stack of a plurality of memory chips or a chip stack of a memory chip and a logic chip can be used. You may apply to a combination. Moreover, you may apply to the chip laminated body of four steps or less, or six steps or more.

10、10’ 配線基板
11、11’ 接続パッド
12 配線
13 ランド
15 半田ボール
21〜24 メモリチップ
21−1、23−1、30−1、24−1 表面バンプ
23−2、30−2 裏面バンプ
23−3、23−7、30−3 貫通電極
21−4、23−4、23−6、24−4 ダミーバンプ
10−5、23−5、30−5 貫通孔
30 IFチップ
50 封止樹脂
100 ボンディングステージ
200 ボンディングツール
300−1 成型金型の上型
300−2 成型金型の下型
10, 10 'wiring substrate 11, 11' connection pad 12 wiring 13 land 15 solder ball 21-24 memory chip 21-1, 23-1, 30-1, 24-1 surface bump 23-2, 30-2 back surface bump 23-3, 23-7, 30-3 Through electrode 21-4, 23-4, 23-6, 24-4 Dummy bump 10-5, 23-5, 30-5 Through hole 30 IF chip 50 Sealing resin 100 Bonding stage 200 Bonding tool 300-1 Upper mold 300-2 Lower mold

Claims (5)

配線基板と、
前記配線基板上に積層されたN(Nは正の整数)段の半導体チップと、
前記配線基板上に形成され、前記N段の半導体チップを覆うと共に前記N段の半導体チップ間の隙間及び前記配線基板と最下段の前記半導体チップとの間の隙間を充填する封止樹脂とからなり、
前記配線基板と前記N段の半導体チップのうちの少なくとも(N−1)段までの半導体チップは貫通孔を有し、前記貫通孔に前記封止樹脂が配置されることを特徴とする半導体装置。
A wiring board;
N (N is a positive integer) stage semiconductor chips stacked on the wiring board;
A sealing resin which is formed on the wiring board and covers the N-stage semiconductor chip and fills a gap between the N-stage semiconductor chips and a gap between the wiring board and the lowermost semiconductor chip. Become
Of the wiring substrate and the N-stage semiconductor chips, at least (N-1) -stage semiconductor chips have through holes, and the sealing resin is disposed in the through holes. .
前記封止樹脂はフィラーが含有されており、前記フィラーは10μm以下の大きさで構成されることを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the sealing resin contains a filler, and the filler is configured to have a size of 10 μm or less. 前記N段の半導体チップのうちの少なくとも(N−1)段までの半導体チップの貫通孔は、平面視で互いに重なる位置に配置されることを特徴とする請求項1又は2に記載の半導体装置。   3. The semiconductor device according to claim 1, wherein the through holes of at least (N−1) stages of the N stages of semiconductor chips are arranged at positions overlapping each other in plan view. . 積層されたN(Nは正の整数)段の半導体チップから成るチップ積層体を配線基板上に搭載する工程と、
前記配線基板上に搭載された前記チップ積層体を覆うと共に前記N段の半導体チップ間の隙間及び前記配線基板と最下段の前記半導体チップとの間の隙間を充填するように溶融樹脂で封止する工程と、を含み、
前記配線基板と前記N段の半導体チップのうちの少なくとも(N−1)段までの半導体チップには貫通孔を設けることにより、前記溶融樹脂による封止工程に際し、前記N段の半導体チップ間の隙間及び前記配線基板と最下段の前記半導体チップとの間の隙間に生じた気泡を、前記貫通孔を通して排気するようにした半導体装置の製造方法。
A step of mounting a chip laminated body composed of N (N is a positive integer) stacked semiconductor chips on a wiring board;
Covering the chip stack mounted on the wiring board and sealing with a molten resin so as to fill a gap between the N-stage semiconductor chips and a gap between the wiring board and the lowermost semiconductor chip Including the steps of:
By providing through holes in at least the (N-1) -stage semiconductor chips of the wiring board and the N-stage semiconductor chips, the N-stage semiconductor chips are sealed in the sealing step with the molten resin. A method of manufacturing a semiconductor device, wherein air bubbles generated in the gap and the gap between the wiring board and the lowermost semiconductor chip are exhausted through the through hole.
フィラーを含有する前記溶融樹脂を用い、前記フィラーは10μm以下の大きさで構成されることを特徴とする請求項4に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 4, wherein the molten resin containing a filler is used, and the filler is configured to have a size of 10 μm or less.
JP2013063320A 2013-03-26 2013-03-26 Semiconductor device and manufacturing method of the same Pending JP2014192171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013063320A JP2014192171A (en) 2013-03-26 2013-03-26 Semiconductor device and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013063320A JP2014192171A (en) 2013-03-26 2013-03-26 Semiconductor device and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2014192171A true JP2014192171A (en) 2014-10-06

Family

ID=51838207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013063320A Pending JP2014192171A (en) 2013-03-26 2013-03-26 Semiconductor device and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2014192171A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225484A (en) * 2015-06-01 2016-12-28 株式会社東芝 Semiconductor device and method of manufacturing the same
US10354985B2 (en) 2016-06-15 2019-07-16 Samsung Electronics Co., Ltd. Semiconductor device having stacked semiconductor chips and method for fabricating the same
US10685921B2 (en) 2018-07-10 2020-06-16 Samsung Electronics Co., Ltd. Semiconductor chip module including a channel for controlling warpage and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225484A (en) * 2015-06-01 2016-12-28 株式会社東芝 Semiconductor device and method of manufacturing the same
US10354985B2 (en) 2016-06-15 2019-07-16 Samsung Electronics Co., Ltd. Semiconductor device having stacked semiconductor chips and method for fabricating the same
US10923465B2 (en) 2016-06-15 2021-02-16 Samsung Electronics Co., Ltd. Semiconductor device having stacked semiconductor chips and method for fabricating the same
US10685921B2 (en) 2018-07-10 2020-06-16 Samsung Electronics Co., Ltd. Semiconductor chip module including a channel for controlling warpage and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US8575763B2 (en) Semiconductor device and method of manufacturing the same
US7242081B1 (en) Stacked package structure
US7808093B2 (en) Stacked semiconductor device
JP5579402B2 (en) Semiconductor device, method for manufacturing the same, and electronic device
KR101376378B1 (en) Semiconductor device and method of manufacturing the same, and semiconductor module using the same
US20140295620A1 (en) Method of manufacturing semiconductor device having plural semiconductor chips stacked one another
US20110115085A1 (en) Semiconductor device and method of fabricating the same
US20150214207A1 (en) Chip stack, semiconductor devices having the same, and manufacturing methods for chip stack
US9640414B2 (en) Method of manufacturing semiconductor device
US20170186678A1 (en) Fan-out chip package and its fabricating method
US20120146242A1 (en) Semiconductor device and method of fabricating the same
JP2012212786A (en) Manufacturing method of semiconductor device
JP2014007228A (en) Semiconductor device and manufacturing method of the same
JP2013021058A (en) Manufacturing method of semiconductor device
US10734322B2 (en) Through-holes of a semiconductor chip
CN112768437B (en) Multilayer stack packaging structure and preparation method thereof
KR20120058118A (en) Method of fabricating stacked package, and method of mounting stacked package fabricated by the same
JP2014192171A (en) Semiconductor device and manufacturing method of the same
JP5547703B2 (en) Manufacturing method of semiconductor device
KR101494411B1 (en) Semiconductor package, and method of manufacturing the same
JP6486855B2 (en) Semiconductor device and manufacturing method of semiconductor device
TW201448071A (en) Chip stack, semiconductor devices having the same, and manufacturing methods for chip stack
JP2012138394A (en) Semiconductor manufacturing method
JP2012174900A (en) Method of manufacturing semiconductor device
JP2014225546A (en) Method of manufacturing semiconductor device