JP2014191899A - Liquid solution for formation of a solid electrolyte-containing layer of all-solid type lithium secondary battery, all-solid type lithium secondary battery, and method for manufacturing the same - Google Patents

Liquid solution for formation of a solid electrolyte-containing layer of all-solid type lithium secondary battery, all-solid type lithium secondary battery, and method for manufacturing the same Download PDF

Info

Publication number
JP2014191899A
JP2014191899A JP2013064161A JP2013064161A JP2014191899A JP 2014191899 A JP2014191899 A JP 2014191899A JP 2013064161 A JP2013064161 A JP 2013064161A JP 2013064161 A JP2013064161 A JP 2013064161A JP 2014191899 A JP2014191899 A JP 2014191899A
Authority
JP
Japan
Prior art keywords
solid electrolyte
solid
secondary battery
lithium secondary
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013064161A
Other languages
Japanese (ja)
Other versions
JP6095218B2 (en
Inventor
Akitoshi Hayashi
晃敏 林
Masahiro Tatsumisago
昌弘 辰巳砂
Kiyoharu Tadanaga
清治 忠永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Osaka Prefecture University
Original Assignee
Osaka University NUC
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Osaka Prefecture University filed Critical Osaka University NUC
Priority to JP2013064161A priority Critical patent/JP6095218B2/en
Publication of JP2014191899A publication Critical patent/JP2014191899A/en
Application granted granted Critical
Publication of JP6095218B2 publication Critical patent/JP6095218B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid solution for formation of a solid electrolyte-containing layer of an all-solid type lithium secondary battery which allows the solid electrolyte-containing layer to be formed by a simple and convenient method.SOLUTION: A liquid solution for formation of a solid electrolyte-containing layer of an all-solid type lithium secondary battery comprises: a solid electrolyte expressed by LiS-MS(where M is selected from P, Si, Ge, B, Al and Ga; and x and y are figures which present a stoichiometric ratio according to the kind of M); and an organic solvent which can dissolve the solid electrolyte.

Description

本発明は、全固体リチウム二次電池の固体電解質を含む層の形成用溶液、全固体リチウム二次電池及びその製造方法に関する。更に詳しくは、本発明は、全固体リチウム二次電池を構成する固体電解質層、正極及び負極のいずれかを塗布法により形成可能にするための形成用溶液、全固体リチウム二次電池及びその製造方法に関する。   The present invention relates to a solution for forming a layer containing a solid electrolyte of an all-solid lithium secondary battery, an all-solid lithium secondary battery, and a method for producing the same. More specifically, the present invention relates to a solid electrolyte layer constituting an all-solid lithium secondary battery, a forming solution for enabling any one of a positive electrode and a negative electrode to be formed by a coating method, an all-solid lithium secondary battery, and a production thereof. Regarding the method.

リチウム二次電池は、高電圧、高容量を有するため、携帯電話、デジタルカメラ、ビデオカメラ、ノートパソコン、電気自動車等の電源として多用されている。一般に流通しているリチウム二次電池は、電解質として、電解塩を非水系溶媒に溶解した液状電解質を使用している。非水系溶媒には、可燃性の溶媒が多く含まれているため、安全性の確保が望まれている。
安全性を確保するために、非水系溶媒を使用せずに、電解質を固体材料から形成する、いわゆる固体電解質を使用した全固体リチウム二次電池が提案されている。この全固体リチウム二次電池は、正極及び負極と、正極と負極間に位置する固体電解質層とを備えた構成を有している。固体電解質層は、固体電解質から構成されている。また、正極及び負極は、正極活物質及び負極活物質を含み、更に、導電性を改善するために固体電解質が通常含まれている。
Lithium secondary batteries have high voltage and high capacity, and are therefore widely used as power sources for mobile phones, digital cameras, video cameras, notebook computers, electric vehicles and the like. Generally, lithium secondary batteries in circulation use a liquid electrolyte in which an electrolytic salt is dissolved in a non-aqueous solvent as an electrolyte. Since non-aqueous solvents contain a lot of flammable solvents, it is desired to ensure safety.
In order to ensure safety, an all-solid lithium secondary battery using a so-called solid electrolyte in which an electrolyte is formed from a solid material without using a non-aqueous solvent has been proposed. This all-solid lithium secondary battery has a configuration including a positive electrode and a negative electrode, and a solid electrolyte layer positioned between the positive electrode and the negative electrode. The solid electrolyte layer is composed of a solid electrolyte. In addition, the positive electrode and the negative electrode include a positive electrode active material and a negative electrode active material, and a solid electrolyte is usually included in order to improve conductivity.

固体電解質層、正極及び負極は、原料をプレスすることにより一体化させて形成する方法が知られている。しかしながら、この方法では、原料同士の密着性が低いため、十分な導電性を得ることが困難であった。
そこで、パルスレーザー堆積技術を用いて正極活物質を固体電解質で被覆する方法が提案されている(Electrochemical and Solid-State Letters,13(6)A73-A75(2010):非特許文献1、Journal of Power Sources 196(2011)6735-6741:非特許文献2)。この方法では、正極活物質と固体電解質との密着性が高く、そのため導電性を高めることができるとされている。
A method in which the solid electrolyte layer, the positive electrode, and the negative electrode are integrally formed by pressing raw materials is known. However, in this method, since the adhesion between the raw materials is low, it is difficult to obtain sufficient conductivity.
Then, the method of coat | covering a positive electrode active material with a solid electrolyte using a pulse laser deposition technique is proposed (Electrochemical and Solid-State Letters, 13 (6) A73-A75 (2010): nonpatent literature 1, Journal of Power Sources 196 (2011) 6735-6741: Non-Patent Document 2). In this method, it is said that the adhesion between the positive electrode active material and the solid electrolyte is high, so that the conductivity can be increased.

Electrochemical and Solid-State Letters,13(6)A73-A75(2010)Electrochemical and Solid-State Letters, 13 (6) A73-A75 (2010) Journal of Power Sources 196(2011)6735-6741Journal of Power Sources 196 (2011) 6735-6741

パルスレーザー堆積技術のような気相法は、使用される装置が大掛かりになると共に成膜コストが高いだけでなく、連続して製造することが困難であるため、簡便な方法で固体電解質を含む層を形成することが望まれていた。   Vapor phase methods such as pulsed laser deposition techniques not only require large equipment and are expensive to form, but are difficult to continuously produce, so include solid electrolytes in a simple manner. It was desired to form a layer.

本発明の発明者等は、簡便に固体電解質を含む層を形成する方法を検討した結果、固体電解質を有機溶媒に溶かして得られた溶液を用いる塗布法であれば、単純な製造装置で、連続的に、安価に固体電解質を含む層を形成できることを見いだし本発明に到った。   As a result of studying a method for easily forming a layer containing a solid electrolyte, the inventors of the present invention, as a result, a simple manufacturing apparatus, if a coating method using a solution obtained by dissolving a solid electrolyte in an organic solvent, It has been found that a layer containing a solid electrolyte can be formed continuously and inexpensively, and the present invention has been achieved.

かくして本発明によれば、Li2S−Mxy(MはP、Si、Ge、B、Al及びGaから選択され、xとyは、Mの種類に応じて、化学量論比を与える数である)で表される固体電解質と、前記固体電解質を溶解しうる有機溶媒とを含むことを特徴とする全固体リチウム二次電池の固体電解質を含む層の形成用溶液が提供される。
また、本発明によれば、正極及び負極と、正極と負極間に位置する固体電解質層とを備え、固体電解質層、正極及び負極のいずれかが、上記形成用溶液の塗布及び乾燥により形成されてなることを特徴とする全固体リチウム二次電池が提供される。
更に、本発明によれば、正極及び負極と、正極と負極間に位置する固体電解質層とを備えた全固体リチウム二次電池の製造方法であり、固体電解質層、正極及び負極のいずれかが、上記形成用溶液を塗布及び乾燥することにより形成されることを特徴とする全固体リチウム二次電池の製造方法が提供される。
Thus, according to the present invention, Li 2 S-M x S y (M is selected from P, Si, Ge, B, Al and Ga, and x and y are the stoichiometric ratios depending on the type of M. A solution for forming a layer containing the solid electrolyte of the all-solid-state lithium secondary battery, comprising: a solid electrolyte represented by the formula (1): and an organic solvent capable of dissolving the solid electrolyte. .
In addition, according to the present invention, a positive electrode and a negative electrode, and a solid electrolyte layer positioned between the positive electrode and the negative electrode are provided, and any of the solid electrolyte layer, the positive electrode, and the negative electrode is formed by applying and drying the forming solution. An all-solid lithium secondary battery is provided.
Furthermore, according to the present invention, there is provided a method for producing an all-solid lithium secondary battery comprising a positive electrode and a negative electrode, and a solid electrolyte layer positioned between the positive electrode and the negative electrode, wherein any one of the solid electrolyte layer, the positive electrode, and the negative electrode A method for producing an all-solid lithium secondary battery is provided, which is formed by applying and drying the forming solution.

本発明によれば、固体電解質を含む層を簡便に形成可能な全固体リチウム二次電池の固体電解質を含む層の形成用溶液を提供できる。
また、以下の構成:
(1)有機溶媒が、低級脂肪族アルコール、低級脂肪族アミン、ホルムアミド及び低級アルキル基置換ホルムアミドから選択される
(2)低級脂肪族アルコールがメタノール又はエタノールであり、低級脂肪族アミンがエチレンジアミンであり、低級アルキル基置換ホルムアミドがN−メチルホルムアミドである
(3)Mxyが、P25である
(4)Li2S−Mxyが、Li2SとMxyとを50:50〜90:10(モル比)の割合で含む
(5)固体電解質を含む層が、固体電解質層、正極及び負極のいずれかである
のいずれかを有する場合、固体電解質を含む層をより簡便に形成可能な全固体リチウム二次電池の固体電解質を含む層の形成用溶液を提供できる。
ADVANTAGE OF THE INVENTION According to this invention, the solution for formation of the layer containing the solid electrolyte of the all-solid-state lithium secondary battery which can form the layer containing a solid electrolyte simply can be provided.
In addition, the following configuration:
(1) The organic solvent is selected from lower aliphatic alcohol, lower aliphatic amine, formamide, and lower alkyl group-substituted formamide. (2) The lower aliphatic alcohol is methanol or ethanol, and the lower aliphatic amine is ethylenediamine. (3) M x S y is P 2 S 5 (4) Li 2 S-M x S y is Li 2 S and M x S y In a ratio of 50:50 to 90:10 (molar ratio) (5) When the layer containing a solid electrolyte has any one of a solid electrolyte layer, a positive electrode and a negative electrode, a layer containing a solid electrolyte It is possible to provide a solution for forming a layer containing a solid electrolyte of an all-solid lithium secondary battery that can be more easily formed.

実施例1の固体電解質のラマンスペクトルである。2 is a Raman spectrum of the solid electrolyte of Example 1. FIG. 実施例1の固体電解質のX線回折パターンである。2 is an X-ray diffraction pattern of the solid electrolyte of Example 1. FIG. 実施例2の固体電解質とLiNbO3で被覆したLiCoO2のSEM写真及びEDXマッピング図である。Is a SEM photograph and EDX mapping diagram of LiCoO 2 coated with the solid electrolyte and the LiNbO 3 of Example 2. 実施例2のセルの充放電試験結果を示すグラフである。It is a graph which shows the charging / discharging test result of the cell of Example 2. 実施例2のセルの充放電試験結果を示すグラフである。It is a graph which shows the charging / discharging test result of the cell of Example 2. 実施例3の固体電解質のX線回折パターンである。4 is an X-ray diffraction pattern of the solid electrolyte of Example 3. FIG.

(全固体リチウム二次電池の固体電解質を含む層の形成用溶液)
本発明の形成用溶液は、全固体リチウム二次電池を構成する固体電解質を含む層であれば、いずれの層の形成にも使用できる。例えば、正極活物質と固体電解質を含む正極、負極活物質と固体電解質を含む負極、固体電解質を含む固体電解質層が挙げられる。
形成用溶液は、Li2S−Mxy(MはP、Si、Ge、B、Al及びGaから選択され、xとyは、Mの種類に応じて、化学量論比を与える数である)で表される固体電解質と、固体電解質を溶解しうる有機溶媒とを含む。
(Solution for forming a layer containing a solid electrolyte of an all-solid lithium secondary battery)
The forming solution of the present invention can be used for forming any layer as long as it contains a solid electrolyte constituting an all-solid lithium secondary battery. Examples include a positive electrode including a positive electrode active material and a solid electrolyte, a negative electrode including a negative electrode active material and a solid electrolyte, and a solid electrolyte layer including a solid electrolyte.
The forming solution is Li 2 S-M x S y (M is selected from P, Si, Ge, B, Al and Ga, where x and y are numbers giving a stoichiometric ratio depending on the type of M. And a solid electrolyte that can dissolve the solid electrolyte.

(1)固体電解質
(i)Mxy
硫化物であるMxy中、MはP、Si、Ge、B、Al及びGaから選択され、xとyは、Mの種類に応じて、化学量論比を与える数である。Mとして使用可能な6種の元素は、種々の価数をとり得、その価数に応じてxとyを設定できる。例えばPは3価及び5価、Siは4価、Geは2価及び4価、Bは3価、Alは3価、Gaは3価をとり得る。具体的なMxyとしては、P25、SiS2、GeS2、B23、Al23、Ga23等が挙げられる。これら具体的なMxyは、1種のみ使用してもよく、2種以上併用してもよい。例えば、2種併用する場合は、Li2S−Mx1y1−Mx2y2(x1、x2、y1及びy2はx及びyと同じ)で表され、例えば、Li2S−P25−GeS2が挙げられる。この内、P25が特に好ましい。
(1) Solid electrolyte (i) M x S y
In M x S y which is a sulfide, M is selected from P, Si, Ge, B, Al and Ga, and x and y are numbers giving a stoichiometric ratio depending on the type of M. The six elements that can be used as M can have various valences, and x and y can be set according to the valences. For example, P can be trivalent and pentavalent, Si can be tetravalent, Ge can be divalent and tetravalent, B can be trivalent, Al can be trivalent, and Ga can be trivalent. Specific examples of M x S y include P 2 S 5 , SiS 2 , GeS 2 , B 2 S 3 , Al 2 S 3 , Ga 2 S 3 and the like. These specific M x S y may be used alone or in combination of two or more. For example, when two types are used together, it is represented by Li 2 S-M x1 S y1 -M x2 S y2 (x1, x2, y1 and y2 are the same as x and y), for example, Li 2 S-P 2 S 5- GeS 2 is exemplified. Of these, P 2 S 5 is particularly preferred.

(ii)Li2S−Mxyの配合割合
上記2成分の混合割合は、固体電解質として使用可能でありさえすれば、特に限定されない。
Li2SとMxyとの比は、50:50〜90:10(モル比)の割合であることが好ましい。Li2Sの比が50より小さい場合や90より大きい場合、伝導度が低くなることがある。好ましい比は60:40〜80:20であり、より好ましい比は70:30〜80:20である。
(Ii) Mixing ratio of Li 2 S—M x S y The mixing ratio of the two components is not particularly limited as long as it can be used as a solid electrolyte.
The ratio of Li 2 S to M x S y is preferably a ratio of 50:50 to 90:10 (molar ratio). If the Li 2 S ratio is less than 50 or greater than 90, the conductivity may be low. A preferred ratio is 60:40 to 80:20, and a more preferred ratio is 70:30 to 80:20.

(iii)他の成分
固体電解質は、Li2SとMxy以外に、全固体リチウム二次電池に使用されている他の成分を含んでいてもよい。例えば、LiI、Li3PO4等の電解質、Fe、Zn及びBiの酸化物、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン等の結着材が挙げられる。
(Iii) Other components The solid electrolyte may contain other components used in the all-solid lithium secondary battery in addition to Li 2 S and M x S y . For example, electrolytes such as LiI and Li 3 PO 4 , binders such as oxides of Fe, Zn, and Bi, polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl acetate, polymethyl methacrylate, and polyethylene can be used.

(iv)固体電解質の製造方法
固体電解質の製造方法は、Li2SとMxy及び必要に応じて他の成分を混合可能な方法であれば、特に限定されない。特に、より均一に各成分を混合する観点から、メカニカルミリング処理により製造することが好ましい。
メカニカルミリング処理は、均一に各成分を混合できさえすれば、処理装置及び処理条件には特に限定されない。
処理装置としては、通常ボールミルが使用できる。ボールミルは、大きな機械的エネルギーが得られるため好ましい。ボールミルの中でも、遊星型ボールミルは、ポットが自転回転すると共に、台盤が自転の向きと逆方向に公転回転するため、高い衝撃エネルギーを効率よく発生させることができるので、好ましい。
(Iv) Manufacturing Method of Solid Electrolyte The manufacturing method of the solid electrolyte is not particularly limited as long as it is a method in which Li 2 S, M x S y and other components can be mixed as necessary. In particular, it is preferable to manufacture by mechanical milling from the viewpoint of mixing the components more uniformly.
The mechanical milling process is not particularly limited to a processing apparatus and processing conditions as long as each component can be mixed uniformly.
As a processing apparatus, a ball mill can be used normally. A ball mill is preferable because large mechanical energy can be obtained. Among the ball mills, the planetary ball mill is preferable because the pot rotates and the platform rotates in the direction opposite to the direction of rotation, so that high impact energy can be efficiently generated.

処理条件は、使用する処理装置に応じて適宜設定できる。例えば、ボールミルを使用する場合、回転速度が大きいほど及び/又は処理時間が長いほど、原料混合物が均一に混合できる。なお、「及び/又は」は、A及び/又はBで表現すると、A、B又は、A及びBを意味する。具体的には、遊星型ボールミルを使用する場合、50〜600回転/分の回転速度、0.1〜20時間の処理時間、1〜100kWh/原料混合物1kgの条件が挙げられる。より好ましい処理条件としては、200〜500回転/分の回転速度、1〜10時間の処理時間、6〜50kWh/原料混合物1kgが挙げられる。
更に、固体電解質は、有機溶媒に固体電解質を形成するための原料を溶解し、得られた溶液を乾燥する過程で原料を反応させて得ることも可能である。
The processing conditions can be appropriately set according to the processing apparatus to be used. For example, when using a ball mill, the higher the rotational speed and / or the longer the processing time, the more uniformly the raw material mixture can be mixed. Note that “and / or” means A, B, or A and B when expressed as A and / or B. Specifically, when a planetary ball mill is used, conditions of a rotation speed of 50 to 600 rotations / minute, a processing time of 0.1 to 20 hours, and 1 to 100 kWh / kg of a raw material mixture are exemplified. More preferable processing conditions include a rotational speed of 200 to 500 rotations / minute, a processing time of 1 to 10 hours, and 6 to 50 kWh / kg of a raw material mixture.
Further, the solid electrolyte can be obtained by dissolving the raw material for forming the solid electrolyte in an organic solvent and reacting the raw material in the process of drying the obtained solution.

(2)有機溶媒
有機溶媒は、固体電解質を溶解することができれば特に限定されない。有機溶媒は、室温(約25℃)、6〜12時間、500rpmの攪拌で、固体電解質を10mg/2ml以上溶解することが好ましい。10mg/2ml以上溶解することで、固体電解質を含む層をより簡便に形成可能な形成用溶液を提供できる。好ましい溶解度は100mg/2ml以上であり、より好ましい溶解度は300mg/2ml以上である。溶解度が高ければ高いほど溶液を容易に得られるため、溶解度に上限は特にない。
有機溶媒は、乾燥時における除去性を向上するためには沸点の低いものを、厚い層を少ない塗布回数で形成するためには溶解度の高いものを、選択することができる。
(2) Organic solvent The organic solvent is not particularly limited as long as it can dissolve the solid electrolyte. It is preferable that the organic solvent dissolve 10 mg / 2 ml or more of the solid electrolyte by stirring at 500 rpm at room temperature (about 25 ° C.) for 6 to 12 hours. By dissolving 10 mg / 2 ml or more, a forming solution capable of more easily forming a layer containing a solid electrolyte can be provided. The preferred solubility is 100 mg / 2 ml or more, and the more preferred solubility is 300 mg / 2 ml or more. Since the higher the solubility, the easier the solution can be obtained, there is no particular upper limit to the solubility.
An organic solvent having a low boiling point can be selected to improve removability during drying, and a solvent having high solubility can be selected to form a thick layer with a small number of coatings.

有機溶媒としては、例えば、低級脂肪族アルコール、低級脂肪族アミン、ホルムアミド及び低級アルキル基置換ホルムアミド、ヒドラジン関連化合物、低級脂肪族エーテルから選択できる。ここで、低級とは、炭素数1〜4であることが好ましい。低級脂肪族アルコールとしては、メタノール、エタノール、プロパノール、ブタノール等が挙げられる。低級脂肪族アミンとしては、エチレンジアミン等のジアミン等挙げられる。低級アルキル基置換ホルムアミドとしては、N−メチルホルムアミド、N,N−ジメチルホルムアミド等が挙げられる。低級脂肪族エーテルとしては、ジエチルエーテルやテトラヒドロフラン等が挙げられる。
上記有機溶媒の内、溶解度の観点から、N−メチルホルムアミドが特に好ましい。
(3)形成用溶液中の固体電解質の濃度
固体電解質の濃度は、形成用溶液を用いて固体電解質を含む層を塗布法により形成可能な濃度であれば特に限定されない。この濃度は、固体電解質と有機溶媒の種類、塗布法の種類に応じて適宜設定できる。
The organic solvent can be selected from, for example, lower aliphatic alcohols, lower aliphatic amines, formamides and lower alkyl group-substituted formamides, hydrazine-related compounds, and lower aliphatic ethers. Here, “lower” preferably has 1 to 4 carbon atoms. Examples of the lower aliphatic alcohol include methanol, ethanol, propanol, butanol and the like. Examples of lower aliphatic amines include diamines such as ethylenediamine. Examples of the lower alkyl group-substituted formamide include N-methylformamide and N, N-dimethylformamide. Examples of the lower aliphatic ether include diethyl ether and tetrahydrofuran.
Of the organic solvents, N-methylformamide is particularly preferable from the viewpoint of solubility.
(3) Concentration of solid electrolyte in forming solution The concentration of the solid electrolyte is not particularly limited as long as the layer containing the solid electrolyte can be formed by a coating method using the forming solution. This concentration can be appropriately set according to the type of solid electrolyte and organic solvent and the type of coating method.

(全固体リチウム二次電池)
全固体リチウム二次電池は、正極及び負極と、正極と負極間に位置する固体電解質層とを備えている。本発明では、固体電解質層、正極及び負極のいずれかが、上記形成用溶液の塗布及び乾燥により形成される。
(1)負極
負極は、特に限定されず、全固体リチウム二次電池に通常使用される負極をいずれも使用できる。
上記形成用溶液を使用して負極を形成する場合、負極活物質を含む形成用溶液が使用できる。負極活物質は、形成用溶液に溶解していても粒子状で分散していてもよい。この負極活物質としては、Li、In、Sn等の金属、それらの合金、グラファイト、SnO等の種々の遷移金属酸化物等が挙げられる。
更に、形成用溶液は、必要に応じて、結着剤、導電剤等を含んでいてもよい。
結着剤としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン等が挙げられる。
導電剤としては、天然黒鉛、人工黒鉛、アセチレンブラック、気相成長カーボンファィバ(VGCF)等が挙げられる。
上記形成用溶液を使用しない場合は、負極として、箔状のLi金属層又はLi合金層(例えば、Li−In合金、Li−Sn合金、Li−Si合金、Li−Al合金等)を使用できる。
(All-solid lithium secondary battery)
The all solid lithium secondary battery includes a positive electrode and a negative electrode, and a solid electrolyte layer positioned between the positive electrode and the negative electrode. In the present invention, any of the solid electrolyte layer, the positive electrode, and the negative electrode is formed by applying and drying the forming solution.
(1) Negative electrode A negative electrode is not specifically limited, Any negative electrode normally used for an all-solid-state lithium secondary battery can be used.
When forming a negative electrode using the above forming solution, a forming solution containing a negative electrode active material can be used. The negative electrode active material may be dissolved in the forming solution or may be dispersed in the form of particles. Examples of the negative electrode active material include metals such as Li, In, and Sn, alloys thereof, various transition metal oxides such as graphite and SnO, and the like.
Furthermore, the forming solution may contain a binder, a conductive agent, and the like as necessary.
Examples of the binder include polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl acetate, polymethyl methacrylate, and polyethylene.
Examples of the conductive agent include natural graphite, artificial graphite, acetylene black, and vapor grown carbon fiber (VGCF).
When the above forming solution is not used, a foil-like Li metal layer or Li alloy layer (eg, Li—In alloy, Li—Sn alloy, Li—Si alloy, Li—Al alloy, etc.) can be used as the negative electrode. .

また、上記Li金属層又はLi合金層以外に、粒状の負極活物質をプレスすることにより得られた負極を使用してもよい。このプレスにより得られる負極は、必要に応じて、結着剤、導電剤、固体電解質等を含んでいてもよい。この固体電解質には、上記形成用溶液を乾燥させることにより得られた固体電解質を使用してもよい。
負極は、SUS(ステンレススチール)、アルミニウム又は銅等の集電体を備えていてもよい。
Moreover, you may use the negative electrode obtained by pressing a granular negative electrode active material other than the said Li metal layer or Li alloy layer. The negative electrode obtained by this pressing may contain a binder, a conductive agent, a solid electrolyte, and the like as necessary. As the solid electrolyte, a solid electrolyte obtained by drying the forming solution may be used.
The negative electrode may include a current collector such as SUS (stainless steel), aluminum, or copper.

(2)正極
正極は、特に限定されず、全固体リチウム二次電池に通常使用される正極をいずれも使用できる。
上記形成用溶液を使用して正極を形成する場合、正極活物質を含む形成用溶液が使用できる。正極活物質は、形成用溶液に溶解していても粒子状で分散していてもよい。この正極活物質としては、Li4Ti512、LiCoO2、LiMnO2、LiVO2、LiCrO2、LiNiO2、Li2NiMn38、LiNi1/3Co1/3Mn1/32、S、Li2S等が挙げられる。この内、粒子状の正極活物質はLiNbO3等の材料で被覆されていてもよい。
更に、形成用溶液は、必要に応じて、結着剤、導電剤等を含んでいてもよい。
結着剤としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン等が挙げられる。
導電剤としては、天然黒鉛、人工黒鉛、アセチレンブラック、気相成長カーボンファィバ(VGCF)等が挙げられる。
上記形成用溶液を使用しない場合は、正極は、例えば、正極活物質及び、任意に結着剤、導電剤、固体電解質等を混合し、得られた混合物をプレスすることで、ペレット状として得ることができる。この固体電解質には、上記形成用溶液を乾燥させることにより得られた固体電解質を使用してもよい。
また、正極活物質として金属又はその合金からなる金属シート(箔)を使用する場合、それをそのまま使用可能である。
正極は、SUS、アルミニウム又は銅等の集電体の上に形成されていてもよい。
(2) Positive electrode A positive electrode is not specifically limited, Any positive electrode normally used for an all-solid-state lithium secondary battery can be used.
When forming a positive electrode using the said forming solution, the forming solution containing a positive electrode active material can be used. The positive electrode active material may be dissolved in the forming solution or may be dispersed in the form of particles. Examples of the positive electrode active material include Li 4 Ti 5 O 12 , LiCoO 2 , LiMnO 2 , LiVO 2 , LiCrO 2 , LiNiO 2 , Li 2 NiMn 3 O 8 , LiNi 1/3 Co 1/3 Mn 1/3 O 2. , S, Li 2 S and the like. Among these, the particulate positive electrode active material may be coated with a material such as LiNbO 3 .
Furthermore, the forming solution may contain a binder, a conductive agent, and the like as necessary.
Examples of the binder include polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl acetate, polymethyl methacrylate, and polyethylene.
Examples of the conductive agent include natural graphite, artificial graphite, acetylene black, and vapor grown carbon fiber (VGCF).
When the above forming solution is not used, the positive electrode is obtained as a pellet by, for example, mixing a positive electrode active material and, optionally, a binder, a conductive agent, a solid electrolyte, and the like, and pressing the obtained mixture. be able to. As the solid electrolyte, a solid electrolyte obtained by drying the forming solution may be used.
Moreover, when using the metal sheet (foil) which consists of a metal or its alloy as a positive electrode active material, it can be used as it is.
The positive electrode may be formed on a current collector such as SUS, aluminum, or copper.

(3)固体電解質層
上記形成用溶液を固体電解質層の形成に使用できる。
固体電解質層は、固体電解質をプレスすることにより得てもよい。
固体電解質層には、上記方法で得られたガラス状の固体電解質以外に、ガラスセラミック状の固体電解質も使用できる。ガラスセラミック状の固体電解質は、ガラス状の固体電解質を、熱処理に付すことで変換できる。この熱処理は、ガラス状の固体電解質のガラス転移点以上の温度で行うことができる。ガラス転移点は、通常、180〜240℃の範囲にあり、熱処理温度の上限は、特に限定されないが、通常、ガラス転移点の+100℃である。
熱処理時間は、ガラス状からガラスセラミックス状に変換し得る時間であり、熱処理温度が高いと短く、低いと長くなる。熱処理時間は、通常、0.1〜10時間の範囲である。
(3) Solid electrolyte layer The above-mentioned forming solution can be used for forming a solid electrolyte layer.
The solid electrolyte layer may be obtained by pressing the solid electrolyte.
In addition to the glassy solid electrolyte obtained by the above method, a glass ceramic solid electrolyte can also be used for the solid electrolyte layer. The glass-ceramic solid electrolyte can be converted by subjecting the glass-like solid electrolyte to a heat treatment. This heat treatment can be performed at a temperature equal to or higher than the glass transition point of the glassy solid electrolyte. The glass transition point is usually in the range of 180 to 240 ° C., and the upper limit of the heat treatment temperature is not particularly limited, but is usually + 100 ° C. of the glass transition point.
The heat treatment time is a time that can be converted from glass to glass ceramics, and is short when the heat treatment temperature is high and long when the heat treatment temperature is low. The heat treatment time is usually in the range of 0.1 to 10 hours.

(4)固体電解質を含む層の形成条件
固体電解質を含む層は、上記形成用溶液を塗布し、得られた塗膜を乾燥することにより得ることができる。塗布法としては、特に限定されず、例えば、刷毛塗り、滴下法、スピンコート法、スプレー法等が挙げられる。乾燥は、有機溶媒を除去できさえすれば、その条件は特に限定されない。通常、有機溶媒の沸点以上で行うことができる。また、減圧下で乾燥させれば、乾燥温度を下げることができる。
(5)全固体二次電池の製造方法
全固体二次電池は、例えば、
(i)正極、固体電解質層及び負極をペレット状に成形し、積層する方法、
(ii)基材上に塗布法で形成された正極、固体電解質層及び負極を基材から転写することで積層する方法、
(iii)正極、固体電解質層及び負極を順に塗布法により積層する方法
等により製造できる。
(4) Formation conditions of the layer containing a solid electrolyte The layer containing a solid electrolyte can be obtained by applying the above-mentioned forming solution and drying the resulting coating film. The application method is not particularly limited, and examples thereof include brush coating, a dropping method, a spin coating method, and a spray method. The drying conditions are not particularly limited as long as the organic solvent can be removed. Usually, it can carry out above the boiling point of an organic solvent. Moreover, if it dries under reduced pressure, a drying temperature can be lowered | hung.
(5) Manufacturing method of all solid state secondary battery All solid state secondary batteries are, for example,
(I) A method of forming a positive electrode, a solid electrolyte layer, and a negative electrode into pellets and laminating them,
(Ii) a method of laminating a positive electrode, a solid electrolyte layer and a negative electrode formed on a substrate by transfer from the substrate;
(Iii) A positive electrode, a solid electrolyte layer, and a negative electrode can be manufactured by a method of sequentially stacking by a coating method.

以下、実施例によって本発明を更に具体的に説明するが、本発明はこれらによりなんら制限されるものではない。
実施例1
Li2S(出光興産社製純度99.9%)及びP25(アルドリッチ社製純度99%)を80:20のモル比で遊星型ボールミルに投入した。投入後、メカニカルミリング処理することで、5μmの粒径のガラス状固体電解質(80Li2S・20P25)を得た。遊星型ボールミルは、Fritsch社製Pulverisette P−7を使用し、ポット及びボールは酸化ジルコニウム製であり、45mlのポット内に直径4mmのボールが500個入っているミルを使用した。メカニカルミリング処理は、510rpmの回転速度、室温、乾燥窒素グローブボックス内で20時間行った。なお、この合成法は、Akitoshi Hayashi et al., Electrochemistry Communications 5 (2003) 111−114のExperimentalの記載に準じている。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
Example 1
Li 2 S (purity 99.9%, manufactured by Idemitsu Kosan Co., Ltd.) and P 2 S 5 (purity 99%, manufactured by Aldrich) were charged into a planetary ball mill at a molar ratio of 80:20. After the charging, a mechanical milling process was performed to obtain a glassy solid electrolyte (80Li 2 S · 20P 2 S 5 ) having a particle size of 5 μm. As the planetary ball mill, Pulverisette P-7 manufactured by Fritsch was used, and the pot and balls were made of zirconium oxide, and a mill containing 500 balls having a diameter of 4 mm in a 45 ml pot was used. The mechanical milling process was performed for 20 hours in a dry nitrogen glove box at a rotation speed of 510 rpm, room temperature. This synthesis method is described in Akitoshi Hayashi et al. , Electrochemistry Communications 5 (2003) 111-114.

得られた固体電解質を、室温(約25℃)、500rpmの攪拌下で、N−メチルホルムアミド(NMF)に溶解した。得られた溶液は黄色を呈し、その固体電解質濃度は18.5重量%であった。
得られた溶液を、真空下、150℃で3時間乾燥させることで、黄色の固体電解質を析出させた。
溶解前の固体電解質と、析出後の固体電解質のラマンスペクトルを図1に、X線回折パターンを図2示す。図中、(a)は溶解前、(b)は溶液のスペクトル、(c)は析出後のスペクトル及びパターンを意味する。
図1から、溶解前及び析出後のいずれにおいてもPS4 3-ユニットに帰属するラマンバンドが得られていることが分かる。つまり、NMFは固体電解質と反応せず、固体電解質の溶解及び析出可能な溶媒であることを示している。図2から、析出後の固体電解質は、Li2S結晶及びLi3PS4結晶に帰属するピークが示されていることが分かる。
次に、溶解前の固体電解質の導電率を測定したところ、溶解前の固体電解質は2.3×10-4Scm-1を示した。析出後の固体電解質を上記固体電解質の製造時の条件でメカニカルミリング処理に付した後、導電率を測定したとこと、5.1×-5Scm-1を示し、溶解前と実質的に同程度であった。
更に、溶解前及び析出後の固体電解質のLi/PをICP発光分析により測定したところ、溶解前は3.87、析出後は3.80であり(理論値は4.00)、Liの欠損がほぼないことが分かった。
The obtained solid electrolyte was dissolved in N-methylformamide (NMF) under stirring at room temperature (about 25 ° C.) and 500 rpm. The resulting solution was yellow and the solid electrolyte concentration was 18.5% by weight.
The obtained solution was dried at 150 ° C. for 3 hours under vacuum to precipitate a yellow solid electrolyte.
FIG. 1 shows the Raman spectrum of the solid electrolyte before dissolution and the solid electrolyte after precipitation, and FIG. 2 shows the X-ray diffraction pattern. In the figure, (a) means before dissolution, (b) means the spectrum of the solution, and (c) means the spectrum and pattern after precipitation.
From FIG. 1, it can be seen that a Raman band belonging to the PS 4 3- unit is obtained both before dissolution and after precipitation. That is, NMF does not react with the solid electrolyte, indicating that the solid electrolyte can be dissolved and deposited. From FIG. 2, it can be seen that the solid electrolyte after deposition shows peaks attributed to the Li 2 S crystal and Li 3 PS 4 crystal.
Next, when the electrical conductivity of the solid electrolyte before dissolution was measured, the solid electrolyte before dissolution showed 2.3 × 10 −4 Scm −1 . The solid electrolyte after deposition was subjected to mechanical milling treatment under the conditions for the production of the solid electrolyte, and then the conductivity was measured, indicating 5.1 × −5 Scm −1 , substantially the same as before dissolution. It was about.
Furthermore, when Li / P of the solid electrolyte before and after dissolution was measured by ICP emission analysis, it was 3.87 before dissolution and 3.80 after precipitation (theoretical value is 4.00), and Li deficiency It turns out that there is almost no.

実施例2
正極活物質としてLiNbO3被覆LiCoO2を使用した。この正極活物質は、以下の手順で形成した。
LiNbO3の前駆体を含む溶液をLiCoO2上へスプレー塗布した後、350℃で熱処理することで得られた。
上記正極活物質を実施例1と同様にして得た固体電解質のNMF溶液に、正極活物質:固体電解質=92.5:7.5(重量比)となるように、投入した。投入後、室温(約25℃)、15分間、攪拌棒を用いて混合した。得られた分散液を、真空下、150℃で3時間乾燥させることで、固体電解質とLiNbO3で被覆したLiCoO2を得た。
Example 2
LiNbO 3 coated LiCoO 2 was used as the positive electrode active material. This positive electrode active material was formed by the following procedure.
A solution containing a precursor of LiNbO 3 was spray-coated on LiCoO 2 and then heat-treated at 350 ° C.
The positive electrode active material was charged into an NMF solution of a solid electrolyte obtained in the same manner as in Example 1 so that the positive electrode active material: solid electrolyte = 92.5: 7.5 (weight ratio). After the addition, the mixture was mixed using a stir bar at room temperature (about 25 ° C.) for 15 minutes. The obtained dispersion was dried at 150 ° C. for 3 hours under vacuum to obtain LiCoO 2 coated with a solid electrolyte and LiNbO 3 .

得られたLiCoO2の走査型電子顕微鏡(SEM)写真を図3(a)、図3(a)に対応するCo、O、S及びP原子のエネルギー分散型X線分光法(EDX)によるマッピング図を図3(b)〜(e)に示す。これら図から、LiCoO2を構成するCoやOの上に、固体電解質を構成するSやPが観測されている。従って、これら図からLiCoO2が固体電解質で被覆されていることが分かる。
得られた固体電解質被覆LiCoO2とガラスセラミック状固体電解質(80Li2S・20P25)とを、70:30(重量比)となるように混合した。混合は、めのう乳鉢と乳棒を用いて、室温(約25℃)で15分間の条件下で行った。
なお、ガラスセラミック状固体電解質は、上記ガラス状固体電解質を、室温(25℃)から結晶化温度以上の220℃に向かって加熱し、ガラスセラミックス化することにより得た。
得られた混合物10mgを面積0.785cm2の成形部を有するペレット成形機を用いて、370MPaの圧力でプレスすることで、ペレット状の正極(厚さ約1mm)を得た。
Mapping of the obtained LiCoO 2 by scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDX) of Co, O, S and P atoms corresponding to FIGS. 3 (a) and 3 (a) The figure is shown in FIGS. From these figures, S and P constituting the solid electrolyte are observed on Co and O constituting LiCoO 2 . Therefore, it can be seen from these figures that LiCoO 2 is coated with the solid electrolyte.
The obtained solid electrolyte-coated LiCoO 2 and glass ceramic solid electrolyte (80Li 2 S · 20P 2 S 5 ) were mixed so as to be 70:30 (weight ratio). The mixing was performed using an agate mortar and pestle at room temperature (about 25 ° C.) for 15 minutes.
The glass-ceramic solid electrolyte was obtained by heating the glass-like solid electrolyte from room temperature (25 ° C.) toward 220 ° C., which is equal to or higher than the crystallization temperature, to form glass ceramics.
A pellet-shaped positive electrode (thickness: about 1 mm) was obtained by pressing 10 mg of the obtained mixture using a pellet molding machine having a molding part with an area of 0.785 cm 2 at a pressure of 370 MPa.

次に、上記ガラスセラミック状固体電解質を正極と同様にしてプレスすることで、ペレット状の固体電解質層(厚さ約1mm)を得た。
正極、固体電解質層及び対極としてのインジウム箔をこの順で積層し、積層体をステンレススチール製の集電体で挟むことで電池セル(全固体リチウム二次電池)を得た。このセルを、25℃、0.13mAcm-2の電流密度での、充放電試験に付した。試験結果を図4に示す。
また、固体電解質で被覆しない正極活物質を使用したこと以外は、上記と同様にして得られたセルの試験結果を図5に示す。
図4と5とから、正極活物質を固体電解質で被覆することで、充放電容量が1割程度向上していることが分かる。
Next, the glass ceramic solid electrolyte was pressed in the same manner as the positive electrode to obtain a pellet-shaped solid electrolyte layer (thickness: about 1 mm).
A positive electrode, a solid electrolyte layer, and an indium foil as a counter electrode were laminated in this order, and the laminate was sandwiched between stainless steel current collectors to obtain a battery cell (all-solid lithium secondary battery). This cell was subjected to a charge / discharge test at 25 ° C. and a current density of 0.13 mAcm −2 . The test results are shown in FIG.
Moreover, the test result of the cell obtained by carrying out similarly to the above except having used the positive electrode active material which is not coat | covered with a solid electrolyte is shown in FIG.
4 and 5, it can be seen that the charge / discharge capacity is improved by about 10% by coating the positive electrode active material with the solid electrolyte.

実施例3
固体電解質の各種有機溶媒に対する溶解性を確認した。
固体電解質は、実施例1と同じものを使用した。有機溶媒は、メタノール、エタノール、ジメチルスルホキシド(DMSO)、アセトニトリル、エチレンジアミン(EDA)及びNMFを使用した。
2mlの各有機溶媒に、室温(約25℃)、500rpmの攪拌下で、10時間後に溶解しうる固体電解質の量を測定した。結果を表1に示す。
Example 3
The solubility of the solid electrolyte in various organic solvents was confirmed.
The same solid electrolyte as in Example 1 was used. As the organic solvent, methanol, ethanol, dimethyl sulfoxide (DMSO), acetonitrile, ethylenediamine (EDA) and NMF were used.
In 2 ml of each organic solvent, the amount of solid electrolyte that could be dissolved after 10 hours was measured at room temperature (about 25 ° C.) at 500 rpm with stirring. The results are shown in Table 1.

表1から、メタノール、エタノール及びNMFは、十分な溶解度を有し、本発明の有機溶媒として好ましいことが確認できた。
EDAについては、溶解量が若干少ないが、実用には十分であることが確認できた。更に、固体電解質を75Li2S・25P25に変更し、上記と同様に溶解量を測定したところ、300mg溶解可能であった。
表1のエタノール溶液を、真空下、150℃で3時間乾燥させることで、得られた固体電解質のX線回折パターンを図6示す。図6中、横軸に示されている5本のピークは、Li7PS6の文献値のピークを意味する。図6から、乾燥後の固体電解質は、Li7PS6の結晶構造を有していることが分かる。
From Table 1, it was confirmed that methanol, ethanol and NMF have sufficient solubility and are preferable as the organic solvent of the present invention.
About EDA, although the amount of dissolution was a little small, it was confirmed that it was sufficient for practical use. Furthermore, when the solid electrolyte was changed to 75Li 2 S · 25P 2 S 5 and the amount of dissolution was measured in the same manner as described above, 300 mg could be dissolved.
FIG. 6 shows an X-ray diffraction pattern of the solid electrolyte obtained by drying the ethanol solution of Table 1 at 150 ° C. for 3 hours under vacuum. In FIG. 6, the five peaks shown on the horizontal axis mean the peaks of Li 7 PS 6 literature values. From FIG. 6, it can be seen that the solid electrolyte after drying has a crystal structure of Li 7 PS 6 .

Claims (8)

Li2S−Mxy(MはP、Si、Ge、B、Al及びGaから選択され、xとyは、Mの種類に応じて、化学量論比を与える数である)で表される固体電解質と、前記固体電解質を溶解しうる有機溶媒とを含むことを特徴とする全固体リチウム二次電池の固体電解質を含む層の形成用溶液。 Li 2 S-M x S y (M is selected from P, Si, Ge, B, Al and Ga, and x and y are numbers giving a stoichiometric ratio depending on the type of M). A solution for forming a layer containing a solid electrolyte of an all-solid lithium secondary battery, comprising: a solid electrolyte to be dissolved; and an organic solvent capable of dissolving the solid electrolyte. 前記有機溶媒が、低級脂肪族アルコール、低級脂肪族アミン、ホルムアミド及び低級アルキル基置換ホルムアミドから選択される請求項1に記載の全固体リチウム二次電池の固体電解質を含む層の形成用溶液。   The solution for forming a layer containing the solid electrolyte of the all-solid-state lithium secondary battery according to claim 1, wherein the organic solvent is selected from a lower aliphatic alcohol, a lower aliphatic amine, formamide, and a lower alkyl group-substituted formamide. 前記低級脂肪族アルコールがメタノール又はエタノールであり、前記低級脂肪族アミンがエチレンジアミンであり、前記低級アルキル基置換ホルムアミドがN−メチルホルムアミドである請求項2に記載の全固体リチウム二次電池の固体電解質を含む層の形成用溶液。   The solid electrolyte of an all-solid-state lithium secondary battery according to claim 2, wherein the lower aliphatic alcohol is methanol or ethanol, the lower aliphatic amine is ethylenediamine, and the lower alkyl group-substituted formamide is N-methylformamide. A solution for forming a layer containing. 前記Mxyが、P25である請求項1〜3のいずれか1つに記載の全固体リチウム二次電池の固体電解質を含む層の形成用溶液。 The solution for forming a layer containing a solid electrolyte of an all-solid lithium secondary battery according to any one of claims 1 to 3, wherein the M x S y is P 2 S 5 . 前記Li2S−Mxyが、Li2SとMxyとを50:50〜90:10(モル比)の割合で含む請求項1〜4のいずれか1つに記載の全固体リチウム二次電池の固体電解質を含む層の形成用溶液。 The Li 2 S-M x S y has a Li 2 S and M x S y 50: 50~90: 10 according to any one of claims 1 to 4 in a proportion (molar ratio) total A solution for forming a layer containing a solid electrolyte of a solid lithium secondary battery. 前記固体電解質を含む層が、固体電解質層、正極及び負極のいずれかである請求項1〜5のいずれか1つに記載の全固体リチウム二次電池の固体電解質を含む層の形成用溶液。   The solution for forming a layer containing a solid electrolyte of an all-solid lithium secondary battery according to any one of claims 1 to 5, wherein the layer containing the solid electrolyte is any one of a solid electrolyte layer, a positive electrode, and a negative electrode. 正極及び負極と、正極と負極間に位置する固体電解質層とを備え、固体電解質層、正極及び負極のいずれかが、請求項1〜6のいずれか1つに記載の形成用溶液の塗布及び乾燥により形成されてなることを特徴とする全固体リチウム二次電池。   A positive electrode and a negative electrode, and a solid electrolyte layer located between the positive electrode and the negative electrode, and any one of the solid electrolyte layer, the positive electrode, and the negative electrode is applied with the forming solution according to claim 1 and An all solid lithium secondary battery formed by drying. 正極及び負極と、正極と負極間に位置する固体電解質層とを備えた全固体リチウム二次電池の製造方法であり、固体電解質層、正極及び負極のいずれかが、請求項1〜6のいずれか1つに記載の形成用溶液を塗布及び乾燥することにより形成されることを特徴とする全固体リチウム二次電池の製造方法。   It is a manufacturing method of the all-solid-state lithium secondary battery provided with the positive electrode and the negative electrode, and the solid electrolyte layer located between a positive electrode and a negative electrode, and any one of a solid electrolyte layer, a positive electrode, and a negative electrode is any one of Claims 1-6 A method for producing an all-solid-state lithium secondary battery, which is formed by applying and drying the forming solution according to claim 1.
JP2013064161A 2013-03-26 2013-03-26 Method for producing active material coated with solid electrolyte, solution for forming layer containing solid electrolyte of all-solid lithium secondary battery, all-solid lithium secondary battery and method for producing the same Active JP6095218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013064161A JP6095218B2 (en) 2013-03-26 2013-03-26 Method for producing active material coated with solid electrolyte, solution for forming layer containing solid electrolyte of all-solid lithium secondary battery, all-solid lithium secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013064161A JP6095218B2 (en) 2013-03-26 2013-03-26 Method for producing active material coated with solid electrolyte, solution for forming layer containing solid electrolyte of all-solid lithium secondary battery, all-solid lithium secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014191899A true JP2014191899A (en) 2014-10-06
JP6095218B2 JP6095218B2 (en) 2017-03-15

Family

ID=51838000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013064161A Active JP6095218B2 (en) 2013-03-26 2013-03-26 Method for producing active material coated with solid electrolyte, solution for forming layer containing solid electrolyte of all-solid lithium secondary battery, all-solid lithium secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP6095218B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002080A (en) * 2013-06-14 2015-01-05 出光興産株式会社 Method for manufacturing all solid state battery
JP2015201372A (en) * 2014-04-09 2015-11-12 出光興産株式会社 Manufacturing method of active material complex
WO2017216006A1 (en) 2016-06-13 2017-12-21 Basf Se Process for preparing thin films of solid electrolytes comprising lithium and sulfur
JP2018073469A (en) * 2016-10-24 2018-05-10 トヨタ自動車株式会社 All-solid lithium battery
JP2019121499A (en) * 2017-12-28 2019-07-22 国立大学法人豊橋技術科学大学 Composite particles for lithium ion battery and method for producing the same
JP2020027781A (en) * 2018-08-16 2020-02-20 三菱瓦斯化学株式会社 Method for manufacturing lgps-based solid electrolyte
WO2020105737A1 (en) 2018-11-22 2020-05-28 出光興産株式会社 Method for producing solid electrolyte, and electrolyte precursor
WO2021230189A1 (en) 2020-05-13 2021-11-18 出光興産株式会社 Solid electrolyte producing method
KR20220047254A (en) 2019-08-09 2022-04-15 이데미쓰 고산 가부시키가이샤 Electrode composite and manufacturing method thereof
KR20220065755A (en) 2019-09-17 2022-05-20 이데미쓰 고산 가부시키가이샤 Method for preparing solid electrolyte and electrolyte precursor
KR20230010639A (en) 2020-05-13 2023-01-19 이데미쓰 고산 가부시키가이샤 Manufacturing method of solid electrolyte
KR20230015357A (en) 2020-05-27 2023-01-31 이데미쓰 고산 가부시키가이샤 Electrode composite and its manufacturing method
US11973185B2 (en) 2020-05-07 2024-04-30 Idemitsu Kosan Co., Ltd. Method for producing sulfide solid electrolyte
US11978848B2 (en) 2020-05-27 2024-05-07 Idemitsu Kosan Co., Ltd. Method for producing solid electrolyte

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199003A (en) * 2011-03-18 2012-10-18 Toyota Motor Corp Slurry, production method of solid electrolyte layer and production method of electrode active material layer
JP2012212652A (en) * 2011-03-18 2012-11-01 Toyota Motor Corp Slurry, method for forming solid electrolyte layer, method for forming electrode active material layer, and method for manufacturing all-solid battery
WO2012176266A1 (en) * 2011-06-20 2012-12-27 トヨタ自動車株式会社 Solid electrolyte microparticle production method
JP2013179025A (en) * 2012-02-03 2013-09-09 Idemitsu Kosan Co Ltd Alkali ion electrolyte composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199003A (en) * 2011-03-18 2012-10-18 Toyota Motor Corp Slurry, production method of solid electrolyte layer and production method of electrode active material layer
JP2012212652A (en) * 2011-03-18 2012-11-01 Toyota Motor Corp Slurry, method for forming solid electrolyte layer, method for forming electrode active material layer, and method for manufacturing all-solid battery
WO2012176266A1 (en) * 2011-06-20 2012-12-27 トヨタ自動車株式会社 Solid electrolyte microparticle production method
JP2013179025A (en) * 2012-02-03 2013-09-09 Idemitsu Kosan Co Ltd Alkali ion electrolyte composition

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002080A (en) * 2013-06-14 2015-01-05 出光興産株式会社 Method for manufacturing all solid state battery
JP2015201372A (en) * 2014-04-09 2015-11-12 出光興産株式会社 Manufacturing method of active material complex
WO2017216006A1 (en) 2016-06-13 2017-12-21 Basf Se Process for preparing thin films of solid electrolytes comprising lithium and sulfur
JP2018073469A (en) * 2016-10-24 2018-05-10 トヨタ自動車株式会社 All-solid lithium battery
JP7030322B2 (en) 2017-12-28 2022-03-07 国立大学法人豊橋技術科学大学 Composite particles for lithium-ion batteries and their manufacturing methods
JP2019121499A (en) * 2017-12-28 2019-07-22 国立大学法人豊橋技術科学大学 Composite particles for lithium ion battery and method for producing the same
JP2020027781A (en) * 2018-08-16 2020-02-20 三菱瓦斯化学株式会社 Method for manufacturing lgps-based solid electrolyte
JP7107087B2 (en) 2018-08-16 2022-07-27 三菱瓦斯化学株式会社 Method for producing LGPS-based solid electrolyte
KR20210091047A (en) 2018-11-22 2021-07-21 이데미쓰 고산 가부시키가이샤 Method for preparing solid electrolyte and electrolyte precursor
US11139505B2 (en) 2018-11-22 2021-10-05 Idemitsu Kosan Co., Ltd. Method for producing solid electrolyte, and electrolyte precursor
WO2020105737A1 (en) 2018-11-22 2020-05-28 出光興産株式会社 Method for producing solid electrolyte, and electrolyte precursor
KR20220047254A (en) 2019-08-09 2022-04-15 이데미쓰 고산 가부시키가이샤 Electrode composite and manufacturing method thereof
DE112020004437T5 (en) 2019-09-17 2022-06-23 Idemitsu Kosan Co., Ltd. METHODS OF PREPARATION FOR SOLID ELECTROLYTES AND ELECTROLYTE PRECURSORS
KR20220065755A (en) 2019-09-17 2022-05-20 이데미쓰 고산 가부시키가이샤 Method for preparing solid electrolyte and electrolyte precursor
US11973185B2 (en) 2020-05-07 2024-04-30 Idemitsu Kosan Co., Ltd. Method for producing sulfide solid electrolyte
WO2021230189A1 (en) 2020-05-13 2021-11-18 出光興産株式会社 Solid electrolyte producing method
KR20230008725A (en) 2020-05-13 2023-01-16 이데미쓰 고산 가부시키가이샤 Manufacturing method of solid electrolyte
KR20230010639A (en) 2020-05-13 2023-01-19 이데미쓰 고산 가부시키가이샤 Manufacturing method of solid electrolyte
KR20230015357A (en) 2020-05-27 2023-01-31 이데미쓰 고산 가부시키가이샤 Electrode composite and its manufacturing method
US11978848B2 (en) 2020-05-27 2024-05-07 Idemitsu Kosan Co., Ltd. Method for producing solid electrolyte

Also Published As

Publication number Publication date
JP6095218B2 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
JP6095218B2 (en) Method for producing active material coated with solid electrolyte, solution for forming layer containing solid electrolyte of all-solid lithium secondary battery, all-solid lithium secondary battery and method for producing the same
JP6329745B2 (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
JP5388069B2 (en) Positive electrode for all-solid lithium secondary battery and method for producing the same
Xu et al. The preparation and role of Li2ZrO3 surface coating LiNi0. 5Co0. 2Mn0. 3O2 as cathode for lithium-ion batteries
CN107017388A (en) A kind of preparation method of composite positive pole for solid lithium ion battery
JP5686300B2 (en) Solid electrolyte material and all solid lithium secondary battery
Moorhead-Rosenberg et al. In situ mitigation of first-cycle anode irreversibility in a new spinel/FeSb lithium-ion cell enabled via a microwave-assisted chemical lithiation process
Yu et al. High-temperature chemical stability of Li1. 4Al0. 4Ti1. 6 (PO4) 3 solid electrolyte with various cathode materials for solid-state batteries
WO2015050131A1 (en) Solution for forming layer that contains solid electrolyte for all-solid-state alkali metal secondary batteries, coated active material particles, electrode, all-solid-state alkali metal secondary battery and method for manufacturing same
CN106159318A (en) Novel slice type solid-state serondary lithium battery that garnet-type solid electrolyte supports and preparation method thereof
JP6937009B2 (en) Solid electrolyte layer for all-solid-state alkali metal rechargeable battery and all-solid-state alkali metal rechargeable battery
Wang et al. Improved lithium storage performance of lithium sodium titanate anode by titanium site substitution with aluminum
CN105938899A (en) Preparation method and application of cathode material of fast ion conductor coated modified lithium ion battery
Yao et al. Fabrication of Magnéli phase Ti 4 O 7 nanorods as a functional sulfur material host for lithium-sulfur battery cathode
JP2014209430A (en) Method for manufacturing sulfide-based solid electrolyte slurry and sulfide-based solid electrolyte slurry produced thereby, and method for manufacturing sulfide-based solid electrolyte powder and sulfide-based solid electrolyte powder produced thereby
WO2015037270A1 (en) Solid electrolyte, and all-solid ion secondary battery using same
Jo et al. Controlling Solid-Electrolyte-Interphase Layer by Coating P-Type Semiconductor NiO x on Li4Ti5O12 for High-Energy-Density Lithium-Ion Batteries
Xiao et al. Enabling LiNi0. 88Co0. 09Al0. 03O2 cathode materials with stable interface by modifying electrolyte with trimethyl borate
Xiao et al. Electrochemical and transport properties of Te-doped Li4Ti5O12 as anode material for lithium-ion half/full batteries
JP7212318B2 (en) Positive electrode active material for sodium ion secondary battery
Han et al. A Low-Cost Liquid-Phase Method of Synthesizing High-Performance Li6PS5Cl Solid-Electrolyte
CN102024944A (en) Method used for preparing anode material lithium titanate of lithium ion secondary battery
CN101764227A (en) Lithium ferrosilicon silicate/carbon composite cathode material and preparation method thereof
Surace et al. Improving the cycling stability of SnO2–graphite electrodes
Wang et al. Air-Stable Lithium Metal Anodes: A Perspective of Surface Engineering from Different Dimensions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R150 Certificate of patent or registration of utility model

Ref document number: 6095218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250