JP2014189424A - High-strength cement admixture, and cement composition obtained by using the same - Google Patents

High-strength cement admixture, and cement composition obtained by using the same Download PDF

Info

Publication number
JP2014189424A
JP2014189424A JP2013064448A JP2013064448A JP2014189424A JP 2014189424 A JP2014189424 A JP 2014189424A JP 2013064448 A JP2013064448 A JP 2013064448A JP 2013064448 A JP2013064448 A JP 2013064448A JP 2014189424 A JP2014189424 A JP 2014189424A
Authority
JP
Japan
Prior art keywords
cement admixture
shrinkage
strength cement
strength
admixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013064448A
Other languages
Japanese (ja)
Other versions
JP6164887B2 (en
Inventor
Shigeru Tomioka
茂 富岡
Jumpei Shimozawa
淳平 下澤
Kentaro Suhara
健太郎 栖原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2013064448A priority Critical patent/JP6164887B2/en
Publication of JP2014189424A publication Critical patent/JP2014189424A/en
Application granted granted Critical
Publication of JP6164887B2 publication Critical patent/JP6164887B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-strength cement admixture which reduces the amount of a shrinkage reducing agent to be used in concrete and reduces autogenous shrinkage, and to provide a cement composition obtained by using the high-strength cement admixture.SOLUTION: The high-strength cement admixture (1) is obtained by mixing/pulverizing silica fume and the shrinkage reducing agent. The high-strength cement admixture (2) is obtained by blending fly ash in the high-strength cement admixture (1) to obtain a mixture and mixing/pulverizing the mixture. The high-strength cement admixture (3) is obtained by blending blast furnace slag in the high-strength cement admixture (1) or (2) to obtain another mixture and mixing/pulverizing the mixture. A shrinkage reduction type high-strength cement admixture (4) is the high-strength cement admixture (1) having the maximum particle size equal to or smaller than 0.08 μm. Another shrinkage reduction type high-strength cement admixture (5) is the high-strength cement admixture (2) or (3) having the maximum particle size equal to or smaller than 5 μm. The cement composition contains cement (6) and the high-strength cement admixture (1), (2), (3), (4) or (5).

Description

本発明は、主に、土木分野、建築分野に使用するセメントコンクリートの収縮低減型で高強度を促進するセメント混和材およびセメント組成物に関する。   The present invention mainly relates to a cement admixture and a cement composition that promote high strength by reducing the shrinkage of cement concrete used in the civil engineering and construction fields.

従来、セメントコンクリートの収縮低減型で高強度を促進させる方法としては、収縮低減剤をコンクリートに添加し、水/セメント比をできる限り小さくする必要があるため、JIS A 6204「コンクリート用化学混和剤」で規定されている、減水剤や高性能減水剤を使用することが一般的に行われている。   Conventionally, as a method for promoting high strength with a shrinkage reduction type of cement concrete, it is necessary to add a shrinkage reducing agent to the concrete and make the water / cement ratio as small as possible. Therefore, JIS A 6204 “Chemical admixture for concrete” In general, the use of a water reducing agent or a high performance water reducing agent as defined in "."

一方、水/セメント比の低減によらず、例えば、活性シリカ質物質を含有してなる混和材、と潜在水硬性物質とを有効成分とする混和材を使用してセメントコンクリートの圧縮強度を高める方法が提案されている(特許文献1、2参照)。
しかしながら、水/セメント比(以下W/Cという)が25(%)以下のコンクリート配合や微粉末の高強度混和材を添加するコンクリート配合においては自己収縮が課題となっていた。
そのため、改善策として収縮低減剤をセメントに対して1〜4(%)添加していたが、収縮低減剤を多く入れることによりコストが上がり、若材齢(1〜7日)では強度低下が見られ、型枠の脱型時期が遅くなる課題があった(特許文献3参照)。
On the other hand, regardless of the reduction of the water / cement ratio, for example, an admixture containing an active siliceous substance and an admixture containing a latent hydraulic substance as active ingredients are used to increase the compressive strength of cement concrete. A method has been proposed (see Patent Documents 1 and 2).
However, self-shrinkage has been a problem in concrete blends in which the water / cement ratio (hereinafter referred to as W / C) is 25% or less, or in concrete blends in which a fine powder high-strength admixture is added.
For this reason, 1 to 4 (%) of a shrinkage reducing agent was added to the cement as an improvement measure, but the cost increased by adding a large amount of the shrinkage reducing agent, and the strength decreased at the young age (1 to 7 days). As a result, there was a problem that the mold removal time was delayed (see Patent Document 3).

特開2010−195621号公報JP 2010-195621 A 特開2003−321262号公報JP 2003-321262 A 特開2012−116712号公報JP 2012-116712 A

本発明は、コンクリートの収縮低減剤の使用量を低減し、自己収縮を低減させる高強度セメント混和材およびそれを用いたセメント組成物を提供する。   The present invention provides a high-strength cement admixture that reduces the amount of shrinkage-reducing agent used in concrete and reduces self-shrinkage, and a cement composition using the same.

すなわち、本発明は、(1)シリカフュームと収縮低減剤を混合粉砕してなる高強度セメント混和材、(2)さらに、フライアッシュを配合し混合粉砕してなる(1)の高強度セメント混和材、(3)さらに、高炉スラグを配合し混合粉砕してなる(1)または(2)の高強度セメント混和材、(4)混合粉砕後の最大粒径が0.08μm以下である(1)の収縮低減型高強度セメント混和材、(5)混合粉砕後の最大粒径が5μm以下である(2)または(3)の収縮低減型高強度セメント混和材、(6)セメントと、(1)〜(5)のいずれかの収縮低減型高強度セメント混和材を含有してなるセメント組成物、である。   That is, the present invention includes (1) a high-strength cement admixture obtained by mixing and pulverizing silica fume and a shrinkage reducing agent, and (2) a high-strength cement admixture obtained by further mixing and pulverizing fly ash. (3) Further, the high-strength cement admixture of (1) or (2) obtained by blending and pulverizing blast furnace slag, (4) The maximum particle size after mixing and pulverization is 0.08 μm or less (1) (5) The shrinkage-reducing high-strength cement admixture of (2) or (3), wherein the maximum particle size after mixing and grinding is 5 μm or less, (6) Cement (1) A cement composition comprising the shrinkage-reducing high-strength cement admixture according to any one of (1) to (5).

本発明は、従来と比べ、コンクリートの若材齢の強度の発現性および高強度化が図れると共に、収縮低減剤の使用量を少なくすることが可能となり、コンクリートの自己収縮を低減することができる。
ここで、本発明で云う自己収縮とは、セメントの水和により凝結始発以後に巨視的に生じる体積減少を自己収縮という。
Compared to the conventional art, the present invention can increase the strength and strength of concrete young age, reduce the amount of shrinkage reducing agent used, and reduce the self-shrinkage of concrete. .
Here, the self-shrinkage referred to in the present invention refers to a volume reduction that occurs macroscopically after the initial setting due to cement hydration.

本発明で使用する部、%は、特に規定しない限り質量基準である。
また、本発明で云うコンクリートとは、セメントペースト、セメントモルタル、セメントコンクリートを総称するものである。
Unless otherwise specified, parts and% used in the present invention are based on mass.
The concrete referred to in the present invention is a generic term for cement paste, cement mortar, and cement concrete.

本発明のシリカフューム(以下、SFという)とは、特に限定されるものではないが、例えば、金属シリコンやフェロシリコンなどのシリコンアロイを電気炉で製造する際に、アーク熱で一度気化したSiOが煙道で冷却される過程で固化し副生する球形の、直径が1μm以下の微粒子で、主成分は非晶質の反応性の高いSiOである。 The silica fume (hereinafter referred to as SF) of the present invention is not particularly limited. For example, when a silicon alloy such as metal silicon or ferrosilicon is produced in an electric furnace, SiO 2 once vaporized by arc heat is used. Is a spherical fine particle having a diameter of 1 μm or less, which is solidified as a by-product in the process of being cooled in the flue, and the main component is amorphous SiO 2 having high reactivity.

本発明の収縮低減剤とは、(ポリ)エチレングリコールモノアルキルエーテルを0.3〜45%、(ポリ)エチレン(ポリ)プロピレングリコールモノアルキルエーテルを55〜99.7%(合計100%)の割合で含有するもの、または(ポリ)エチレングリコールモノアルキルエーテルを0.3〜45%、ポリプロピレングリコールを55〜99.7%(合計100%)の割合で有するもの、低分子量エチレンオキサイドとプロピレンオキサイドの共重合体で、有効成分100%に近いものなどが挙げられる。
なかでも、低分子量エチレンオキサイドとプロピレンオキサイドの共重合体で、有効成分100%に近いものが特に好ましい。
収縮低減剤の含有量は、本発明の収縮低減型高強度セメント混和材(以下、混和材という)100部中、0.3〜3.0部が好ましく、0.5〜2.0部がより好ましい。0.3部未満では収縮低減効果が得られない場合があり、3部を超えると若材齢(材齢1日)の強度が低くなる場合がある。
The shrinkage reducing agent of the present invention is 0.3 to 45% (poly) ethylene glycol monoalkyl ether and 55 to 99.7% (total 100%) of (poly) ethylene (poly) propylene glycol monoalkyl ether. Containing at a ratio, or having (poly) ethylene glycol monoalkyl ether in a proportion of 0.3 to 45% and polypropylene glycol in a proportion of 55 to 99.7% (total 100%), low molecular weight ethylene oxide and propylene oxide And a copolymer close to 100% of the active ingredient.
Of these, a copolymer of low molecular weight ethylene oxide and propylene oxide that is close to 100% of the active ingredient is particularly preferable.
The content of the shrinkage reducing agent is preferably 0.3 to 3.0 parts, preferably 0.5 to 2.0 parts, in 100 parts of the shrinkage-reducing high-strength cement admixture (hereinafter referred to as admixture) of the present invention. More preferred. If the amount is less than 0.3 part, the shrinkage reduction effect may not be obtained. If the amount exceeds 3 parts, the strength of the young material age (material age 1 day) may be lowered.

本発明のフライアッシュとは、例えば、火力発電所のボイラから排出される石炭燃焼灰など、手段を問わず、石炭を燃焼させて得られた燃焼灰の総称をいう。
石炭灰とは、例えば、石炭火力発電所から発生する灰であり、微粉炭燃焼によって生成する。石炭灰としては、燃焼ボイラの燃焼ガスから空気余熱器または節炭器などを通過する際に落下採取された石炭灰、電気集塵機で採取された石炭灰、燃焼ボイラの炉底に落下した石炭灰などが挙げられる。これらの中では、JIS規格のフライアッシュが好ましい。
フライアッシュのブレーン比表面積は、2500cm/g以上が好ましく、3000〜4500cm/gがより好ましい。
石炭灰の密度は、1.95g/cm以上が好ましく、2.2〜2.4g/cmがより好ましい。
フライアッシュの含有量は、SFとフライアッシュの合計100部中、5〜30部が好ましく、10〜20部がより好ましい。5部未満ではコンクリートの収縮低減の改善が見られない場合があり、30部を超えると長期材齢(材齢28日)強度が低減する場合がある。
The fly ash of the present invention is a general term for combustion ash obtained by burning coal regardless of the means such as coal combustion ash discharged from a boiler of a thermal power plant.
Coal ash is, for example, ash generated from a coal-fired power plant, and is generated by pulverized coal combustion. As coal ash, coal ash dropped from the combustion gas of the combustion boiler when passing through an air regenerator or economizer, coal ash collected by an electric dust collector, coal ash dropped on the furnace bottom of the combustion boiler Etc. Among these, JIS standard fly ash is preferable.
The brane specific surface area of fly ash is preferably 2500 cm 2 / g or more, and more preferably 3000 to 4500 cm 2 / g.
The density of the coal ash is preferably 1.95 g / cm 3 or more, 2.2~2.4g / cm 3 is more preferable.
The content of fly ash is preferably 5 to 30 parts, more preferably 10 to 20 parts, out of a total of 100 parts of SF and fly ash. If it is less than 5 parts, improvement of shrinkage reduction of concrete may not be seen, and if it exceeds 30 parts, the long-term age (28 days of age) may be reduced.

本発明の高炉スラグとは、鉄鋼製造の過程で高炉から排出される溶融状態のスラグを水などで急冷してガラス質にした高炉水砕スラグなどであり、粉砕して粉末化したものである。
高炉水砕スラグは、潜在水硬性を有しており、アルカリの刺激作用により硬化する性質を持つものである。これ以外の、例えば、都市ゴミや下水汚泥等を溶融したスラグ、脱燐スラグ、徐冷スラグなども使用することができる。
高炉スラグのブレーン比表面積は、2500cm/g以上が好ましく、3000〜4500cm/gがより好ましい。
SF、高炉スラグ混合の場合の高炉スラグの含有量は、SF、および高炉スラグの合計100部中、5〜30部が好ましく、10〜20部がより好ましい。5部未満ではコンクリートの収縮低減効果の改善が見られない場合があり、30部を超えると長期材齢(材齢28日)強度が低減する場合がある。
例えば、混和材をベルトコンベアーで定量フィードしながら薬注ポンプなどで収縮低減剤を混和材の上に定量的に滴下し、そのままミルにフィードする方法が煩雑でなく最も好ましい。粉砕条件は5μm以下に粉砕する。
SF、フライアッシュ、高炉スラグ混合の場合の高炉スラグの含有量は、SF、フライアッシュおよび高炉スラグの合計100部中、5〜30部が好ましく、10〜20部がより好ましい。5部未満ではコンクリートの収縮低減効果の改善が見られない場合があり、30部を超えると長期材齢(材齢28日)強度が低減する場合がある。
例えば、混和材をベルトコンベアーで定量フィードしながら薬注ポンプなどで収縮低減剤を混和材の上に定量的に滴下し、そのままミルにフィードする方法が煩雑でなく最も好ましい。粉砕条件は5μm以下に粉砕する。
The blast furnace slag of the present invention is a ground granulated blast furnace slag, etc., which is rapidly cooled with water or the like into a glassy slag discharged from the blast furnace during the steel manufacturing process, and is pulverized into powder. .
Blast furnace granulated slag has latent hydraulic properties and has the property of being cured by the stimulating action of alkali. Other than this, for example, slag obtained by melting municipal waste, sewage sludge, etc., dephosphorization slag, slow cooling slag, and the like can also be used.
The blast furnace slag has a brane specific surface area of preferably 2500 cm 2 / g or more, more preferably 3000 to 4500 cm 2 / g.
In the case of SF and blast furnace slag mixing, the content of blast furnace slag is preferably 5 to 30 parts, more preferably 10 to 20 parts, out of a total of 100 parts of SF and blast furnace slag. If it is less than 5 parts, the improvement of the shrinkage reduction effect of concrete may not be seen, and if it exceeds 30 parts, the long-term age (28 days of age) may be reduced.
For example, a method in which a shrinkage reducing agent is quantitatively dropped onto the admixture with a chemical injection pump while feeding the admixture quantitatively with a belt conveyor, and fed to the mill as it is is not complicated and is most preferable. The pulverization condition is pulverization to 5 μm or less.
The content of blast furnace slag in the case of mixing SF, fly ash, and blast furnace slag is preferably 5 to 30 parts, more preferably 10 to 20 parts, out of a total of 100 parts of SF, fly ash and blast furnace slag. If it is less than 5 parts, the improvement of the shrinkage reduction effect of concrete may not be seen, and if it exceeds 30 parts, the long-term age (28 days of age) may be reduced.
For example, a method in which a shrinkage reducing agent is quantitatively dropped onto the admixture with a chemical injection pump while feeding the admixture quantitatively with a belt conveyor, and fed to the mill as it is is not complicated and is most preferable. The pulverization condition is pulverization to 5 μm or less.

本発明の混合粉砕とは、特に限定されるものではないが、振動ミルやボールミルなどの磨砕形式の粉砕機や剪断破壊粉砕形式の粉砕機などを使用することによって、微粒子の表面を収縮低減剤で包み込むように粉砕することが重要である。したがって、
例えば、SFをベルトコンベアーで定量フィードしながら薬注ポンプなどで収縮低減剤をSFの上に定量的に滴下し、そのままミルにフィードする方法が煩雑でなく好ましい。
SFと収縮低減剤を混合粉砕する場合は、最大粒径0.08μm以下に粉砕することが好ましい。
SFと収縮低減剤に、さらに、フライアッシュや高炉スラグを配合して混合粉砕する場合は、最大粒径5μm以下に粉砕することが好ましい。
The mixed pulverization of the present invention is not particularly limited, but the surface of the fine particles is reduced by using a grinding-type pulverizer such as a vibration mill or a ball mill or a shear breaking pulverization-type pulverizer. It is important to grind so as to wrap with the agent. Therefore,
For example, a method in which the shrinkage reducing agent is quantitatively dropped onto the SF with a chemical injection pump or the like while quantitatively feeding the SF with a belt conveyor and fed to the mill as it is is not complicated.
When mixing and grinding SF and a shrinkage reducing agent, it is preferable to grind to a maximum particle size of 0.08 μm or less.
When blending and grinding fly ash and blast furnace slag in addition to SF and shrinkage reducing agent, it is preferable to grind to a maximum particle size of 5 μm or less.

本発明の混和材の使用量は、コンクリートの配合によって変化するため特に限定されるものではないが、通常、セメントと混和材からなるセメント組成物100部中、5〜20部が好ましく、10〜20部がより好ましい。5部未満ではコンクリートの収縮低減効果の改善が見られない場合があり、30部を超えると長期材齢(材齢28日)強度が低減する場合がある。 The amount of the admixture of the present invention is not particularly limited because it varies depending on the blending of concrete, but usually 5 to 20 parts are preferable in 100 parts of a cement composition composed of cement and admixture. 20 parts is more preferred. If it is less than 5 parts, the improvement of the shrinkage reduction effect of concrete may not be seen, and if it exceeds 30 parts, the long-term age (28 days of age) may be reduced.

本発明で使用するセメントとしては、普通、早強、超早強、低熱、および中庸熱などの各種ポルトランドセメント、これらセメントに高炉スラグ、フライアッシュ、シリカを混合した各種混合セメント、ならびに石灰石粉末を混合したフィラーセメントなどが挙げられる。 As the cement used in the present invention, various portland cements such as normal, early strength, very early strength, low heat, and moderate heat, various mixed cements obtained by mixing blast furnace slag, fly ash and silica with these cements, and limestone powder are used. Examples include mixed filler cement.

本発明では、砂、砂利の他、減水剤、高性能減水剤、AE減水剤、高性能AE減水剤、流動化剤、消泡剤、増粘剤、防錆剤、防凍剤、鋼繊維、有機系材料などを併用することが可能である。有機系材料としては、ビニロン繊維、アクリル繊維、炭素繊維などの繊維状物質などが挙げられる。   In the present invention, in addition to sand, gravel, water reducing agent, high performance water reducing agent, AE water reducing agent, high performance AE water reducing agent, fluidizing agent, antifoaming agent, thickener, rust preventive agent, antifreeze agent, steel fiber, Organic materials can be used in combination. Examples of the organic material include fibrous substances such as vinylon fiber, acrylic fiber, and carbon fiber.

「実験例1」
表1に示すように、SFと収縮低減剤を配合した原料を振動ミルで最大粒径0.08μm以下(実験No.1-1〜No.1-10)と0.10μm以下(実験No.1-12)に粉砕し、ボールミルで最大粒径0.08μm以下(実験No.1-11)に粉砕し混和材とした。
最大粒径の測定は、レーザー回折式粒度分布測定装置(堀場製作所製LA-920)を使用した。
コンクリート配合は、単位水量148kg/m、単位セメント量700kg/m、単位混和材量70kg/m、減水剤9.24kg/m、s/a45.0%、空気量2%をコンクリートの基本配合とし、20℃環境下で表1に示すように収縮量を測定した。
"Experiment 1"
As shown in Table 1, the maximum particle size of 0.08 μm or less (Experiment No. 1-1 to No. 1-10) and 0.10 μm or less (Experiment No. 1-12) and pulverized with a ball mill to a maximum particle size of 0.08 μm or less (Experiment No. 1-11) to obtain an admixture.
The maximum particle size was measured using a laser diffraction particle size distribution analyzer (LA-920 manufactured by Horiba, Ltd.).
Concrete mix is unit water quantity 148kg / m 3 , unit cement quantity 700kg / m 3 , unit admixture quantity 70kg / m 3 , water reducing agent 9.24kg / m 3 , s / a 45.0%, air quantity 2% to concrete The amount of shrinkage was measured as shown in Table 1 under an environment of 20 ° C.

(使用材料)
SF:非晶質シリカ、SiO含有率98%、直径が1μm以下、市販品
収縮低減剤:低分子量エチレンオキサイドとプロピレンオキサイドの共重合体、電気化学工業社製、商品名 エスケーガード
減水剤:ポリカルボン酸系「スーパー300CF」、グレースケミカルズ社製
細骨材:新潟県糸魚川市姫川水系産、最大寸法5mm
粗骨材:新潟県糸魚川市姫川水系産、最大寸法25mm
(Materials used)
SF: amorphous silica, SiO 2 content 98%, diameter is 1 μm or less, commercially available shrinkage reducing agent: low molecular weight ethylene oxide and propylene oxide copolymer, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name SKGARD water reducing agent: Polycarboxylic acid type "Super 300CF", fine aggregate manufactured by Grace Chemicals: Himekawa Water System, Itoigawa City, Niigata Prefecture, maximum size 5mm
Coarse aggregate: Niigata prefecture Itoigawa city Himekawa water system, maximum size 25mm

(試験方法)
圧縮強度:JIS A 1108に準拠
自己収縮量:埋込型ひずみ計(KM−100BT、東京測器研究所社製)を設置した10×10×40cmの鋼製型枠内にコンクリートを打設し、フッ素樹脂シートで包み込み乾燥しないように養生したコンクリートをデータロガーによりひずみを計測する。なお、凝結終結後、型枠の拘束(ネジ)を緩めた後に測定された実ひずみを自己収縮量とした。
(Test method)
Compressive strength: Conforms to JIS A 1108 Self-shrinkage: Concrete is placed in a 10 × 10 × 40 cm steel mold with an embedded strain gauge (KM-100BT, manufactured by Tokyo Sokki Kenkyujo Co., Ltd.) Strain is measured with a data logger for concrete that has been wrapped in a fluororesin sheet and cured to prevent drying. In addition, the actual strain measured after loosening the restraint (screw) of the mold after completion of the setting was defined as the amount of self-shrinkage.

Figure 2014189424
Figure 2014189424

「実験例2」
表2に示すように、SFと収縮低減剤に、さらに、フライアッシュを配合した原料を振動ミルで最大粒径5μm以下(実験No.2-1〜No.2-7)と最大粒径6μm以下(実験No.2-8)に粉砕し、ボールミルで5μm以下(実験No.2-9)に粉砕した混和材とした以外は実験例1の実験No.1-5と同様に行った。
"Experimental example 2"
As shown in Table 2, the maximum particle size is 5 μm or less (Experiment No.2-1 to No.2-7) and the maximum particle size is 6 μm using a vibration mill in which SF and shrinkage reducing agents are further blended with fly ash. The same procedure as in Experiment No. 1-5 in Experimental Example 1 was conducted except that the admixture was pulverized to the following (Experiment No. 2-8) and pulverized to 5 μm or less (Experiment No. 2-9) with a ball mill.

(使用材料)
フライアッシュ:JIS A 6201−2008 II種、ブレーン比表面積4130cm/g、市販品
(Materials used)
Fly ash: JIS A 6201-2008 Type II, Blaine specific surface area 4130 cm 2 / g, commercial product

Figure 2014189424
Figure 2014189424

「実験例3」
表3に示すように、SF、収縮低減剤と高炉スラグを配合した原料を振動ミルで最大粒径5μm以下(実験No.3-1〜No.3-7)と最大粒径6μm以下(実験No.3-8)に粉砕し、ボールミルで5μm以下(実験No.3-9)に粉砕し混和材とした以外は実験例2の実験No.2-4と同様に行った。
混和材とした。
"Experiment 3"
As shown in Table 3, the raw material blended with SF, shrinkage reducing agent and blast furnace slag was mixed with a vibration mill with a maximum particle size of 5 μm or less (Experiment No.3-1 to No.3-7) and a maximum particle size of 6 μm or less (Experiment). The test was conducted in the same manner as in Experiment No. 2-4 in Experimental Example 2, except that the mixture was pulverized to No. 3-8) and pulverized to 5 μm or less (Experiment No. 3-9) using a ball mill.
Admixture was used.

(使用材料)
高炉スラグ:高炉水砕スラグ、ブレーン比表面積4050cm/g、市販品
(Materials used)
Blast furnace slag: granulated blast furnace slag, specific surface area of 4050 cm 2 / g, commercial product

Figure 2014189424
Figure 2014189424

「実験例4」
表4に示すように、SF、収縮低減剤、フライアッシュと高炉スラグを配合した原料を振動ミルで最大粒径5μm以下(実験No.4-1〜No.4-7)と最大粒径6μm以下(実験No.4-8)に粉砕し、ボールミルで5μm以下(実験No.4-9)に粉砕し混和材とした以外は実験例3の実験No.3-4と同様に行った。
混和材とした。
"Experimental example 4"
As shown in Table 4, the raw material blended with SF, shrinkage reducing agent, fly ash and blast furnace slag was mixed with a vibration mill with a maximum particle size of 5 μm or less (Experiment No.4-1 to No.4-7) and a maximum particle size of 6 μm. The same procedure as in Experiment No. 3-4 of Experimental Example 3 was conducted except that the mixture was pulverized to the following (Experiment No. 4-8) and pulverized to 5 μm or less (Experiment No. 4-9) with a ball mill to obtain an admixture.
Admixture was used.

(使用材料)
高炉スラグ:高炉水砕スラグ、ブレーン比表面積4050cm/g、市販品
(Materials used)
Blast furnace slag: granulated blast furnace slag, specific surface area of 4050 cm 2 / g, commercial product

Figure 2014189424
Figure 2014189424

「実験例5」
表5に示すように、混和材の実験No.1-5、2-4、3-4、4-4を使用して使用量別の実験を実施した。試験方法は表に示す条件以外は実験例1と同様に実施した。
“Experimental Example 5”
As shown in Table 5, experiments according to the amount used were carried out using Admixture Experiment Nos. 1-5, 2-4, 3-4, and 4-4. The test method was the same as in Experimental Example 1 except for the conditions shown in the table.

Figure 2014189424
Figure 2014189424

本発明は、従来と比べ、コンクリートの若材齢の強度の発現性および高強度化が図れると共に、収縮低減剤の使用量を少なくすることが可能となるため、コンクリートの収縮を低減することができるなどの効果を奏するので、土木、建築分野で広範に使用できる。   The present invention can reduce the shrinkage of concrete because the strength of the young age of concrete and the strength can be increased and the amount of shrinkage reducing agent used can be reduced as compared with the prior art. It can be used in a wide range of civil engineering and construction fields.

Claims (6)

シリカフュームと収縮低減剤を混合粉砕してなる高強度セメント混和材。 High-strength cement admixture obtained by mixing and crushing silica fume and shrinkage reducing agent. さらに、フライアッシュを配合し混合粉砕してなる請求項1に記載の収縮低減型高強度セメント混和材。 The shrinkage-reducing high-strength cement admixture according to claim 1, further comprising fly ash and mixed and pulverized. さらに、高炉スラグを配合し混合粉砕してなる請求項1または2に記載の収縮低減型高強度セメント混和材。 The shrinkage-reducing high-strength cement admixture according to claim 1 or 2, further comprising blast furnace slag blended and mixed and pulverized. 混合粉砕後の最大粒径が0.08μm以下である請求項1に記載の収縮低減型高強度セメント混和材。 The shrinkage-reducing high-strength cement admixture according to claim 1, wherein the maximum particle size after mixing and grinding is 0.08 µm or less. 混合粉砕後の最大粒径が5μm以下である請求項2または3に記載の収縮低減型高強度セメント混和材。 The shrinkage-reducing high-strength cement admixture according to claim 2 or 3, wherein the maximum particle size after mixing and pulverization is 5 µm or less. セメントと、請求項1〜5のいずれか一項に記載の収縮低減型高強度セメント混和材を含有してなるセメント組成物。 A cement composition comprising cement and the shrinkage-reducing high-strength cement admixture according to any one of claims 1 to 5.
JP2013064448A 2013-03-26 2013-03-26 High-strength cement admixture and cement composition using the same Active JP6164887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013064448A JP6164887B2 (en) 2013-03-26 2013-03-26 High-strength cement admixture and cement composition using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013064448A JP6164887B2 (en) 2013-03-26 2013-03-26 High-strength cement admixture and cement composition using the same

Publications (2)

Publication Number Publication Date
JP2014189424A true JP2014189424A (en) 2014-10-06
JP6164887B2 JP6164887B2 (en) 2017-07-19

Family

ID=51836066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013064448A Active JP6164887B2 (en) 2013-03-26 2013-03-26 High-strength cement admixture and cement composition using the same

Country Status (1)

Country Link
JP (1) JP6164887B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164754A (en) * 1988-12-16 1990-06-25 Nippon Cement Co Ltd Cement additive for reducing shrinkage
JPH11157889A (en) * 1997-11-26 1999-06-15 Mitsubishi Materials Corp Hydraulic composition for cement concrete product
JP2000128616A (en) * 1998-10-16 2000-05-09 Sumitomo Osaka Cement Co Ltd Production of cement composition
JP2000219557A (en) * 1999-01-29 2000-08-08 Sika Ag Method for reducing shrinkage of hydraulic binder
JP2000264694A (en) * 1999-03-17 2000-09-26 Taiheiyo Cement Corp Expandable powder composition for cement admixing use and its production
JP2001064066A (en) * 1999-08-24 2001-03-13 Taiheiyo Cement Corp High strength concrete
JP2004284865A (en) * 2003-03-20 2004-10-14 Ube Ind Ltd Hydraulic composition, and concrete or mortar having excellent pump forced-feeding property
JP2005263566A (en) * 2004-03-19 2005-09-29 Denki Kagaku Kogyo Kk Method for preventing consolidation of silica fume
JP2009057220A (en) * 2007-08-30 2009-03-19 Denki Kagaku Kogyo Kk Premixed mortar and method for producing the same
JP2010195621A (en) * 2009-02-25 2010-09-09 Denki Kagaku Kogyo Kk Cement admixture and cement binder

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164754A (en) * 1988-12-16 1990-06-25 Nippon Cement Co Ltd Cement additive for reducing shrinkage
JPH11157889A (en) * 1997-11-26 1999-06-15 Mitsubishi Materials Corp Hydraulic composition for cement concrete product
JP2000128616A (en) * 1998-10-16 2000-05-09 Sumitomo Osaka Cement Co Ltd Production of cement composition
JP2000219557A (en) * 1999-01-29 2000-08-08 Sika Ag Method for reducing shrinkage of hydraulic binder
JP2000264694A (en) * 1999-03-17 2000-09-26 Taiheiyo Cement Corp Expandable powder composition for cement admixing use and its production
JP2001064066A (en) * 1999-08-24 2001-03-13 Taiheiyo Cement Corp High strength concrete
JP2004284865A (en) * 2003-03-20 2004-10-14 Ube Ind Ltd Hydraulic composition, and concrete or mortar having excellent pump forced-feeding property
JP2005263566A (en) * 2004-03-19 2005-09-29 Denki Kagaku Kogyo Kk Method for preventing consolidation of silica fume
JP2009057220A (en) * 2007-08-30 2009-03-19 Denki Kagaku Kogyo Kk Premixed mortar and method for producing the same
JP2010195621A (en) * 2009-02-25 2010-09-09 Denki Kagaku Kogyo Kk Cement admixture and cement binder

Also Published As

Publication number Publication date
JP6164887B2 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
KR101137717B1 (en) Concrete composition making method with milling stone
JP5798395B2 (en) Method for producing hydraulic powder
JP5946107B2 (en) Method for producing cement composition
KR101402572B1 (en) Method of brake fluid disposal and grinding aid for cement material
JP4607149B2 (en) Cement admixture and cement composition
JP2014094877A (en) Earthwork material composition and method of reducing fluorine elution amount in the same
JP2009062262A (en) Method for manufacturing hydraulic powder
JP2014205601A (en) Hydraulic composition
JP6164887B2 (en) High-strength cement admixture and cement composition using the same
JPH0416534A (en) Method for utilizing slag and coal ash
CN107721213B (en) Method for processing high-performance cement by using fly ash
JP6042246B2 (en) Earthwork material composition and method for reducing fluorine elution amount in the composition
JP5464663B2 (en) Calcium aluminate clinker and quick-hardening material and quick-hardening admixture for injection
JP3936776B2 (en) Admixture and concrete composition
JP5269628B2 (en) Cement composition
JPH08259946A (en) Method of utilizing coal ash, surplus soil of construction and slag
JP6015585B2 (en) Hydrated cured body
JP5473811B2 (en) Cement additive and cement composition
JP5464558B2 (en) Method for producing cement composition
JP7503680B1 (en) Admixtures and cement compositions
JP5102502B2 (en) Cement additive and cement composition
JP4249643B2 (en) Method for preventing consolidation of silica fume
JP2014189423A (en) Blast furnace slag fine powder and cement composition blended with the same
JP2019052073A (en) Cement additive and cement composition
JP2004115291A (en) Solidified body using coal ash, and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170620

R150 Certificate of patent or registration of utility model

Ref document number: 6164887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250