JP2014188477A - Biological contact filter medium, biological contact filtration device, and method for producing biological contact filter medium - Google Patents

Biological contact filter medium, biological contact filtration device, and method for producing biological contact filter medium Download PDF

Info

Publication number
JP2014188477A
JP2014188477A JP2013068145A JP2013068145A JP2014188477A JP 2014188477 A JP2014188477 A JP 2014188477A JP 2013068145 A JP2013068145 A JP 2013068145A JP 2013068145 A JP2013068145 A JP 2013068145A JP 2014188477 A JP2014188477 A JP 2014188477A
Authority
JP
Japan
Prior art keywords
biological contact
chemical fiber
heat
filter medium
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013068145A
Other languages
Japanese (ja)
Other versions
JP6090991B2 (en
Inventor
Yuka Tamaki
由佳 玉木
Mikio Ide
幹夫 井手
Tomohiro Matsushita
知広 松下
Sachiko Ochi
佐智子 大地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiki Ataka Engineering Co Ltd
Original Assignee
Daiki Ataka Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiki Ataka Engineering Co Ltd filed Critical Daiki Ataka Engineering Co Ltd
Priority to JP2013068145A priority Critical patent/JP6090991B2/en
Publication of JP2014188477A publication Critical patent/JP2014188477A/en
Application granted granted Critical
Publication of JP6090991B2 publication Critical patent/JP6090991B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a biological contact filter medium in which the height of a filter medium layer can be made low, and the service life of the filter medium is long, and having high durability, and a biological contact filtration device filled with the filter medium.SOLUTION: Provided is a filter medium obtained by heat-molding thermally fusible chemical fiber free from biodegradability that crimping is revealed by performing heat treatment, and in which weight per unit volume is 120 to 250 kg/m, and the side area of the raw material chemical fiber included per unit volume of the fiber filter medium is 24,000 m/mor more.

Description

本発明は、浄水処理システムにおいて使用される生物接触ろ過材、生物接触ろ過装置および生物接触ろ過材の製造方法に関し、より詳しくは、微生物を付着増殖させたろ過材に原水を接触させることにより水中のアンモニア態窒素や溶解性鉄、マンガン、濁度などを除去する生物接触ろ過材、この生物接触ろ過材を備えた生物接触ろ過装置およびこの生物接触ろ過材を製造する方法に関する。   The present invention relates to a biological contact filter medium, a biological contact filter device and a method for producing a biological contact filter medium used in a water purification treatment system, and more specifically, by bringing raw water into contact with a filter medium on which microorganisms are attached and grown. The present invention relates to a biological contact filter that removes ammonia nitrogen, soluble iron, manganese, turbidity, and the like, a biological contact filter equipped with the biological contact filter, and a method for producing the biological contact filter.

近年、水道原水の水質悪化に伴い高度浄水処理の導入を検討する水道事業体が多くなっている。アンモニア態窒素が水中に存在すると浄水処理の消毒プロセスにおいて塩素剤の消費量が著しく増大するため、薬材使用量削減を目的として生物処理が導入される。高度浄水処理のひとつである生物処理は、担体の表面に微生物が付着して形成される生物膜と原水を接触させることで、生物酸化を利用して原水中のアンモニア態窒素や鉄、マンガン、臭気を除去する。生物膜にはアンモニア態窒素を硝酸態窒素に硝化させる硝化菌や、溶解性の鉄、マンガンを酸化させる鉄酸化細菌が増殖する。生物処理としては浸漬ろ床方式、回転円板方式、生物接触ろ過方式が挙げられるが、生物接触ろ過方式は装置の設置面積を最も小さくできるというメリットがある。   In recent years, with the deterioration of water quality of tap water, there are an increasing number of water utilities that consider the introduction of advanced water purification treatment. When ammonia nitrogen is present in water, the consumption of chlorinating agent is significantly increased in the disinfection process of water purification treatment, and biological treatment is introduced for the purpose of reducing the amount of chemicals used. Biological treatment, one of the advanced water purification treatments, uses bio-oxidation to bring ammonia nitrogen, iron, manganese, Remove odor. Nitrifying bacteria that nitrify ammonia nitrogen to nitrate nitrogen and iron-oxidizing bacteria that oxidize soluble iron and manganese grow on the biofilm. Biological treatment includes an immersion filter bed method, a rotating disk method, and a biological contact filtration method. The biological contact filtration method has the advantage that the installation area of the apparatus can be minimized.

生物接触ろ過方式は、生物を保持するためのろ過材に原水を直接流下させ処理を行なうものであり、短時間の処理で優れた原水水質改善効果が得られる。従来はろ過材としてアンスラサイトや珪砂が使用されてきたが、ろ過通水速度を大きくできる生物接触ろ過材として、図8に示すようなポリエステル製球状繊維ろ過材(20)が実用化されている(非特許文献1、特許文献1など)。   The biological contact filtration method is a method in which raw water is directly flowed down to a filter medium for holding living organisms, and an excellent raw water quality improvement effect can be obtained in a short time treatment. Conventionally, anthracite or silica sand has been used as a filter medium, but a polyester spherical fiber filter medium (20) as shown in FIG. 8 has been put to practical use as a biological contact filter medium capable of increasing the filtration water flow rate. (Non-patent document 1, Patent document 1, etc.).

藤川ら(2008)鉄バクテリア活用の水処理技術.用水と廃水.P.277-287Fujikawa et al. (2008) Water treatment technology using iron bacteria. Water and wastewater. P.277-287

特開平5−317889号公報JP-A-5-317889

実用化されているポリエステル製球状繊維ろ過材は、ろ過材を構成する繊維間の空隙が大きいため、従来のアンスラサイトなどの生物接触ろ過材よりもろ過抵抗が小さく、ろ過速度を上げることが可能である。しかし、ろ過材の空隙が大きすぎる、すなわち、ろ層を構成する糸の量が少なすぎたので、安定した濁質除去性能を得るためにはアンスラサイト等よりも高いろ過材層高を必要としていた。珪砂やアンスラサイトの場合は600mmから1000mmのろ過材層高であったが、ポリエステル製球状繊維ろ過材を充填した生物接触ろ過装置のろ過材層高は2000mmが必要であった。また、ポリエステル製球状繊維ろ過材は原料化学繊維を熱融着していなかったので、ろ層の洗浄時に繊維ろ過材から短繊維が外れてろ過材が損耗するという欠点もあったことから、ろ過材層高を低くでき、かつろ過精度が高く、耐久性のある繊維ろ過材が必要とされてきた。   Polyester spherical fiber filter media that have been put to practical use have large gaps between the fibers that make up the filter media, so the filtration resistance is lower than conventional contact materials such as anthracite and the filtration rate can be increased. It is. However, the gap of the filter medium is too large, that is, the amount of yarn constituting the filter layer is too small, so a higher filter medium layer height than anthracite is required to obtain stable turbidity removal performance. It was. In the case of silica sand or anthracite, the height of the filter medium layer was 600 mm to 1000 mm, but the height of the filter medium layer of the biological contact filter filled with the spherical fiber filter medium made of polyester was 2000 mm. In addition, since the spherical fiber filter material made of polyester did not heat-seal the raw chemical fiber, there was also a disadvantage that the short fiber was detached from the fiber filter material when the filter layer was washed and the filter material was worn out. There has been a need for a fiber filter medium that can reduce the material layer height, has high filtration accuracy, and is durable.

本発明者らは鋭意検討し、化学繊維を原料とした生物接触ろ過材において、原料化学繊維の捲縮構造が製品ろ過材の空隙率に大きく関与していることを解明し、さらにろ過材単位体積当たりの重量と原料化学繊維の側面積が生物処理に関わる生物保持のために重要な要素であることを究明した。   The present inventors have intensively studied, and in biological contact filter media made from chemical fibers, elucidated that the crimped structure of the raw chemical fibers is greatly involved in the porosity of the product filter media, and further, the filter media unit It was clarified that the weight per volume and the side area of the raw chemical fiber are important factors for biological preservation related to biological treatment.

本発明にかかる生物接触ろ過材は、化学繊維を原料として製造した生物接触ろ過材であって、原料化学繊維が、熱処理を施すことにより捲縮を発現する化学繊維と、熱融着性の化学繊維とを含有しており、該原料化学繊維を熱によって成形したものであることを特徴とするものである。   The biological contact filter material according to the present invention is a biological contact filter material manufactured using chemical fiber as a raw material, and the raw chemical fiber is chemically bonded with a chemical fiber that develops crimp by heat treatment, and a heat-fusible chemical. The raw material chemical fiber is formed by heat.

捲縮を発現する化学繊維では、繊維がばねのように捲縮していることで、成形後のろ過材構造を立体化でき、空隙率を大きくでき、このような化学繊維を含有していることで、成形したろ過材のろ過抵抗を小さく、ろ過速度を上げることができる。   In a chemical fiber that develops crimps, the fiber is crimped like a spring, so that the filter medium structure after molding can be three-dimensionalized, the porosity can be increased, and such chemical fibers are contained. Thus, the filtration resistance of the formed filter medium can be reduced, and the filtration rate can be increased.

「捲縮を発現する」および「熱融着性」を兼ね備えている化学繊維では、捲縮を発現する熱融着性化学繊維のみで製造することが可能であり、これ以外の場合として、捲縮を発現する熱融着性でない化学繊維と、捲縮を発現しない熱融着性化学繊維とが組み合わされる場合があり、また、捲縮を発現する熱融着性化学繊維と、捲縮を発現しない熱融着性化学繊維とが組み合わされる場合がある。   Chemical fibers that have both “crimping” and “heat-fusible” properties can be produced only with heat-fusible chemical fibers that have crimped properties. In some cases, a non-heat-sealable chemical fiber that exhibits crimp and a heat-sealable chemical fiber that does not exhibit crimp are combined, and a heat-sealable chemical fiber that exhibits crimp and a crimp. In some cases, it is combined with a heat-fusible chemical fiber that does not develop.

捲縮のない熱融着性の化学繊維のみを熱融着して成形した場合、化学繊維同士が密着して太い糸になったり、糸が固まって樹脂化したりするので原料化学繊維の側面積が小さくなり、ろ過材の空隙率も著しく低くなってしまうという問題がある。熱融着性の化学繊維は、ろ過材の立体骨組みとなる捲縮を発現する化学繊維同士を接着する機能を有しており、該原料化学繊維を熱によって成形することで、成形物すなわちろ過材が立体的に成形されて嵩高くなり、ろ過材層高を低くでき、かつろ過精度が高く、耐久性のあるろ過材が得られる。   When only heat-bondable chemical fibers without crimping are heat-sealed, the chemical fibers adhere to each other to form thick yarns, or the yarns solidify into resin, so the side area of the raw chemical fibers And the porosity of the filter medium is significantly reduced. The heat-fusible chemical fiber has a function of adhering the chemical fibers that express crimps that form a three-dimensional framework of the filter medium. By molding the raw chemical fiber with heat, a molded product, that is, a filtration product is obtained. The material is three-dimensionally shaped and bulky, and the height of the filter medium layer can be lowered, and the filter medium with high filtration accuracy and durability can be obtained.

捲縮を発現する化学繊維の捲縮数は、10以上であることが好ましい。   The number of crimps of the chemical fiber that develops crimps is preferably 10 or more.

捲縮数とは、JIS L1015 8.12.1に基づき測定、算出したものであり、捲縮数10以上とは、繊維長25mmあたりに存在する捲縮の山部分の数が10以上あることを意味する。捲縮数の上限値は、特に限定されるものではなく、捲縮数は、使用する化学繊維の材料の特性や化学繊維を製造する装置の仕様などに応じて、10以上の適宜な値に設置される。   The number of crimps is measured and calculated based on JIS L1015 8.12.1. The number of crimps of 10 or more means that the number of crimped crests existing per fiber length of 25 mm is 10 or more. Means. The upper limit of the number of crimps is not particularly limited, and the number of crimps is an appropriate value of 10 or more depending on the characteristics of the chemical fiber material used, the specifications of the apparatus for manufacturing the chemical fiber, and the like. Installed.

本発明に係る生物接触ろ過材は、その原料化学繊維として、捲縮を発現する化学繊維を30重量%以上、熱融着性の化学繊維を50重量%以上含有していることが好ましい。捲縮を発現する化学繊維は、熱融着性を有していてもよいし、有していなくてもよいし、また、熱融着性の化学繊維は、捲縮を発現するものであってもよいし、発現しないものであってもよいが、ろ過材全体として、捲縮を発現する化学繊維を30重量%以上、熱融着性の化学繊維を50重量%以上含有しているものとされることが好ましい。   The biological contact filter according to the present invention preferably contains 30% by weight or more of chemical fibers that develop crimps and 50% by weight or more of chemically fusible chemical fibers as the raw chemical fibers. A chemical fiber that develops crimps may or may not have heat-fusibility, and a chemical fiber that exhibits crimps is one that produces crimps. The filter medium as a whole may contain 30% by weight or more of chemical fibers that develop crimps and 50% by weight or more of chemical fibers that are heat-fusible. It is preferable that

このような含有比率とすることで、適正な空隙率を有する生物接触ろ過材を得ることができる。   By setting it as such a content ratio, the biological contact filter material which has a suitable porosity can be obtained.

本発明に係る生物接触ろ過材は、単位体積当たりの重量が120kg/m3以上250kg/m3以下であって、単位体積当たりに含まれる該原料化学繊維の側面積が、24,000m2/m3以上であることがより好ましい。 The biological contact filter according to the present invention has a weight per unit volume of 120 kg / m 3 or more and 250 kg / m 3 or less, and the side area of the raw chemical fiber contained per unit volume is 24,000 m 2 / More preferably, it is m 3 or more.

単位体積当たりの重量が300kg/m3以上になると、ろ過装置の洗浄工程で、ろ過材を流動させて洗浄するときに、動力が大きくなり、不適当となる。単位体積当たりの重量が小さすぎると、浮上ろ過材となって十分なろ過性能が得られないので、下限は120kg/m3とされる。より好ましい範囲は、160kg/m3以上220kg/m3以下である。 When the weight per unit volume is 300 kg / m 3 or more, power is increased when the filter medium is washed by flowing it in the washing step of the filtration device, which is inappropriate. If the weight per unit volume is too small, it becomes a flotation filter material and sufficient filtration performance cannot be obtained, so the lower limit is 120 kg / m 3 . A more preferable range is 160 kg / m 3 or more and 220 kg / m 3 or less.

原料化学繊維の側面積については、従来品が12,000m2/m3程度であり、従来品の約2倍以上の側面積とすることで、従来品の半分の量のろ過材であっても十分な処理ができる。 The side area of the raw chemical fiber is about 12,000 m 2 / m 3 for the conventional product. By setting the side area to about twice or more that of the conventional product, the amount of filter media is half that of the conventional product. Can be processed sufficiently.

熱処理を施すことにより捲縮を発現する化学繊維は、芯成分がポリエステル、鞘成分がポリエチレンである生物分解性のない芯鞘構造の化学繊維が好ましく、これを含有する原料化学繊維を成形するために、原料化学繊維を加熱しながら撚りをかけることが好ましい。   The chemical fiber that develops crimps by heat treatment is preferably a non-biodegradable core-sheath chemical fiber whose core component is polyester and whose sheath component is polyethylene, in order to form a raw chemical fiber containing this It is preferable to twist the raw chemical fiber while heating it.

撚りを掛けることにより、繊維同士の接着を強固にすることができる。また、このようにすることにより、ろ過材内部の空隙構造がストロー状になるのを防ぐことができ、ストロー内部に生息していた有用な微生物の死滅に至るという問題を解消することができる。   By applying the twist, the adhesion between the fibers can be strengthened. Moreover, by doing in this way, it can prevent that the space | gap structure inside a filter medium becomes a straw shape, and can solve the problem of leading to the killing of the useful microorganisms which inhabited the inside of a straw.

生物接触ろ過材の形状は、略円柱状で、該略円柱の直径に対する長さの比が0.8から1.3であることが好ましい。該略円柱の体積は、30mm3から150mm3であることがより好ましい。 The shape of the biological contact filter medium is preferably a substantially cylindrical shape, and the ratio of the length to the diameter of the substantially cylindrical shape is preferably 0.8 to 1.3. The volume of the substantially circular cylinder is more preferably 30 mm 3 to 150 mm 3 .

このようにすると、生物接触ろ過材を生物接触ろ過装置に密に充填することができる。   If it does in this way, a biological contact filtration material can be closely packed in a biological contact filtration apparatus.

本発明に係る生物接触ろ過装置は、地下水を原水として浄水処理する生物接触ろ過装置であって、上記のいずれかに記載の生物接触ろ過材が充填されていることを特徴とするものである。   The biological contact filtration device according to the present invention is a biological contact filtration device that purifies groundwater as raw water and is filled with the biological contact filtration material described above.

このようにすると、従来の球状繊維ろ過材を充填した生物接触ろ過装置よりも低いろ過材層高で、地下水に含まれるアンモニア態窒素を硝化することができる。また、従来の球状繊維ろ過材を充填した生物接触ろ過装置よりも単位体積当たりに有用な微生物を多く保持することができ、ろ過材層高を低くできる。   If it does in this way, the ammonia nitrogen contained in groundwater can be nitrified with the filter medium layer height lower than the biological contact filtration apparatus filled with the conventional spherical fiber filter medium. In addition, more useful microorganisms can be retained per unit volume than the biological contact filtration device filled with the conventional spherical fiber filter material, and the filter material layer height can be lowered.

本発明による生物接触ろ過材の製造方法(第1の形態)は、上記の生物接触ろ過材を製造する方法であって、熱処理を施すことにより捲縮を発現する化学繊維および熱融着性の化学繊維を混綿してシート状にする工程と、シート状にした混綿化学繊維を熱ロールの間を通して熱融着させることでサーマルボンド不織布を製造する工程と、不織布を所定幅となるように裁断してロールに巻き取る工程と、巻き取られた不織布を引き出しながら撚りを掛けて加熱成形する工程とを含んでいることを特徴とするものである。   A method for producing a biological contact filter material according to the present invention (first embodiment) is a method for producing the above-mentioned biological contact filter material, which is a chemical fiber that develops crimps by heat treatment and a heat-fusible filter. A process of blending chemical fibers into a sheet, a process of manufacturing a thermal bond nonwoven fabric by heat-sealing the blended cotton chemical fibers in a sheet form through a heat roll, and cutting the nonwoven fabric to a predetermined width Then, the method includes a step of winding around a roll, and a step of twisting while heating the wound non-woven fabric and heat forming.

本発明による生物接触ろ過材の製造方法(第2の形態)は、上記の生物接触ろ過材を製造する方法であって、熱処理を施すことにより捲縮を発現する化学繊維および熱融着性の化学繊維を混綿して紡績用カード機にかける工程と、紡績用カード機にかけた混綿化学繊維を練条機を通して引き揃えたスライバー状の繊維束とする工程と、スライバー状の繊維束に撚りをかけて加熱成形する工程とを含んでいることを特徴とするものである。   A method for producing a biological contact filter material according to the present invention (second embodiment) is a method for producing the above-mentioned biological contact filter material, which is a chemical fiber that develops crimps by heat treatment and a heat-fusible filter. A process of blending chemical fibers and applying them to a spinning card machine, a process of making mixed cotton chemical fibers applied to a spinning card machine into a sliver-like fiber bundle aligned through a drawing machine, and twisting a sliver-like fiber bundle And a step of heat forming.

本発明に係る生物接触ろ過材によれば、上記のように、成形物すなわち繊維ろ過材が立体的に成形され、嵩高くなる。繊維がばねのように捲縮していることで、成形後の繊維ろ過材構造を立体化でき、空隙率を大きくできるので、成形したろ過材のろ過抵抗を小さく、ろ過速度を上げることができる。また、従来品よりも細くて軽い糸を多量にろ過材層に充填することができるので、ろ過材層高を低くすることができる。   According to the biological contact filter medium according to the present invention, as described above, the molded product, that is, the fiber filter medium, is three-dimensionally formed and becomes bulky. Since the fiber is crimped like a spring, the structure of the fiber filter material after molding can be three-dimensionalized and the porosity can be increased, so that the filtration resistance of the formed filter material can be reduced and the filtration rate can be increased. . In addition, since the filter medium layer can be filled with a larger amount of finer and lighter threads than the conventional product, the height of the filter medium layer can be lowered.

図1は、本発明による生物接触ろ過材の1実施例を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing one embodiment of a biological contact filter medium according to the present invention. 図2は、本発明による生物接触ろ過材の他の実施例を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing another embodiment of the biological contact filter according to the present invention. 図3は、ろ過材内部の空隙構造が、ストロー状になったろ過材の例を模式的に示す図で、(a)は斜視図、(b)は軸方向から見た図である。FIG. 3 is a diagram schematically showing an example of a filter medium in which the void structure inside the filter medium has become a straw shape, where (a) is a perspective view and (b) is a view seen from the axial direction. 図4は、本発明による生物接触ろ過材を有するミニカラム装置を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing a mini-column apparatus having a biological contact filter medium according to the present invention. 図5は、本発明の実施例1による処理結果を示すグラフである。FIG. 5 is a graph showing the processing results according to Example 1 of the present invention. 図6は、比較例2による処理結果を示すグラフである。FIG. 6 is a graph showing the processing results of Comparative Example 2. 図7は、本発明による生物接触ろ過材の原料繊維の側面積と生物汚泥捕捉量の関係を示すグラフである。FIG. 7 is a graph showing the relationship between the side area of the raw fiber of the biological contact filter according to the present invention and the biological sludge trapping amount. 図8は、従来品の生物接触ろ過材を示す斜視図である。FIG. 8 is a perspective view showing a conventional biological contact filter medium.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明に係る生物接触ろ過材(1)(2)は、化学繊維を原料として製造した生物接触ろ過材であって、原料化学繊維が、熱処理を施すことにより捲縮を発現する化学繊維と、熱融着性の化学繊維とを含有しており、該原料化学繊維を熱によって成形したものであり、図1および図2に示すように、形状が略円柱状である。該略円柱の体積は、30mm3から150mm3である。また、該略円柱の直径に対する長さの比は、0.8から1.3までとされている。これにより、嵩密度(単位体積当たりの重量)が120kg/m3以上250kg/m3となるように充填することができる。 The biological contact filter material according to the present invention (1) (2) is a biological contact filter material produced using chemical fiber as a raw material, the raw chemical fiber is a chemical fiber that develops crimps by heat treatment, It contains heat-fusible chemical fibers, and the raw chemical fibers are molded by heat. As shown in FIGS. 1 and 2, the shape is substantially cylindrical. The volume of the substantially circular cylinder is 30 mm 3 to 150 mm 3 . The ratio of the length to the diameter of the substantially circular cylinder is 0.8 to 1.3. Thereby, it can be filled so that the bulk density (weight per unit volume) is 120 kg / m 3 or more and 250 kg / m 3 .

図1に示す生物接触ろ過材(1)は、不織布シートを撚って作ったものであり、図2に示す生物接触ろ過材(2)は、スライバーにした繊維束を撚って作ったものである。   The biological contact filter material (1) shown in FIG. 1 is made by twisting a non-woven sheet, and the biocontact filter material (2) shown in FIG. 2 is made by twisting a sliver bundle. It is.

本発明の生物接触ろ過材(1)(2)は、化学繊維を原料として製造する。化学繊維のなかでも微生物によって生物分解されにくい化学繊維を用いることで、生物接触ろ過材(1)(2)の寿命を長くすることができる。脂肪族ポリエステルやセルロース系繊維には生分解性があり、廃水や下水に比較して有機物汚濁の少ない水道原水をろ過するような場合、すなわち浄水処理においては、微生物の基質としてろ過材自身の繊維成分が利用されてしまう場合があるので不適当である。   The biological contact filter media (1) and (2) of the present invention are produced using chemical fibers as raw materials. Among chemical fibers, the use of chemical fibers that are hardly biodegraded by microorganisms can prolong the life of the biological contact filter media (1) and (2). Aliphatic polyester and cellulosic fibers are biodegradable, and when filtering raw water with less organic pollution compared to wastewater and sewage, that is, in water purification treatment, the fibers of the filter medium itself as a substrate for microorganisms. This is inappropriate because the component may be used.

また、本発明の生物接触ろ過材(1)(2)は、原料化学繊維として熱処理を施すことにより捲縮を発現する捲縮数10以上の化学繊維を30重量%以上、熱融着性の化学繊維を50重量%以上含有している。熱融着性化学繊維の含有率が多いほど強固な生物接触ろ過材(1)(2)が成形できる。熱処理を施すことにより捲縮を発現する捲縮数10以上の化学繊維でかつ熱融着性化学繊維を使用すれば熱融着性化学繊維を100%とすることができるので最も望ましい。   In addition, the biological contact filter material (1) (2) of the present invention is 30% by weight or more of heat-bondable chemical fibers having a number of crimps of 10 or more that develop crimps by applying heat treatment as a raw chemical fiber. Contains 50% by weight or more of chemical fiber. The greater the content of the heat-fusible chemical fiber, the stronger the biocontact filter medium (1) (2) can be formed. It is most desirable to use a heat-fusible chemical fiber having a number of crimps of 10 or more that develops crimps by heat treatment because the heat-fusible chemical fiber can be 100%.

生物接触ろ過材を最密に充填する理想のろ過材形状は球状であるが、捲縮を有する繊維でろ過材を球状に成形することが困難である。球状でなければ、次に適当な形状は略円柱状で、直径に対する長さの比が1に近いもの(0.8から1.3まで)とすることで、球状のろ過材と同程度の充填とすることができる。立方体や直方体の形状の場合、繊維ろ過材に角(かど)が形成される。角のあるろ過材は、ろ過装置の洗浄工程において壁面等と衝突し、角から損耗するので寿命が短くなり、好ましくない。   Although the ideal filter medium shape for packing the biological contact filter medium most closely is spherical, it is difficult to shape the filter medium into a spherical shape with crimped fibers. If it is not spherical, the next suitable shape is approximately cylindrical, and the ratio of length to diameter is close to 1 (from 0.8 to 1.3), which is comparable to that of a spherical filter medium. It can be filled. In the case of a cube or a rectangular parallelepiped shape, corners are formed in the fiber filter material. The filter medium with corners is not preferable because it collides with the wall surface or the like in the cleaning process of the filtration device and wears off from the corners, so that the life is shortened.

熱融着性化学繊維としては、ポリエステルやポリエチレン、ポリプロピレン等がある。ポリエステルの比重は1.38、ポリエチレンの比重は0.94〜0.96、ポリプロピレンの比重は0.91であるから、これらの化学繊維の内でポリエステルを含まない化学繊維のみを原料として使用した場合は、生物接触ろ過材は浮上ろ過材となる。ポリエステルを含む割合を高めることで、生物接触ろ過装置内で好ましく沈降する生物接触ろ過材を製造できる。例えば、ポリエステルを含む割合が50vol%、ポリエチレンを含む割合が50vol%の化学繊維を用いることで、沈降ろ過材の製造が可能である。   Examples of the heat-fusible chemical fiber include polyester, polyethylene, and polypropylene. Since the specific gravity of polyester is 1.38, the specific gravity of polyethylene is 0.94 to 0.96, and the specific gravity of polypropylene is 0.91, among these chemical fibers, only chemical fibers not containing polyester are used as raw materials. In this case, the biological contact filter medium becomes a floating filter medium. By increasing the ratio containing polyester, it is possible to produce a biological contact filter material that preferably settles in the biological contact filtration device. For example, it is possible to manufacture a sedimentation filter medium by using chemical fibers having a polyester-containing ratio of 50 vol% and a polyethylene-containing ratio of 50 vol%.

本発明の生物接触ろ過材(1)(2)は単位体積当たりの重量すなわち嵩密度が120kg/m3以上でかつ250kg/m3以下であって、該ろ過材の単位体積当たりに含まれる該原料化学繊維の側面積が、24,000m2/m3以上のものである。生物接触ろ過材の嵩密度をK、繊維の繊度をT、繊維の比重をρとしたとき、生物接触ろ過材1m3当たりに含まれる該原料化学繊維の側面積Aは下記式1で表される。 The biological contact filter medium (1) (2) of the present invention has a weight per unit volume, that is, a bulk density of 120 kg / m 3 or more and 250 kg / m 3 or less, and is contained per unit volume of the filter medium. The side area of the raw chemical fiber is 24,000 m 2 / m 3 or more. When the bulk density of the biological contact filter material is K, the fineness of the fiber is T, and the specific gravity of the fiber is ρ, the side area A of the raw chemical fiber contained per 1 m 3 of the biological contact filter material is expressed by the following formula 1. The

A(m2/m3)= 200 * π0.5 * K * T-0.5 * ρ-0.5 (1)
本式より、嵩密度が大きく、繊度が小さく、繊維の比重が小さい方が側面積Aを大きくできることが分かる。しかしながら、嵩密度を大きくしすぎれば生物接触ろ過装置に対するろ過材重量負荷が大きくなり、ろ過装置の洗浄工程における必要エネルギーが大きくなってしまうので、ランニングコストの上昇を招くため好ましくない。繊度を小さくしすぎれば(例えば2dtex未満)、繊維自体の強度が弱くなり、切れやすくなるのでろ過材の寿命を短くしてしまう。比重を小さくしすぎれば、ろ過材は浮上ろ過材となってしまい、生物接触ろ過材として安定した濁質除去性能を得ることが困難となる。生物接触ろ過材に対するこれらの限定条件を満たすろ過材(1)(2)は、すなわち、嵩密度が120kg/m3以上でかつ250kg/m3であって、該ろ過材の単位体積当たりに含まれる該原料化学繊維の側面積が、24,000m2/m3以上のものである。
A (m 2 / m 3) = 200 * π 0.5 * K * T -0.5 * ρ -0.5 (1)
From this equation, it can be seen that the side area A can be increased when the bulk density is large, the fineness is small, and the specific gravity of the fiber is small. However, if the bulk density is excessively increased, the weight load of the filter medium on the biological contact filtration device is increased, and the required energy in the washing process of the filtration device is increased, which is not preferable because the running cost is increased. If the fineness is too small (for example, less than 2 dtex), the strength of the fiber itself is weakened and easily cut, so the life of the filter medium is shortened. If the specific gravity is too small, the filter medium becomes a floating filter medium, and it becomes difficult to obtain stable turbidity removal performance as a biological contact filter medium. The filter media (1) and (2) satisfying these limitation conditions for the biological contact filter media, that is, the bulk density is 120 kg / m 3 or more and 250 kg / m 3 , and is included per unit volume of the filter media. The side surface area of the raw chemical fiber is 24,000 m 2 / m 3 or more.

次に、図1に示した生物接触ろ過材(1)の製造法について説明する。まず、熱処理を施すことにより捲縮を発現する捲縮数10以上の化学繊維を30重量%以上と、熱融着性の化学繊維を50重量%以上とを十分に混綿後、シート状にする。熱処理を施すことにより捲縮を発現する捲縮数10以上の熱融着性化学繊維のみで製造する場合は、開繊した単一の綿でシート状にする。これを熱ロールの間を通して熱融着させることでサーマルボンド不織布を製造する。飲料水を製造する高度浄水処理に用いるろ過材であるため、不織布を構成する化学繊維の接着方法は、サーマルボンド法が好ましい。サーマルボンド法の不織布では、ろ過材からのほぐれ糸の流出がなく、接着剤等の薬品使用もないため安全である。この不織布を150〜300mm幅となるように裁断し、ロールに巻き取る。次に、この不織布を引き出しながら仮撚り装置で回転させて撚りを掛けながら再度加熱する。撚りを固定するための加熱法は、熱融着性繊維の融点より20〜50℃高い熱風を繊維束に吹き掛けることにより行う。撚りと加熱によって生物接触ろ過材(1)の繊維同士の熱融着を強固にするためには、ろ過材1個当たりの撚り数が0.1回以上あることが好ましく、0.2回以上がより好ましい。ろ過材1個当たりの撚り数は、不織布を引き出す速度と1分あたりに撚りを掛ける回数とろ過材の長さから求められる。不織布を引き出す速度を1m/minとし、撚りを1分間に50回かけた場合、不織布1mあたりの撚り数が50回となる。ろ過材の長さが5mmになるよう切断することで、生物接触ろ過材(1)の1個当たりの撚り数は0.25回にできる。撚りが少ないろ過材、あるいは撚りのないろ過材では、円柱を切り出す際に繊維束がつぶれて、断面が略円ではなく楕円や三日月のような形になるので、略円柱状を保つことが難しい。つぶれたろ過材は均一に融着せず、熱融着が十分な部分と不十分な部分が発生し、強度が劣ったろ過材となるので好ましくない。   Next, the manufacturing method of the biological contact filter material (1) shown in FIG. 1 is demonstrated. First, 30% by weight or more of chemical fibers having a number of crimps of 10 or more that develops crimps by applying heat treatment and 50% by weight or more of heat-fusible chemical fibers are sufficiently mixed and formed into a sheet shape. . In the case of manufacturing only with heat-fusible chemical fibers having a number of crimps of 10 or more that develop crimps by applying heat treatment, a sheet is formed with a single opened cotton. A thermal bond nonwoven fabric is produced by thermally fusing this through a hot roll. Since it is a filter medium used for advanced water purification treatment for producing drinking water, a thermal bond method is preferable as a method for bonding chemical fibers constituting the nonwoven fabric. Thermal bonded nonwoven fabrics are safe because there is no loose yarn outflow from the filter media and no chemicals such as adhesives are used. This nonwoven fabric is cut to a width of 150 to 300 mm and wound on a roll. Next, the nonwoven fabric is pulled out and rotated by a false twisting device and heated again while being twisted. The heating method for fixing the twist is performed by blowing hot air 20 to 50 ° C. higher than the melting point of the heat-fusible fiber onto the fiber bundle. In order to strengthen the heat fusion between the fibers of the biological contact filter material (1) by twisting and heating, the number of twists per filter medium is preferably 0.1 times or more, and 0.2 times or more. Is more preferable. The number of twists per filter medium is determined from the speed at which the nonwoven fabric is drawn, the number of twists per minute, and the length of the filter medium. When the speed | rate which pulls out a nonwoven fabric shall be 1 m / min and twist is applied 50 times per minute, the number of twists per 1 meter of nonwoven fabric will be 50 times. By cutting the length of the filter medium to 5 mm, the number of twists per one of the biological contact filter medium (1) can be 0.25 times. With a filter medium with little twist or a filter medium without twist, it is difficult to maintain a substantially cylindrical shape because the fiber bundle is crushed when the cylinder is cut out, and the cross-section is not an approximate circle but an ellipse or a crescent moon. . The crushed filter medium is not preferable because it does not fuse uniformly, and a part with sufficient heat fusion and an insufficient part are generated, resulting in a filter medium with poor strength.

次に本発明の図2に示した生物接触ろ過材(2)の製造法について説明する。本生物接触ろ過材は、熱処理を施すことにより捲縮を発現する捲縮数10以上の化学繊維を30重量%以上、熱融着性の化学繊維を50重量%以上を十分に混綿した綿を紡績用カード機にかけ、さらに練条機を通して引き揃えたスライバー状の繊維束としたものに撚りをかけた繊維束を、加熱成形する方法によって製造できる。捲縮数10以上でかつ熱融着性化学繊維のみで製造する場合は、ほぐした単一の綿でスライバー状の繊維束を作ればよい。スライバー状の繊維束からろ過材を製造する場合、繊維束を仮撚り装置で回転しながら熱雰囲気中を引き取ることで撚りを掛け、熱雰囲気中から引き出された繊維束を冷却装置によって急冷し、撚りを固定することができる。成形のための熱処理を一段で行うので、加熱温度は熱融着性繊維の融点より高く、かつ熱処理を施すことにより捲縮を発現する化学繊維が捲縮する温度よりも高い温度が適当である。   Next, the manufacturing method of the biological contact filter material (2) shown in FIG. 2 of this invention is demonstrated. This biological contact filter material is made of a cotton blended with 30% by weight or more of chemical fibers having a number of crimps of 10 or more and 50% by weight or more of heat-fusible chemical fibers that develop crimps by heat treatment. A fiber bundle in which a sliver-like fiber bundle that has been drawn through a spinning card machine and then drawn through a drawing machine is twisted can be manufactured by a method of thermoforming. In the case of producing only the number of crimps 10 or more and the heat-fusible chemical fiber, a sliver-like fiber bundle may be made with a single loosened cotton. When producing a filter medium from a sliver-like fiber bundle, the fiber bundle is twisted by taking out the heat atmosphere while rotating with a false twist device, and the fiber bundle drawn from the heat atmosphere is rapidly cooled by a cooling device, The twist can be fixed. Since the heat treatment for forming is performed in one step, the heating temperature is higher than the melting point of the heat-fusible fiber and higher than the temperature at which the chemical fiber that develops crimps by crimping is heat-treated. .

上記の生物接触ろ過材(1)(2)の製造法において、原料化学繊維を加熱しながら撚りをかけることにより、繊維同士の接着を強固にすることができる。また、撚りをかけることにより、生物接触ろ過材(1)(2)の内部の空隙構造が、図3に示すようにストロー状になるのを防ぐことができる。ストロー状になったろ過材(10)内部の空隙構造では、生物接触ろ過汚泥がストロー内部に蓄積し、通常の逆洗工程でそれを洗い落とすことが極めて困難である。浄水処理における生物接触ろ過プロセスが溶存酸素を利用する微生物によるものであるにもかかわらず、ストロー内部には水の流れが届かなくなるため溶存酸素の供給が困難になる。結果として、ストロー内部に生息していた有用な微生物の死滅に至るという問題があったが、撚りをかけることでこの問題を解消することができる。   In the method for producing the biological contact filter material (1) and (2), the fiber-to-fiber bonding can be strengthened by applying a twist while heating the raw chemical fiber. Moreover, by applying a twist, it is possible to prevent the void structure inside the biological contact filter (1) (2) from becoming a straw shape as shown in FIG. In the pore structure inside the straw-shaped filter medium (10), biological contact filtration sludge accumulates inside the straw, and it is extremely difficult to wash it off by a normal backwash process. In spite of the fact that the biological contact filtration process in the water purification process is based on microorganisms that use dissolved oxygen, the supply of dissolved oxygen becomes difficult because the flow of water does not reach the inside of the straw. As a result, there was a problem that the useful microorganisms that lived inside the straw were killed, but this problem can be solved by twisting.

以下、実施例により本発明をさらに詳細に説明するが、本発明は下記の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to the following Example.

(実施例1)
熱によって捲縮を発現する化学繊維で、かつ熱融着性の化学繊維の芯成分がポリエステル、鞘成分がポリエチレンである芯鞘構造の繊維であって、繊度3.3dtex、捲縮数11、長さ5cmのステープルファイバーを開繊し、シート状にした。これを熱ロールの間を通して鞘を構成する低融点成分のポリエチレンを融着させることで熱圧着し、目付20g/m2のサーマルボンド不織布とした。熱圧着時の加熱温度が130℃未満では、熱融着繊維の立体捲縮発現が弱く、嵩高性が低下し、熱融着の度合いが充分でなく、一方、200℃を超えると立体捲縮がほとんど得られなくなるため、加熱温度は180℃とした。この不織布を300mm幅となるように裁断し、ロールに巻き取って原料不織布とした。次に、この不織布を連続して引き出しながら仮撚り装置で回転させて撚りを掛け、180℃の熱風を吹き掛けて加熱した。ろ過材1個当たりの撚り数は0.3回とした。引き続き、連続で引き出しながら撚りのかかった不織布に冷風をあてて急冷し、形状を安定させた後に長さが5mmになるよう切断し、生物接触ろ過材を製造した。上述の方法によって製造した生物接触ろ過材(1)(図1参照)は、沈降ろ過材で、単位体積当たりの重量が160kg/m3、単位体積当たりに含まれる該原料化学繊維の側面積が、28,000m2/m3であった。
Example 1
It is a chemical fiber that develops crimps by heat, and a core-sheath fiber in which the core component of the heat-fusible chemical fiber is polyester and the sheath component is polyethylene, and has a fineness of 3.3 dtex, a crimp number of 11, A staple fiber having a length of 5 cm was opened and formed into a sheet. This was thermocompression bonded by fusing a polyethylene having a low melting point constituting the sheath through a hot roll to obtain a thermal bond nonwoven fabric having a basis weight of 20 g / m 2 . If the heating temperature during thermocompression bonding is less than 130 ° C, the three-dimensional crimping of the heat-bonded fiber is weak, the bulkiness is lowered, and the degree of heat-sealing is not sufficient. Was hardly obtained, and the heating temperature was set to 180 ° C. This nonwoven fabric was cut so as to have a width of 300 mm, and wound on a roll to obtain a raw material nonwoven fabric. Next, the nonwoven fabric was continuously pulled out and rotated by a false twisting device to be twisted, and heated by blowing hot air at 180 ° C. The number of twists per filter medium was 0.3. Subsequently, while continuously drawing, the twisted nonwoven fabric was rapidly cooled by applying cold air to stabilize the shape, and then cut to 5 mm in length to produce a biological contact filter. The biological contact filter material (1) (see FIG. 1) produced by the above-mentioned method is a sedimentation filter material, the weight per unit volume is 160 kg / m 3 , and the side area of the raw chemical fiber contained per unit volume is 28,000 m 2 / m 3 .

(実施例2)
熱処理を施すことにより捲縮を発現する熱融着性を有していないポリエステルステープルファイバーであって、繊度6.6dtex、捲縮数10、長さ5cmのステープルファイバーを34%と、熱融着性の化学繊維の芯成分がポリエステル、鞘成分がポリエチレンである芯鞘構造の繊維であって繊度4.4dtex、長さ5cmのステープルファイバーを33%と、熱融着性の化学繊維の芯成分がポリエステル、鞘成分がポリエチレンである芯鞘構造の繊維であって繊度7.8dtex、長さ5cmのステープルファイバーを33%とを混綿した綿を紡績用カード機にかけ、次いで練条機を通して引き揃えたスライバー状の繊維束とした。これを原料繊維束とし、繊維束を仮撚り装置で回転しながら連続で引取り、熱風による250℃の熱雰囲気中で撚りを掛けた。熱雰囲気中から引き出された繊維束を引き続き連続で冷風をあてて急冷し、形状を安定させた後に長さが5mmになるよう切断し、生物接触ろ過材を製造した。上述の方法によって製造した生物接触ろ過材(2)(図2参照)は沈降ろ過材で、単位体積当たりの重量が170kg/m3、単位体積当たりの該原料化学繊維の側面積は24,000m2/m3であった。
(Example 2)
Polyester staple fiber that does not have heat-fusibility and develops crimps by heat treatment, and has a fineness of 6.6 dtex, the number of crimps of 10 and a length of 5 cm, 34% of the staple fiber. The core component of the heat-fusible chemical fiber is a core-sheath fiber in which the core component of the synthetic chemical fiber is polyester and the sheath component is polyethylene, and the staple fiber having a fineness of 4.4 dtex and a length of 5 cm is 33%. Is a fiber with a core-sheath structure in which polyester is the sheath component and the sheath component is polyethylene, and the cotton blended with 33% staple fiber with a fineness of 7.8 dtex and a length of 5 cm is applied to a spinning card machine and then arranged through a drawing machine. A sliver-like fiber bundle was obtained. This was used as a raw fiber bundle, and the fiber bundle was continuously taken out while being rotated by a false twisting device, and twisted in a hot atmosphere at 250 ° C. with hot air. The fiber bundle drawn out from the hot atmosphere was continuously quenched by continuously applying cold air, stabilized in shape, and then cut to a length of 5 mm to produce a biological contact filter. The biological contact filter medium (2) (see FIG. 2) produced by the above-mentioned method is a sedimentation filter medium, the weight per unit volume is 170 kg / m 3 , and the side area of the raw chemical fiber per unit volume is 24,000 m. 2 / m 3 .

(比較例1)
熱融着性の化学繊維の芯成分がポリエステル、鞘成分がポリエチレンである芯鞘構造の繊維であって芯部と鞘部の重量比が45:55である繊度3.1dtexの芯鞘型複合長繊維からなるスパンボンド不織布を用意した。このスパンボンド不織布は目付50g/m2で部分的に熱圧着処理(熱エンボス処理)されていたが、捲縮のない芯鞘型複合長繊維のみから構成されていた。この不織布を100mm幅ロールから連続して引き出しながら仮撚り装置で回転させて撚りを掛け、180℃の熱風を吹き掛けて加熱した。ろ過材1個当たりの撚り数は0.3回とした。引き続き、連続で引き出しながら撚りのかかった不織布に冷風をあてて急冷し、長さが5mmになるよう切断して生物接触ろ過材を製造したが、切り出す際に繊維束がつぶれて、断面が楕円形になり、略円柱状のろ過材にはならなかった。
(Comparative Example 1)
A core-sheath type composite having a fineness of 3.1 dtex, which is a fiber having a core-sheath structure in which the core component of the heat-fusible chemical fiber is polyester and the sheath component is polyethylene, and the weight ratio of the core part to the sheath part is 45:55 A spunbond nonwoven fabric composed of long fibers was prepared. This spunbonded nonwoven fabric was partially thermocompression-bonded (heat embossed) with a basis weight of 50 g / m 2 , but was composed only of core-sheath type composite long fibers without crimping. The nonwoven fabric was continuously pulled out from a roll having a width of 100 mm and rotated by a false twisting device to apply twist, and heated by blowing hot air at 180 ° C. The number of twists per filter medium was 0.3. Subsequently, while applying continuous cooling, we applied cold air to the twisted nonwoven fabric to quench it and cut it to a length of 5 mm to produce a biological contact filter material. It became a shape and did not become a substantially cylindrical filter medium.

(比較例2)
パドル撹拌羽根を備えた直径1m、高さ1.5mの円筒型撹拌槽に水0.5m3を入れ、熱によって捲縮を発現する化学繊維であって、繊度5.5dtex、捲縮数10、長さ5mmのポリエステル系コンジュゲート糸ステープルファイバー5kgを投入し、撹拌羽根を1分間に85回転させ、約1時間撹拌を続けることで図8に示す形状のポリエステル製球状繊維ろ過材(20)を製造した。この方法によって製造した生物接触ろ過材(20)は沈降ろ過材で、単位体積当たりの重量が90kg/m3、単位体積当たりの該原料化学繊維の側面積は12,000m2/m3であった。
(Comparative Example 2)
A chemical fiber in which 0.5 m 3 of water is put into a cylindrical stirring tank having a diameter of 1 m and a height of 1.5 m equipped with paddle stirring blades, and crimps are generated by heat, and has a fineness of 5.5 dtex and a crimp number of 10 5 kg of polyester conjugate yarn staple fiber having a length of 5 mm was added, the stirring blade was rotated 85 times per minute, and the stirring was continued for about 1 hour, whereby the polyester spherical fiber filter medium (20) having the shape shown in FIG. Manufactured. The biological contact filter medium (20) produced by this method is a sedimentation filter medium, the weight per unit volume is 90 kg / m 3 , and the side area of the raw chemical fiber per unit volume is 12,000 m 2 / m 3. It was.

(カラム試験)
上記の実施例1と比較例2において製造した生物接触ろ過材について、図4に示すミニカラム装置を用いて、アンモニア態窒素を含む水の硝化試験を行った。
(Column test)
The biological contact filter produced in Example 1 and Comparative Example 2 was subjected to a nitrification test for water containing ammonia nitrogen using the minicolumn apparatus shown in FIG.

ミニカラム装置(11)は、有効容量が800mLのカラム(12)と、カラム(12)内に設けられたろ床(13)と、処理後の水を溜める処理水槽(14)と、処理水槽(14)の水をカラム(12)に設けられた供給部(16)に循環供給するポンプ(15)とを有する。   The mini-column device (11) includes a column (12) having an effective capacity of 800 mL, a filter bed (13) provided in the column (12), a treated water tank (14) for storing treated water, and a treated water tank (14 And a pump (15) that circulates and supplies water to a supply section (16) provided in the column (12).

実施例1について、ろ床(13)として実施例1で製造した生物接触ろ過材(1)の新品を700mL充填した。原水としてA処理場の処理水を使用し、生物接触ろ過材(1)を充填したカラム(12)と処理水槽(14)を原水で満たし、ポンプ(15)で50mL/minの循環処理をしながら処理水アンモニア態窒素濃度を測定した。処理試験結果を図5に示す。1回目の循環処理試験では、アンモニア態窒素濃度1.4mg−N/Lの原水からアンモニア態窒素が不検出になるまでに6日間を要した。1回目の試験後、カラム(12)と処理水槽(14)を空にし、1回目の試験で使用した生物接触ろ過材(1)を再度充填し、2回目の循環処理試験を行った。2回目の循環処理試験では、アンモニア態窒素濃度2.2mg−N/Lの原水が3日間で95%硝化され、アンモニア態窒素は5日間で不検出となった。2回目の循環処理試験における初期3日間の硝化速度は、0.99mg−N/L−ろ過材・dayであった。   About Example 1, 700 mL of the new biological contact filter material (1) manufactured in Example 1 was filled as a filter bed (13). The treated water from the A treatment plant is used as raw water, the column (12) packed with biological contact filter material (1) and the treated water tank (14) are filled with raw water, and the pump (15) is circulated at 50 mL / min. The concentration of ammonia nitrogen in the treated water was measured. The processing test results are shown in FIG. In the first circulation treatment test, it took 6 days until ammonia nitrogen was not detected from the raw water having an ammonia nitrogen concentration of 1.4 mg-N / L. After the first test, the column (12) and the treated water tank (14) were emptied, and the biological contact filter material (1) used in the first test was filled again, and the second circulation test was performed. In the second circulation treatment test, the raw water having an ammonia nitrogen concentration of 2.2 mg-N / L was 95% nitrified in 3 days, and ammonia nitrogen was not detected in 5 days. The nitrification rate for the initial 3 days in the second circulation treatment test was 0.99 mg-N / L-filter material · day.

比較例2について、ろ床(13)として比較例2で製造した従来品生物接触ろ過材(20)の新品を700mL充填して硝化試験を行った。実施例1の試験と同様の処理条件で、循環処理しながら処理水アンモニア態窒素濃度を測定した。処理試験結果を図6に示す。1回目の循環処理試験では、6日間循環してもアンモニア態窒素の濃度が1.4mg−N/Lから1.1mg−N/Lまでしか低下しなかった。1回目の試験後、実施例1の試験と同様に2回目の循環処理試験を行った。2回目の循環処理試験では、アンモニア態窒素濃度2.2mg−N/Lの原水が3日間で32%硝化されたが、アンモニア態窒素は6日間で不検出とならなかった。2回目の循環処理試験における初期3日間の硝化速度は、0.33mg−N/L−ろ過材・dayであった。   About Comparative Example 2, 700 mL of a new product of the conventional biological contact filter material (20) produced in Comparative Example 2 was filled as a filter bed (13), and a nitrification test was performed. Under the same processing conditions as in the test of Example 1, the treated water ammonia nitrogen concentration was measured while circulating. The processing test results are shown in FIG. In the first circulation treatment test, the concentration of ammonia nitrogen decreased only from 1.4 mg-N / L to 1.1 mg-N / L even after circulation for 6 days. After the first test, the second circulation treatment test was conducted in the same manner as the test in Example 1. In the second circulation test, raw water having an ammonia nitrogen concentration of 2.2 mg-N / L was nitrified in 3 days, but ammonia nitrogen was not detected in 6 days. The nitrification rate for the initial 3 days in the second circulation treatment test was 0.33 mg-N / L-filter material · day.

(実施例3)
B浄水場生物接触ろ過材の逆洗排水(SS=3000mg/L)0.4Lと、単位体積当たりの原料化学繊維の側面積が異なる4種類の生物接触ろ過材0.05Lをそれぞれ合わせて4組のポリ瓶(2L)に入れ、130r.p.m.で48時間振とうし、振とう試験前後のろ過材の乾燥重量増分から、各生物接触ろ過材の汚泥捕捉量を算出した。図7に示すように、繊維の側面積と汚泥捕捉量は比例関係で近似され、原料化学繊維の側面積が、24,000m2/m3以上である生物接触ろ過材では従来品(側面積12,000m2/m3)の2倍以上の汚泥捕捉量にできることが確認できた。
(Example 3)
B water purification plant biological contact filter media backwash wastewater (SS = 3000mg / L) 0.4L and 4 types of biological contact filter media 0.05L with different side areas of raw chemical fibers per unit volume are combined 4 Put in a pair of plastic bottles (2L), 130r. p. m. The amount of sludge trapped in each biological contact filter was calculated from the increase in the dry weight of the filter before and after the shaking test. As shown in FIG. 7, the side contact area of the fiber and the amount of sludge trapped are approximated in a proportional relationship, and the biological contact filter material having a side area of the raw chemical fiber of 24,000 m 2 / m 3 or more is a conventional product (side area). 12,000 m 2 / m 3 ) It was confirmed that the amount of sludge trapped could be more than twice.

Claims (10)

化学繊維を原料として製造した生物接触ろ過材であって、原料化学繊維が、熱処理を施すことにより捲縮を発現する化学繊維と、熱融着性の化学繊維とを含有しており、該原料化学繊維を熱によって成形したものであることを特徴とする生物接触ろ過材。   A biological contact filter produced using a chemical fiber as a raw material, the raw chemical fiber containing a chemical fiber that develops crimps by heat treatment and a heat-fusible chemical fiber. A biological contact filtering material characterized in that it is a chemical fiber molded by heat. 捲縮を発現する化学繊維の捲縮数が10以上である請求項1の生物接触ろ過材。   The biological contact filter material according to claim 1, wherein the number of crimps of the chemical fiber expressing crimps is 10 or more. 捲縮を発現する化学繊維を30重量%以上、熱融着性の化学繊維を50重量%以上含有している請求項1または2の生物接触ろ過材。   The biological contact filter material according to claim 1 or 2, comprising 30% by weight or more of a chemical fiber expressing crimps and 50% by weight or more of a heat-fusible chemical fiber. 単位体積当たりの重量が120kg/m以上250kg/m以下であって、単位体積当たりに含まれる該原料化学繊維の側面積が、24,000m/m以上である請求項1から3までのいずれかに記載の生物接触ろ過材。 The weight per unit volume is 120 kg / m 3 or more and 250 kg / m 3 or less, and the side area of the raw chemical fiber contained per unit volume is 24,000 m 2 / m 3 or more. The biological contact filter material as described in any of the above. 熱処理を施すことにより捲縮を発現する化学繊維は、芯成分がポリエステル、鞘成分がポリエチレンである生物分解性のない芯鞘構造の化学繊維であって、これを含有する原料化学繊維を成形するために、原料化学繊維を加熱しながら撚りをかけることを特徴とする請求項1から4までのいずれかに記載の生物接触ろ過材。   A chemical fiber that develops crimps by heat treatment is a non-biodegradable core-sheath chemical fiber in which the core component is polyester and the sheath component is polyethylene, and the raw chemical fiber containing this is molded. Therefore, the biological contact filter material according to any one of claims 1 to 4, wherein the raw chemical fiber is twisted while being heated. 形状が略円柱状で、該略円柱の直径に対する長さの比が0.8から1.3である請求項1から5までのいずれかに記載の生物接触ろ過材。   The biological contact filter material according to any one of claims 1 to 5, wherein the shape is a substantially cylindrical shape, and the ratio of the length to the diameter of the substantially cylindrical shape is 0.8 to 1.3. 該略円柱の体積が30mmから150mmである請求項6記載の生物接触ろ過材。 The biological contact filter material according to claim 6, wherein the volume of the substantially circular cylinder is from 30 mm 3 to 150 mm 3 . 地下水を原水として浄水処理する生物接触ろ過装置であって、請求項1から7までのいずれかに記載の生物接触ろ過材が充填されていることを特徴とする生物接触ろ過装置。   A biological contact filtration device that purifies groundwater as raw water and is filled with the biological contact filtration material according to any one of claims 1 to 7. 請求項1から7までのいずれかに記載の生物接触ろ過材を製造する方法であって、熱処理を施すことにより捲縮を発現する化学繊維および熱融着性の化学繊維を混綿してシート状にする工程と、シート状にした混綿化学繊維を熱ロールの間を通して熱融着させることでサーマルボンド不織布を製造する工程と、不織布を所定幅となるように裁断してロールに巻き取る工程と、巻き取られた不織布を引き出しながら撚りを掛けて加熱成形する工程とを含んでいることを特徴とする生物接触ろ過材の製造方法。   It is a method of manufacturing the biological contact filter material in any one of Claim 1-7, Comprising: The chemical fiber which expresses crimp by heat-processing, and a heat-fusible chemical fiber are mixed, and it is a sheet form A process for producing a thermal bonded nonwoven fabric by heat-sealing the mixed cotton chemical fiber in the form of a sheet through a hot roll, and a process of cutting the nonwoven fabric to a predetermined width and winding it on a roll A method for producing a biological contact filter material, comprising the step of applying a twist while pulling out the wound nonwoven fabric and heat-molding. 請求項1から7までのいずれかに記載の生物接触ろ過材を製造する方法であって、熱処理を施すことにより捲縮を発現する化学繊維および熱融着性の化学繊維を混綿して紡績用カード機にかける工程と、紡績用カード機にかけた混綿化学繊維を練条機を通して引き揃えたスライバー状の繊維束とする工程と、スライバー状の繊維束に撚りをかけて加熱成形する工程とを含んでいることを特徴とする生物接触ろ過材の製造方法。   A method for producing a biological contact filter material according to any one of claims 1 to 7, wherein a chemical fiber that produces crimps and a heat-fusible chemical fiber are mixed with each other by heat treatment for spinning. A step of applying to a card machine, a step of forming a sliver-like fiber bundle obtained by aligning mixed cotton chemical fibers applied to a spinning card machine through a drawing machine, and a step of twisting and heating the sliver-like fiber bundle. A method for producing a biological contact filter material comprising:
JP2013068145A 2013-03-28 2013-03-28 Biological contact filter material, biocontact filter device, and method for producing biocontact filter material Active JP6090991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013068145A JP6090991B2 (en) 2013-03-28 2013-03-28 Biological contact filter material, biocontact filter device, and method for producing biocontact filter material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013068145A JP6090991B2 (en) 2013-03-28 2013-03-28 Biological contact filter material, biocontact filter device, and method for producing biocontact filter material

Publications (2)

Publication Number Publication Date
JP2014188477A true JP2014188477A (en) 2014-10-06
JP6090991B2 JP6090991B2 (en) 2017-03-08

Family

ID=51835363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013068145A Active JP6090991B2 (en) 2013-03-28 2013-03-28 Biological contact filter material, biocontact filter device, and method for producing biocontact filter material

Country Status (1)

Country Link
JP (1) JP6090991B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018122275A (en) * 2017-02-03 2018-08-09 田中 聡 Method for producing deodorant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168058A (en) * 1987-04-03 1992-12-01 Yeda Research And Development Company, Ltd. Cell culture carriers and method of use
JPH10229877A (en) * 1997-02-19 1998-09-02 Akira Nishimura Carrier for water treatment
JPH1161614A (en) * 1997-08-12 1999-03-05 Chisso Corp Staple fiber non-woven fabric
JP2002204907A (en) * 2001-01-05 2002-07-23 Mitsubishi Rayon Co Ltd Filter medium
JP2007203162A (en) * 2006-01-31 2007-08-16 Luster:Kk Fibrous lump material for water treatment and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168058A (en) * 1987-04-03 1992-12-01 Yeda Research And Development Company, Ltd. Cell culture carriers and method of use
JPH10229877A (en) * 1997-02-19 1998-09-02 Akira Nishimura Carrier for water treatment
JPH1161614A (en) * 1997-08-12 1999-03-05 Chisso Corp Staple fiber non-woven fabric
JP2002204907A (en) * 2001-01-05 2002-07-23 Mitsubishi Rayon Co Ltd Filter medium
JP2007203162A (en) * 2006-01-31 2007-08-16 Luster:Kk Fibrous lump material for water treatment and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018122275A (en) * 2017-02-03 2018-08-09 田中 聡 Method for producing deodorant

Also Published As

Publication number Publication date
JP6090991B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
JP5561473B2 (en) Filtration device and water treatment device
CN206535265U (en) The filter assemblies that filter is filtered during for toppling over
WO2012077402A1 (en) Filter medium, filtering device using filter medium, and filter medium manufacturing method
JP2013541469A (en) Tea bags and components of bicomponent and monocomponent polylactic acid (PLA) and composite polylactic acid (Co-PLA) fibers
JP3164470U (en) Water purifier filter and water purifier using the same
JP6090991B2 (en) Biological contact filter material, biocontact filter device, and method for producing biocontact filter material
CN206345699U (en) A kind of multistage composite supermicro filtration membrane filter core with long-acting backwashing function
CN111902367A (en) Shaped activated carbon core and method of making same
JP2005103362A (en) Fibrous filter medium for treating water
JP2001321619A (en) Filter cartridge
JP2020015037A (en) Wastewater treatment device
JP2007098195A (en) Biologically contact filter and method for treating water
KR101732684B1 (en) Method of producing an ion-exchange fiber Plaited thread Micro chip filter
JPH0852347A (en) Water treating filter material
KR20140023012A (en) Connection structure membrane to increase durability nano membrane filter
JP4103131B2 (en) Fiber filter media for sewage treatment
JP2598017Y2 (en) Filter using activated carbon fiber
JPH07251191A (en) Carrier for biological membrane and water treating method
JP2016059903A (en) Cartridge filter
JPH08266896A (en) Activated carbon fiber for removing chlorine and removing method of chlorine
JPH09239214A (en) Water purifying filter
JP3756586B2 (en) Adsorbent
JP3159354B2 (en) Medium for sewage treatment
JP5728113B1 (en) Adsorbent
JP4064285B2 (en) Filtration media for filtration

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150521

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150807

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170206

R150 Certificate of patent or registration of utility model

Ref document number: 6090991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250