JP2014191888A - Electrode terminal connection body and manufacturing method therefor - Google Patents
Electrode terminal connection body and manufacturing method therefor Download PDFInfo
- Publication number
- JP2014191888A JP2014191888A JP2013064041A JP2013064041A JP2014191888A JP 2014191888 A JP2014191888 A JP 2014191888A JP 2013064041 A JP2013064041 A JP 2013064041A JP 2013064041 A JP2013064041 A JP 2013064041A JP 2014191888 A JP2014191888 A JP 2014191888A
- Authority
- JP
- Japan
- Prior art keywords
- electrode terminal
- metal member
- mounting hole
- metal
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Connection Of Batteries Or Terminals (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
Description
本発明は、互いに異種金属で形成された正極端子と負極端子とを電気的に接続する電極端子接続体及びその製造方法に関する。 The present invention relates to an electrode terminal connector for electrically connecting a positive electrode terminal and a negative electrode terminal which are formed of different metals, and a method for manufacturing the electrode terminal connector.
近年、リチウムイオン二次電池に代表される非水電解質二次電池の実用化が進んでいる。非水電解質二次電池は、鉛蓄電池等の他の電池と比較して単位体積(又は単位質量)当たりのエネルギ出力が高いことから、移動体通信機器やノートパソコンを始め、電気自動車やハイブリッド自動車、更には太陽電池等の再生可能エネルギを利用した電力の蓄電システムへの適用が期待されている。 In recent years, non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries have been put into practical use. Non-aqueous electrolyte secondary batteries have a higher energy output per unit volume (or unit mass) than other batteries such as lead-acid batteries, so mobile communication devices, laptop computers, electric vehicles, and hybrid vehicles Furthermore, application to electric power storage systems using renewable energy such as solar cells is expected.
このような非水電解質二次電池は、正極と負極との間にセパレータを配して積層構造とした電極群と、電極群を収容するための外装体と、外装体に封入された電解液と、を備えている。 Such a nonaqueous electrolyte secondary battery includes an electrode group having a laminated structure in which a separator is disposed between a positive electrode and a negative electrode, an exterior body for housing the electrode group, and an electrolyte solution enclosed in the exterior body And.
正極の基材としてはアルミニウムが用いられ、負極の基材としては銅が用いられている。正極にはアルミニウムやアルミニウム合金からなる正極端子が電気的に接続されており、負極には銅や銅合金からなる負極端子が電気的に接続されている。 Aluminum is used as the base material for the positive electrode, and copper is used as the base material for the negative electrode. A positive electrode terminal made of aluminum or an aluminum alloy is electrically connected to the positive electrode, and a negative electrode terminal made of copper or a copper alloy is electrically connected to the negative electrode.
この非水電解質二次電池は出力の小さな小型機器では単体で用いられるが、大きな出力が必要な大型機器では単体の出力では当然に足りないため、複数の非水電解質二次電池を直並列接続して所望の出力を得るようにしている。 This non-aqueous electrolyte secondary battery is used as a single unit in small devices with small output, but it is naturally not enough for large devices that require large output, so multiple non-aqueous electrolyte secondary batteries are connected in series and parallel. Thus, a desired output is obtained.
この場合、正極端子と負極端子とを電気的に接続する必要があるが、前述の通り、正極端子と負極端子とが互いに異種金属で形成されているため、異種金属同士の接合を行わなければならない。異種金属同士の接合では、金属のイオン化傾向の違いによる局部電池効果によって接合部の腐食・高抵抗化の問題が懸念される。 In this case, it is necessary to electrically connect the positive electrode terminal and the negative electrode terminal. However, as described above, since the positive electrode terminal and the negative electrode terminal are formed of different metals, it is necessary to join different metals. Don't be. In the joining of dissimilar metals, there is a concern about the problem of corrosion and high resistance of the joint due to the local battery effect due to the difference in metal ionization tendency.
また、接合自体についても金属同士の接合の手法として一般的な抵抗溶接等では金属のそれぞれが持つ融点の違いにより、安定した接合強度を得るのは困難であるという問題がある。安定した接合強度を得られなければ、耐振動性の観点から好ましいとは言えない。 Further, as for the joining itself, there is a problem that it is difficult to obtain a stable joining strength due to a difference in melting point of each metal in general resistance welding as a technique for joining metals. If stable bonding strength cannot be obtained, it cannot be said that it is preferable from the viewpoint of vibration resistance.
例えば、特許文献1には、正極端子と接続可能とされた正極接続部と、負極端子と接続可能とされた負極接続部と、を備え、正極接続部の周りを負極接続部が取り囲む、又は負極接続部の周りを正極接続部が取り囲むように配備されていると共に、正極接続部と負極接続部とが金属的結合により一体的に結合された電極端子接続体が開示されている。 For example, Patent Document 1 includes a positive electrode connection portion that can be connected to the positive electrode terminal and a negative electrode connection portion that can be connected to the negative electrode terminal, and the negative electrode connection portion surrounds the positive electrode connection portion, or An electrode terminal connection body is disclosed in which a positive electrode connection portion is disposed so as to surround the negative electrode connection portion, and the positive electrode connection portion and the negative electrode connection portion are integrally bonded by metal bonding.
また、特許文献2には、一方の電極端子に連結すると共にその電極端子と同種金属で形成された電極部と、電極部に連接すると共に他方の電極端子と同種金属で形成されたバスバー部と、を備え、電極部とバスバー部とが拡散接合により一体化された電極端子接続体が開示されている。 Patent Document 2 discloses an electrode portion that is connected to one electrode terminal and formed of the same metal as the electrode terminal, and a bus bar portion that is connected to the electrode portion and formed of the same metal as the other electrode terminal. , And an electrode terminal connector in which an electrode part and a bus bar part are integrated by diffusion bonding is disclosed.
これらの電極端子接続体によれば、電極端子接続体と電極端子との接合を同種金属同士の接合とすることができるため、局部電池効果による腐食・高抵抗化を原理的に発生させずに、また金属同士の接合の手法として抵抗溶接等の簡便なものを採用することが可能となる。 According to these electrode terminal connecting bodies, since the joining of the electrode terminal connecting body and the electrode terminals can be made of the same kind of metals, it is possible to prevent the occurrence of corrosion and high resistance due to the local battery effect in principle. In addition, a simple method such as resistance welding can be adopted as a method for joining the metals.
しかしながら、特許文献1又は2に記載された電極端子接続体は、そもそも異種金属同士が結合したものであり、その結合部においても局部電池効果によって腐食・高抵抗化が生じる可能性がある。 However, the electrode terminal connector described in Patent Document 1 or 2 is originally a combination of dissimilar metals, and there is a possibility that corrosion and high resistance may occur at the joint due to the local battery effect.
そこで、本発明の目的は、電極端子接続体の結合部における腐食・高抵抗化を抑制することが可能な電極端子接続体及びその製造方法を提供することにある。 Then, the objective of this invention is providing the electrode terminal connector which can suppress the corrosion and high resistance in the coupling | bond part of an electrode terminal connector, and its manufacturing method.
この目的を達成するために創案された本発明は、互いに異種金属で形成された正極端子と負極端子とを電気的に接続する電極端子接続体において、前記正極端子と同種金属で形成された正極端子接続部と、前記負極端子と同種金属で形成された負極端子接続部と、を備え、前記正極端子接続部と前記負極端子接続部とが前記正極端子を形成する金属と前記負極端子を形成する金属との間のイオン化傾向を有する金属で形成された介在部を介して結合されている電極端子接続体である。 The present invention devised to achieve this object is a positive electrode formed of the same kind of metal as the positive terminal, in an electrode terminal connector for electrically connecting a positive terminal and a negative terminal formed of different metals. A terminal connection portion and a negative electrode terminal connection portion formed of the same metal as the negative electrode terminal, wherein the positive electrode terminal connection portion and the negative electrode terminal connection portion form the positive electrode terminal and the metal It is the electrode terminal connection body couple | bonded through the interposition part formed with the metal which has the ionization tendency between the metal to do.
また、本発明は、互いに異種金属で形成された正極端子と負極端子とを電気的に接続する電極端子接続体の製造方法において、前記正極端子と同種金属で形成された薄板にプレス加工を施して第1の取付孔を形成する工程と、前記正極端子を形成する金属と前記負極端子を形成する金属との間のイオン化傾向を有する金属で形成された第1の厚板にプレス加工を施して前記第1の取付孔よりも小径の第1の金属部材を形成する工程と、前記第1の取付孔の内部に前記第1の金属部材を挿入すると共に前記第1の取付孔の内部で前記第1の金属部材を押し潰して前記第1の取付孔を拡張しつつ前記薄板と前記第1の金属部材とを接合する工程と、前記第1の取付孔の内周部分に前記第1の金属部材が残存するように、前記第1の金属部材の中央部にプレス加工を施して第2の取付孔を形成する工程と、前記負極端子と同種金属で形成された第2の厚板にプレス加工を施して前記第2の取付孔よりも小径の第2の金属部材を形成する工程と、前記第2の取付孔の内部に前記第2の金属部材を挿入すると共に前記第2の取付孔の内部で前記第2の金属部材を押し潰して前記第2の取付孔を拡張しつつ前記第1の金属部材と前記第2の金属部材とを接合する工程と、を備える電極端子接続体の製造方法である。 Further, the present invention provides a method of manufacturing an electrode terminal assembly in which a positive electrode terminal and a negative electrode terminal formed of different kinds of metals are electrically connected to each other, by pressing a thin plate formed of the same metal as the positive electrode terminal. Pressing the first thick plate made of a metal having an ionization tendency between the metal forming the positive electrode terminal and the metal forming the negative electrode terminal. Forming a first metal member having a diameter smaller than that of the first mounting hole, inserting the first metal member into the first mounting hole, and inside the first mounting hole. Joining the thin plate and the first metal member while squeezing the first metal member to expand the first attachment hole; and an inner peripheral portion of the first attachment hole. The center of the first metal member so that the metal member remains Forming a second mounting hole by pressing the second thick plate formed of the same metal as that of the negative electrode terminal, and pressing the second thick plate with a second diameter smaller than that of the second mounting hole. Forming the second metal member, inserting the second metal member into the second mounting hole, and squeezing the second metal member into the second mounting hole. A step of joining the first metal member and the second metal member while expanding a mounting hole of the electrode terminal assembly.
前記薄板にプレス加工を施して正極端子用固定孔を形成する工程と、前記第2の取付孔の内周部分に前記第2の金属部材が残存するように、前記第2の金属部材の中央部にプレス加工を施して負極端子用固定孔を形成する工程と、を更に備えると良い。 A step of pressing the thin plate to form a positive electrode terminal fixing hole; and a center of the second metal member so that the second metal member remains in an inner peripheral portion of the second mounting hole. And a step of forming a negative electrode terminal fixing hole by pressing the part.
また、本発明は、互いに異種金属で形成された正極端子と負極端子とを電気的に接続する電極端子接続体の製造方法において、前記負極端子と同種金属で形成された薄板にプレス加工を施して第1の取付孔を形成する工程と、前記正極端子を形成する金属と前記負極端子を形成する金属との間のイオン化傾向を有する金属で形成された第1の厚板にプレス加工を施して前記第1の取付孔よりも小径の第1の金属部材を形成する工程と、前記第1の取付孔の内部に前記第1の金属部材を挿入すると共に前記第1の取付孔の内部で前記第1の金属部材を押し潰して前記第1の取付孔を拡張しつつ前記薄板と前記第1の金属部材とを接合する工程と、前記第1の取付孔の内周部分に前記第1の金属部材が残存するように、前記第1の金属部材の中央部にプレス加工を施して第2の取付孔を形成する工程と、前記正極端子と同種金属で形成された第2の厚板にプレス加工を施して前記第2の取付孔よりも小径の第2の金属部材を形成する工程と、前記第2の取付孔の内部に前記第2の金属部材を挿入すると共に前記第2の取付孔の内部で前記第2の金属部材を押し潰して前記第2の取付孔を拡張しつつ前記第1の金属部材と前記第2の金属部材とを接合する工程と、を備える電極端子接続体の製造方法である。 Further, the present invention provides a method of manufacturing an electrode terminal assembly in which a positive electrode terminal and a negative electrode terminal formed of different metals are electrically connected to each other, and press-working a thin plate formed of the same metal as the negative electrode terminal. Pressing the first thick plate made of a metal having an ionization tendency between the metal forming the positive electrode terminal and the metal forming the negative electrode terminal. Forming a first metal member having a diameter smaller than that of the first mounting hole, inserting the first metal member into the first mounting hole, and inside the first mounting hole. Joining the thin plate and the first metal member while squeezing the first metal member to expand the first attachment hole; and an inner peripheral portion of the first attachment hole. The center of the first metal member so that the metal member remains Forming a second mounting hole by pressing the second thick plate formed of the same metal as that of the positive electrode terminal, and pressing the second thick plate with a second diameter smaller than that of the second mounting hole. Forming the second metal member, inserting the second metal member into the second mounting hole, and squeezing the second metal member into the second mounting hole. A step of joining the first metal member and the second metal member while expanding a mounting hole of the electrode terminal assembly.
前記薄板にプレス加工を施して負極端子用固定孔を形成する工程と、前記第2の取付孔の内周部分に前記第2の金属部材が残存するように、前記第2の金属部材の中央部にプレス加工を施して正極端子用固定孔を形成する工程と、を更に備えると良い。 A step of pressing the thin plate to form a fixing hole for a negative electrode terminal, and a center of the second metal member so that the second metal member remains in an inner peripheral portion of the second mounting hole. And a step of pressing the part to form a positive terminal fixing hole.
また、本発明は、互いに異種金属で形成された正極端子と負極端子とを電気的に接続する電極端子接続体の製造方法において、前記正極端子と同種金属で形成された第1の板材にプレス加工を施して第1の取付孔を形成する工程と、前記正極端子を形成する金属と前記負極端子を形成する金属との間のイオン化傾向を有する金属で形成された第2の板材にプレス加工を施して前記第1の取付孔よりも大径の第1の金属部材を形成する工程と、前記第1の取付孔の内部に前記第1の金属部材を圧入して前記第1の板材と前記第1の金属部材とを接合する工程と、前記第1の取付孔の内周部分に前記第1の金属部材が残存するように、前記第1の金属部材の中央部にプレス加工を施して第2の取付孔を形成する工程と、前記負極端子と同種金属で形成された第3の板材にプレス加工を施して前記第2の取付孔よりも大径の第2の金属部材を形成する工程と、前記第2の取付孔の内部に前記第2の金属部材を圧入して前記第1の金属部材と前記第2の金属部材とを接合する工程と、を備える電極端子接続体の製造方法である。 Further, the present invention provides a method for manufacturing an electrode terminal assembly in which a positive electrode terminal and a negative electrode terminal formed of different metals are electrically connected to each other, and presses the first plate material formed of the same metal as the positive electrode terminal. A step of forming a first mounting hole by processing, and pressing a second plate formed of a metal having an ionization tendency between the metal forming the positive electrode terminal and the metal forming the negative electrode terminal Forming a first metal member having a diameter larger than that of the first attachment hole, and press-fitting the first metal member into the first attachment hole, and the first plate member A step of joining the first metal member, and pressing the central portion of the first metal member so that the first metal member remains in an inner peripheral portion of the first mounting hole; And forming the second mounting hole with the same kind of metal as the negative electrode terminal. Forming a second metal member having a diameter larger than that of the second attachment hole by pressing the formed third plate member; and the second metal member inside the second attachment hole. Press-fitting and joining the first metal member and the second metal member.
前記第1の板材にプレス加工を施して正極端子用固定孔を形成する工程と、前記第2の取付孔の内周部分に前記第2の金属部材が残存するように、前記第2の金属部材の中央部にプレス加工を施して負極端子用固定孔を形成する工程と、を更に備えると良い。 A step of pressing the first plate member to form a positive electrode terminal fixing hole; and the second metal member so that the second metal member remains in an inner peripheral portion of the second mounting hole. It is preferable to further include a step of forming a negative electrode terminal fixing hole by pressing the central portion of the member.
また、本発明は、互いに異種金属で形成された正極端子と負極端子とを電気的に接続する電極端子接続体の製造方法において、前記負極端子と同種金属で形成された第1の板材にプレス加工を施して第1の取付孔を形成する工程と、前記正極端子を形成する金属と前記負極端子を形成する金属との間のイオン化傾向を有する金属で形成された第2の板材にプレス加工を施して前記第1の取付孔よりも大径の第1の金属部材を形成する工程と、前記第1の取付孔の内部に前記第1の金属部材を圧入して前記第1の板材と前記第1の金属部材とを接合する工程と、前記第1の取付孔の内周部分に前記第1の金属部材が残存するように、前記第1の金属部材の中央部にプレス加工を施して第2の取付孔を形成する工程と、前記正極端子と同種金属で形成された第3の板材にプレス加工を施して前記第2の取付孔よりも大径の第2の金属部材を形成する工程と、前記第2の取付孔の内部に前記第2の金属部材を圧入して前記第1の金属部材と前記第2の金属部材とを接合する工程と、を備える電極端子接続体の製造方法である。 Further, the present invention provides a method for manufacturing an electrode terminal assembly in which a positive electrode terminal and a negative electrode terminal formed of different metals are electrically connected to each other, and the first plate material formed of the same metal as the negative electrode terminal is pressed. A step of forming a first mounting hole by processing, and pressing a second plate formed of a metal having an ionization tendency between the metal forming the positive electrode terminal and the metal forming the negative electrode terminal Forming a first metal member having a diameter larger than that of the first attachment hole, and press-fitting the first metal member into the first attachment hole, and the first plate member A step of joining the first metal member, and pressing the central portion of the first metal member so that the first metal member remains in an inner peripheral portion of the first mounting hole; And forming the second mounting hole with the same metal as the positive terminal. Forming a second metal member having a diameter larger than that of the second attachment hole by pressing the formed third plate member; and the second metal member inside the second attachment hole. Press-fitting and joining the first metal member and the second metal member.
前記第1の板材にプレス加工を施して負極端子用固定孔を形成する工程と、前記第2の取付孔の内周部分に前記第2の金属部材が残存するように、前記第2の金属部材の中央部にプレス加工を施して正極端子用固定孔を形成する工程と、を更に備えると良い。 A step of pressing the first plate member to form a negative electrode terminal fixing hole; and the second metal member so that the second metal member remains in an inner peripheral portion of the second mounting hole. And a step of forming a positive electrode terminal fixing hole by pressing the central portion of the member.
前記第1の金属部材と前記第2の金属部材とを接合した後に不活性雰囲気下で加熱する工程を更に備えると良い。 It is preferable to further include a step of heating in an inert atmosphere after joining the first metal member and the second metal member.
本発明によれば、電極端子接続体の結合部における腐食・高抵抗化を抑制することが可能な電極端子接続体及びその製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the electrode terminal connector which can suppress the corrosion and high resistance increase in the coupling | bond part of an electrode terminal connector, and its manufacturing method can be provided.
以下、本発明の好適な実施の形態を添付図面にしたがって説明する。 Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
先ず、電極端子接続体について説明する。 First, the electrode terminal connector will be described.
図1及び図2に示すように、本実施の形態に係る電極端子接続体10は、互いに異種金属で形成された正極端子11と負極端子12とを電気的に接続するものであり、正極端子11と同種金属で形成された正極端子接続部13と、負極端子12と同種金属で形成された負極端子接続部14と、を備え、正極端子接続部13と負極端子接続部14とが正極端子11を形成する金属と負極端子12を形成する金属との間のイオン化傾向を有する金属で形成された介在部15を介して結合されていることを特徴とする。 As shown in FIGS. 1 and 2, the electrode terminal connector 10 according to the present embodiment electrically connects a positive electrode terminal 11 and a negative electrode terminal 12 that are formed of different metals to each other. 11 and a negative electrode terminal connection portion 14 formed of the same kind of metal as the negative electrode terminal 12, and the positive terminal connection portion 13 and the negative terminal connection portion 14 of the positive electrode terminal connection portion 14 are formed of the positive electrode terminal. 11 and the metal forming the negative electrode terminal 12 are connected to each other through an intervening portion 15 formed of a metal having an ionization tendency.
正極端子11と負極端子12は、それぞれ非水電解質二次電池16から延出するようにして設けられている。正極端子11はアルミニウムやアルミニウム合金で形成されており、負極端子12は銅や銅合金で形成されている。 The positive electrode terminal 11 and the negative electrode terminal 12 are provided so as to extend from the nonaqueous electrolyte secondary battery 16, respectively. The positive electrode terminal 11 is made of aluminum or an aluminum alloy, and the negative electrode terminal 12 is made of copper or a copper alloy.
複数の非水電解質二次電池16は、電極端子接続体10を介して直並列接続されて、例えば、電気自動車やハイブリッド自動車の動力として搭載されるバッテリシステムを構成する。 The plurality of non-aqueous electrolyte secondary batteries 16 are connected in series and parallel via the electrode terminal connector 10 and constitute, for example, a battery system mounted as power for an electric vehicle or a hybrid vehicle.
正極端子接続部13は、正極端子11と電気的に接続される部分であり、負極端子接続部14は、負極端子12と電気的に接続される部分である。 The positive terminal connecting portion 13 is a portion that is electrically connected to the positive terminal 11, and the negative terminal connecting portion 14 is a portion that is electrically connected to the negative terminal 12.
ここでは、正極端子11と同種の金属を主基材とし、正極端子接続部13の一部に負極端子接続部14が設けられているが、負極端子12と同種の金属を主基材とし、負極端子接続部14の一部に正極端子接続部13が設けられていても構わない。 Here, the same type of metal as the positive electrode terminal 11 is used as the main base material, and the negative electrode terminal connection unit 14 is provided in a part of the positive electrode terminal connection unit 13, but the same type of metal as the negative electrode terminal 12 is used as the main base material. The positive electrode terminal connection part 13 may be provided in a part of the negative electrode terminal connection part 14.
正極端子接続部13には、正極端子11を挿入して抵抗溶接等により固定するための正極端子用固定孔17が形成され、負極端子接続部14には、負極端子12を挿入して抵抗溶接等により固定するための負極端子用固定孔18が形成されている。 A positive terminal fixing hole 17 for inserting the positive terminal 11 and fixing it by resistance welding or the like is formed in the positive terminal connection part 13, and a negative terminal 12 is inserted into the negative terminal connection part 14 and resistance welding is performed. A negative electrode terminal fixing hole 18 for fixing by, for example, is formed.
介在部15は、正極端子接続部13と負極端子接続部14との結合部における腐食・高抵抗化を抑制するためのものであり、例えば、ニッケル、クロム、又は亜鉛等で形成されている。 The interposition part 15 is for suppressing corrosion and high resistance in the joint part of the positive electrode terminal connection part 13 and the negative electrode terminal connection part 14, and is formed of, for example, nickel, chromium, or zinc.
ここでは、イオン化傾向によって介在部15を形成する金属を選定しているが、イオン化傾向の他にも、正極端子11を形成する金属と負極端子12を形成する金属との中間に位置する標準電極電位を有する金属を介在部15を形成する金属として選定するようにしても良い。イオン化傾向を示すイオン化順列と水素を基準電極として表した標準電極電位を示す電気化学列とは一致するからである。 Here, the metal that forms the interposition part 15 is selected depending on the ionization tendency. However, in addition to the ionization tendency, the standard electrode located between the metal that forms the positive electrode terminal 11 and the metal that forms the negative electrode terminal 12. You may make it select the metal which has an electric potential as a metal which forms the interposition part 15. FIG. This is because the ionization permutation indicating the ionization tendency and the electrochemical sequence indicating the standard electrode potential expressed using hydrogen as a reference electrode coincide with each other.
本実施の形態に係る電極端子接続体10によれば、正極端子接続部13と負極端子接続部14とが正極端子11を形成する金属と負極端子12を形成する金属との間のイオン化傾向を有する金属で形成された介在部15を介して結合されているため、正極端子接続部13と負極端子接続部14との結合界面におけるイオン化傾向の変化、ひいては結合界面における標準電極電位の電位差を緩和することができ、電極端子接続体10の結合部における局部電池効果による腐食・高抵抗化を発生し難くすることが可能となる。 According to the electrode terminal connector 10 according to the present embodiment, the positive electrode terminal connection portion 13 and the negative electrode terminal connection portion 14 exhibit an ionization tendency between the metal forming the positive electrode terminal 11 and the metal forming the negative electrode terminal 12. Since it is coupled via the intervening portion 15 formed of the metal having, the change in ionization tendency at the coupling interface between the positive electrode terminal connecting portion 13 and the negative electrode terminal connecting portion 14, and the potential difference of the standard electrode potential at the coupling interface is alleviated. Therefore, it is possible to make it difficult for corrosion and high resistance due to the local battery effect to occur in the joint portion of the electrode terminal connector 10.
次に、電極端子接続体の製造方法について説明する。電極端子接続体の製造方法としては、主に拡張型の製造方法と圧入型の製造方法とがあるので、これらの製造方法を順を追って説明する。 Next, the manufacturing method of an electrode terminal connector will be described. Since there are mainly an expansion type manufacturing method and a press-fitting type manufacturing method as a manufacturing method of the electrode terminal connector, these manufacturing methods will be described in order.
先ず、拡張型の製造方法について説明する。 First, the expansion type manufacturing method will be described.
図3に示すように、拡張型の製造方法は、正極端子11と同種金属で形成された薄板31にプレス加工を施して第1の取付孔32を形成する工程と、正極端子11を形成する金属と負極端子12を形成する金属との間のイオン化傾向を有する金属で形成された第1の厚板(図示せず)にプレス加工を施して第1の取付孔32よりも小径の第1の金属部材33を形成する工程と、第1の取付孔32の内部に第1の金属部材33を挿入すると共に第1の取付孔32の内部で第1の金属部材33を押し潰して第1の取付孔32を拡張しつつ薄板31と第1の金属部材33とを接合する工程と、第1の取付孔32の内周部分に第1の金属部材33が残存するように、第1の金属部材33の中央部にプレス加工を施して第2の取付孔34を形成する工程と、負極端子12と同種金属で形成された第2の厚板(図示せず)にプレス加工を施して第2の取付孔34よりも小径の第2の金属部材35を形成する工程と、第2の取付孔34の内部に第2の金属部材35を挿入すると共に第2の取付孔34の内部で第2の金属部材35を押し潰して第2の取付孔34を拡張しつつ第1の金属部材33と第2の金属部材35とを接合する工程と、を備えることを特徴とする。 As shown in FIG. 3, the expansion type manufacturing method forms a first mounting hole 32 by pressing a thin plate 31 made of the same metal as the positive electrode terminal 11, and forms the positive electrode terminal 11. A first thick plate (not shown) formed of a metal having an ionization tendency between the metal and the metal forming the negative electrode terminal 12 is subjected to press working to have a first diameter smaller than that of the first mounting hole 32. The first metal member 33 is inserted into the first mounting hole 32 and the first metal member 33 is crushed inside the first mounting hole 32 to form the first metal member 33. The step of joining the thin plate 31 and the first metal member 33 while expanding the attachment hole 32 of the first attachment member 32, and the first metal member 33 so that the first metal member 33 remains on the inner peripheral portion of the first attachment hole 32. The process of forming the second mounting hole 34 by pressing the central portion of the metal member 33 Forming a second metal member 35 having a smaller diameter than the second mounting hole 34 by pressing a second thick plate (not shown) made of the same metal as the negative electrode terminal 12; The second metal member 35 is inserted into the second mounting hole 34, and the second metal member 35 is crushed inside the second mounting hole 34 to expand the second mounting hole 34. A step of joining the metal member 33 and the second metal member 35 to each other.
なお、図3では、説明の都合上、断面図の一部の線を省略している。 In FIG. 3, for convenience of explanation, some lines in the cross-sectional view are omitted.
以下、各工程を具体的に説明する。 Hereafter, each process is demonstrated concretely.
正極端子11と同種金属で形成された薄板31にプレス加工を施して第1の取付孔32を形成する工程では、アルミニウムやアルミニウム合金で形成された薄板31にプレス加工(特に打ち抜き加工)を施して第1の取付孔32を形成し、更に正極端子用固定孔17を形成して正極端子接続部13を作製する(図3(a)参照)。この工程の直後は、第1の取付孔32の内周面に酸化膜は形成されていない。 In the step of forming the first mounting hole 32 by pressing the thin plate 31 formed of the same metal as the positive electrode terminal 11, the thin plate 31 formed of aluminum or aluminum alloy is pressed (particularly stamped). Then, the first mounting hole 32 is formed, and further the positive terminal fixing hole 17 is formed to produce the positive terminal connecting portion 13 (see FIG. 3A). Immediately after this step, no oxide film is formed on the inner peripheral surface of the first mounting hole 32.
これにより、正極端子用固定孔17に正極端子11を挿入して抵抗溶接等により固定する際に、互いに同種金属の正極端子11と薄板31とが接触することになり、同種金属同士の接合とすることができる。 As a result, when the positive electrode terminal 11 is inserted into the positive electrode terminal fixing hole 17 and fixed by resistance welding or the like, the positive electrode terminal 11 and the thin plate 31 of the same kind of metal are in contact with each other. can do.
正極端子11を形成する金属と負極端子12を形成する金属との間のイオン化傾向を有する金属で形成された第1の厚板にプレス加工を施して第1の取付孔32よりも小径の第1の金属部材33を形成する工程では、ニッケル、クロム、又は亜鉛等で形成された第1の厚板にプレス加工(特に打ち抜き加工)を施して介在部15となる第1の金属部材33を形成する。第1の厚板の厚さは、薄板31の厚さと比較して厚いため、第1の金属部材33の厚さも薄板31の厚さよりも厚くなっている。 The first thick plate formed of a metal having an ionization tendency between the metal forming the positive electrode terminal 11 and the metal forming the negative electrode terminal 12 is subjected to press working and has a diameter smaller than that of the first mounting hole 32. In the step of forming the first metal member 33, the first thick plate formed of nickel, chromium, zinc, or the like is subjected to press working (particularly punching) to form the first metal member 33 serving as the interposition part 15. Form. Since the thickness of the first thick plate is larger than the thickness of the thin plate 31, the thickness of the first metal member 33 is also thicker than the thickness of the thin plate 31.
ここでは、イオン化傾向によって第1の厚板を形成する金属を選定しているが、イオン化傾向の他にも、正極端子11を形成する金属と負極端子12を形成する金属との中間に位置する標準電極電位を有する金属を第1の厚板を形成する金属として選定するようにしても良い。イオン化傾向を示すイオン化順列と水素を基準電極として表した標準電極電位を示す電気化学列とは一致するからである。 Here, the metal that forms the first thick plate is selected depending on the ionization tendency, but in addition to the ionization tendency, the metal is located between the metal that forms the positive electrode terminal 11 and the metal that forms the negative electrode terminal 12. A metal having a standard electrode potential may be selected as a metal forming the first thick plate. This is because the ionization permutation indicating the ionization tendency and the electrochemical sequence indicating the standard electrode potential expressed using hydrogen as a reference electrode coincide with each other.
第1の取付孔32の内部に第1の金属部材33を挿入すると共に第1の取付孔32の内部で第1の金属部材33を押し潰して第1の取付孔32を拡張しつつ薄板31と第1の金属部材33とを接合する工程では、プレス装置の打ち抜きパンチにより第1の取付孔32の内部で第1の金属部材33を押し潰す(図3(b)及び(c)参照)。 The first metal member 33 is inserted into the first mounting hole 32, and the first metal member 33 is crushed inside the first mounting hole 32 to expand the first mounting hole 32 and the thin plate 31. In the step of joining the first metal member 33 and the first metal member 33, the first metal member 33 is crushed inside the first mounting hole 32 by a punching punch of a press device (see FIGS. 3B and 3C). .
このとき、第1の金属部材33が押し潰されて第1の取付孔32の内径よりも大きくなるように圧延され、これに伴って第1の取付孔32が拡張される。その結果、第1の取付孔32の内周面に僅かに酸化膜が形成されていたとしても、接合直前に酸化膜が破壊されて新生面の創出が促進され、薄板31のアルミニウム等と第1の金属部材33のニッケル等とが拡散接合することとなる。 At this time, the first metal member 33 is crushed and rolled to be larger than the inner diameter of the first mounting hole 32, and the first mounting hole 32 is expanded accordingly. As a result, even if a slight oxide film is formed on the inner peripheral surface of the first mounting hole 32, the oxide film is destroyed just before joining, and the creation of a new surface is promoted. The nickel of the metal member 33 is diffusion-bonded.
そのため、薄板31のアルミニウム等と第1の金属部材33のニッケル等とは異種金属同士の接合となるが、この接合は2つの金属表面を固相状態のまま金属学的に一体化させた拡散接合によるものであるので、接合信頼性を向上させることができると共に局部電池効果による腐食・高抵抗化を抑制することができる。 Therefore, the aluminum of the thin plate 31 and the nickel of the first metal member 33 are bonded to each other, but this bonding is a diffusion in which the two metal surfaces are integrated in a metallographic state in a solid state. Since it is based on joining, joining reliability can be improved and corrosion and high resistance due to the local battery effect can be suppressed.
また、薄板31のアルミニウム等と第1の金属部材33のニッケル等とはイオン化傾向が近いことから、これらの異種金属同士を接合しても、接合局部電池効果による腐食・高抵抗化が原理的に生じ難い。 In addition, since aluminum or the like of the thin plate 31 and nickel or the like of the first metal member 33 are close to ionization, even if these dissimilar metals are joined together, the corrosion and high resistance due to the joint local battery effect are fundamental. It is difficult to occur.
第1の取付孔32の内周部分に第1の金属部材33が残存するように、第1の金属部材33の中央部にプレス加工を施して第2の取付孔34を形成する工程では、第1の取付孔32の内周の全周に亘って第1の金属部材33が十分な径方向厚さで残存するように、第1の金属部材33にプレス加工(特に打ち抜き加工)を施す(図3(d)参照)。 In the step of forming the second mounting hole 34 by pressing the central portion of the first metal member 33 so that the first metal member 33 remains in the inner peripheral portion of the first mounting hole 32, The first metal member 33 is pressed (particularly punched) so that the first metal member 33 remains with a sufficient radial thickness over the entire inner circumference of the first mounting hole 32. (See FIG. 3 (d)).
これにより、後工程で第2の取付孔34に第2の金属部材35を挿入して第1の金属部材33と第2の金属部材35とを接合する際に、イオン化傾向の近い異種金属同士が接触することになり、局部電池効果による腐食・高抵抗化を効果的に抑制することができる。 Thereby, when inserting the 2nd metal member 35 in the 2nd attachment hole 34 in a post process, and joining the 1st metal member 33 and the 2nd metal member 35, dissimilar metals with a close ionization tendency Will be in contact with each other, and corrosion and high resistance due to the local battery effect can be effectively suppressed.
負極端子12と同種金属で形成された第2の厚板にプレス加工を施して第2の取付孔34よりも小径の第2の金属部材35を形成する工程では、銅や銅合金で形成された第2の厚板にプレス加工(特に打ち抜き加工)を施して第2の金属部材35を形成する。第2の厚板の厚さは、薄板31の厚さと比較して厚いため、第2の金属部材35の厚さも薄板31の厚さよりも厚くなっている。 In the step of forming a second metal member 35 having a diameter smaller than that of the second mounting hole 34 by pressing the second thick plate formed of the same kind of metal as that of the negative electrode terminal 12, the second thick member 34 is formed of copper or a copper alloy. The second thick plate is pressed (particularly punched) to form the second metal member 35. Since the thickness of the second thick plate is thicker than the thickness of the thin plate 31, the thickness of the second metal member 35 is also thicker than the thickness of the thin plate 31.
第2の取付孔34の内部に第2の金属部材35を挿入すると共に第2の取付孔34の内部で第2の金属部材35を押し潰して第2の取付孔34を拡張しつつ第1の金属部材33と第2の金属部材35とを接合する工程では、プレス装置の打ち抜きパンチにより第2の取付孔34の内部で第2の金属部材35を押し潰す(図3(e)及び(f)参照)。 The second metal member 35 is inserted into the second mounting hole 34 and the second metal member 35 is crushed inside the second mounting hole 34 to expand the second mounting hole 34 while the first mounting hole 34 is expanded. In the step of joining the metal member 33 and the second metal member 35, the second metal member 35 is crushed inside the second mounting hole 34 by a punching punch of a press device (FIG. 3 (e) and ( f)).
このとき、第2の金属部材35が押し潰されて第2の取付孔34の内径よりも大きくなるように圧延され、これに伴って第2の取付孔34が拡張される。その結果、第2の取付孔34の内周面に僅かに酸化膜が形成されていたとしても、接合直前に酸化膜が破壊されて新生面の創出が促進され、第1の金属部材33のニッケル等と第2の金属部材35の銅等とが拡散接合することとなる。 At this time, the second metal member 35 is crushed and rolled to be larger than the inner diameter of the second mounting hole 34, and the second mounting hole 34 is expanded accordingly. As a result, even if a slight oxide film is formed on the inner peripheral surface of the second mounting hole 34, the oxide film is destroyed just before joining and the creation of a new surface is promoted, and the nickel of the first metal member 33 is promoted. And the second metal member 35 are diffusion-bonded.
そのため、第1の金属部材33のニッケル等と第2の金属部材35の銅等とは異種金属同士の接合となるが、この接合は2つの金属表面を固相状態のまま金属学的に一体化させた拡散接合によるものであるので、接合信頼性を向上させることができると共に局部電池効果による腐食・高抵抗化を抑制することができる。 For this reason, nickel or the like of the first metal member 33 and copper or the like of the second metal member 35 are bonded to each other, but this bonding is performed in a metallurgical manner with the two metal surfaces in a solid state. Therefore, the reliability of the joint can be improved, and corrosion and high resistance due to the local battery effect can be suppressed.
また、第1の金属部材33のニッケル等と第2の金属部材35の銅等とはイオン化傾向が近いことから、これらの異種金属同士を接合しても、接合局部電池効果による腐食・高抵抗化が原理的に生じ難い。 Moreover, since nickel etc. of the 1st metal member 33 and copper etc. of the 2nd metal member 35 have a near ionization tendency, even if these dissimilar metals are joined, corrosion and high resistance by a joining local battery effect are carried out. Is unlikely to occur in principle.
プレス加工は他の加工方法に比べて高速であることから、これらの工程をプレス装置により連続的に実施することで、第1の取付孔32の形成から薄板31と第1の金属部材33との接合、及び第2の取付孔34の形成から第1の金属部材33と第2の金属部材35との接合までを短時間で実施することができる。そのため、特に、アルミニウムやアルミニウム合金の表面に形成され、一度形成されると非常に安定で、焼鈍による拡散接合を行っても消失し難いことが知られているアルミニウム型の酸化膜であっても、その成長を最小限に抑制し、接合することができる。また、更に、僅かに酸化膜が形成されていたとしても拡張による接合を行うことで、新生面の創出を促進して異種金属間において十分な接合強度を得ることができる。 Since pressing is faster than other processing methods, these steps are continuously performed by a pressing device, so that the thin plate 31 and the first metal member 33 are formed from the formation of the first mounting hole 32. From the formation of the second mounting hole 34 to the joining of the first metal member 33 and the second metal member 35 can be performed in a short time. Therefore, even if it is an aluminum type oxide film that is formed on the surface of aluminum or aluminum alloy and is known to be very stable once formed, it is difficult to disappear even if diffusion bonding by annealing is performed. , Its growth can be minimized and bonded. Furthermore, even if an oxide film is slightly formed, by performing bonding by expansion, creation of a new surface can be promoted, and sufficient bonding strength between different metals can be obtained.
なお、各工程をプレス装置により連続的に実施するためには、例えば、各工程を加工ステージ(基台)ごとに区切り、工程の進行に伴ってコンベヤで加工ステージを変更していくようにすれば良い。 In order to carry out each process continuously with a press device, for example, each process is divided into processing stages (bases) and the processing stage is changed by a conveyor as the process proceeds. It ’s fine.
これらの工程の後、第1の金属部材33を介して薄板31と接合された第2の金属部材35にプレス加工(特に打ち抜き加工)を施して負極端子用固定孔18を形成して負極端子接続部14を作製する(図3(g)参照)。 After these steps, the second metal member 35 joined to the thin plate 31 via the first metal member 33 is pressed (particularly punched) to form the negative electrode terminal fixing hole 18 to form the negative electrode terminal. The connection part 14 is produced (refer FIG.3 (g)).
このとき、第2の取付孔34の内周部分に第2の金属部材35が残存するように、第2の金属部材35の中央部にプレス加工を施して負極端子用固定孔18を形成する。 At this time, the negative electrode terminal fixing hole 18 is formed by pressing the central portion of the second metal member 35 so that the second metal member 35 remains in the inner peripheral portion of the second mounting hole 34. .
これにより、負極端子用固定孔18に負極端子12を挿入して抵抗溶接等により固定する際に、互いに同種金属の負極端子12と第2の金属部材35とが接触することになり、同種金属同士の接合とすることができる。 Thereby, when the negative electrode terminal 12 is inserted into the negative electrode terminal fixing hole 18 and fixed by resistance welding or the like, the negative electrode terminal 12 of the same kind of metal and the second metal member 35 come into contact with each other. It can be set as a joint between each other.
なお、負極端子用固定孔18を形成する際には、異種金属同士の接合とならないように、負極端子12と接触する負極端子用固定孔18の内周面に第1の金属部材33が露出しないようにすると良い。 When forming the negative electrode terminal fixing hole 18, the first metal member 33 is exposed on the inner peripheral surface of the negative electrode terminal fixing hole 18 in contact with the negative electrode terminal 12 so as not to join different metals. It is better not to.
また、拡張型の製造方法は、第1の金属部材33と第2の金属部材35とを接合した後に不活性雰囲気下で加熱する工程を更に備えることが好ましい(図3(h)参照)。 Moreover, it is preferable that the expansion type manufacturing method further includes a step of heating in an inert atmosphere after joining the first metal member 33 and the second metal member 35 (see FIG. 3H).
これにより、薄板31のアルミニウム等と第1の金属部材33のニッケル等との拡散接合、及び第1の金属部材33のニッケル等と第2の金属部材35の銅等の拡散接合が十分に進行し、より接合強度を高めることができる。 As a result, diffusion bonding of aluminum or the like of the thin plate 31 and nickel or the like of the first metal member 33 and diffusion bonding of nickel or the like of the first metal member 33 and copper of the second metal member 35 sufficiently proceed. In addition, the bonding strength can be further increased.
不活性雰囲気としては、ヘリウムガス雰囲気やアルゴンガス雰囲気を用いることができる。また、加熱温度は、母材である薄板31、第1の金属部材33、及び第2の金属部材35の融点以下の温度とする。 As the inert atmosphere, a helium gas atmosphere or an argon gas atmosphere can be used. The heating temperature is set to a temperature equal to or lower than the melting point of the thin plate 31, the first metal member 33, and the second metal member 35 that are the base materials.
以上の工程により得られた電極端子接続体10を介して非水電解質二次電池16を直並列接続する際には、電極端子接続体10の正極端子用固定孔17と非水電解質二次電池16の正極端子11とを抵抗溶接等により固定し、電極端子接続体10の負極端子用固定孔18と他の非水電解質二次電池16の負極端子12とを抵抗溶接等により固定して正極端子11と負極端子12とを電気的に接続する。 When the nonaqueous electrolyte secondary battery 16 is connected in series and parallel via the electrode terminal connector 10 obtained by the above steps, the positive terminal fixing hole 17 of the electrode terminal connector 10 and the nonaqueous electrolyte secondary battery are connected. The positive electrode terminal 11 of 16 is fixed by resistance welding or the like, and the negative electrode terminal fixing hole 18 of the electrode terminal connector 10 and the negative electrode terminal 12 of another nonaqueous electrolyte secondary battery 16 are fixed by resistance welding or the like. The terminal 11 and the negative electrode terminal 12 are electrically connected.
このとき、正極端子11と接触する正極端子用固定孔17が正極端子11と同種金属である薄板31で形成され、また負極端子12と接触する負極端子用固定孔18が負極端子12と同種金属である第2の金属部材35で形成されているため、それぞれ同種金属同士の接合となり、原理的に局部電池効果による腐食・高抵抗化を防止することができる。 At this time, the positive terminal fixing hole 17 in contact with the positive terminal 11 is formed of the thin plate 31 that is the same kind of metal as the positive terminal 11, and the negative terminal fixing hole 18 in contact with the negative terminal 12 is the same kind of metal as the negative terminal 12. Since the second metal member 35 is formed of the same metal, the same kind of metal is joined to each other, and in principle, corrosion and high resistance due to the local battery effect can be prevented.
また、同種金属同士の接合であるので、金属同士の接合の手法として抵抗溶接等の簡便なものを採用することが可能となる。 Moreover, since it is joining of the same kind metals, it becomes possible to employ | adopt simple things, such as resistance welding, as a technique of joining metals.
次に、圧入型の製造方法について説明する。 Next, a press-fitting type manufacturing method will be described.
図4に示すように、圧入型の製造方法は、正極端子11と同種金属で形成された第1の板材41にプレス加工を施して第1の取付孔32を形成する工程と、正極端子11を形成する金属と負極端子12を形成する金属との間のイオン化傾向を有する金属で形成された第2の板材(図示せず)にプレス加工を施して第1の取付孔32よりも大径の第1の金属部材33を形成する工程と、第1の取付孔32の内部に第1の金属部材33を圧入して第1の板材41と第1の金属部材33とを接合する工程と、第1の取付孔32の内周部分に第1の金属部材33が残存するように、第1の金属部材33の中央部にプレス加工を施して第2の取付孔34を形成する工程と、負極端子12と同種金属で形成された第3の板材(図示せず)にプレス加工を施して第2の取付孔34よりも大径の第2の金属部材35を形成する工程と、第2の取付孔34の内部に第2の金属部材35を圧入して第1の金属部材33と第2の金属部材35とを接合する工程と、を備えることを特徴とする。 As shown in FIG. 4, the press-fitting type manufacturing method includes a step of forming a first mounting hole 32 by pressing a first plate material 41 made of the same metal as the positive electrode terminal 11, and the positive electrode terminal 11. The second plate member (not shown) formed of a metal having an ionization tendency between the metal forming the negative electrode 12 and the metal forming the negative electrode terminal 12 is subjected to press working to have a diameter larger than that of the first mounting hole 32. A step of forming the first metal member 33, a step of press-fitting the first metal member 33 into the first mounting hole 32, and joining the first plate member 41 and the first metal member 33; Forming the second mounting hole 34 by pressing the central portion of the first metal member 33 so that the first metal member 33 remains in the inner peripheral portion of the first mounting hole 32; The third plate (not shown) made of the same metal as the negative electrode terminal 12 is pressed. Forming a second metal member 35 having a diameter larger than that of the second mounting hole 34, and press-fitting the second metal member 35 into the second mounting hole 34, And a step of joining the second metal member 35 to each other.
なお、図4では、説明の都合上、断面図の一部の線を省略している。 In FIG. 4, for convenience of explanation, some lines in the cross-sectional view are omitted.
以下、各工程を具体的に説明する。 Hereafter, each process is demonstrated concretely.
正極端子11と同種金属で形成された第1の板材41にプレス加工を施して第1の取付孔32を形成する工程では、アルミニウムやアルミニウム合金で形成された第1の板材41にプレス加工(特に打ち抜き加工)を施して第1の取付孔32を形成し、更に正極端子用固定孔17を形成して正極端子接続部13を作製する(図4(a)参照)。この工程の直後は、第1の取付孔32の内周面に酸化膜は形成されていない。 In the step of forming the first mounting hole 32 by pressing the first plate material 41 formed of the same kind of metal as the positive electrode terminal 11, the first plate material 41 formed of aluminum or aluminum alloy is pressed ( In particular, the first mounting hole 32 is formed by performing punching processing, and the positive terminal fixing hole 17 is further formed to manufacture the positive terminal connecting portion 13 (see FIG. 4A). Immediately after this step, no oxide film is formed on the inner peripheral surface of the first mounting hole 32.
正極端子11を形成する金属と負極端子12を形成する金属との間のイオン化傾向を有する金属で形成された第2の板材にプレス加工を施して第1の取付孔32よりも大径の第1の金属部材33を形成する工程では、ニッケル、クロム、又は亜鉛等で形成された第2の板材にプレス加工(特に打ち抜き加工)を施して介在部15となる第1の金属部材33を形成する。第2の板材の厚さは、第1の板材41の厚さと比較して同等であるため、第1の金属部材33の厚さも第1の板材41の厚さと同等となっている。 A second plate made of a metal having an ionization tendency between the metal forming the positive electrode terminal 11 and the metal forming the negative electrode terminal 12 is subjected to press working to have a diameter larger than that of the first mounting hole 32. In the step of forming the first metal member 33, the second metal plate formed of nickel, chromium, zinc, or the like is subjected to press working (particularly punching) to form the first metal member 33 serving as the interposition part 15. To do. Since the thickness of the second plate material is equivalent to the thickness of the first plate material 41, the thickness of the first metal member 33 is also equivalent to the thickness of the first plate material 41.
ここでは、イオン化傾向によって第2の板材を形成する金属を選定しているが、イオン化傾向の他にも、正極端子11を形成する金属と負極端子12を形成する金属との中間に位置する標準電極電位を有する金属を第2の板材を形成する金属として選定するようにしても良い。イオン化傾向を示すイオン化順列と水素を基準電極として表した標準電極電位を示す電気化学列とは一致するからである。 Here, the metal that forms the second plate material is selected according to the ionization tendency. However, in addition to the ionization tendency, the standard that is located between the metal that forms the positive electrode terminal 11 and the metal that forms the negative electrode terminal 12. You may make it select the metal which has electrode potential as a metal which forms a 2nd board | plate material. This is because the ionization permutation indicating the ionization tendency and the electrochemical sequence indicating the standard electrode potential expressed using hydrogen as a reference electrode coincide with each other.
第1の取付孔32の内部に第1の金属部材33を圧入して第1の板材41と第1の金属部材33とを接合する工程では、プレス装置の打ち抜きパンチにより第1の取付孔32の内部に第1の金属部材33を押し込む(図4(b)及び(c)参照)。 In the step of press-fitting the first metal member 33 into the first mounting hole 32 and joining the first plate member 41 and the first metal member 33, the first mounting hole 32 is punched by a press device. The first metal member 33 is pushed into the inside (see FIGS. 4B and 4C).
このとき、第1の金属部材33と第1の取付孔32とが接触して互いの表面が削られて塑性変形しつつ、第1の取付孔32の内部に第1の金属部材33が押し込まれる。その結果、第1の取付孔32の内周面に僅かに酸化膜が形成されていたとしても、接合直前に酸化膜が破壊されて新生面の創出が促進され、第1の板材41のアルミニウム等と第1の金属部材33のニッケル等とが拡散接合することとなる。 At this time, the first metal member 33 and the first mounting hole 32 come into contact with each other, and the surfaces of each of the first metal member 33 and the first mounting hole 32 are scraped and plastically deformed, and the first metal member 33 is pushed into the first mounting hole 32. It is. As a result, even if a slight oxide film is formed on the inner peripheral surface of the first mounting hole 32, the oxide film is destroyed just before joining, and the creation of a new surface is promoted. And nickel of the first metal member 33 are diffusion bonded.
そのため、第1の板材41のアルミニウム等と第1の金属部材33のニッケル等とは異種金属同士の接合となるが、この接合は2つの金属表面を固相状態のまま金属学的に一体化させた拡散接合によるものであるので、接合信頼性を向上させることができると共に局部電池効果による腐食・高抵抗化を抑制することができる。 For this reason, the aluminum of the first plate 41 and the nickel of the first metal member 33 are bonded to each other, but this bonding is performed in a metallurgical manner with the two metal surfaces in a solid state. Since the diffusion bonding is performed, the bonding reliability can be improved, and corrosion and high resistance due to the local battery effect can be suppressed.
また、第1の板材41のアルミニウム等と第1の金属部材33のニッケル等とはイオン化傾向が近いことから、これらの異種金属同士を接合しても、接合局部電池効果による腐食・高抵抗化が原理的に生じ難い。 Moreover, since the aluminum of the first plate 41 and the nickel of the first metal member 33 have a similar ionization tendency, even if these dissimilar metals are joined together, corrosion and high resistance are achieved by the joint local cell effect. Is unlikely to occur in principle.
第1の取付孔32の内周部分に第1の金属部材33が残存するように、第1の金属部材33の中央部にプレス加工を施して第2の取付孔34を形成する工程では、第1の取付孔32の内周の全周に亘って第1の金属部材33が十分な径方向厚さで残存するように、第1の金属部材33にプレス加工(特に打ち抜き加工)を施す(図4(d)参照)。 In the step of forming the second mounting hole 34 by pressing the central portion of the first metal member 33 so that the first metal member 33 remains in the inner peripheral portion of the first mounting hole 32, The first metal member 33 is pressed (particularly punched) so that the first metal member 33 remains with a sufficient radial thickness over the entire inner circumference of the first mounting hole 32. (Refer FIG.4 (d)).
これにより、後工程で第2の取付孔34に第2の金属部材35を圧入して第1の金属部材33と第2の金属部材35とを接合する際に、イオン化傾向の近い異種金属同士が接触することになり、局部電池効果による腐食・高抵抗化を効果的に抑制することができる。 As a result, when the second metal member 35 is press-fitted into the second mounting hole 34 in a later step and the first metal member 33 and the second metal member 35 are joined together, dissimilar metals having similar ionization tendencies Will be in contact with each other, and corrosion and high resistance due to the local battery effect can be effectively suppressed.
負極端子12と同種金属で形成された第3の板材にプレス加工を施して第2の取付孔34よりも大径の第2の金属部材35を形成する工程では、銅や銅合金で形成された第3の板材にプレス加工(特に打ち抜き加工)を施して第2の金属部材35を形成する。第3の板材の厚さは、第1の板材41の厚さと比較して同等であるため、第2の金属部材35の厚さも第1の板材41の厚さと同等となっている。 In the step of forming a second metal member 35 having a diameter larger than that of the second mounting hole 34 by pressing a third plate formed of the same kind of metal as that of the negative electrode terminal 12, it is formed of copper or a copper alloy. The second metal member 35 is formed by pressing (particularly punching) the third plate material. Since the thickness of the third plate member is equivalent to the thickness of the first plate member 41, the thickness of the second metal member 35 is also equivalent to the thickness of the first plate member 41.
第2の取付孔34の内部に第2の金属部材35を圧入して第1の金属部材33と第2の金属部材35とを接合する工程では、プレス装置の打ち抜きパンチにより第2の取付孔34の内部に第2の金属部材35を押し込む(図4(e)及び(f)参照)。 In the step of press-fitting the second metal member 35 into the second mounting hole 34 and joining the first metal member 33 and the second metal member 35, the second mounting hole is formed by a punching punch of a press device. The second metal member 35 is pushed into the interior of 34 (see FIGS. 4E and 4F).
このとき、第2の金属部材35と第2の取付孔34とが接触して互いの表面が削られて塑性変形しつつ、第2の取付孔34の内部に第2の金属部材35が押し込まれる。その結果、第2の取付孔34の内周面に僅かに酸化膜が形成されていたとしても、接合直前に酸化膜が破壊されて新生面の創出が促進され、第1の金属部材33のニッケル等と第2の金属部材35の銅等とが拡散接合することとなる。 At this time, the second metal member 35 and the second mounting hole 34 come into contact with each other, and the surfaces of each of the second metal member 35 and the second mounting hole 34 are scraped and plastically deformed, and the second metal member 35 is pushed into the second mounting hole 34. It is. As a result, even if a slight oxide film is formed on the inner peripheral surface of the second mounting hole 34, the oxide film is destroyed just before joining and the creation of a new surface is promoted, and the nickel of the first metal member 33 is promoted. And the second metal member 35 are diffusion-bonded.
そのため、第1の金属部材33のニッケル等と第2の金属部材35の銅等とは異種金属同士の接合となるが、この接合は2つの金属表面を固相状態のまま金属学的に一体化させた拡散接合によるものであるので、接合信頼性を向上させることができると共に局部電池効果による腐食・高抵抗化を抑制することができる。 For this reason, nickel or the like of the first metal member 33 and copper or the like of the second metal member 35 are bonded to each other, but this bonding is performed in a metallurgical manner with the two metal surfaces in a solid state. Therefore, the reliability of the joint can be improved, and corrosion and high resistance due to the local battery effect can be suppressed.
また、第1の金属部材33のニッケル等と第2の金属部材35の銅等とはイオン化傾向が近いことから、これらの異種金属同士を接合しても、接合局部電池効果による腐食・高抵抗化が原理的に生じ難い。 Moreover, since nickel etc. of the 1st metal member 33 and copper etc. of the 2nd metal member 35 have a near ionization tendency, even if these dissimilar metals are joined, corrosion and high resistance by a joining local battery effect are carried out. Is unlikely to occur in principle.
プレス加工は他の加工方法に比べて高速であることから、これらの工程をプレス装置により連続的に実施することで、第1の取付孔32の形成から第1の板材41と第1の金属部材33との接合、及び第2の取付孔34の形成から第1の金属部材33と第2の金属部材35との接合までを短時間で実施することができる。そのため、特に、アルミニウムやアルミニウム合金の表面に形成され、一度形成されると非常に安定で、焼鈍による拡散接合を行っても消失し難いことが知られているアルミニウム型の酸化膜であっても、その成長を最小限に抑制し、接合することができる。また、更に、僅かに酸化膜が形成されていたとしても圧入による接合を行うことで、新生面の創出を促進して異種金属間において十分な接合強度を得ることができる。 Since pressing is faster than other processing methods, these steps are continuously performed by a pressing device, so that the first plate 41 and the first metal are formed from the formation of the first mounting hole 32. The joining from the member 33 and the formation of the second mounting hole 34 to the joining of the first metal member 33 and the second metal member 35 can be performed in a short time. Therefore, even if it is an aluminum type oxide film that is formed on the surface of aluminum or aluminum alloy and is known to be very stable once formed, it is difficult to disappear even if diffusion bonding by annealing is performed. , Its growth can be minimized and bonded. Furthermore, even if an oxide film is formed slightly, by performing press-fitting bonding, creation of a new surface can be promoted and sufficient bonding strength between different metals can be obtained.
なお、各工程をプレス装置により連続的に実施するためには、例えば、各工程を加工ステージ(基台)ごとに区切り、工程の進行に伴ってコンベヤで加工ステージを変更していくようにすれば良い。 In order to carry out each process continuously with a press device, for example, each process is divided into processing stages (bases) and the processing stage is changed by a conveyor as the process proceeds. It ’s fine.
これらの工程の後、第1の金属部材33を介して第1の板材41と接合された第2の金属部材35にプレス加工(特に打ち抜き加工)を施して負極端子用固定孔18を形成して負極端子接続部14を作製する(図4(g)参照)。 After these steps, the second metal member 35 joined to the first plate member 41 via the first metal member 33 is pressed (particularly stamped) to form the negative electrode terminal fixing hole 18. Thus, the negative electrode terminal connecting portion 14 is manufactured (see FIG. 4G).
このとき、第2の取付孔34の内周部分に第2の金属部材35が残存するように、第2の金属部材35の中央部にプレス加工を施して負極端子用固定孔18を形成する。 At this time, the negative electrode terminal fixing hole 18 is formed by pressing the central portion of the second metal member 35 so that the second metal member 35 remains in the inner peripheral portion of the second mounting hole 34. .
これにより、負極端子用固定孔18に負極端子12を挿入して抵抗溶接等により固定する際に、互いに同種金属の負極端子12と第2の金属部材35とが接触することになり、同種金属同士の接合とすることができる。 Thereby, when the negative electrode terminal 12 is inserted into the negative electrode terminal fixing hole 18 and fixed by resistance welding or the like, the negative electrode terminal 12 of the same kind of metal and the second metal member 35 come into contact with each other. It can be set as a joint between each other.
なお、負極端子用固定孔18を形成する際には、異種金属同士の接合とならないように、負極端子12と接触する負極端子用固定孔18の内周面に第1の金属部材33が露出しないようにすると良い。 When forming the negative electrode terminal fixing hole 18, the first metal member 33 is exposed on the inner peripheral surface of the negative electrode terminal fixing hole 18 in contact with the negative electrode terminal 12 so as not to join different metals. It is better not to.
また、圧入型の製造方法は、第1の金属部材33と第2の金属部材35とを接合した後に不活性雰囲気下で加熱する工程を更に備えることが好ましい(図4(h)参照)。 Moreover, it is preferable that the press-fitting type manufacturing method further includes a step of heating in an inert atmosphere after joining the first metal member 33 and the second metal member 35 (see FIG. 4H).
これにより、第1の板材41のアルミニウム等と第1の金属部材33のニッケル等との拡散接合、及び第1の金属部材33のニッケル等と第2の金属部材35の銅等の拡散接合が十分に進行し、より接合強度を高めることができる。 Thereby, diffusion bonding of aluminum or the like of the first plate member 41 and nickel or the like of the first metal member 33 and diffusion bonding of nickel or the like of the first metal member 33 and copper of the second metal member 35 are performed. It can be sufficiently advanced to increase the bonding strength.
不活性雰囲気としては、ヘリウムガス雰囲気やアルゴンガス雰囲気を用いることができる。また、加熱温度は、母材である第1の板材41、第1の金属部材33、及び第2の金属部材35の融点以下の温度とする。 As the inert atmosphere, a helium gas atmosphere or an argon gas atmosphere can be used. The heating temperature is set to a temperature equal to or lower than the melting point of the first plate member 41, the first metal member 33, and the second metal member 35, which are base materials.
以上の工程により得られた電極端子接続体10を介して非水電解質二次電池16を直並列接続する際には、電極端子接続体10の正極端子用固定孔17と非水電解質二次電池16の正極端子11とを抵抗溶接等により固定し、電極端子接続体10の負極端子用固定孔18と他の非水電解質二次電池16の負極端子12とを抵抗溶接等により固定して正極端子11と負極端子12とを電気的に接続する。 When the nonaqueous electrolyte secondary battery 16 is connected in series and parallel via the electrode terminal connector 10 obtained by the above steps, the positive terminal fixing hole 17 of the electrode terminal connector 10 and the nonaqueous electrolyte secondary battery are connected. The positive electrode terminal 11 of 16 is fixed by resistance welding or the like, and the negative electrode terminal fixing hole 18 of the electrode terminal connector 10 and the negative electrode terminal 12 of another nonaqueous electrolyte secondary battery 16 are fixed by resistance welding or the like. The terminal 11 and the negative electrode terminal 12 are electrically connected.
このとき、正極端子11と接触する正極端子用固定孔17が正極端子11と同種金属である第1の板材41で形成され、また負極端子12と接触する負極端子用固定孔18が負極端子12と同種金属である第2の金属部材35で形成されているため、それぞれ同種金属同士の接合となり、原理的に局部電池効果による腐食・高抵抗化を防止することができる。 At this time, the positive terminal fixing hole 17 in contact with the positive terminal 11 is formed of the first plate material 41 made of the same metal as the positive terminal 11, and the negative terminal fixing hole 18 in contact with the negative terminal 12 is formed in the negative terminal 12. Since the second metal member 35 is made of the same kind of metal, the same kind of metal is joined to each other, and in principle, corrosion and high resistance due to the local battery effect can be prevented.
また、同種金属同士の接合であるので、金属同士の接合の手法として抵抗溶接等の簡便なものを採用することが可能となる。 Moreover, since it is joining of the same kind metals, it becomes possible to employ | adopt simple things, such as resistance welding, as a technique of joining metals.
次に、電極端子接続体の製造方法の作用効果を説明する。 Next, the effect of the manufacturing method of an electrode terminal connector will be described.
特許文献1又は2に記載された電極端子接続体は、静水押出加工により異種金属同士が結合した中間製品を形成し、この中間製品から電極端子接続体の板形状に切削加工することで製造される。 The electrode terminal connector described in Patent Document 1 or 2 is manufactured by forming an intermediate product in which dissimilar metals are combined by hydrostatic extrusion, and cutting the intermediate product into a plate shape of the electrode terminal connector. The
静水押出加工を実現するためには大規模な設備が必要になり、また中間製品から板形状に切削加工するためには長時間を要すると共に切粉の無駄が多くなるため、製造コストが著しく増大することが推定される。 Large-scale equipment is required to achieve hydrostatic extrusion, and it takes a long time to cut the intermediate product into a plate shape and waste of chips increases, resulting in a significant increase in manufacturing costs. It is estimated that
また、特許文献2には、板材に取付孔を形成し、この取付孔に異種金属で形成された金属部材を圧入することで、電極端子接続体を製造することも開示されているが、取付孔に金属部材を圧入するまでにアルミニウムやアルミニウム合金の表面に酸化膜が成長し、異種金属間において十分な接合強度が得られない虞がある。 Patent Document 2 also discloses that an electrode terminal connector is manufactured by forming a mounting hole in a plate material and press-fitting a metal member formed of a different metal into the mounting hole. There is a possibility that an oxide film grows on the surface of aluminum or an aluminum alloy before the metal member is press-fitted into the hole, and sufficient bonding strength between different metals cannot be obtained.
これらに対して、本実施の形態に係る電極端子接続体の製造方法によれば、第1の取付孔32の形成から第2の金属部材35の接合までの工程を加工速度に優れ、且つ静水押出加工と比較して小規模な設備で実施できるプレス加工によって行うため、大規模な設備を必要とせず、第1の取付孔32の形成から第2の金属部材35の接合までを短時間で実施することが可能である。 On the other hand, according to the manufacturing method of the electrode terminal connector according to the present embodiment, the steps from the formation of the first mounting hole 32 to the joining of the second metal member 35 are excellent in processing speed and are hydrostatic. Since it is performed by press working that can be performed with small-scale equipment as compared with extrusion processing, large-scale equipment is not required, and the process from the formation of the first mounting hole 32 to the joining of the second metal member 35 is completed in a short time. It is possible to implement.
また、電極端子接続体の製造方法では、第1の取付孔32の形成から第2の金属部材35の接合までの工程の加工速度が静水押出加工や切削加工を併用した場合と比較して高速であることから、加工中における酸化膜の成長を抑制することができる。 Moreover, in the manufacturing method of the electrode terminal connector, the processing speed of the process from the formation of the first mounting hole 32 to the joining of the second metal member 35 is higher than that in the case of using both hydrostatic extrusion and cutting. Therefore, the growth of the oxide film during processing can be suppressed.
更に、電極端子接続体の製造方法では、第1の取付孔32と第1の金属部材33とを接合する際、及び第2の取付孔34と第2の金属部材35とを接合する際に、第1の取付孔32又は第2の取付孔34の内周面に僅かに酸化膜が形成されていたとしても、接合直前に酸化膜を破壊することができ、異種金属同士が拡散接合されるので、異種金属間において十分な接合強度が得られる。 Furthermore, in the manufacturing method of the electrode terminal connector, when the first mounting hole 32 and the first metal member 33 are joined, and when the second mounting hole 34 and the second metal member 35 are joined, Even if a slight oxide film is formed on the inner peripheral surface of the first mounting hole 32 or the second mounting hole 34, the oxide film can be broken immediately before bonding, and dissimilar metals are diffusion bonded. Therefore, sufficient bonding strength can be obtained between different metals.
つまり、本実施の形態に係る電極端子接続体の製造方法によれば、大規模な設備を必要とせず、取付孔の形成から金属部材の接合までを短時間で実施することが可能であるため、酸化膜の成長を最小限に抑制し、接合することができ、異種金属間において十分な接合強度が得られる電極端子接続体10を製造することができる。 In other words, according to the method for manufacturing an electrode terminal assembly according to the present embodiment, since a large-scale facility is not required, it is possible to perform from the formation of the mounting hole to the joining of the metal member in a short time. Thus, it is possible to manufacture the electrode terminal assembly 10 that can suppress the growth of the oxide film to the minimum and can be bonded, and can obtain a sufficient bonding strength between different metals.
なお、本発明は、本実施の形態に限定されるものではなく、本発明の範囲を逸脱しない程度に種々の変形を加えることが可能である。 The present invention is not limited to this embodiment, and various modifications can be made without departing from the scope of the present invention.
例えば、本実施の形態では、薄板31又は第1の板材41を正極端子11と同種金属であるアルミニウム等で形成し、第2の金属部材35を負極端子12と同種金属である銅等で形成したが、薄板31又は第1の板材41を負極端子12と同種金属である銅等で形成し、第2の金属部材35を正極端子11と同種金属であるアルミニウム等で形成しても良い。 For example, in the present embodiment, the thin plate 31 or the first plate material 41 is formed of aluminum or the like that is the same metal as the positive electrode terminal 11, and the second metal member 35 is formed of copper or the like that is the same metal as the negative electrode terminal 12. However, the thin plate 31 or the first plate 41 may be formed of copper or the like that is the same metal as the negative electrode terminal 12, and the second metal member 35 may be formed of aluminum or the like that is the same metal as the positive electrode terminal 11.
この場合にも、第1の取付孔32と第1の金属部材33とを接合する際、及び第2の取付孔34と第2の金属部材35とを接合する際に、第1の取付孔32又は第2の取付孔34の内周面に僅かに酸化膜が形成されていたとしても、拡張や圧入により酸化膜が破壊されて新生面の創出が促進され、異種金属間において十分な接合強度が得られる。 Also in this case, when the first mounting hole 32 and the first metal member 33 are joined, and when the second mounting hole 34 and the second metal member 35 are joined, the first mounting hole is used. Even if an oxide film is slightly formed on the inner peripheral surface of 32 or the second mounting hole 34, the oxide film is destroyed by expansion or press-fitting, and the creation of a new surface is promoted, and sufficient bonding strength between different metals Is obtained.
また、本実施の形態では、拡張型の製造方法では接合を全て拡張により実施し、圧入型の製造方法では接合を全て圧入により実施するものとしたが、拡張による接合と圧入による接合を組み合わせるようにしても構わない。 Further, in this embodiment, in the expansion type manufacturing method, all bonding is performed by expansion, and in the press-fitting type manufacturing method, all bonding is performed by press-fitting. However, the expansion bonding and the bonding by press-fitting are combined. It doesn't matter.
以上の通り、本発明によれば、電極端子接続体の結合部における腐食・高抵抗化を抑制することが可能な電極端子接続体及びその製造方法を提供することができる。 As described above, according to the present invention, it is possible to provide an electrode terminal connector and a method for manufacturing the same that can suppress corrosion and increase in resistance at the joint portion of the electrode terminal connector.
10 電極端子接続体
11 正極端子
12 負極端子
13 正極端子接続部
14 負極端子接続部
15 介在部
16 非水電解質二次電池
17 正極端子用固定孔
18 負極端子用固定孔
DESCRIPTION OF SYMBOLS 10 Electrode terminal connection body 11 Positive electrode terminal 12 Negative electrode terminal 13 Positive electrode terminal connection part 14 Negative electrode terminal connection part 15 Interposition part 16 Nonaqueous electrolyte secondary battery 17 Positive electrode terminal fixing hole 18 Negative electrode terminal fixing hole
Claims (10)
前記正極端子と同種金属で形成された正極端子接続部と、
前記負極端子と同種金属で形成された負極端子接続部と、
を備え、
前記正極端子接続部と前記負極端子接続部とが前記正極端子を形成する金属と前記負極端子を形成する金属との間のイオン化傾向を有する金属で形成された介在部を介して結合されていることを特徴とする電極端子接続体。 In the electrode terminal connection body that electrically connects the positive electrode terminal and the negative electrode terminal formed of different metals,
A positive terminal connecting portion formed of the same metal as the positive terminal;
A negative terminal connecting portion formed of the same metal as the negative terminal;
With
The positive electrode terminal connecting portion and the negative electrode terminal connecting portion are coupled via an intervening portion formed of a metal having an ionization tendency between the metal forming the positive electrode terminal and the metal forming the negative electrode terminal. An electrode terminal connector characterized by that.
前記正極端子と同種金属で形成された薄板にプレス加工を施して第1の取付孔を形成する工程と、
前記正極端子を形成する金属と前記負極端子を形成する金属との間のイオン化傾向を有する金属で形成された第1の厚板にプレス加工を施して前記第1の取付孔よりも小径の第1の金属部材を形成する工程と、
前記第1の取付孔の内部に前記第1の金属部材を挿入すると共に前記第1の取付孔の内部で前記第1の金属部材を押し潰して前記第1の取付孔を拡張しつつ前記薄板と前記第1の金属部材とを接合する工程と、
前記第1の取付孔の内周部分に前記第1の金属部材が残存するように、前記第1の金属部材の中央部にプレス加工を施して第2の取付孔を形成する工程と、
前記負極端子と同種金属で形成された第2の厚板にプレス加工を施して前記第2の取付孔よりも小径の第2の金属部材を形成する工程と、
前記第2の取付孔の内部に前記第2の金属部材を挿入すると共に前記第2の取付孔の内部で前記第2の金属部材を押し潰して前記第2の取付孔を拡張しつつ前記第1の金属部材と前記第2の金属部材とを接合する工程と、
を備えることを特徴とする電極端子接続体の製造方法。 In the method of manufacturing an electrode terminal assembly for electrically connecting a positive electrode terminal and a negative electrode terminal formed of different metals from each other,
Forming a first mounting hole by pressing a thin plate made of the same metal as the positive electrode terminal; and
The first thick plate made of a metal having an ionization tendency between the metal forming the positive electrode terminal and the metal forming the negative electrode terminal is subjected to press working to have a diameter smaller than that of the first mounting hole. Forming a metal member of 1;
The first metal member is inserted into the first mounting hole, and the first metal member is crushed inside the first mounting hole to expand the first mounting hole and the thin plate. And joining the first metal member;
Forming a second mounting hole by pressing the central portion of the first metal member so that the first metal member remains on the inner peripheral portion of the first mounting hole;
Forming a second metal member having a diameter smaller than that of the second mounting hole by pressing a second thick plate formed of the same metal as the negative electrode terminal;
The second metal member is inserted into the second mounting hole, and the second metal member is crushed inside the second mounting hole to expand the second mounting hole. Joining the first metal member and the second metal member;
A method for producing an electrode terminal assembly, comprising:
前記第2の取付孔の内周部分に前記第2の金属部材が残存するように、前記第2の金属部材の中央部にプレス加工を施して負極端子用固定孔を形成する工程と、
を更に備える請求項2に記載の電極端子接続体の製造方法。 Forming a positive electrode terminal fixing hole by pressing the thin plate; and
Forming a negative electrode terminal fixing hole by pressing the central portion of the second metal member so that the second metal member remains on the inner peripheral portion of the second mounting hole;
The manufacturing method of the electrode terminal connector of Claim 2 further equipped with these.
前記負極端子と同種金属で形成された薄板にプレス加工を施して第1の取付孔を形成する工程と、
前記正極端子を形成する金属と前記負極端子を形成する金属との間のイオン化傾向を有する金属で形成された第1の厚板にプレス加工を施して前記第1の取付孔よりも小径の第1の金属部材を形成する工程と、
前記第1の取付孔の内部に前記第1の金属部材を挿入すると共に前記第1の取付孔の内部で前記第1の金属部材を押し潰して前記第1の取付孔を拡張しつつ前記薄板と前記第1の金属部材とを接合する工程と、
前記第1の取付孔の内周部分に前記第1の金属部材が残存するように、前記第1の金属部材の中央部にプレス加工を施して第2の取付孔を形成する工程と、
前記正極端子と同種金属で形成された第2の厚板にプレス加工を施して前記第2の取付孔よりも小径の第2の金属部材を形成する工程と、
前記第2の取付孔の内部に前記第2の金属部材を挿入すると共に前記第2の取付孔の内部で前記第2の金属部材を押し潰して前記第2の取付孔を拡張しつつ前記第1の金属部材と前記第2の金属部材とを接合する工程と、
を備えることを特徴とする電極端子接続体の製造方法。 In the method of manufacturing an electrode terminal assembly for electrically connecting a positive electrode terminal and a negative electrode terminal formed of different metals from each other,
Forming a first mounting hole by pressing a thin plate made of the same metal as the negative electrode terminal; and
The first thick plate made of a metal having an ionization tendency between the metal forming the positive electrode terminal and the metal forming the negative electrode terminal is subjected to press working to have a diameter smaller than that of the first mounting hole. Forming a metal member of 1;
The first metal member is inserted into the first mounting hole, and the first metal member is crushed inside the first mounting hole to expand the first mounting hole and the thin plate. And joining the first metal member;
Forming a second mounting hole by pressing the central portion of the first metal member so that the first metal member remains on the inner peripheral portion of the first mounting hole;
Forming a second metal member having a smaller diameter than the second mounting hole by pressing the second thick plate formed of the same metal as the positive electrode terminal;
The second metal member is inserted into the second mounting hole, and the second metal member is crushed inside the second mounting hole to expand the second mounting hole. Joining the first metal member and the second metal member;
A method for producing an electrode terminal assembly, comprising:
前記第2の取付孔の内周部分に前記第2の金属部材が残存するように、前記第2の金属部材の中央部にプレス加工を施して正極端子用固定孔を形成する工程と、
を更に備える請求項4に記載の電極端子接続体の製造方法。 Forming a negative electrode terminal fixing hole by pressing the thin plate; and
Forming a positive electrode terminal fixing hole by pressing the central portion of the second metal member so that the second metal member remains on the inner peripheral portion of the second mounting hole;
The manufacturing method of the electrode terminal connector of Claim 4 further equipped with these.
前記正極端子と同種金属で形成された第1の板材にプレス加工を施して第1の取付孔を形成する工程と、
前記正極端子を形成する金属と前記負極端子を形成する金属との間のイオン化傾向を有する金属で形成された第2の板材にプレス加工を施して前記第1の取付孔よりも大径の第1の金属部材を形成する工程と、
前記第1の取付孔の内部に前記第1の金属部材を圧入して前記第1の板材と前記第1の金属部材とを接合する工程と、
前記第1の取付孔の内周部分に前記第1の金属部材が残存するように、前記第1の金属部材の中央部にプレス加工を施して第2の取付孔を形成する工程と、
前記負極端子と同種金属で形成された第3の板材にプレス加工を施して前記第2の取付孔よりも大径の第2の金属部材を形成する工程と、
前記第2の取付孔の内部に前記第2の金属部材を圧入して前記第1の金属部材と前記第2の金属部材とを接合する工程と、
を備えることを特徴とする電極端子接続体の製造方法。 In the method of manufacturing an electrode terminal assembly for electrically connecting a positive electrode terminal and a negative electrode terminal formed of different metals from each other,
Forming a first mounting hole by pressing the first plate made of the same metal as the positive electrode terminal; and
The second plate member formed of a metal having an ionization tendency between the metal forming the positive electrode terminal and the metal forming the negative electrode terminal is subjected to press working to have a diameter larger than that of the first mounting hole. Forming a metal member of 1;
Press-fitting the first metal member into the first mounting hole to join the first plate member and the first metal member;
Forming a second mounting hole by pressing the central portion of the first metal member so that the first metal member remains on the inner peripheral portion of the first mounting hole;
Forming a second metal member having a diameter larger than that of the second mounting hole by pressing a third plate formed of the same metal as the negative electrode terminal;
Press-fitting the second metal member into the second mounting hole to join the first metal member and the second metal member;
A method for producing an electrode terminal assembly, comprising:
前記第2の取付孔の内周部分に前記第2の金属部材が残存するように、前記第2の金属部材の中央部にプレス加工を施して負極端子用固定孔を形成する工程と、
を更に備える請求項6に記載の電極端子接続体の製造方法。 Forming a positive electrode terminal fixing hole by pressing the first plate member; and
Forming a negative electrode terminal fixing hole by pressing the central portion of the second metal member so that the second metal member remains on the inner peripheral portion of the second mounting hole;
The manufacturing method of the electrode terminal connector of Claim 6 further equipped with these.
前記負極端子と同種金属で形成された第1の板材にプレス加工を施して第1の取付孔を形成する工程と、
前記正極端子を形成する金属と前記負極端子を形成する金属との間のイオン化傾向を有する金属で形成された第2の板材にプレス加工を施して前記第1の取付孔よりも大径の第1の金属部材を形成する工程と、
前記第1の取付孔の内部に前記第1の金属部材を圧入して前記第1の板材と前記第1の金属部材とを接合する工程と、
前記第1の取付孔の内周部分に前記第1の金属部材が残存するように、前記第1の金属部材の中央部にプレス加工を施して第2の取付孔を形成する工程と、
前記正極端子と同種金属で形成された第3の板材にプレス加工を施して前記第2の取付孔よりも大径の第2の金属部材を形成する工程と、
前記第2の取付孔の内部に前記第2の金属部材を圧入して前記第1の金属部材と前記第2の金属部材とを接合する工程と、
を備えることを特徴とする電極端子接続体の製造方法。 In the method of manufacturing an electrode terminal assembly for electrically connecting a positive electrode terminal and a negative electrode terminal formed of different metals from each other,
Forming a first mounting hole by pressing a first plate material made of the same metal as the negative electrode terminal;
The second plate member formed of a metal having an ionization tendency between the metal forming the positive electrode terminal and the metal forming the negative electrode terminal is subjected to press working to have a diameter larger than that of the first mounting hole. Forming a metal member of 1;
Press-fitting the first metal member into the first mounting hole to join the first plate member and the first metal member;
Forming a second mounting hole by pressing the central portion of the first metal member so that the first metal member remains on the inner peripheral portion of the first mounting hole;
Forming a second metal member having a diameter larger than that of the second mounting hole by pressing a third plate formed of the same metal as the positive electrode terminal;
Press-fitting the second metal member into the second mounting hole to join the first metal member and the second metal member;
A method for producing an electrode terminal assembly, comprising:
前記第2の取付孔の内周部分に前記第2の金属部材が残存するように、前記第2の金属部材の中央部にプレス加工を施して正極端子用固定孔を形成する工程と、
を更に備える請求項8に記載の電極端子接続体の製造方法。 A step of pressing the first plate member to form a negative electrode terminal fixing hole;
Forming a positive electrode terminal fixing hole by pressing the central portion of the second metal member so that the second metal member remains on the inner peripheral portion of the second mounting hole;
The method for manufacturing an electrode terminal connector according to claim 8, further comprising:
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013064041A JP2014191888A (en) | 2013-03-26 | 2013-03-26 | Electrode terminal connection body and manufacturing method therefor |
US14/205,055 US20140295252A1 (en) | 2013-03-26 | 2014-03-11 | Electrode terminal connection body and manufacturing method of the same |
CN201410090184.5A CN104078639A (en) | 2013-03-26 | 2014-03-12 | Electrode terminal connection body and manufacturing method of the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013064041A JP2014191888A (en) | 2013-03-26 | 2013-03-26 | Electrode terminal connection body and manufacturing method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014191888A true JP2014191888A (en) | 2014-10-06 |
Family
ID=51837993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013064041A Pending JP2014191888A (en) | 2013-03-26 | 2013-03-26 | Electrode terminal connection body and manufacturing method therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014191888A (en) |
-
2013
- 2013-03-26 JP JP2013064041A patent/JP2014191888A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106469801B (en) | The manufacturing method of battery terminal and battery terminal | |
JP5943396B2 (en) | Battery terminal, battery terminal manufacturing method and battery | |
CN102870254B (en) | Bus bar and method for producing bus bar | |
JP6581440B2 (en) | Battery terminal, battery terminal manufacturing method and battery | |
US10193126B2 (en) | Battery terminal, method for manufacturing battery terminal, and battery | |
US8906545B2 (en) | Prismatic secondary battery | |
JP2013182724A (en) | Square type secondary battery | |
JP2011092995A (en) | Current carrying block for resistance welding, and method for manufacturing sealed battery and sealed battery each using the current carrying block | |
CN103026533A (en) | Secondary battery having a differential lead structure | |
JP2016091659A (en) | Power storage device, and manufacturing method of power storage device | |
JP2014191891A (en) | Method for manufacturing electrode terminal connection body | |
JP2008159357A (en) | Cylindrical secondary battery | |
JP2023013136A (en) | Terminal component and method for manufacturing terminal component | |
JP2014130740A (en) | Method of manufacturing electrode terminal connector | |
JP2014143159A (en) | Method of manufacturing electrode terminal connector | |
US9252550B2 (en) | Electrode terminal connector producing method | |
EP3361524B1 (en) | Power battery top cap structure, power battery and battery module | |
JP2014191888A (en) | Electrode terminal connection body and manufacturing method therefor | |
US20140295252A1 (en) | Electrode terminal connection body and manufacturing method of the same | |
JP2014191890A (en) | Electrode terminal connection body and manufacturing method therefor | |
JP2016091660A (en) | Power storage device, and manufacturing method of power storage device | |
JP2014143158A (en) | Method of manufacturing electrode terminal connector | |
JP2014191889A (en) | Electrode terminal connection body and manufacturing method therefor | |
JP2014136251A (en) | Precursor and method of manufacturing electrode terminal connection body | |
CN205828509U (en) | Electrode leads to client attachment structure and battery modules, battery case |