JP2014190509A - Vibration control device - Google Patents

Vibration control device Download PDF

Info

Publication number
JP2014190509A
JP2014190509A JP2013069207A JP2013069207A JP2014190509A JP 2014190509 A JP2014190509 A JP 2014190509A JP 2013069207 A JP2013069207 A JP 2013069207A JP 2013069207 A JP2013069207 A JP 2013069207A JP 2014190509 A JP2014190509 A JP 2014190509A
Authority
JP
Japan
Prior art keywords
outer cylinder
cylinder
vibration
wall surface
central axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013069207A
Other languages
Japanese (ja)
Inventor
Hiroaki Kogure
博亮 木暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2013069207A priority Critical patent/JP2014190509A/en
Priority to CN201420108496.XU priority patent/CN203784173U/en
Publication of JP2014190509A publication Critical patent/JP2014190509A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a vibration control device capable of increasing a ratio of a static spring constant of a rubber elastic body in a direction orthogonal to an axial direction of an outer cylinder and an inner cylinder.SOLUTION: A vibration control device comprises: an outer cylinder attached to one of a vibration generating part and a vibration receiving part and having the length from a center axis to an inner wall surface different around the center axis; an inner cylinder disposed in the inside of the outer cylinder to be coaxial with the outer cylinder, attached to the other of the vibration generating part and the vibration receiving part, and having the length from the center axis to an outer wall surface different around the center axis; and a rubber elastic body for connecting the inner wall surface of the outer cylinder and the outer wall surface of the inner cylinder to be elastically deformable in the state that the shortest part having the shortest length from the center axis to the inner wall surface of the outer cylinder and the longest part having the longest length from the center axis to the outer wall surface of the inner cylinder are confronted with each other.

Description

本発明は、防振装置に関する。   The present invention relates to a vibration isolator.

外筒、内筒、及び外筒と内筒とを弾性変形可能に連結するゴム弾性体を有する、いわゆるブッシュ式の防振装置が知られている。この種の防振装置において、外筒の一部を内側に凹ませて、ゴム弾性体のゴム厚を防振装置の外筒及び内筒の軸方向と直交する方向で異ならせて、中心軸周りでゴム弾性体の静的バネ定数を変えた防振装置がある(例えば、特許文献1)。   A so-called bush type vibration isolator having an outer cylinder, an inner cylinder, and a rubber elastic body that connects the outer cylinder and the inner cylinder so as to be elastically deformable is known. In this type of vibration isolator, a part of the outer cylinder is recessed inward, and the rubber thickness of the rubber elastic body is changed in a direction orthogonal to the axial direction of the outer cylinder and the inner cylinder of the vibration isolator, There is a vibration isolator in which the static spring constant of a rubber elastic body is changed around (for example, Patent Document 1).

しかしながら、外筒を内側に凹ませただけでゴム厚を薄くするには限界があり、外筒及び内筒の軸方向と直交する方向におけるゴム弾性体の静的バネ定数の比を大きくすることが困難となっている。   However, there is a limit to reducing the rubber thickness just by indenting the outer cylinder inward, and the ratio of the static spring constant of the rubber elastic body in the direction perpendicular to the axial direction of the outer cylinder and the inner cylinder should be increased. Has become difficult.

特開平6−280914号公報JP-A-6-280914

本発明は上記事項を考慮し、外筒及び内筒の軸方向と直交する方向におけるゴム弾性体の静的バネ定数の比を大きくできる防振装置を提供することを目的とする。   An object of the present invention is to provide a vibration isolator capable of increasing the ratio of the static spring constant of a rubber elastic body in a direction orthogonal to the axial direction of the outer cylinder and the inner cylinder in consideration of the above matters.

請求項1に記載の防振装置は、振動発生部及び振動受部の何れか一方へ取付けられると共に、中心軸から内壁面までの長さが前記中心軸周りで異なる形状の外筒と、前記外筒の内側に前記外筒と同軸的に設けられ、振動発生部及び振動受部の何れか他方へ取付けられると共に、中心軸から外壁面までの長さが前記中心軸周りで異なる形状の内筒と、前記外筒の前記中心軸から前記内壁面までの長さが最も短い最短部と、前記内筒の前記中心軸から前記外壁面までの長さが最も長い最長部とを対向させた状態で、前記外筒の内壁面と前記内筒の外壁面とを弾性変形可能に連結するゴム弾性体と、を有することを特徴とする。   The vibration isolator according to claim 1 is attached to any one of the vibration generating unit and the vibration receiving unit, and the length of the outer cylinder from the central axis to the inner wall surface is different around the central axis; The inner cylinder is provided coaxially with the outer cylinder and attached to either the vibration generating part or the vibration receiving part, and the length from the central axis to the outer wall surface is different around the central axis. The cylinder, the shortest part having the shortest length from the central axis to the inner wall surface of the outer cylinder, and the longest part having the longest length from the central axis to the outer wall surface of the inner cylinder are opposed to each other. And a rubber elastic body for connecting the inner wall surface of the outer cylinder and the outer wall surface of the inner cylinder so as to be elastically deformable.

請求項1に記載の防振装置では、外筒が振動発生部及び振動受部の何れか一方へ取付けられている。また、外筒の内側には、振動発生部及び振動受部の何れか他方へ取付けられると内筒が設けられている。さらに、外筒の内壁面と内筒の外壁面とは、ゴム弾性体によって弾性変形可能に連結されている。これにより、外筒及び内筒の一方へ振動が入力されると、ゴム弾性体が弾性変形して、振動を吸収減衰して、外筒及び内筒の他方へ振動が伝達するのを抑制できる。   In the vibration isolator according to the first aspect, the outer cylinder is attached to one of the vibration generating portion and the vibration receiving portion. Further, an inner cylinder is provided inside the outer cylinder when attached to either the vibration generating section or the vibration receiving section. Furthermore, the inner wall surface of the outer cylinder and the outer wall surface of the inner cylinder are connected by a rubber elastic body so as to be elastically deformable. As a result, when vibration is input to one of the outer cylinder and the inner cylinder, the rubber elastic body is elastically deformed and absorbs and attenuates the vibration, so that transmission of vibration to the other of the outer cylinder and the inner cylinder can be suppressed. .

また、外筒は、中心軸から内壁面までの長さが中心軸周りで異なる形状で形成されており、内筒は、中心軸から外壁面までの長さが中心軸周りで異なる形状で形成されている。さらに、ゴム弾性体は、外筒の中心軸から内壁面までの長さが最も短い最短部と、内筒の中心軸から外壁面までの長さが最も長い最長部とを対向させた状態で連結している。これにより、外筒と内筒との間のゴム弾性体のゴム厚は、最短部及び最長部が対向している部位で最も薄くなる。ここで、ゴム弾性体の静的バネ定数は、ゴム弾性体のゴム厚に依存するので、ゴム厚が最も薄くなっている部位は、他の部位よりゴム弾性体の静的バネ定数が大きくなり、外筒及び内筒の軸方向と直交する方向におけるゴム弾性体の静的バネ定数を異ならせることができる。また、外筒及び内筒の一方のみを異形状とする場合と比べて、外筒と内筒の間隔を狭くでき、ゴム弾性体を薄くすることができるため、ゴム弾性体の静的バネ定数の比を大きくすることができる。   The outer cylinder is formed in a shape with different lengths from the central axis to the inner wall surface around the central axis, and the inner cylinder is formed in a shape with different lengths from the central axis to the outer wall surface around the central axis. Has been. Furthermore, the rubber elastic body is in a state where the shortest part from the center axis of the outer cylinder to the inner wall surface is the shortest part and the longest part from the center axis to the outer wall surface of the inner cylinder are opposed to each other. It is connected. Thereby, the rubber | gum thickness of the rubber elastic body between an outer cylinder and an inner cylinder becomes the thinnest in the site | part which the shortest part and the longest part have opposed. Here, since the static spring constant of the rubber elastic body depends on the rubber thickness of the rubber elastic body, the static spring constant of the rubber elastic body becomes larger in the portion where the rubber thickness is the thinnest than in other portions. The static spring constant of the rubber elastic body in the direction orthogonal to the axial direction of the outer cylinder and the inner cylinder can be varied. Also, compared to the case where only one of the outer cylinder and the inner cylinder has a different shape, the interval between the outer cylinder and the inner cylinder can be narrowed, and the rubber elastic body can be made thinner. The ratio can be increased.

請求項2に記載の防振装置は、請求項1に記載の防振装置であって、前記最短部、及び前記最長部は、前記中心軸を挟んで両側に設けられていることを特徴とする。   The anti-vibration device according to claim 2 is the anti-vibration device according to claim 1, wherein the shortest part and the longest part are provided on both sides of the central axis. To do.

請求項2に記載の防振装置では、最短部、及び最長部は、中心軸を挟んで両側に設けられている。これにより、最短部(最長部)と中心軸とを通る軸方向におけるゴム弾性体の静的バネ定数は、最短部、及び最長部が片側にしか設けられていない場合と比べて、より大きくできる。すなわち、外筒及び内筒の軸方向と直交する方向における静的バネ定数の比を、より大きくできる。   In the vibration isolator according to claim 2, the shortest part and the longest part are provided on both sides of the central axis. Thereby, the static spring constant of the rubber elastic body in the axial direction passing through the shortest part (longest part) and the central axis can be made larger than in the case where the shortest part and the longest part are provided only on one side. . That is, the ratio of the static spring constant in the direction orthogonal to the axial direction of the outer cylinder and the inner cylinder can be further increased.

請求項3に記載の防振装置は、請求項1又は2に記載の防振装置であって、前記外筒は、内側へ対向して突出され、前記最短部となる突出部を有する外円筒体であり、前記内筒は、外壁面に互いに平行に形成された平面部と、前記平面部の間に形成され、前記最長部となる円弧部と、を有する内円筒体であることを特徴とする。   An anti-vibration device according to claim 3 is the anti-vibration device according to claim 1 or 2, wherein the outer cylinder protrudes inwardly and has an outer cylinder having a protruding portion serving as the shortest portion. The inner cylinder is an inner cylindrical body having a plane portion formed in parallel to each other on an outer wall surface and an arc portion formed between the plane portions and serving as the longest portion. And

請求項3に記載の防振装置では、外筒は、内側へ対向する突出部を有する外円筒体であり、内筒は、外壁面に互いに平行に形成された平面部と、平面部の間に形成された円弧部と、を有する内円筒体である。このように、外円筒体、及び内円筒体の構成が簡単な構造となっているので、複雑な加工を必要とせずに製造できる。   In the vibration isolator according to claim 3, the outer cylinder is an outer cylindrical body having a projecting portion facing inward, and the inner cylinder is between the plane portion and the plane portion formed in parallel to each other on the outer wall surface. And an arc portion formed on the inner cylindrical body. Thus, the configuration of the outer cylindrical body and the inner cylindrical body has a simple structure, so that it can be manufactured without requiring complicated processing.

請求項4に記載の防振装置は、請求項1〜3の何れか1項に記載の防振装置であって、前記外筒及び前記内筒の一方が車両本体に取り付けられ、前記外筒及び前記内筒の他方がタイヤを支持する支持部材に取り付けられる防振装置であって、前記最短部及び前記最長部は、車幅方向に位置していることを特徴とする。   The vibration isolator according to claim 4 is the vibration isolator according to any one of claims 1 to 3, wherein one of the outer cylinder and the inner cylinder is attached to a vehicle body, and the outer cylinder And the other of the inner cylinders is a vibration isolator attached to a support member that supports a tire, wherein the shortest part and the longest part are located in a vehicle width direction.

請求項4に記載の防振装置では、内筒及び外筒の一方が車両本体に取り付けられ、他方がタイヤを支持する支持部材に取り付けられている。また、最小径部位、及び最大径部位は、車両の車幅方向に位置している。これにより、車幅方向のゴム弾性体の静的バネ定数が大きくなるので、コーナリング時における車幅方向の剛性が確保され、操縦安定性を向上できる。   In the vibration isolator according to the fourth aspect, one of the inner cylinder and the outer cylinder is attached to the vehicle body, and the other is attached to a support member that supports the tire. The minimum diameter portion and the maximum diameter portion are located in the vehicle width direction of the vehicle. Thereby, since the static spring constant of the rubber elastic body in the vehicle width direction is increased, the rigidity in the vehicle width direction at the time of cornering is ensured, and the steering stability can be improved.

本発明は、上記の構成としたので、外筒及び内筒の軸方向と直交する方向におけるゴム弾性体の静的バネ定数の比を大きくできる。   Since this invention set it as said structure, it can enlarge the ratio of the static spring constant of the rubber elastic body in the direction orthogonal to the axial direction of an outer cylinder and an inner cylinder.

本発明の第1実施形態に係る防振装置を示す斜視図である。It is a perspective view which shows the vibration isolator which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る防振装置を構成する外筒を示す斜視図である。It is a perspective view which shows the outer cylinder which comprises the vibration isolator which concerns on 1st Embodiment of this invention. 図2のA−A線断面図である。It is the sectional view on the AA line of FIG. 本発明の第1実施形態に係る防振装置を構成する内筒を示す斜視図である。It is a perspective view which shows the inner cylinder which comprises the vibration isolator which concerns on 1st Embodiment of this invention. 図4のB−B線断面図である。It is the BB sectional view taken on the line of FIG. 図1の防振装置をXZ平面で切断した断面図である。It is sectional drawing which cut | disconnected the vibration isolator of FIG. 1 by XZ plane. 図1の防振装置をXY平面で切断した断面図である。It is sectional drawing which cut | disconnected the vibration isolator of FIG. 1 by XY plane. 図1のC−C線断面図である。It is CC sectional view taken on the line of FIG. 本発明の第1実施形態に係る防振装置が取り付けられた車両のサブフレーム機構を示す平面図である。It is a top view which shows the sub-frame mechanism of the vehicle with which the vibration isolator which concerns on 1st Embodiment of this invention was attached. 本発明の第2実施形態に係る防振装置を示す斜視図である。It is a perspective view which shows the vibration isolator which concerns on 2nd Embodiment of this invention. 図9の防振装置をXY平面で切断した断面図である。It is sectional drawing which cut | disconnected the vibration isolator of FIG. 9 by XY plane.

(第1実施形態)
図を参照しながら、本発明の第1実施形態に係る防振装置10について説明する。なお、以下の説明において、防振装置10の中心軸CLと平行な方向を軸方向Xとし、軸方向と直交する2方向をそれぞれ、Y方向、及びZ方向として説明する。
(First embodiment)
The vibration isolator 10 according to the first embodiment of the present invention will be described with reference to the drawings. In the following description, a direction parallel to the central axis CL of the vibration isolator 10 is described as an axial direction X, and two directions orthogonal to the axial direction are described as a Y direction and a Z direction, respectively.

本実施形態に係る防振装置10は、図1に示すように、防振装置10は、外筒12と、外筒12の内側に外筒12と同軸的に設けられた内筒14と、外筒12と内筒14とを弾性変形可能に連結するゴム弾性体16と、で構成された、いわゆるブッシュ式の防振装置である。   As shown in FIG. 1, the vibration isolator 10 according to this embodiment includes an outer cylinder 12, an inner cylinder 14 provided coaxially with the outer cylinder 12 inside the outer cylinder 12, This is a so-called bush type vibration isolator constituted by a rubber elastic body 16 that connects the outer cylinder 12 and the inner cylinder 14 so as to be elastically deformable.

図2に示すように、外筒12は、スチールやアルミ等で形成された外円筒状であり、外周面(外壁面)12Aの軸方向Xの中央部に形成された段差部20より一端側の大径部12Cと、他端側の小径部12Dとで構成されている(図6参照)。また、小径部12Dの端部のZ方向には、切欠き部22が形成されている。   As shown in FIG. 2, the outer cylinder 12 has an outer cylindrical shape formed of steel, aluminum, or the like, and is on one end side with respect to the stepped portion 20 formed at the center portion in the axial direction X of the outer peripheral surface (outer wall surface) 12A. The large-diameter portion 12C and a small-diameter portion 12D on the other end side (see FIG. 6). Further, a notch 22 is formed in the Z direction at the end of the small diameter portion 12D.

外筒12の内周面(内壁面)12Bには、中心軸CLを挟んで内側へ対向して突出した突出部24が形成されている。突出部24は、外筒12のY方向の両側に形成されており、外筒12の外周面12Aをプレス機等で凹ませて、内側に突出させている。このため、外周面12Aの突出部24と対応する部位は、内側に凹んだ凹部28となっている。また、突出部24は、外筒12の周方向に1/4周程度の長さで形成されている。   On the inner peripheral surface (inner wall surface) 12 </ b> B of the outer cylinder 12, a protruding portion 24 that protrudes inward facing the central axis CL is formed. The protrusions 24 are formed on both sides of the outer cylinder 12 in the Y direction, and the outer peripheral surface 12A of the outer cylinder 12 is recessed with a press or the like to protrude inward. For this reason, the site | part corresponding to the protrusion part 24 of 12 A of outer peripheral surfaces becomes the recessed part 28 dented inside. Further, the protruding portion 24 is formed with a length of about ¼ in the circumferential direction of the outer cylinder 12.

なお、本実施形態では、外筒12の外周面12Aを凹ませて突出部24を形成したが、内周面12Bに突出部24が形成できれば、外周面12Aを凹ませる必要はない。すなわち、外筒12の外周面12Aは、凹凸のない面であってもよい。また、外筒12は、スチール等の金属で形成したが、樹脂で形成してもよい。この場合、熱可塑性又は熱硬化性の樹脂材料を専用の金型に流し込んで、外筒12と突出部24とを一体成形することができる。   In the present embodiment, the outer peripheral surface 12A of the outer cylinder 12 is recessed to form the protruding portion 24. However, if the protruding portion 24 can be formed on the inner peripheral surface 12B, the outer peripheral surface 12A need not be recessed. That is, the outer peripheral surface 12A of the outer cylinder 12 may be a surface without unevenness. Moreover, although the outer cylinder 12 was formed with metals, such as steel, you may form with resin. In this case, the outer cylinder 12 and the protruding portion 24 can be integrally formed by pouring a thermoplastic or thermosetting resin material into a dedicated mold.

図3に示すように、突出部24の断面は、径方向外側に膨らむように湾曲しており、外筒12の中心軸CLから内周面12Bまでの長さは、中心軸CL周りで異なっている。また、突出部24のZ方向の中央部24Aは、中心軸CLから内周面12Bまでの長さが最も短い最短部となっている。ここで、本実施形態では一例として、中心軸CLから突出部24の中央部24Aにおける外筒12の内周面12Bまでの長さD1を17.5mmとしている。また、中心軸CLから突出部24が形成されていない円弧部30における外筒12の内周面12Bまでの長さD2を25mmとしている。   As shown in FIG. 3, the cross section of the protrusion 24 is curved so as to bulge outward in the radial direction, and the length from the central axis CL of the outer cylinder 12 to the inner peripheral surface 12B is different around the central axis CL. ing. The central portion 24A in the Z direction of the protruding portion 24 is the shortest portion having the shortest length from the central axis CL to the inner peripheral surface 12B. Here, in this embodiment, as an example, the length D1 from the central axis CL to the inner peripheral surface 12B of the outer cylinder 12 in the central portion 24A of the protruding portion 24 is 17.5 mm. Further, a length D2 from the central axis CL to the inner peripheral surface 12B of the outer cylinder 12 in the arc portion 30 where the protruding portion 24 is not formed is set to 25 mm.

なお、中心軸CLから突出部24の中央部24Aまでの長さを35mmより短くなるように形成してもよいが、本実施形態のように、プレス機で外筒12の外周面12Aを凹ませて突出部24を形成する場合、外周面12Aを凹ませ過ぎると、突出部24における外筒12の肉厚が薄くなり、強度が低下する虞があるので、予め外筒12の肉厚を厚めに形成しておくのがよい。   Although the length from the central axis CL to the central portion 24A of the protruding portion 24 may be shorter than 35 mm, the outer peripheral surface 12A of the outer cylinder 12 is recessed by a press as in this embodiment. Further, when forming the protruding portion 24, if the outer peripheral surface 12A is recessed too much, the thickness of the outer cylinder 12 in the protruding portion 24 becomes thin and the strength may be lowered. It is good to form it thickly.

また、本実施形態では、外筒12を円筒体としたが、これに限らず、他の形状であってもよい。例えば、角筒体であってもよい。   Moreover, in this embodiment, although the outer cylinder 12 was made into the cylindrical body, it is not restricted to this, Other shapes may be sufficient. For example, a rectangular tube may be used.

図4に示すように、内筒14は、外筒12と同様にスチールやアルミ等で形成された内円筒体であり、外筒12より軸方向Xに長く形成されている(図6参照)。また、内筒14は、外周面14Aに中心軸CLを挟んで互いに平行に形成された平面部32と、この平面部32の間に形成された円弧部34と、を有している(図5参照)。   As shown in FIG. 4, the inner cylinder 14 is an inner cylindrical body formed of steel, aluminum, or the like, similar to the outer cylinder 12, and is longer than the outer cylinder 12 in the axial direction X (see FIG. 6). . Further, the inner cylinder 14 has a planar portion 32 formed in parallel to each other with the central axis CL sandwiched between the outer peripheral surface 14A and an arc portion 34 formed between the planar portions 32 (see FIG. 5).

平面部32はそれぞれ、外周面14AのZ方向に位置しており、平面視において、軸方向Xを長手方向とした略矩形状に形成されている。また、平面部32は、軸方向Xの端部から、内筒14の軸方向Xの中央部より、やや上方まで延びている。   Each of the plane portions 32 is located in the Z direction of the outer peripheral surface 14A, and is formed in a substantially rectangular shape with the axial direction X as the longitudinal direction in plan view. Further, the flat surface portion 32 extends from the end portion in the axial direction X slightly upward from the central portion in the axial direction X of the inner cylinder 14.

図5に示すように、円弧部34は、平面部32のY方向の端部同士を連結している。ここで、中心軸CLから内筒14の外周面(外壁)14Aまでの長さは、中心軸CL周りで異なっている。すなわち、中心軸CLから平面部32のY方向の中間部32Aまでの長さが最も短くなっており、中間部32Aから円弧部34の端部に向けて、中心軸CLからの長さが徐々に長くなっている。   As shown in FIG. 5, the arc portion 34 connects the end portions of the plane portion 32 in the Y direction. Here, the length from the central axis CL to the outer peripheral surface (outer wall) 14A of the inner cylinder 14 is different around the central axis CL. That is, the length from the central axis CL to the intermediate portion 32A in the Y direction of the plane portion 32 is the shortest, and the length from the central axis CL gradually increases from the intermediate portion 32A toward the end of the arc portion 34. Is getting longer.

また、円弧部34は、中心軸CLから内筒14の外周面12Aまでの長さが最も長くなる最長部であり、両側の円弧部で一定の長さとなっている。本実施形態では、一例として、中心軸CLから円弧部34の外周面14Aまでの長さD3を15mmとし、中心軸CLから平面部32の中間部32Aまでの長さD4を12.5mmとしている。なお、対向する平面部32の間の距離をさらに縮めてもよいが、内筒14の肉厚が薄くなり過ぎないように、一定の肉厚を確保しておく必要がある。   Further, the arc portion 34 is the longest portion having the longest length from the center axis CL to the outer peripheral surface 12A of the inner cylinder 14, and has a constant length in the arc portions on both sides. In the present embodiment, as an example, the length D3 from the central axis CL to the outer peripheral surface 14A of the arc portion 34 is 15 mm, and the length D4 from the central axis CL to the intermediate portion 32A of the plane portion 32 is 12.5 mm. . In addition, although the distance between the plane parts 32 which oppose may be shortened further, it is necessary to ensure a fixed thickness so that the thickness of the inner cylinder 14 may not become too thin.

内筒14の軸方向Xの一端部、及び軸方向Xの他端部の内周面14Bには、段差部36、38が形成されている(図6参照)。このため、内筒14の内径は、軸方向Xの一端部側が最も大きく、他端部側が最も小さくなっている。   Step portions 36 and 38 are formed on one end portion in the axial direction X of the inner cylinder 14 and the inner peripheral surface 14B of the other end portion in the axial direction X (see FIG. 6). For this reason, the inner diameter of the inner cylinder 14 is the largest on one end side in the axial direction X and the smallest on the other end side.

なお、本実施形態に係る内筒14の外周面12Aの形状は、対向配置された円弧部34の端部同士を平面部32で連結した形状としたが、これに限らず、Y方向の外径が最も大きくなるように形成すれば、他の形状であってもよい。例えば、Y方向に長い楕円状であってもよい。また、円筒体に限らず、角筒であってもよい。また、本実施形態では、図4に示すように、平面部32は、軸方向Xの端部から、内筒14の軸方向Xの中央部より、やや上方まで延びているが、これに限らず、軸方向Xの一端部から他端部まで平面部32を形成してもよい。   In addition, although the shape of the outer peripheral surface 12A of the inner cylinder 14 according to the present embodiment is a shape in which the ends of the arc portions 34 arranged to face each other are connected by the flat surface portion 32, the shape is not limited to this, and the outer shape in the Y direction Other shapes may be used as long as the diameter is the largest. For example, it may be oval long in the Y direction. Moreover, not only a cylindrical body but a square tube may be sufficient. Moreover, in this embodiment, as shown in FIG. 4, although the plane part 32 is extended from the edge part of the axial direction X to the slightly upper part from the center part of the axial direction X of the inner cylinder 14, it is not restricted to this. Instead, the planar portion 32 may be formed from one end portion in the axial direction X to the other end portion.

図6に示すように、外筒12の内周面12B、及び内筒14の外周面14Aには、ゴムで形成されたゴム弾性体16が加硫接着されており、外筒12と内筒14とを弾性変形可能に連結している。ゴム弾性体16は、外筒12の突出部24(最短部)と、内筒14の円弧部34(最長部)と、を対向させた状態で、外筒12と内筒14とを連結しており、中心軸CL周りに全周に亘って形成されている(図8参照)。   As shown in FIG. 6, a rubber elastic body 16 made of rubber is vulcanized and bonded to the inner peripheral surface 12B of the outer cylinder 12 and the outer peripheral surface 14A of the inner cylinder 14, so that the outer cylinder 12 and the inner cylinder 14 is connected to be elastically deformable. The rubber elastic body 16 connects the outer cylinder 12 and the inner cylinder 14 with the projecting portion 24 (shortest portion) of the outer cylinder 12 and the arc portion 34 (longest portion) of the inner cylinder 14 facing each other. It is formed over the entire circumference around the central axis CL (see FIG. 8).

ゴム弾性体16の軸方向Xの両端部には、ゴム弾性体16を軸方向Xに凹んだ凹部としてのスグリ40が形成されている。スグリ40を形成することで、ゴム弾性体16のボリュームを減少させて、ゴム弾性体16の剛性を下げることができるが、一方で、スグリ40に砂や泥が詰まり、防振性能が損なわれる虞がある。このため、スグリ40の深さは、必要最小限の深さで形成するのがよい。   On both ends of the rubber elastic body 16 in the axial direction X, a currant 40 is formed as a concave portion in which the rubber elastic body 16 is recessed in the axial direction X. By forming the currant 40, the volume of the rubber elastic body 16 can be reduced and the rigidity of the rubber elastic body 16 can be lowered. On the other hand, the currant 40 is clogged with sand and mud, and the vibration-proof performance is impaired. There is a fear. For this reason, the depth of the currant 40 is good to form in the minimum necessary depth.

図7に示すように、外筒12の内周面12Bに形成された突出部24の断面形状は、角がない丸みを帯びた形状となっている。このため、ゴム弾性体16から受ける圧力が突出部24に集中するのを抑制している。また、外筒12の外周面12Aと凹部28との境界部も同様に、角がないR形状となっており、応力の集中を抑制している。   As shown in FIG. 7, the cross-sectional shape of the protruding portion 24 formed on the inner peripheral surface 12 </ b> B of the outer cylinder 12 is a rounded shape with no corners. For this reason, the pressure received from the rubber elastic body 16 is suppressed from concentrating on the protrusion 24. Similarly, the boundary between the outer peripheral surface 12A of the outer cylinder 12 and the recess 28 has an R shape with no corners, thereby suppressing stress concentration.

ここで、図8を参照して、ゴム弾性体16のY方向のゴム厚Tyと、Z方向のゴム厚Tzとを比較する。防振装置10のY方向におけるゴム弾性体16のゴム厚Tyは、突出部24(最短部)の中間部24Aにおける外筒12の内周面12Bと、円弧部34(最長部)が形成された部位における内筒14の外周面14Aとの間のゴム厚であり、周方向で最も薄くなっている。上述したように、中心軸CLから突出部24の中間部24Aにおける外筒12の内周面12Bまでの長さD1は、17.5mmであり、中心軸CLから円弧部34の外周面14Aまでの長さD3は、15mmであるため、ゴム弾性体16のY方向のゴム厚Tyは、D1−D3=2.5mmとなる。   Here, referring to FIG. 8, the rubber thickness Ty in the Y direction of the rubber elastic body 16 is compared with the rubber thickness Tz in the Z direction. The rubber thickness Ty of the rubber elastic body 16 in the Y direction of the vibration isolator 10 is such that the inner peripheral surface 12B of the outer cylinder 12 and the arc portion 34 (longest portion) in the intermediate portion 24A of the protruding portion 24 (shortest portion). It is the rubber thickness between the outer peripheral surface 14A of the inner cylinder 14 in the part, and is the thinnest in the circumferential direction. As described above, the length D1 from the central axis CL to the inner peripheral surface 12B of the outer cylinder 12 in the intermediate portion 24A of the protruding portion 24 is 17.5 mm, and from the central axis CL to the outer peripheral surface 14A of the arc portion 34. Since the length D3 of the rubber elastic body 16 is 15 mm, the rubber thickness Ty in the Y direction of the rubber elastic body 16 is D1−D3 = 2.5 mm.

一方、防振装置10のZ方向におけるゴム弾性体16のゴム厚Tzは、円弧部30における外筒12の内周面12Bと、内筒14の平面部32の中間部32Aとの間のゴム厚であり、周方向で最も厚くなっている。中心軸CLから円弧部30における外筒12の内周面12Bまでの長さD2は、25mmであり、中心軸CLから平面部32の中間部32Aまでの長さD4は、12.5mmであるため、ゴム弾性体16のZ方向のゴム厚Tzは、D2−D4=12.5mmとなる。   On the other hand, the rubber thickness Tz of the rubber elastic body 16 in the Z direction of the vibration isolator 10 is a rubber between the inner peripheral surface 12B of the outer cylinder 12 in the arc portion 30 and the intermediate portion 32A of the flat portion 32 of the inner cylinder 14. It is thick and thickest in the circumferential direction. The length D2 from the central axis CL to the inner peripheral surface 12B of the outer cylinder 12 in the circular arc part 30 is 25 mm, and the length D4 from the central axis CL to the intermediate part 32A of the flat part 32 is 12.5 mm. Therefore, the rubber thickness Tz in the Z direction of the rubber elastic body 16 is D2−D4 = 12.5 mm.

ここで、ゴム弾性体16の静的バネ定数Ks〔kgf/cm〕は、ゴム弾性体16のゴム厚T〔cm〕、及びゴム弾性体16の受圧面積A〔cm〕を用いて、以下の(1)式で表される。なお、Eapは見掛けヤング率〔kgf/cm〕である。

・・・・・・・・・(1)
Here, the static spring constant Ks [kgf / cm] of the rubber elastic body 16 is expressed as follows using the rubber thickness T [cm] of the rubber elastic body 16 and the pressure receiving area A [cm 2 ] of the rubber elastic body 16. (1). Eap is the apparent Young's modulus [kgf / cm 2 ].

... (1)

上記の(1)式より、ゴム弾性体16の静的バネ定数Ksは、ゴム弾性体16のゴム厚Tに反比例し、ゴム弾性体16の受圧面積Aに比例していることが分かる。すなわち、受圧面積Aが同じ面積である場合、ゴム弾性体16のゴム厚Tが厚くなるほど、静的バネ定数Ksは小さくなり、ゴム厚Tが薄くなるほど、静的バネ定数Ksは大きくなる。   From the above equation (1), it can be seen that the static spring constant Ks of the rubber elastic body 16 is inversely proportional to the rubber thickness T of the rubber elastic body 16 and proportional to the pressure receiving area A of the rubber elastic body 16. That is, when the pressure receiving area A is the same area, the static spring constant Ks decreases as the rubber thickness T of the rubber elastic body 16 increases, and the static spring constant Ks increases as the rubber thickness T decreases.

本実施形態では、防振装置10のY方向の受圧面は、円弧部34であり、Z方向の受圧面は、平面部32であるため、受圧面積Aは、Z方向よりY方向の方が若干大きい。また、上述したように、Z方向のゴム厚Tzが25mmであるのに対して、Y方向のゴム厚Tyは5mmなので、Tzの1/5の厚みとなっている。従って、せん断方向のバネの影響を考慮してもY方向の静的バネ定数Ksは、Z方向の静的バネ定数の3倍程度となる。   In the present embodiment, since the pressure receiving surface in the Y direction of the vibration isolator 10 is the arc portion 34 and the pressure receiving surface in the Z direction is the flat portion 32, the pressure receiving area A is more in the Y direction than in the Z direction. Somewhat big. Further, as described above, the rubber thickness Tz in the Z direction is 25 mm, whereas the rubber thickness Ty in the Y direction is 5 mm, so that the thickness is 1/5 of Tz. Therefore, even if the influence of the spring in the shear direction is taken into consideration, the static spring constant Ks in the Y direction is about three times the static spring constant in the Z direction.

次に、本実施形態に係る防振装置10が取り付けられたサブフレーム機構100について説明する。図9に示すように、サブフレーム機構100を構成する支持部材としてのロアアーム102の一端部は、ドライブシャフトに取り付けられたナックル(不図示)を介して、タイヤと連結されている。ロアアーム102は、車幅方向の内側へ湾曲した板状の部材であり、ロアアーム102の他端部には、車両上下方向に貫通する貫通孔102Aが形成されている。この貫通孔102Aには、防振装置10が圧入されて、ロアアーム102と外筒12とが固定されている。このとき、外筒12に形成された突出部24(図1参照)が車幅方向に位置した状態で、外筒12をロアアーム102へ圧入する。また、内筒14の貫通孔18には、連結軸(不図示)が貫通されて、この連結軸を介して、内筒14が車両本体側のサブフレーム104へ固定されている。   Next, the subframe mechanism 100 to which the vibration isolator 10 according to the present embodiment is attached will be described. As shown in FIG. 9, one end of the lower arm 102 as a support member constituting the subframe mechanism 100 is connected to the tire via a knuckle (not shown) attached to the drive shaft. The lower arm 102 is a plate-like member curved inward in the vehicle width direction, and a through hole 102 </ b> A that penetrates in the vehicle vertical direction is formed at the other end of the lower arm 102. The vibration isolator 10 is press-fitted into the through hole 102A, and the lower arm 102 and the outer cylinder 12 are fixed. At this time, the outer cylinder 12 is press-fitted into the lower arm 102 in a state where the protruding portion 24 (see FIG. 1) formed on the outer cylinder 12 is positioned in the vehicle width direction. Further, a connecting shaft (not shown) is passed through the through hole 18 of the inner cylinder 14, and the inner cylinder 14 is fixed to the sub-frame 104 on the vehicle main body side via this connecting shaft.

ロアアーム102の中間部には、車両前後方向の両端部が開口した円筒状のブラケット102Bが形成されており、このブラケット102Bにも防振装置10が圧入されている。このとき、突出部24(図1参照)が車幅方向に位置した状態で、外筒12をブラケット102Bへ圧入する。また、内筒14の貫通孔18には、ボルト孔が形成された連結棒106が貫通されており、この連結棒106のボルト孔へボルトが挿入されて、内筒14がサブフレーム104へ固定されている。このようにして、車幅方向の両側のロアアーム102にはそれぞれ、2つの防振装置10が固定される。   A cylindrical bracket 102B having openings at both ends in the vehicle front-rear direction is formed at an intermediate portion of the lower arm 102, and the vibration isolator 10 is press-fitted into the bracket 102B. At this time, the outer cylinder 12 is press-fitted into the bracket 102B in a state where the protruding portion 24 (see FIG. 1) is positioned in the vehicle width direction. Further, a connecting rod 106 with a bolt hole is passed through the through hole 18 of the inner cylinder 14, and a bolt is inserted into the bolt hole of the connecting rod 106 to fix the inner cylinder 14 to the subframe 104. Has been. In this way, the two vibration isolators 10 are fixed to the lower arms 102 on both sides in the vehicle width direction.

次に、本実施形態に係る防振装置10の作用について説明する。防振装置10が取り付けられた車両が走行しているとき、タイヤ101が路面から受ける振動は、ロアアーム102を介して防振装置10の外筒12へ伝達される。そして、外筒12からゴム弾性体16へ振動が入力され、ゴム弾性体16を弾性変形させて、振動を減衰吸収する。これにより、外筒12から車両本体へ振動が伝達するのを抑制できる。 Next, the operation of the vibration isolator 10 according to the present embodiment will be described. When the vehicle to which the vibration isolator 10 is attached is traveling, the vibration that the tire 101 receives from the road surface is transmitted to the outer cylinder 12 of the vibration isolator 10 via the lower arm 102. Then, vibration is input from the outer cylinder 12 to the rubber elastic body 16, and the rubber elastic body 16 is elastically deformed to attenuate and absorb the vibration. Thereby, it can suppress that a vibration transmits from the outer cylinder 12 to a vehicle main body.

また、突出部24が形成されたY方向のゴム弾性体16の静的バネ定数Ksは、周方向で最も大きいので、フックの法則によれば、Y方向に力が作用した際の変位量が最も小さくなる、換言すれば、Y方向におけるゴム弾性体16の剛性が最も高くなる。突出部24は、車幅方向に位置しているので、コーナリング時に車幅方向の剛性が確保され、操縦安定性を向上できる。   Further, since the static spring constant Ks of the rubber elastic body 16 in the Y direction in which the protruding portion 24 is formed is the largest in the circumferential direction, the amount of displacement when a force is applied in the Y direction is determined according to Hooke's law. In other words, the rigidity of the rubber elastic body 16 in the Y direction is the highest. Since the protrusion 24 is positioned in the vehicle width direction, rigidity in the vehicle width direction is ensured during cornering, and steering stability can be improved.

さらに、突出部24が形成されていないZ方向のゴム弾性体16の静的バネ定数Ksは、周方向で最も小さくなっているので、Z方向におけるゴム弾性体16の剛性は、周方向で最も低くなる。ロアアーム102のブラケット102Bに圧入されている防振装置10のZ方向は、車両上下方向となるので、車両上下方向の剛性が低くなり、車両の乗り心地を向上できる。以上のように、ゴム弾性体16の静的バネ定数KsがY方向とZ方向とで異なるように構成することで、車両の操縦安定性、及び乗り心地の両立を図ることができる。   Furthermore, since the static spring constant Ks of the rubber elastic body 16 in the Z direction in which the protrusions 24 are not formed is the smallest in the circumferential direction, the rigidity of the rubber elastic body 16 in the Z direction is the largest in the circumferential direction. Lower. Since the Z direction of the vibration isolator 10 that is press-fitted into the bracket 102B of the lower arm 102 is the vehicle vertical direction, the vehicle vertical direction rigidity is reduced, and the riding comfort of the vehicle can be improved. As described above, by configuring the rubber elastic body 16 so that the static spring constant Ks is different between the Y direction and the Z direction, it is possible to achieve both steering stability and riding comfort of the vehicle.

なお、本実施形態では、外筒12が振動発生部としてのロアアーム102へ固定され、内筒14が振動受部としての車両本体側のサブフレーム104へ固定されていたが、これとは逆に、内筒14をロアアーム102へ固定し、外筒12をサブフレーム104へ固定してもよい。また、防振装置10を車両本体とエンジンとの間に配置して、エンジンマウントとして用いてもよく、さらに、振動発生部と振動受部を備えた構造であれば、車両に限らず、他の乗り物や装置等に取り付けてもよい。   In the present embodiment, the outer cylinder 12 is fixed to the lower arm 102 as a vibration generating part, and the inner cylinder 14 is fixed to the sub-frame 104 on the vehicle main body side as a vibration receiving part. The inner cylinder 14 may be fixed to the lower arm 102, and the outer cylinder 12 may be fixed to the subframe 104. Further, the vibration isolator 10 may be disposed between the vehicle main body and the engine and used as an engine mount. Furthermore, as long as the structure includes a vibration generating unit and a vibration receiving unit, the vibration isolating device 10 is not limited to the vehicle. It may be attached to other vehicles and devices.

(第2実施形態)
次に、本発明の第2実施形態に係る防振装置について説明する。なお、第1実施形態と同一の構成については同一の符号を付し、説明を省略する。図10に示すように、本実施形態に係る防振装置50は、外筒52と、外筒52の内側に外筒52と同軸的に設けられた内筒14と、外筒52と内筒14とを弾性変形可能に連結するゴム弾性体56と、で構成されている。ここで、外筒52は、円筒状のブラケット102Bに圧入され、このブラケット102Bを介して振動受部としての車両本体(不図示)に取り付けられる。また、内筒14に形成された貫通孔18には、振動発生部としてのロアアーム102が取り付けられる(図9参照)。
(Second Embodiment)
Next, the vibration isolator according to the second embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected about the structure same as 1st Embodiment, and description is abbreviate | omitted. As shown in FIG. 10, the vibration isolator 50 according to this embodiment includes an outer cylinder 52, an inner cylinder 14 provided coaxially with the outer cylinder 52 inside the outer cylinder 52, and the outer cylinder 52 and the inner cylinder. And a rubber elastic body 56 that couples 14 to each other so as to be elastically deformable. Here, the outer cylinder 52 is press-fitted into a cylindrical bracket 102B, and is attached to a vehicle main body (not shown) as a vibration receiving portion via the bracket 102B. A lower arm 102 as a vibration generating portion is attached to the through hole 18 formed in the inner cylinder 14 (see FIG. 9).

外筒52は、スチールやアルミ等で形成された円筒体であり、外筒52の内周面52Bには、外周面52を凹ませて形成された突出部57が軸方向Xに2組設けられている(図11参照)。突出部57はそれぞれ、周方向に延びており、外筒52の外周面52Aをプレス機等で凹ませて形成されている。このため、外周面52Aの突出部57と対応する部位は、内側に凹んだ凹部58となっている。   The outer cylinder 52 is a cylindrical body formed of steel, aluminum or the like, and two sets of protrusions 57 formed by denting the outer peripheral surface 52 are provided in the axial direction X on the inner peripheral surface 52B of the outer cylinder 52. (See FIG. 11). Each of the protrusions 57 extends in the circumferential direction, and is formed by denting the outer peripheral surface 52A of the outer cylinder 52 with a press or the like. For this reason, the site | part corresponding to the protrusion part 57 of 52 A of outer peripheral surfaces becomes the recessed part 58 dented inside.

図11に示すように、外筒52の内周面52B、及び内筒14の外周面12Aには、ゴム弾性体56が加硫接着されており、外筒52と内筒14とを弾性変形可能に連結している。ここで、外筒52と内筒14の位置関係は、図8と同様であり、外筒52の突出部57の中間部57Aと、内筒14の円弧部34とが対向した状態となっている。このため、ゴム弾性体56のゴム厚は、突出部57が形成されたY方向で最も薄くなっている。その他の構成は、第1実施形態と同様である。   As shown in FIG. 11, a rubber elastic body 56 is vulcanized and bonded to the inner peripheral surface 52B of the outer cylinder 52 and the outer peripheral surface 12A of the inner cylinder 14, and the outer cylinder 52 and the inner cylinder 14 are elastically deformed. It is connected as possible. Here, the positional relationship between the outer cylinder 52 and the inner cylinder 14 is the same as that in FIG. 8, and the intermediate portion 57 </ b> A of the protruding portion 57 of the outer cylinder 52 and the arc portion 34 of the inner cylinder 14 face each other. Yes. For this reason, the rubber thickness of the rubber elastic body 56 is the thinnest in the Y direction in which the protrusions 57 are formed. Other configurations are the same as those of the first embodiment.

本実施形態に係る防振装置50では、外筒52の突出部57が2組形成されているので、第1実施形態に係る防振装置10と比べて、よりY方向の剛性を向上できる。これにより、突出部57を車幅方向に位置するように取り付けることで、コーナリング時における車幅方向の剛性が確保され、操縦安定性が向上する。   In the vibration isolator 50 according to the present embodiment, since two sets of the protruding portions 57 of the outer cylinder 52 are formed, the rigidity in the Y direction can be further improved as compared with the vibration isolator 10 according to the first embodiment. Accordingly, by attaching the protruding portion 57 so as to be positioned in the vehicle width direction, rigidity in the vehicle width direction during cornering is ensured, and steering stability is improved.

また、外筒52の外周面52Aの広い領域をプレス機でプレスしようとすると、外筒12全体が変形する虞があるが、本実施形態に係る防振装置50のように、突出部57を複数形成する場合、局所的に力を加えるため、外筒52全体が変形するのを抑制できる。   Further, when trying to press a wide area of the outer peripheral surface 52A of the outer cylinder 52 with a press machine, the entire outer cylinder 12 may be deformed. However, as in the vibration isolator 50 according to the present embodiment, the protruding portion 57 is provided. When forming a plurality, since force is applied locally, it is possible to suppress deformation of the entire outer cylinder 52.

以上、本発明の第1、2実施形態について説明したが、本発明はこうした実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。例えば、図8において、突出部24の断面形状は、内側が凸状となる形状であってもよい。   Although the first and second embodiments of the present invention have been described above, the present invention is not limited to such embodiments, and can of course be implemented in various modes without departing from the gist of the present invention. It is. For example, in FIG. 8, the cross-sectional shape of the protrusion 24 may be a shape in which the inside is convex.

10 防振装置
12 外筒
12B 内周面(内壁)
14 内筒
14A 外周面(外壁)
16 ゴム弾性体
24 突出部
24A 中央部(最短部)
32 平面部
34 円弧部(最長部)
50 防振装置
52 外筒
52B 内周面(内壁)
56 ゴム弾性体
57 突出部
102 ロアアーム(振動発生部)
104 サブフレーム(振動受部)
CL 中心軸
10 Vibration isolator 12 Outer cylinder 12B Inner peripheral surface (inner wall)
14 Inner cylinder 14A Outer peripheral surface (outer wall)
16 Rubber elastic body 24 Protruding part 24A Center part (shortest part)
32 Plane part 34 Arc part (longest part)
50 Vibration isolator 52 Outer cylinder 52B Inner peripheral surface (inner wall)
56 Rubber elastic body 57 Protruding part 102 Lower arm (vibration generating part)
104 Subframe (vibration receiver)
CL center axis

Claims (4)

振動発生部及び振動受部の何れか一方へ取付けられると共に、中心軸から内壁面までの長さが前記中心軸周りで異なる形状の外筒と、
前記外筒の内側に前記外筒と同軸的に設けられ、振動発生部及び振動受部の何れか他方へ取付けられると共に、中心軸から外壁面までの長さが前記中心軸周りで異なる形状の内筒と、
前記外筒の前記中心軸から前記内壁面までの長さが最も短い最短部と、前記内筒の前記中心軸から前記外壁面までの長さが最も長い最長部とを対向させた状態で、前記外筒の内壁面と前記内筒の外壁面とを弾性変形可能に連結するゴム弾性体と、
を有することを特徴とする防振装置。
An outer cylinder attached to either one of the vibration generating part and the vibration receiving part, and having a different length from the central axis to the inner wall surface around the central axis;
Provided coaxially with the outer cylinder on the inner side of the outer cylinder and attached to either the vibration generating part or the vibration receiving part, and the length from the central axis to the outer wall surface is different around the central axis. An inner cylinder,
In the state where the shortest part from the central axis to the inner wall surface of the outer cylinder is the shortest part and the longest part from the central axis to the outer wall surface of the inner cylinder are opposed to each other, A rubber elastic body that connects the inner wall surface of the outer cylinder and the outer wall surface of the inner cylinder in an elastically deformable manner;
An anti-vibration device comprising:
前記最短部、及び前記最長部は、前記中心軸を挟んで両側に設けられていることを特徴とする請求項1に記載の防振装置。   The vibration isolator according to claim 1, wherein the shortest part and the longest part are provided on both sides of the central axis. 前記外筒は、内側へ対向して突出され、前記最短部となる突出部を有する外円筒体であり、
前記内筒は、外壁面に互いに平行に形成された平面部と、前記平面部の間に形成され、前記最長部となる円弧部と、を有する内円筒体であることを特徴とする請求項1又は2に記載の防振装置。
The outer cylinder is an outer cylindrical body that protrudes inward and has a protruding portion that becomes the shortest portion,
The inner cylinder is an inner cylinder having a plane part formed in parallel to each other on an outer wall surface, and an arc part formed between the plane parts and serving as the longest part. The vibration isolator according to 1 or 2.
前記外筒及び前記内筒の一方が車両本体に取り付けられ、前記外筒及び前記内筒の他方がタイヤを支持する支持部材に取り付けられる防振装置であって、
前記最短部及び前記最長部は、車幅方向に位置していることを特徴とする請求項1〜3の何れか1項に記載の防振装置。
One of the outer cylinder and the inner cylinder is attached to a vehicle body, and the other of the outer cylinder and the inner cylinder is a vibration isolator attached to a support member that supports a tire,
The vibration isolator according to any one of claims 1 to 3, wherein the shortest part and the longest part are located in a vehicle width direction.
JP2013069207A 2013-03-28 2013-03-28 Vibration control device Pending JP2014190509A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013069207A JP2014190509A (en) 2013-03-28 2013-03-28 Vibration control device
CN201420108496.XU CN203784173U (en) 2013-03-28 2014-03-11 Vibration prevention device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013069207A JP2014190509A (en) 2013-03-28 2013-03-28 Vibration control device

Publications (1)

Publication Number Publication Date
JP2014190509A true JP2014190509A (en) 2014-10-06

Family

ID=51320364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013069207A Pending JP2014190509A (en) 2013-03-28 2013-03-28 Vibration control device

Country Status (2)

Country Link
JP (1) JP2014190509A (en)
CN (1) CN203784173U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017067157A (en) * 2015-09-30 2017-04-06 住友理工株式会社 Cylindrical vibration-proof device with bracket
JP2019215044A (en) * 2018-06-13 2019-12-19 株式会社ブリヂストン bush

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022052088A (en) * 2020-09-23 2022-04-04 山下ゴム株式会社 Torque rod
JP2022090897A (en) * 2020-12-08 2022-06-20 住友理工株式会社 Cylindrical vibration isolator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280914A (en) * 1993-03-24 1994-10-07 Toyoda Gosei Co Ltd Cylindrical vibration-proof bush
JP2012240457A (en) * 2011-05-16 2012-12-10 Nissan Motor Co Ltd Suspension structure, bush structure, and suspension characteristic adjusting method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280914A (en) * 1993-03-24 1994-10-07 Toyoda Gosei Co Ltd Cylindrical vibration-proof bush
JP2012240457A (en) * 2011-05-16 2012-12-10 Nissan Motor Co Ltd Suspension structure, bush structure, and suspension characteristic adjusting method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017067157A (en) * 2015-09-30 2017-04-06 住友理工株式会社 Cylindrical vibration-proof device with bracket
WO2017056546A1 (en) * 2015-09-30 2017-04-06 住友理工株式会社 Bracketed cylindrical vibration isolator
US10309477B2 (en) 2015-09-30 2019-06-04 Sumitomo Riko Company Limited Tubular vibration-damping device having bracket
DE112016000175B4 (en) 2015-09-30 2022-09-08 Sumitomo Riko Company Limited Tubular anti-vibration device with retaining clip
JP2019215044A (en) * 2018-06-13 2019-12-19 株式会社ブリヂストン bush
JP7290399B2 (en) 2018-06-13 2023-06-13 株式会社プロスパイラ bush

Also Published As

Publication number Publication date
CN203784173U (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP6532367B2 (en) Tubular vibration control with bracket
JP6157000B2 (en) Vibration isolator
JP2014190509A (en) Vibration control device
WO2014141929A1 (en) Antivibration device
JP6494321B2 (en) Anti-vibration device bracket, anti-vibration device with bracket, and manufacturing method of anti-vibration device bracket
EP2960540B1 (en) Vibration isolator
JP6624377B2 (en) Mounting device
JP6430224B2 (en) Vibration isolator
JP6867773B2 (en) Anti-vibration device
JP2018169013A (en) Cylindrical vibration-proof device
JP2008169914A (en) Vibration isolation device
WO2019131512A1 (en) Arrangement structure for vibration damping devices for electric automobiles
JP7044469B2 (en) Anti-vibration device
JP2014066297A (en) Cylindrical type vibration control device
WO2016189925A1 (en) Vibration-damping device
JP7121719B2 (en) Cylindrical anti-vibration device with bracket
JP6148904B2 (en) Outer bracket for cylindrical vibration isolator and cylindrical vibration isolator with outer bracket
JP4137943B2 (en) Automotive differential mount structure
JP2008175353A (en) Vibration isolating system
JP2023170298A (en) Antivibration device
JP6147102B2 (en) Liquid-filled vibration isolator
JP2016075323A (en) Antivibration device
JP6184690B2 (en) Anti-vibration bush
JP2022147770A (en) Vibration control device
JP2006322552A (en) Vibration-proofing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170307