JP2014188479A - Oxygen permeable membrane, oxygen separation method, and fuel cell system - Google Patents

Oxygen permeable membrane, oxygen separation method, and fuel cell system Download PDF

Info

Publication number
JP2014188479A
JP2014188479A JP2013068233A JP2013068233A JP2014188479A JP 2014188479 A JP2014188479 A JP 2014188479A JP 2013068233 A JP2013068233 A JP 2013068233A JP 2013068233 A JP2013068233 A JP 2013068233A JP 2014188479 A JP2014188479 A JP 2014188479A
Authority
JP
Japan
Prior art keywords
oxygen
permeable membrane
fuel cell
gas
oxygen permeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013068233A
Other languages
Japanese (ja)
Other versions
JP6075155B2 (en
Inventor
Takao Kume
高生 久米
Hitoshi Takamura
仁 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Tokyo Gas Co Ltd
Original Assignee
Tohoku University NUC
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Tokyo Gas Co Ltd filed Critical Tohoku University NUC
Priority to JP2013068233A priority Critical patent/JP6075155B2/en
Publication of JP2014188479A publication Critical patent/JP2014188479A/en
Application granted granted Critical
Publication of JP6075155B2 publication Critical patent/JP6075155B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxygen permeable membrane capable of highly holding oxygen permeation performance for a long time even if being in contact with a CO-containing gas and to provide a fuel cell system using the oxygen permeable membrane.SOLUTION: In an oxygen permeable membrane consisting of a BaO-SrO-CoO-FeO-based complex oxide, the BaO-SrO-CoO-FeO-based complex oxide contains at least one of Zr and Ti by 3-20 mol% to the total amount of Co and Fe in the case of Zr and 10-50 mol% to the total amount of Co and Fe in the case of Ti. In a fuel cell system, a cathode off-gas from which oxygen is separated by using the oxygen permeable membrane is added to an anode off-gas and then a high concentration CO-containing anode off-gas is obtained.

Description

本発明は酸素透過膜に係り、特にBaO−SrO−CoO−Fe系酸素透過膜に関する。また、本発明は、この酸素透過膜を用いた酸素分離方法及び燃料電池システムに関する。 The present invention relates to an oxygen permeable membrane, and more particularly to a BaO—SrO—CoO—Fe 2 O 3 -based oxygen permeable membrane. The present invention also relates to an oxygen separation method and a fuel cell system using the oxygen permeable membrane.

固体酸化物形燃料電池(SOFC)のカソードオフガス(空気)から分離した酸素によってアノードオフガスを燃焼させ、燃焼時の発熱を再度改質用の熱として利用すると共に、COを高濃度で回収するシステムが特許文献1に記載されている。特許文献1には、空気から酸素を分離するための酸素透過膜としてBa0.5Sr0.5Co0.8Fe0.2膜、La0.7Sr0.3Ga0.6Fe0.4膜、Pr0.7Sr0.3Fe0.8Al0.2膜が例示されている。 The anode offgas is burned by oxygen separated from the cathode offgas (air) of the solid oxide fuel cell (SOFC), and the heat generated during combustion is used again as heat for reforming, and CO 2 is recovered at a high concentration. A system is described in US Pat. Patent Document 1 discloses a Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3 film and a La 0.7 Sr 0.3 Ga 0.6 as oxygen permeable films for separating oxygen from air. Examples are Fe 0.4 O 3 films and Pr 0.7 Sr 0.3 Fe 0.8 Al 0.2 O 3 films.

特許文献2には、BaO−SrO−CoO−Fe系酸素透過膜として、Sr:Ba:Co:Fe=x:(1−x):(1−y):yの複合酸化物膜が記載されている(0.1≦x≦0.9,0.2≦y≦0.7)。 Patent Document 2 discloses a composite oxide film of Sr: Ba: Co: Fe = x: (1-x) :( 1-y): y as a BaO—SrO—CoO—Fe 2 O 3 -based oxygen permeable film. Is described (0.1 ≦ x ≦ 0.9, 0.2 ≦ y ≦ 0.7).

特開2012−164423号公報JP 2012-164423 A 特開2005−15320号公報JP 2005-15320 A

BaO−SrO−CoO−Fe系酸素透過膜によって燃料電池カソードオフガスから酸素を分離するに際し、BaO−SrO−CoO−Fe系膜がアノードオフガスと接触する場合、BaO−SrO−CoO−Fe系膜がアノードオフガス中に含まれるCOと反応し、BaO−SrO−CoO−Fe系酸素透過膜に炭酸塩が形成したり、あるいはこの炭酸塩の形成前に膜表面にCOが吸着されることにより酸素透過性能が急激に低下することが本発明者によって見出された。 When the BaO—SrO—CoO—Fe 2 O 3 based oxygen permeable membrane separates oxygen from the fuel cell cathode offgas, when the BaO—SrO—CoO—Fe 2 O 3 based membrane comes into contact with the anode offgas, BaO—SrO— The CoO—Fe 2 O 3 based film reacts with CO 2 contained in the anode off gas, and a carbonate is formed on the BaO—SrO—CoO—Fe 2 O 3 based oxygen permeable film, or before the carbonate is formed. It has been found by the present inventor that the oxygen permeation performance is abruptly lowered by the adsorption of CO 2 on the membrane surface.

本発明は、CO含有ガスと接触しても酸素透過性能が長時間にわたって高く保たれる酸素透過膜と、この酸素透過膜を用いた酸素分離方法及び燃料電池システムとを提供することを目的とする。 An object of the present invention is to provide an oxygen permeable membrane that maintains high oxygen permeation performance for a long time even when it comes into contact with a CO 2 -containing gas, and an oxygen separation method and a fuel cell system using the oxygen permeable membrane. And

本発明の酸素透過膜は、BaO−SrO−CoO−Fe系複合酸化物よりなる酸素透過膜において、該BaO−SrO−CoO−Fe系複合酸化物がZr及びTiの少なくとも一方を、Zrの場合Co,Feの総量に対して3〜20mol%、Tiの場合Co,Feの総量に対して10〜50mol%含有することを特徴とする。 The oxygen permeable membrane of the present invention is an oxygen permeable membrane made of a BaO—SrO—CoO—Fe 2 O 3 composite oxide, wherein the BaO—SrO—CoO—Fe 2 O 3 composite oxide is at least of Zr and Ti. One of them is characterized by containing 3 to 20 mol% with respect to the total amount of Co and Fe in the case of Zr, and 10 to 50 mol% with respect to the total amount of Co and Fe in the case of Ti.

このBaO−SrO−CoO−Fe系複合酸化物のZrO及びTiO以外の母組成は、SrBa1−xCo1−yFe3−(x+y)(ただし0.1≦x≦0.9,0.2≦y≦0.7)であることが好ましい。 The matrix composition other than ZrO 2 and TiO 2 of this BaO—SrO—CoO—Fe 2 O 3 composite oxide is Sr x Ba 1-x Co 1-y Fe y O 3− (x + y) (however, 0.1 ≦ x ≦ 0.9, 0.2 ≦ y ≦ 0.7).

本発明の酸素分離方法は、かかる本発明の酸素透過膜によって酸素含有ガスから酸素を分離するものである。   The oxygen separation method of the present invention separates oxygen from the oxygen-containing gas by the oxygen permeable membrane of the present invention.

本発明の燃料電池システムは、固体酸化物形燃料電池と、該燃料電池のアノード側に対し改質ガスを供給する改質ガス供給手段と、該燃料電池からのアノードオフガスを排出するアノードオフガス流路部材と、該燃料電池のカソード側に酸素含有ガスを供給する酸素含有ガス供給手段と、該燃料電池のカソード側と接したカソードオフガスを排出する手段と、該カソードオフガス中の酸素を分離して前記アノードオフガス流路中に導入する酸素透過膜とを有する燃料電池システムにおいて、該酸素透過膜が本発明の酸素透過膜であることを特徴とする。   The fuel cell system of the present invention includes a solid oxide fuel cell, reformed gas supply means for supplying a reformed gas to the anode side of the fuel cell, and an anode off-gas flow for discharging the anode off-gas from the fuel cell. A path member, oxygen-containing gas supply means for supplying an oxygen-containing gas to the cathode side of the fuel cell, means for discharging a cathode off-gas in contact with the cathode side of the fuel cell, and oxygen in the cathode off-gas is separated. In the fuel cell system having an oxygen permeable membrane introduced into the anode off-gas flow path, the oxygen permeable membrane is the oxygen permeable membrane of the present invention.

この燃料電池システムでは、酸素透過膜はアノードオフガス流路部材の少なくとも一部を構成するように設けられていることが好ましい。   In this fuel cell system, it is preferable that the oxygen permeable membrane is provided so as to constitute at least a part of the anode off-gas flow path member.

BaO−SrO−CoO−Fe系複合酸化物よりなる酸素透過膜において、BaO−SrO−CoO−Fe系複合酸化物にZrO及びTiOの少なくとも一方を含有させることにより、酸素透過膜がCO含有ガスと接触した場合の炭酸塩形成及びCO吸着が抑制されることが見出された。本発明の酸素透過膜は、CO含有ガスと接触する場合であっても、酸素透過性能が長期にわたって高いものとなる。 In the oxygen-permeable membrane made of a BaO-SrO-CoO-Fe 2 O 3 composite oxide, by including at least one of ZrO 2 and TiO 2 to BaO-SrO-CoO-Fe 2 O 3 composite oxide, It has been found that carbonate formation and CO 2 adsorption are suppressed when the oxygen permeable membrane is contacted with a CO 2 containing gas. Even when the oxygen permeable membrane of the present invention is in contact with a CO 2 -containing gas, the oxygen permeable performance becomes high over a long period of time.

本発明の燃料電池システムは、この酸素透過膜を用いてカソードオフガスから酸素を分離し、この酸素をアノードオフガスに供給し、アノードオフガス中の未反応の水素、COを酸化し、HO及びCOとする。このHOを凝縮させて分離することにより、COを高濃度に含むCO含有ガスを得ることができる。このCO含有ガスは液化炭酸、ドライアイス等の製造原料として有用である。 The fuel cell system of the present invention uses this oxygen permeable membrane to separate oxygen from the cathode offgas, supply this oxygen to the anode offgas, oxidize unreacted hydrogen, CO in the anode offgas, H 2 O and and CO 2. By condensing and separating this H 2 O, a CO 2 -containing gas containing CO 2 at a high concentration can be obtained. This CO 2 -containing gas is useful as a raw material for producing liquefied carbonic acid, dry ice and the like.

実施の形態に係る燃料電池システムの燃料電池部分の模式的な断面図である。It is typical sectional drawing of the fuel cell part of the fuel cell system which concerns on embodiment. 燃料電池ユニットの斜視図である。It is a perspective view of a fuel cell unit. 燃料電池ユニットの部分断面図である。It is a fragmentary sectional view of a fuel cell unit. 実施例及び比較例の結果を表わすグラフである。It is a graph showing the result of an Example and a comparative example. 実施例及び比較例の結果を表わすグラフである。It is a graph showing the result of an Example and a comparative example. 実施例及び比較例の結果を表わすグラフである。It is a graph showing the result of an Example and a comparative example. 実施例及び比較例の結果を表わすグラフである。It is a graph showing the result of an Example and a comparative example.

以下、本発明についてさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明の酸素透過膜を構成するBaO−SrO−CoO−Fe系複合酸化物は、SrBa1−xCo1−yFe3−(x+y)(ただし、0.1≦x≦0.9
、0.2≦y≦0.7)の組成(以下、母組成ということがある。)を有する。このSrBa1−xCo1−yFe3−zは、ペロブスカイト型構造を示す一般式ABOのAサイトにSrとBaが位置し、BサイトにCoとFeが位置している構造を有する。AサイトのSrによるBaの置換量xは0.1≦x≦0.9の範囲とする。また、CoのFeによる置換量は0.2≦y≦0.7の範囲とする。このような組成とすることにより、昇降温時の急激な酸素の吸放出と、これに伴う急激な体積変化が起こり難くなり、昇降温時における膜に亀裂が生じることが防止される。特に0.4≦x≦0.8の場合には、昇降温時の急激な酸素の吸放出と、これに伴う急激な体積変化がさらに抑えられるとともに、x=0の場合と同等以上の酸素透過性能が得られる。
The BaO—SrO—CoO—Fe 2 O 3 composite oxide constituting the oxygen permeable membrane of the present invention is Sr x Ba 1-x Co 1-y Fe y O 3-(x + y) (provided that 0.1 ≦ x ≦ 0.9
, 0.2 ≦ y ≦ 0.7) (hereinafter sometimes referred to as “mother composition”). In this Sr x Ba 1-x Co 1-y Fe y O 3-z , Sr and Ba are located at the A site of the general formula ABO 3 showing a perovskite structure, and Co and Fe are located at the B site. It has a structure. The substitution amount x of Ba with Sr at the A site is in the range of 0.1 ≦ x ≦ 0.9. Further, the substitution amount of Co with Fe is in the range of 0.2 ≦ y ≦ 0.7. By setting it as such a composition, the rapid oxygen absorption-and-release at the time of raising / lowering temperature and the sudden volume change accompanying this become difficult, and it is prevented that the film | membrane cracks at the time of raising / lowering temperature. In particular, in the case of 0.4 ≦ x ≦ 0.8, the rapid oxygen absorption / release during the temperature rise and fall and the sudden volume change associated therewith are further suppressed, and oxygen equal to or higher than that in the case of x = 0. Transmission performance is obtained.

なお、x>0.9の場合には酸素透過性能が低下し、x<0.1の場合には昇降温時の酸素の吸放出が急激に起こるようになって、これに伴う急激な体積変化によって、膜に亀裂が発生しやすくなる。また、y<0.2の場合と0.7<yの場合には、酸素イオンまたは酸素欠陥の移動が生じにくくなり、酸素透過率が低下する。   Note that when x> 0.9, the oxygen permeation performance decreases, and when x <0.1, oxygen absorption / release during the temperature rise / fall occurs abruptly. Changes tend to cause cracks in the film. In addition, when y <0.2 and 0.7 <y, the movement of oxygen ions or oxygen vacancies is difficult to occur, and the oxygen permeability is lowered.

本発明の酸素透過膜を構成する複合酸化物は、上記母組成に対しZrO及びTiOの少なくとも一方を添加した組成を有する。この複合酸化物全体におけるZrの含有率は、複合酸化物中のCo,Feの総量に対して3〜20mol%特に3〜10mol%、Tiの含有率は複合酸化物中のCo,Feの総量に対して10〜50mol%特に10〜30mol%であることが好ましい。このようにBaO−SrO−CoO−Fe系複合酸化物にZrO及びTiOの少なくとも一方を含有させることにより、酸素透過膜がCO含有ガスと接触した場合の炭酸塩形成及びCO吸着が抑制され、酸素透過性能が長期にわたって高いものとなる。 The composite oxide constituting the oxygen permeable membrane of the present invention has a composition in which at least one of ZrO 2 and TiO 2 is added to the mother composition. The Zr content in the entire composite oxide is 3 to 20 mol%, particularly 3 to 10 mol%, based on the total amount of Co and Fe in the composite oxide, and the Ti content is the total amount of Co and Fe in the composite oxide. It is preferable that it is 10-50 mol% with respect to 10-30 mol% especially. In this way, by containing at least one of ZrO 2 and TiO 2 in the BaO—SrO—CoO—Fe 2 O 3 composite oxide, carbonate formation and CO in the case where the oxygen permeable membrane comes into contact with the CO 2 containing gas. 2 Adsorption is suppressed, and the oxygen permeation performance becomes high over a long period of time.

この複合酸化物は、基本的には、熱処理を含む方法により調製することができる。例えば、酸化物もしくは仮焼や焼結等の熱処理過程で酸化物に転換し得る、ストロンチウム、バリウム、コバルト、鉄のそれぞれの金属原子を含む化合物、例えば、酸化ストロンチウムや酸化バリウム、酸化コバルト、酸化鉄、酸化ジルコニウム、酸化チタンのような酸化物、または硝酸塩、炭酸塩、硫酸塩、リン酸塩などの無機酸塩、または酢酸塩や蓚酸塩などの有機酸塩、あるいは塩化物や臭化物、ヨウ化物などのハロゲン化物、さらに水酸化物、オキシハロゲン化物等を所望の割合で混合し、熱処理を行う。   This composite oxide can be basically prepared by a method including heat treatment. For example, an oxide or a compound containing each metal atom of strontium, barium, cobalt, iron, which can be converted into an oxide in a heat treatment process such as calcination or sintering, for example, strontium oxide, barium oxide, cobalt oxide, oxidation Oxides such as iron, zirconium oxide and titanium oxide, inorganic acid salts such as nitrates, carbonates, sulfates and phosphates, organic acid salts such as acetates and oxalates, chlorides and bromides, iodine A halide such as a halide, a hydroxide, an oxyhalide, and the like are mixed in a desired ratio, and heat treatment is performed.

また、金属塩の混合水溶液を、アンモニア水などのアルカリ水溶液で加水分解する、いわゆる共沈法により得た沈殿物に熱処理を施して、所望の複合酸化物を得てもよい。さらに、それぞれの金属の混合物または合金を熱処理して酸化してもよい。   Alternatively, a desired composite oxide may be obtained by subjecting a precipitate obtained by a so-called coprecipitation method, in which a mixed aqueous solution of metal salt is hydrolyzed with an alkaline aqueous solution such as aqueous ammonia, to obtain a desired composite oxide. Furthermore, each metal mixture or alloy may be oxidized by heat treatment.

この原料配合物の仮焼の好ましい条件は、大気中、850℃〜1050℃で、6〜24時間保持する条件である。得られた仮焼粉は、粉砕され、所定の粒径に調整される。   Preferable conditions for calcination of this raw material mixture are conditions of holding at 850 ° C. to 1050 ° C. for 6 to 24 hours in the air. The obtained calcined powder is pulverized and adjusted to a predetermined particle size.

得られた仮焼微粉を板状等に一軸プレス成形法や冷間静水圧成形法等によりプレス成形し、またはドクターブレード法等により自立膜を成形し、または押出成形法や射出成形法等によりチューブ状の成形体を成形し、あるいはスクリーン印刷法やスラリーコーティング法によって多孔質支持体の表面に塗布膜を形成し、これら成形体を焼成することによって複合酸化物膜が製造される。焼成は、好ましくは、大気中、1000℃〜1200℃で、1〜10時間保持することにより行われる。例えば、1100℃で6時間保持することにより、その殆どを立方晶とすることができる。このような成形体の焼成時には昇温速度および降温速度をそれぞれ50℃/時間以下とすることが好ましい。これは、昇温速度と降温速度を50℃/時間とすると、焼成体から酸素が急に吸排出され、焼成体に亀裂が発生しやすくなるからである。   The obtained calcined fine powder is pressed into a plate or the like by a uniaxial press molding method or a cold isostatic pressing method, or a self-supporting film is formed by a doctor blade method, or by an extrusion molding method or an injection molding method. A composite oxide film is manufactured by forming a tube-shaped formed body, or forming a coating film on the surface of the porous support by a screen printing method or a slurry coating method, and firing the formed body. Firing is preferably carried out in the air at 1000 ° C. to 1200 ° C. for 1 to 10 hours. For example, most of them can be made into cubic crystals by holding at 1100 ° C. for 6 hours. At the time of firing such a molded body, it is preferable that the temperature raising rate and the temperature lowering rate are 50 ° C./hour or less, respectively. This is because if the heating rate and the cooling rate are 50 ° C./hour, oxygen is suddenly absorbed and discharged from the fired body, and cracks are likely to occur in the fired body.

プレス成形体を焼成することにより焼結体を作製した場合には、必要に応じてスライス加工や研削加工、研磨加工を行うことによって所望の厚さの酸素透過膜を作製することができる。   When a sintered body is produced by firing a press-molded body, an oxygen permeable film having a desired thickness can be produced by performing a slicing process, a grinding process, or a polishing process as necessary.

膜を多孔質支持体の表面に形成する場合、形成する膜と同じ組成を有する多孔質支持体、または、形成する膜と反応してスピネルのような複合酸化物を形成せず、かつ熱膨張係数がほぼ等しい材料からなる多孔質支持体が好適に用いられる。このような多孔質支持体は、適度な機械的強度とガス拡散係数が得られるように、その厚み、気孔率、気孔径等を制御して作製される。   When forming a membrane on the surface of a porous support, the porous support has the same composition as the membrane to be formed, or does not react with the formed membrane to form a composite oxide such as spinel, and thermal expansion. A porous support made of a material having substantially the same coefficient is preferably used. Such a porous support is produced by controlling its thickness, porosity, pore diameter and the like so as to obtain an appropriate mechanical strength and gas diffusion coefficient.

本発明の酸素透過膜のその他の製造方法としては、スパッタ法や溶射法が挙げられる。スパッタ法では、仮焼粉をプレス成形等により成形して焼成して得られた焼結体をターゲットとして用いることができる。また、溶射法では、仮焼粉を直接に溶射原料として用いてもよく、仮焼粉をプレス成形等して焼成して得られた焼結体を再粉砕して用いてもよい。   Other methods for producing the oxygen permeable membrane of the present invention include sputtering and thermal spraying. In the sputtering method, a sintered body obtained by molding and firing calcined powder by press molding or the like can be used as a target. In the thermal spraying method, the calcined powder may be used directly as a spraying raw material, or a sintered body obtained by firing the calcined powder by press molding or the like may be reground and used.

このようにして作製されたZrO及び/又はTiO含有BaO−SrO−CoO−Fe系膜よりなる酸素透過膜を用いて、空気などの酸素含有ガスから酸素を分離するには、この酸素透過膜の両側に室を設け、一方の室に空気などの酸素含有ガスを供給し、その酸素分圧よりも他室の酸素分圧が低くなるように両室の圧力条件を設定する。例えば、空気が供給される室(以下「空気室」という)を常圧または加圧状態として他室を減圧としたり、または空気室を常圧として他室を窒素ガス等で置換して酸素分圧を下げた状態とする。これにより空気室から低酸素分圧側の他室に酸素透過膜を通って酸素が移動する。 In order to separate oxygen from an oxygen-containing gas such as air using the oxygen permeable membrane made of the ZrO 2 and / or TiO 2 -containing BaO—SrO—CoO—Fe 2 O 3 film thus produced, A chamber is provided on both sides of the oxygen permeable membrane, an oxygen-containing gas such as air is supplied to one chamber, and the pressure conditions in both chambers are set so that the oxygen partial pressure in the other chamber is lower than the oxygen partial pressure. . For example, a chamber to which air is supplied (hereinafter referred to as an “air chamber”) is set to a normal pressure or pressurized state, the other chamber is set to a reduced pressure, or the other chamber is replaced with nitrogen gas or the like with the air chamber set to a normal pressure. Reduce pressure. Thus, oxygen moves from the air chamber to the other chamber on the low oxygen partial pressure side through the oxygen permeable membrane.

酸素透過膜による酸素分離時の温度は、通常400℃〜1200℃、好ましくは500〜1000℃である。なお酸素透過膜の表面に酸素分離を促進する触媒を付与してもよい。この触媒としては、白金、パラジウム、金、銀、ビスマス、バリウム、バナジウム、モリブデン、セリウム、ルテニウム、マンガン、コバルト、ロジウム、プラセオジウムなどの金属または金属酸化物が挙げられる。   The temperature at the time of oxygen separation by the oxygen permeable membrane is usually 400 ° C to 1200 ° C, preferably 500 to 1000 ° C. A catalyst for promoting oxygen separation may be applied to the surface of the oxygen permeable membrane. Examples of the catalyst include metals or metal oxides such as platinum, palladium, gold, silver, bismuth, barium, vanadium, molybdenum, cerium, ruthenium, manganese, cobalt, rhodium, and praseodymium.

次に、この酸素透過膜を用いた燃料電池システムについて説明する。   Next, a fuel cell system using this oxygen permeable membrane will be described.

図1は燃料電池システムの燃料電池部分の構成を模式的に示す縦断面図、図2は燃料電池ユニットの斜視図、図3は燃料電池ユニットの模式的な拡大縦断面図である。   FIG. 1 is a longitudinal sectional view schematically showing a configuration of a fuel cell portion of the fuel cell system, FIG. 2 is a perspective view of the fuel cell unit, and FIG. 3 is a schematic enlarged longitudinal sectional view of the fuel cell unit.

燃料電池の外殻を構成するハウジング1内の下部に給気マニホルド2が設置され、上部に排気マニホルド3が設置され、これらのマニホルド2,3間に燃料電池ユニット4が架設されている。燃料電池ユニット4は図2,3の通り、通気性を有した多孔質セラミックよりなる支持体5と、該支持体5の外面に設けられた燃料電池セル(以下セルと略)6とを有する。支持体5には下端面から上端面にまで貫通する貫通孔5hが設けられている。燃料電池ユニット4は、貫通孔5hの下端が給気マニホルド2内に臨み、貫通孔5hの上端が排気マニホルド3内に臨むように設置される。   An air supply manifold 2 is installed in the lower part of the housing 1 constituting the outer shell of the fuel cell, an exhaust manifold 3 is installed in the upper part, and the fuel cell unit 4 is installed between the manifolds 2 and 3. As shown in FIGS. 2 and 3, the fuel cell unit 4 includes a support 5 made of porous ceramic having air permeability, and fuel cells (hereinafter abbreviated as cells) 6 provided on the outer surface of the support 5. . The support 5 is provided with a through hole 5h that penetrates from the lower end surface to the upper end surface. The fuel cell unit 4 is installed such that the lower end of the through hole 5 h faces the air supply manifold 2 and the upper end of the through hole 5 h faces the exhaust manifold 3.

セル6は固体電解質層6bを有したSOFC型セルであり、アノード6aとカソード6cとの間に固体電解質層6bを介在させた3層構造を有している。アノード6aが支持体5に接するように配置され、カソード6cが空気に露呈する。この実施の形態では、支持体5は平盤状であり、複数の孔5hが平行に貫設されている。そして、支持体5の両側面にそれぞれ複数のセル6が設けられ、各々の側面におけるセル6同士が直列に接続され、これにより高電圧の出力を得ることができるものとなっている。ただし、燃料電池ユニット4の構成はこれに限定されるものではない。   The cell 6 is a SOFC type cell having a solid electrolyte layer 6b, and has a three-layer structure in which a solid electrolyte layer 6b is interposed between an anode 6a and a cathode 6c. The anode 6a is disposed in contact with the support 5, and the cathode 6c is exposed to the air. In this embodiment, the support 5 has a flat plate shape, and a plurality of holes 5h are provided in parallel. A plurality of cells 6 are provided on both side surfaces of the support 5, and the cells 6 on each side surface are connected in series so that a high voltage output can be obtained. However, the configuration of the fuel cell unit 4 is not limited to this.

排気マニホルド3の上面部に水平な仕切板7が設置され、仕切板7の上側のスペース8に燃料改質器10が設置されている。仕切板7よりも下側が排気マニホルド3となっている。この排気マニホルド3の壁面及び底面の少なくとも一部(この実施の形態では壁面の一部)が上記本発明の酸素透過膜9にて構成されている。この酸素透過膜9を通してカソードオフガス中の酸素が排気マニホルド3内に拡散可能となっている。   A horizontal partition plate 7 is installed on the upper surface of the exhaust manifold 3, and a fuel reformer 10 is installed in a space 8 above the partition plate 7. The exhaust manifold 3 is located below the partition plate 7. At least part of the wall surface and bottom surface of this exhaust manifold 3 (part of the wall surface in this embodiment) is constituted by the oxygen permeable membrane 9 of the present invention. Through this oxygen permeable membrane 9, oxygen in the cathode off gas can diffuse into the exhaust manifold 3.

排気マニホルド3の壁面及び底面の少なくとも一部を酸素透過膜9にて構成するには、排気マニホルド3に開口を設け、この開口に酸素透過膜9を装着するのが好ましいが、これに限定されない。例えば排気マニホルドの骨格を構成するフレームを用い、このフレームに板状の酸素透過膜9を取り付けて排気マニホルドを構成してもよい。   In order to configure at least a part of the wall surface and bottom surface of the exhaust manifold 3 with the oxygen permeable membrane 9, it is preferable to provide an opening in the exhaust manifold 3 and attach the oxygen permeable membrane 9 to the opening, but the present invention is not limited to this. . For example, the exhaust manifold may be configured by using a frame constituting the skeleton of the exhaust manifold and attaching the plate-like oxygen permeable membrane 9 to the frame.

仕切板7に接するようにして、スペース8内に燃料改質器10が設置されている。燃料改質器10は、仕切板7を介して伝わるアノードオフガスの熱によって加熱される。   A fuel reformer 10 is installed in the space 8 so as to be in contact with the partition plate 7. The fuel reformer 10 is heated by the heat of the anode off gas transmitted through the partition plate 7.

燃料改質器10内には改質触媒、シフト触媒及びCO選択酸化触媒が充填されており、メタン(CH)等の炭化水素を主成分とする炭化水素含有ガスと、水蒸気(HO)とが供給管11,12を介して導入されると共に、シフト反応及びCO選択酸化反応用の空気が空気供給管(図示略)を介して導入され、改質反応、シフト反応及びCO選択酸化反応が行われ、H,CO,CO及び微量の未燃CH等を含む改質ガスが生成する。改質反応(吸熱反応)に必要な熱として仕切板7を介して伝わる熱と、改質器10内のシフト反応熱及びCO選択酸化反応熱が利用される。この改質ガスは配管13を介して給気マニホルド2内に導入され、各燃料電池ユニット4の貫通孔5hに分配供給される。改質ガス中の水素は、多孔質支持体5の気孔を通ってセル6のアノード6aに到達する。貫通孔5hを通り抜けたアノードオフガスは、排気マニホルド3から排気ポート14を経て送り出される。 The fuel reformer 10 is filled with a reforming catalyst, a shift catalyst, and a CO selective oxidation catalyst, and contains a hydrocarbon-containing gas whose main component is a hydrocarbon such as methane (CH 4 ) and water vapor (H 2 O). ) Are introduced through the supply pipes 11 and 12, and air for shift reaction and CO selective oxidation reaction is introduced through the air supply pipe (not shown), and the reforming reaction, shift reaction and CO selective oxidation are introduced. The reaction is performed, and a reformed gas containing H 2 , CO, CO 2 and a small amount of unburned CH 4 is generated. Heat transmitted through the partition plate 7 as heat necessary for the reforming reaction (endothermic reaction), shift reaction heat in the reformer 10, and CO selective oxidation reaction heat are used. The reformed gas is introduced into the supply manifold 2 via the pipe 13 and is distributed and supplied to the through holes 5 h of the fuel cell units 4. Hydrogen in the reformed gas reaches the anode 6 a of the cell 6 through the pores of the porous support 5. The anode off gas that has passed through the through hole 5h is sent out from the exhaust manifold 3 through the exhaust port.

ハウジング1内には、下部の給気口1aより空気がブロワ(図示略)によって供給される。この空気がセル6のカソード6cと接触する。空気中の酸素が固体電解質層6bを拡散透過してアノード6aに到達し、発電が行われる。カソードオフガスは、ハウジング1の上部の排気ポート1bから送り出される。ハウジング1内において、カソードオフガス中の酸素の一部は酸素透過膜9を透過して排気マニホルド3内に流入し、アノードオフガス中のCO,H,未燃CH等と反応し、CO,HOを生成させる。 In the housing 1, air is supplied from a lower air supply port 1a by a blower (not shown). This air comes into contact with the cathode 6 c of the cell 6. Oxygen in the air diffuses and permeates through the solid electrolyte layer 6b and reaches the anode 6a to generate power. The cathode off gas is sent out from the exhaust port 1 b at the top of the housing 1. In the housing 1, part of oxygen in the cathode off-gas passes through the oxygen permeable membrane 9 and flows into the exhaust manifold 3, reacts with CO, H 2 , unburned CH 4, etc. in the anode off-gas, and CO 2. , H 2 O.

排気ポート14から排出されたアノードオフガスは、そのまま熱交換器にて冷却され、凝縮水を分離し、高CO濃度のガスとして利用されてもよい。また、アノードオフガスが未燃分としてH,COを比較的多く含む場合には、このアノードオフガスを受け入れる第2の固体電解質型燃料電池を設置し、この第2の固体電解質型燃料電池での発電に利用してもよい。このようにすれば、第2の固体電解質型燃料電池からCO濃度の高いアノードオフガスが得られる。 The anode off gas discharged from the exhaust port 14 may be directly cooled by a heat exchanger to separate condensed water and used as a high CO 2 concentration gas. Further, when the anode off gas contains a relatively large amount of H 2 and CO as unburned components, a second solid oxide fuel cell that receives the anode off gas is installed, and the second solid oxide fuel cell It may be used for power generation. In this way, an anode off gas having a high CO 2 concentration can be obtained from the second solid oxide fuel cell.

<酸素透過膜試料の調製>
原料となるBaCO,SrCO,CoO,Fe,ZrO,TiO(純度はいずれも99.9%)を下記の目的組成となるように秤量し、遊星ボールミルを用いて6h混合した。得られた混合粉を油圧式一軸ハンドプレスにより35MPaにて1min圧粉し、直径27mmのペレット状とした。次いで大気中1150〜1200℃にて5h仮焼し、目的組成の粉末試料を得た。この粉末試料をアルミナ乳鉢にて粉砕し、遊星ボールミルを用いて24h粉砕して微細粉末とした。この微細粉末とバインダーを混合した後、油圧式一軸ハンドプレスにより35MPaにて1min加圧し、直径27mmのペレット状とした。その後、このペレットを冷間静水圧プレス(CIP)により250MPaにて1min等方圧縮した後、電気炉で大気中1150〜1200℃にて10hの焼結を行い、直径20mmの焼結体を得た。この焼結体をダイヤモンドラップ研磨機で粗研磨後、ダイヤ液を用いて両面を鏡面研磨して酸素透過膜の試料膜A〜Dとした。
試料膜A(比較例):Ba0.5 Sr0.5 Co0.8 Fe0.23−δ
試料膜B(本発明1):Ba0.5 Sr0.5 (Co0.8 Fe0.21−0.03 Zr0.033−δ
試料膜C(本発明2):Ba0.5 Sr0.5 (Co0.8 Fe0.21−0.05 Zr0.053−δ
試料膜D(本発明3):Ba0.5 Sr0.5 (Co0.8 Fe0.21−0.1 Ti0.13−δ
<Preparation of oxygen permeable membrane sample>
BaCO 3 , SrCO 3 , CoO, Fe 2 O 3 , ZrO 2 , and TiO 2 (purity are all 99.9%) as raw materials are weighed to the following target composition, and mixed for 6 h using a planetary ball mill did. The obtained mixed powder was compacted by a hydraulic uniaxial hand press at 35 MPa for 1 min to form a pellet having a diameter of 27 mm. Subsequently, it was calcined at 1150 to 1200 ° C. in the atmosphere for 5 hours to obtain a powder sample having a target composition. This powder sample was pulverized in an alumina mortar and pulverized for 24 hours using a planetary ball mill to obtain a fine powder. After mixing this fine powder and a binder, it was pressed for 1 min at 35 MPa by a hydraulic uniaxial hand press to form a pellet having a diameter of 27 mm. Thereafter, the pellets were isotropically compressed at 250 MPa by a cold isostatic press (CIP) for 1 min and then sintered in the atmosphere at 1150 to 1200 ° C. for 10 hours to obtain a sintered body having a diameter of 20 mm. It was. This sintered body was coarsely polished with a diamond lap polishing machine, and both surfaces were mirror-polished using a diamond solution to obtain oxygen-permeable sample films A to D.
Sample film A (comparative example): Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ
Sample film B (present invention 1): Ba 0.5 Sr 0.5 (Co 0.8 Fe 0.2 ) 1-0.03 Zr 0.03 O 3-δ
Sample film C (Invention 2): Ba 0.5 Sr 0.5 (Co 0.8 Fe 0.2 ) 1-0.05 Zr 0.05 O 3-δ
Sample film D (Invention 3): Ba 0.5 Sr 0.5 (Co 0.8 Fe 0.2 ) 1-0.1 Ti 0.1 O 3-δ

各膜A〜Dの厚さとZr又はTiの複合酸化物中のCo,Feの総量に対する割合(mol%)は次の通りである。
試料膜A:0.67mm(Zr,Ti=0mol%)
試料膜B:0.66mm(Zr=3mol%)
試料膜C:0.58mm(Zr=5mol%)
試料膜D:0.67mm(Ti=10mol%)
The thickness of each film A to D and the ratio (mol%) to the total amount of Co and Fe in the composite oxide of Zr or Ti are as follows.
Sample film A: 0.67 mm (Zr, Ti = 0 mol%)
Sample film B: 0.66 mm (Zr = 3 mol%)
Sample film C: 0.58 mm (Zr = 5 mol%)
Sample film D: 0.67 mm (Ti = 10 mol%)

<COガス中への酸素透過速度測定>
上記酸素透過膜を外径20mm、内径15mmのアルミナの支持管と、同径のアルミナスペーサーの間に挟み込み、バネ付きのアルミナの治具を用いることにより試料と支持管を密着させた。シール材としてパイレックスガラスを試料と支持管の間に挟み、900℃程度まで加熱することで溶融させシールした。電気ヒータによって800℃又は850℃に加熱した状態において、試料膜の一方の側に空気を流通させ、他方の側にCO濃度0.13〜20%のCO含有Arガスを流通させた。ガス流量は空気を50sccm一定とし、CO含有Arガスを250sccmとした。
<Measurement of oxygen transmission rate into CO 2 gas>
The oxygen permeable membrane was sandwiched between an alumina support tube having an outer diameter of 20 mm and an inner diameter of 15 mm and an alumina spacer having the same diameter, and the sample and the support tube were brought into close contact by using an alumina jig with a spring. Pyrex glass was sandwiched between the sample and the support tube as a sealing material and heated to about 900 ° C. to melt and seal. In a state heated to 800 ° C. or 850 ° C. by an electric heater, air was circulated on one side of the sample film, and CO 2 -containing Ar gas having a CO 2 concentration of 0.13 to 20% was circulated on the other side. The gas flow rate was constant at 50 sccm for air and 250 sccm for Ar gas containing CO 2 .

酸素透過速度jo(sccm・cm−2)は、酸素供給側の空気をガスクロマトグラフを用いて定量分析し、下記式により算出した。ここで[O](%)はガスクロマトグラフにより分析した空気中の酸素濃度、f(sccm)は酸素供給側に流通させた空気の流量、S(cm)は試料の透過断面積である。
jo=(20.9476−[O])・(1/100)・f・(1/S)
The oxygen transmission rate jo 2 (sccm · cm −2 ) was calculated by the following formula after quantitatively analyzing the air on the oxygen supply side using a gas chromatograph. Here, [O 2 ] (%) is the oxygen concentration in the air analyzed by gas chromatography, f (sccm) is the flow rate of the air circulated to the oxygen supply side, and S (cm 2 ) is the permeation cross-sectional area of the sample. .
jo 2 = (20.9476- [O 2 ]) · (1/100) · f · (1 / S)

結果を図4〜7に示す。   The results are shown in FIGS.

<考察>
図4は試料膜A,B,Cを用いた800℃の結果を示す。図4の通り、試料膜CはCO濃度6%以上で試料膜Aよりも酸素透過速度が大きく、試料膜BはCO濃度7.5%以上で試料膜Aよりも酸素透過速度が大きい。なお、試料膜AはCO20%で酸素透過速度がほぼゼロとなる。
<Discussion>
FIG. 4 shows the results at 800 ° C. using the sample films A, B, and C. As shown in FIG. 4, the sample membrane C has a CO 2 concentration of 6% or more and a higher oxygen transmission rate than the sample membrane A, and the sample membrane B has a CO 2 concentration of 7.5% or more and a higher oxygen transmission rate than the sample membrane A. . Note that the sample membrane A has an oxygen transmission rate of almost zero when CO 2 is 20%.

図5は試料膜A,B,Cを用いた850℃の結果を示す。図5の通り、試料膜B,CはいずれもCO濃度15%以上で試料膜Aよりも酸素透過速度が大きい。 FIG. 5 shows the results at 850 ° C. using the sample films A, B, and C. As shown in FIG. 5, the sample membranes B and C both have a CO 2 concentration of 15% or more and a higher oxygen transmission rate than the sample membrane A.

図6は試料膜A,Dを用いた800℃の結果を示す。図6の通り、試料膜DはCO濃度8%以上で試料膜Aよりも酸素透過速度が大きい。 FIG. 6 shows the results at 800 ° C. using the sample films A and D. As shown in FIG. 6, the sample film D has a CO 2 concentration of 8% or more and a higher oxygen transmission rate than the sample film A.

図7は試料膜A,Dを用いた850℃の結果を示す。図7の通り、試料膜DはCO濃度20%以上で試料膜Aよりも酸素透過速度が大きくなるものと推定される。 FIG. 7 shows the results at 850 ° C. using the sample films A and D. As shown in FIG. 7, it is estimated that the sample membrane D has a higher oxygen permeation rate than the sample membrane A at a CO 2 concentration of 20% or more.

以上の実施例及び比較例より、ZrやTiによる(Co,Fe)−サイトの置換によってCOとの反応速度が低下することが示唆された。ZrやTi置換量の増加に伴いCOガス雰囲気中での酸素透過速度の低減が抑制されたのはこのためであると考えられる。ZrやTiの置換量が増すと、BaO−SrO−CoO−Fe系酸素透過膜とCOとの反応速度が小さくなり、酸素透過速度減少をもたらす試料表面へのCOの吸着やCOとの反応による炭酸塩形成が起こり難くなったといえる。 From the above Examples and Comparative Examples, it was suggested that the reaction rate with CO 2 is reduced by substitution of (Co, Fe) -sites with Zr or Ti. This is considered to be the reason why the reduction of the oxygen transmission rate in the CO 2 gas atmosphere was suppressed with the increase of the Zr and Ti substitution amounts. As the amount of substitution of Zr and Ti increases, the reaction rate between the BaO—SrO—CoO—Fe 2 O 3 -based oxygen permeable membrane and CO 2 decreases, and the adsorption of CO 2 onto the sample surface brings about a decrease in oxygen transmission rate. It can be said that the formation of carbonate due to the reaction with CO 2 hardly occurs.

1 ハウジング
2 給気マニホルド
3 排気マニホルド
4 燃料電池ユニット
5 支持体
5h 貫通孔
6 セル
9 酸素透過膜
10 燃料改質器
DESCRIPTION OF SYMBOLS 1 Housing 2 Air supply manifold 3 Exhaust manifold 4 Fuel cell unit 5 Support body 5h Through-hole 6 Cell 9 Oxygen permeable membrane 10 Fuel reformer

Claims (5)

BaO−SrO−CoO−Fe系複合酸化物よりなる酸素透過膜において、該BaO−SrO−CoO−Fe系複合酸化物がZr及びTiの少なくとも一方を、Zrの場合Co,Feの総量に対して3〜20mol%、Tiの場合Co,Feの総量に対して10〜50mol%含有することを特徴とする酸素透過膜。 In the oxygen-permeable membrane made of a BaO-SrO-CoO-Fe 2 O 3 composite oxide, the BaO-SrO-CoO-Fe 2 O 3 composite oxide of at least one of Zr and Ti, when the Zr Co, An oxygen permeable membrane comprising 3 to 20 mol% with respect to the total amount of Fe, and 10 to 50 mol% with respect to the total amount of Co and Fe in the case of Ti. 請求項1において、BaO−SrO−CoO−Fe系複合酸化物のZrO及びTiO以外の母組成がSrBa1−xCo1−yFe3−(x+y)(ただし0.1≦x≦0.9,0.2≦y≦0.7)であることを特徴とする酸素透過膜。 In Claim 1, the mother composition other than ZrO 2 and TiO 2 of the BaO—SrO—CoO—Fe 2 O 3 composite oxide is Sr x Ba 1-x Co 1-y Fe y O 3− (x + y) 0.1 ≦ x ≦ 0.9, 0.2 ≦ y ≦ 0.7). 請求項1又は2の酸素透過膜を用いて酸素含有ガスから酸素を分離する酸素分離方法。   An oxygen separation method for separating oxygen from an oxygen-containing gas using the oxygen permeable membrane according to claim 1. 固体電解質形燃料電池と、
該燃料電池のアノード側に対し改質ガスを供給する改質ガス供給手段と、
該燃料電池からのアノードオフガスを排出するアノードオフガス流路部材と、
該燃料電池のカソード側に酸素含有ガスを供給する酸素含有ガス供給手段と、
該燃料電池のカソード側と接したカソードオフガスを排出する手段と、
該カソードオフガス中の酸素を分離して前記アノードオフガス流路中に導入する酸素透過膜と
を有する燃料電池システムにおいて、
該酸素透過膜が請求項1又は2に記載の酸素透過膜であることを特徴とする燃料電池システム。
A solid oxide fuel cell;
A reformed gas supply means for supplying a reformed gas to the anode side of the fuel cell;
An anode off-gas flow path member for discharging anode off-gas from the fuel cell;
Oxygen-containing gas supply means for supplying an oxygen-containing gas to the cathode side of the fuel cell;
Means for discharging the cathode off gas in contact with the cathode side of the fuel cell;
A fuel cell system having an oxygen permeable membrane that separates oxygen in the cathode offgas and introduces it into the anode offgas flow path;
A fuel cell system, wherein the oxygen permeable membrane is the oxygen permeable membrane according to claim 1 or 2.
請求項4において、前記酸素透過膜は前記アノードオフガス流路部材に設けられていることを特徴とする燃料電池システム。   5. The fuel cell system according to claim 4, wherein the oxygen permeable membrane is provided in the anode off-gas flow path member.
JP2013068233A 2013-03-28 2013-03-28 Oxygen permeable membrane, oxygen separation method and fuel cell system Active JP6075155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013068233A JP6075155B2 (en) 2013-03-28 2013-03-28 Oxygen permeable membrane, oxygen separation method and fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013068233A JP6075155B2 (en) 2013-03-28 2013-03-28 Oxygen permeable membrane, oxygen separation method and fuel cell system

Publications (2)

Publication Number Publication Date
JP2014188479A true JP2014188479A (en) 2014-10-06
JP6075155B2 JP6075155B2 (en) 2017-02-08

Family

ID=51835365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013068233A Active JP6075155B2 (en) 2013-03-28 2013-03-28 Oxygen permeable membrane, oxygen separation method and fuel cell system

Country Status (1)

Country Link
JP (1) JP6075155B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113745561A (en) * 2021-08-13 2021-12-03 煤炭科学研究总院 Device and method for removing hydrogen from mine hydrogen fuel cell automobile exhaust
CN114976132A (en) * 2022-06-29 2022-08-30 北京亿华通科技股份有限公司 Activation control method for fuel cell stack in low-oxygen environment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012164423A (en) * 2011-02-03 2012-08-30 Tokyo Gas Co Ltd Co2 recovery type solid oxide fuel cell battery system and operation control method therefor
JP2013507315A (en) * 2009-10-16 2013-03-04 フラウンホーファー−ゲゼルシャフト ツール フエルデルング デア アンゲヴァンテン フォルシュング エー.ファオ. High temperature resistant bonding method of alkaline earth substituted cobaltate based oxygen permeable oxide ceramics by doping assisted diffusive reactive sintering

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507315A (en) * 2009-10-16 2013-03-04 フラウンホーファー−ゲゼルシャフト ツール フエルデルング デア アンゲヴァンテン フォルシュング エー.ファオ. High temperature resistant bonding method of alkaline earth substituted cobaltate based oxygen permeable oxide ceramics by doping assisted diffusive reactive sintering
JP2012164423A (en) * 2011-02-03 2012-08-30 Tokyo Gas Co Ltd Co2 recovery type solid oxide fuel cell battery system and operation control method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113745561A (en) * 2021-08-13 2021-12-03 煤炭科学研究总院 Device and method for removing hydrogen from mine hydrogen fuel cell automobile exhaust
CN113745561B (en) * 2021-08-13 2022-09-16 煤炭科学研究总院有限公司 Device and method for removing hydrogen from tail gas of mine hydrogen fuel cell automobile
CN114976132A (en) * 2022-06-29 2022-08-30 北京亿华通科技股份有限公司 Activation control method for fuel cell stack in low-oxygen environment
CN114976132B (en) * 2022-06-29 2024-01-26 北京亿华通科技股份有限公司 Fuel cell stack activation control method for low-oxygen environment

Also Published As

Publication number Publication date
JP6075155B2 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
US6471921B1 (en) Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing
US20110195342A1 (en) Solid oxide fuel cell reactor
Harada et al. Ba1. 0Co0. 7Fe0. 2Nb0. 1O3− δ dense ceramic as an oxygen permeable membrane for partial oxidation of methane to synthesis gas
US7151067B2 (en) Porcelain composition, composite material comprising catalyst and ceramic, film reactor, method for producing synthetic gas, apparatus for producing synthetic gas and method for activating catalyst
JP2014510014A (en) Sintering additive for ceramic devices obtained in low pO2 atmosphere
CA2990603A1 (en) Dual function composite oxygen transport membrane
JP2010535619A (en) Hydrogen ion conducting ceramic membranes for hydrogen separation
JP4855012B2 (en) Oxygen ion conductor, oxygen separation membrane, and hydrocarbon oxidation reactor
US20150232334A1 (en) Oxygen-permeable film
Salehi et al. Oxygen permeation and stability study of (La0. 6Ca0. 4) 0.98 (Co0. 8Fe0. 2) O3-δ membranes
JP6075155B2 (en) Oxygen permeable membrane, oxygen separation method and fuel cell system
JP4918315B2 (en) Oxygen separation membrane
KR101982890B1 (en) Oxygen and hydrogen separation membranes and Method of producing the same
JP6442366B2 (en) Oxygen permeable membrane
JP2009195865A (en) Oxygen separating material and its manufacturing method
JP4430291B2 (en) Syngas production method
JP2005281077A (en) Ceramic composition, composite material, and chemical reaction apparatus
Park et al. Ethanol reforming using Ba0. 5Sr0. 5Cu0. 2Fe0. 8O3− δ/Ag composites as oxygen transport membranes
JP4855706B2 (en) Hydrogen separator and hydrogen separator
JP4855013B2 (en) Oxygen separation membrane and hydrocarbon oxidation reactor
KR20220139612A (en) High permeability membrane for oxygen separation and fabrication method thereof
JP4320531B2 (en) Mixed conductive composite oxide for oxygen separation and method for producing the same
JP3806298B2 (en) Composite material, oxygen separator and chemical reactor
JP6782106B2 (en) Reformer
JP6986126B2 (en) Oxygen permeable membrane, its manufacturing method, and reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161226

R150 Certificate of patent or registration of utility model

Ref document number: 6075155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250