JP2014186101A - Image capturing optical system and image capturing device having the same - Google Patents

Image capturing optical system and image capturing device having the same Download PDF

Info

Publication number
JP2014186101A
JP2014186101A JP2013059712A JP2013059712A JP2014186101A JP 2014186101 A JP2014186101 A JP 2014186101A JP 2013059712 A JP2013059712 A JP 2013059712A JP 2013059712 A JP2013059712 A JP 2013059712A JP 2014186101 A JP2014186101 A JP 2014186101A
Authority
JP
Japan
Prior art keywords
lens
diffractive
aspherical
optical axis
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013059712A
Other languages
Japanese (ja)
Other versions
JP6192325B2 (en
JP2014186101A5 (en
Inventor
Hiroto Yasui
裕人 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013059712A priority Critical patent/JP6192325B2/en
Publication of JP2014186101A publication Critical patent/JP2014186101A/en
Publication of JP2014186101A5 publication Critical patent/JP2014186101A5/ja
Application granted granted Critical
Publication of JP6192325B2 publication Critical patent/JP6192325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an image capturing optical system which is compact, easily corrects for various aberrations including chromatic aberration, and easily offers high optical performance by appropriately utilizing a diffractive optical element and an aspherical lens.SOLUTION: An image capturing optical system comprises, in order from the object side to the image side, a first lens group L1 having positive refractive power, a second lens group L2 which has negative refractive power and moves toward the image side along an optical axis when adjusting focus from an object at infinity to an object at a very close distance, an aperture stop S, and a third lens group L3. The first lens group includes a diffractive optical element and an aspherical lens having an aspherical surface. A focal length of the diffractive optical element on a diffraction surface, aspherical departure of the aspherical lens, a total lens length, and the likes are appropriately set.

Description

本発明は撮像光学系及びそれを有する撮像装置に関し、例えばビデオカメラ、デジタルスチルカメラ、TVカメラ、監視用カメラそして銀塩フィルムを用いたフィルム用カメラ等に好適なものである。   The present invention relates to an imaging optical system and an imaging apparatus having the imaging optical system, and is suitable for a video camera, a digital still camera, a TV camera, a surveillance camera, a film camera using a silver salt film, and the like.

一般に、撮像装置に用いられる撮像光学系では、レンズ全長(第1レンズ面から像面までの距離)を短縮し、光学系全体の小型化を図る程、軸上色収差及び倍率色収差が増加する。望遠型の撮像光学系では、焦点距離が長くなる程、色収差が増加する。色収差を低減する方法として、光学材料に異常部分分散材料を用いる方法や回折光学素子を用いる方法が知られている。これらの方法を用いれば、撮像光学系で発生する色収差を補正することができる。しかしながら、レンズ全長を短縮する程、色収差以外の諸収差、特に球面収差やコマ収差等が増加してくる。   In general, in an imaging optical system used in an imaging apparatus, axial chromatic aberration and lateral chromatic aberration increase as the overall lens length (distance from the first lens surface to the image plane) is shortened and the entire optical system is reduced in size. In the telephoto imaging optical system, chromatic aberration increases as the focal length increases. As a method for reducing chromatic aberration, a method using an abnormal partial dispersion material as an optical material and a method using a diffractive optical element are known. If these methods are used, chromatic aberration generated in the imaging optical system can be corrected. However, as the total lens length is shortened, various aberrations other than chromatic aberration, particularly spherical aberration and coma aberration, increase.

特許文献1の撮像光学系では、正の屈折力の第1レンズ群、フォーカス時に移動する第2レンズ群、開口絞りを含む第3レンズ群より構成されている。そして、正の屈折力の第1の回折面と負の屈折力の第2の回折面を有するとともに、非球面形状のレンズ面を1以上設けている。特許文献2の撮像光学系では、特許文献1と同様のレンズ構成において、第1レンズ群内に周辺で負の屈折力が強くなる非球面形状のレンズと、いずれかのレンズ群内に正の屈折力の回折面を設けている。   The imaging optical system of Patent Document 1 includes a first lens group having a positive refractive power, a second lens group that moves during focusing, and a third lens group that includes an aperture stop. In addition to having a first diffractive surface having a positive refractive power and a second diffractive surface having a negative refractive power, one or more aspherical lens surfaces are provided. In the imaging optical system of Patent Document 2, in a lens configuration similar to that of Patent Document 1, an aspherical lens in which negative refractive power is increased in the periphery in the first lens group, and positive in any lens group. A diffractive surface of refractive power is provided.

特開2009−271354号公報JP 2009-271354 A 特開2010−145797号公報JP 2010-145797

回折光学素子を撮影光学系に用いると、高い色収差補正効果によって、高い光学性能を得ることができる。しかしながら、回折光学素子を用いるとき、撮像光学系中の適切なる位置で適切なる屈折力で配置することが重要になってくる。例えば、回折光学素子の屈折力を強め過ぎると、回折格子の格子ピッチが細かくなり過ぎ、設計回折次数以外の回折光によるフレアが増大してくる。   When a diffractive optical element is used in a photographing optical system, high optical performance can be obtained due to a high chromatic aberration correction effect. However, when a diffractive optical element is used, it is important to dispose it with an appropriate refractive power at an appropriate position in the imaging optical system. For example, if the refractive power of the diffractive optical element is increased too much, the grating pitch of the diffraction grating becomes too fine, and flare due to diffracted light other than the designed diffraction order increases.

一方、非球面レンズを用いるときは、非球面レンズの非球面の光線有効径位置における非球面と近軸球面の光軸方向の差分量(非球面量)を適切に設定することが重要になってくる。このときの差分量が大きいと、非球面加工量が増加し、成形品若しくは型に残る研削痕により光学性能への影響が増大してくる。研削痕とは、成形の対象となる硝子や型を、バイトを用いて回転させながら削って加工する過程において、バイトの刃先の削り角度と回転速度の関係から生じる削りムラのことである。   On the other hand, when using an aspheric lens, it is important to appropriately set the amount of difference (aspheric amount) between the aspheric surface and the paraxial spherical surface in the optical axis direction at the position of the aspherical light beam effective diameter of the aspheric lens. Come. If the difference amount at this time is large, the aspherical surface processing amount increases, and the influence on the optical performance increases due to grinding marks remaining on the molded product or the mold. Grinding marks are shaving irregularities that arise from the relationship between the cutting angle of the cutting edge of the cutting tool and the rotational speed in the process of cutting and processing the glass or mold to be molded while rotating using the cutting tool.

また研削痕の光学性能への影響とは、例えば被対象物である光源をピントが少し外れた状態で撮影した際、前記光源がボケた状態で撮影されるが、そのボケ像の内部に前記非球面の研削痕起因のムラが発生する現象等が挙げられる。   Also, the effect of grinding marks on the optical performance is, for example, when a light source that is an object is photographed in a slightly out-of-focus state, the light source is photographed in a blurred state. The phenomenon etc. which the nonuniformity resulting from an aspherical grinding mark generate | occur | produces are mentioned.

本発明は、回折光学素子と非球面レンズを適切に用いることにより、全系の小型化を図りつつ、色収差を含む諸収差の補正が容易で高い光学性能が容易に得られる撮像光学系を提供することを目的とする。   The present invention provides an imaging optical system that can easily correct various aberrations including chromatic aberration and easily obtain high optical performance while appropriately reducing the size of the entire system by appropriately using a diffractive optical element and an aspheric lens. The purpose is to do.

本発明の撮像光学系は、物体側から像側へ順に、正の屈折力の第1レンズ群、無限遠物体から至近距離物体へのフォーカスに際して光軸上を像側に移動する負の屈折力の第2レンズ群、開口絞り、第3レンズ群より構成される撮像光学系において、前記第1レンズ群は回折光学素子と非球面形状のレンズ面を含む非球面レンズを有し、前記非球面形状のレンズ面の有効半径をhamax、前記非球面形状のレンズ面が光軸と交わる点を原点とし、前記非球面形状のレンズ面の有効半径hamaxにおける位置から、原点を通り光軸に対し垂直な平面までの距離をxb、前記非球面形状のレンズ面の有効半径hamaxの半分(hamax/2)における位置から原点を通り光軸に対し垂直な平面までの距離をxa、前記原点と前記非球面形状のレンズ面の前記有効半径hamaxの半分(hamax/2)における位置を通過する仮想球面の半径をRとし、半径RがR=(4*xa2+ hamax 2)/(8*xa)を満足し、前記仮想球面の有効半径hamaxにおける位置から原点を通り、光軸に対し垂直な平面までの距離をxb’とし、前記非球面形状のレンズ面が物体側に凸形状の場合はxb’=R-√(R2-hamax 2)((凹形状の場合はxb’=R+√(R2-hamax 2)となる))を満足し、回折面を含んだ前記回折光学素子の全体の焦点距離をfgdoe、前記回折光学素子から回折面を除いた屈折部分のみでの焦点距離をfg、前記回折光学素子の回折面における焦点距離fdoe、無限遠物体にフォーカスしているときの全系の焦点距離をf、レンズ全長をLとし、前記非球面レンズの非球面形状のレンズ面の有効半径における光軸方向の非球面量ΔdbA、前記回折光学素子の回折面における非球面成分量を表す焦点距離ΔdbDを、
ΔdbA=xb-xb’
ΔdbD=(fgdoe-fg)-fdoe
としたとき、
1.00×10-6 <|ΔdbA/ΔdbD |<4.30×10-6
5.0<|(fdoe/f)*(L/f)|<20.0
なる条件式を満足することを特徴としている。
The imaging optical system of the present invention has a negative refractive power that moves from the object side to the image side in the order of the first lens unit having a positive refractive power and the optical axis moving toward the image side during focusing from an object at infinity to a close object. In the imaging optical system including the second lens group, the aperture stop, and the third lens group, the first lens group has an aspheric lens including a diffractive optical element and an aspheric lens surface, and the aspheric surface The effective radius of the shape lens surface is ha max , the point where the aspherical lens surface intersects the optical axis is the origin, and from the position at the effective radius hamax of the aspheric lens surface to the optical axis through the origin Xb is the distance to the plane perpendicular to the plane, and xa is the distance from the position at half the effective radius ha max ( hamax / 2) of the aspherical lens surface to the plane perpendicular to the optical axis through the origin. Half of the effective radius hamax of the origin and the aspherical lens surface (h amax / 2) where the radius of the virtual sphere passing through the position is R, and the radius R satisfies R = (4 * xa 2 + hamax 2 ) / (8 * xa), and the effective radius h amax of the virtual sphere Xb ′ = R−√ (R 2 −h amax) , where xb ′ is the distance from the position to the plane passing through the origin and perpendicular to the optical axis, and the aspheric lens surface is convex on the object side 2) ((a xb '= R + √ (R 2 -h amax 2) If concave)) satisfy, Fgdoe the overall focal length of the diffractive optical element including a diffraction surface, the diffractive optical Fg is the focal length of only the refracting part excluding the diffraction surface from the element, fdoe is the focal length of the diffractive surface of the diffractive optical element, f is the focal length of the entire system when focusing on an infinite object, and the total lens length is L is an aspherical amount ΔdbA in the optical axis direction at the effective radius of the aspherical lens surface of the aspherical lens, and a focal point representing the aspherical component amount on the diffractive surface of the diffractive optical element The distance ΔdbD,
ΔdbA = xb-xb '
ΔdbD = (fgdoe-fg) -fdoe
When
1.00 × 10 -6 <| ΔdbA / ΔdbD | <4.30 × 10 -6
5.0 <| (fdoe / f) * (L / f) | <20.0
It satisfies the following conditional expression.

本発明によれば、回折光学素子と非球面レンズを適切に用いることにより、全系の小型化を図りつつ、色収差を含む諸収差の補正が容易で高い光学性能が容易に得られる撮像光学系が得られる。   According to the present invention, by appropriately using a diffractive optical element and an aspherical lens, an imaging optical system that can easily correct various aberrations including chromatic aberration and easily obtain high optical performance while reducing the size of the entire system. Is obtained.

本発明の実施例1の撮像光学系のレンズ断面図Sectional view of the imaging optical system of Example 1 of the present invention 本発明の実施例1の撮像光学系における無限遠物体のときの収差図Aberration diagram at the time of an object at infinity in the imaging optical system of Example 1 of the present invention 本発明の実施例2の撮像光学系のレンズ断面図Sectional view of the lens of the imaging optical system of Example 2 of the present invention 本発明の実施例2の撮像光学系における無限遠物体のときの収差図Aberration diagram for an object at infinity in the imaging optical system of Example 2 of the present invention 回折光学素子を用いた撮像光学系の光学作用を説明する為の近軸配置の概略図Schematic diagram of paraxial arrangement for explaining optical action of imaging optical system using diffractive optical element 回折光学素子を用いた撮像光学系において、回折光学素子の回折面の配置箇所を説明する為の近軸配置の概略図Schematic diagram of paraxial arrangement for explaining the arrangement position of the diffraction surface of the diffractive optical element in the imaging optical system using the diffractive optical element 本発明の条件式(1)を説明する為の非球面を設けたレンズ面の簡略図Simplified lens surface with an aspherical surface for explaining conditional expression (1) of the present invention (A),(B),(C) 本発明に係る回折光学素子の説明図(A), (B), (C) Explanatory drawing of the diffractive optical element according to the present invention (A),(B),(C) 本発明に係る回折光学素子の回折効率の波長依存特性を説明するグラフ(A), (B), (C) Graph explaining the wavelength dependence characteristics of the diffraction efficiency of the diffractive optical element according to the present invention 本発明の撮像装置の要部概略図Schematic diagram of main parts of an imaging apparatus of the present invention

以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。本発明の撮像光学系は、物体側から像側へ順に、正の屈折力の第1レンズ群、無限遠物体から至近距離物体へのフォーカスに伴い、光軸上像側に移動する負の屈折力の第2レンズ群、開口絞り、第3レンズ群より構成される。第1レンズ群は回折光学素子と非球面形状のレンズ面を含む非球面レンズを有している。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The imaging optical system of the present invention, in order from the object side to the image side, negative refraction that moves to the image side on the optical axis in accordance with the first lens unit having a positive refractive power and the focus from an object at infinity to a close object. It consists of a second lens group of force, an aperture stop, and a third lens group. The first lens group has an aspheric lens including a diffractive optical element and an aspheric lens surface.

図1,図2は本発明の撮像光学系の実施例1のレンズ断面図と収差図である。図3、図4は本発明の撮像光学系の実施例2のレンズ断面図と収差図である。レンズ断面図においてL1は正の屈折力の正の屈折力の第1レンズ群、L2は無限遠物体から至近距離物体へのフォーカスに伴い、光軸上像側に移動する負の屈折力の第2レンズ群である。Sは開口絞りである。L3は負の屈折力の第3レンズ群である。第1レンズ群L1は回折光学素子Ldoeと非球面レンズLasphを有している。 1 and 2 are a lens cross-sectional view and aberration diagrams of Example 1 of the imaging optical system of the present invention. 3 and 4 are a lens cross-sectional view and aberration diagrams of Embodiment 2 of the imaging optical system of the present invention. In the lens cross-sectional view, L1 is a first lens unit having a positive refractive power, and L2 is a first lens unit having a negative refractive power that moves to the image side on the optical axis with the focus from an object at infinity to a close object. 2 lens groups. S is an aperture stop. L3 is a third lens unit having a negative refractive power. The first lens unit L1 includes a diffractive optical element Ldoe and an aspheric lens L asph .

開口絞りSは、第2レンズ群L2と第3レンズ群L3の間に配置されている。Oは光軸、IPは像面であり、撮像素子の撮像面に相当する。Gは水晶ローパスフィルタや赤外カットフィルタ等のガラスブロックを表している。回折光学素子Ldoeは負レンズG4と正レンズG5を接合した接合レンズよりなり、接合レンズの接合面が回折光学面(回折面)(回折光学部)DOEとなっている。物体側から数えて2番目のレンズG2は正レンズLanmである。asphは非球面レンズLasphの非球面である。 The aperture stop S is disposed between the second lens group L2 and the third lens group L3. O is the optical axis, and IP is the image plane, which corresponds to the imaging plane of the imaging device. G represents a glass block such as a crystal low-pass filter or an infrared cut filter. The diffractive optical element Ldoe is composed of a cemented lens in which a negative lens G4 and a positive lens G5 are cemented, and the cemented surface of the cemented lens is a diffractive optical surface (diffractive surface) (diffractive optical unit) DOE. The second lens G2 counted from the object side is a positive lens Lanm . asph is the aspherical surface of the aspherical lens L asph .

第3レンズ群L3は光軸に対して垂直方向の成分を持つ方向に移動して結像位置を光軸に対して垂直方向に移動するレンズユニット(防振レンズ群)LISを有する。図2,図4は実施例1,2の物体距離無限遠における収差図である。図2,図4の球面収差において、実線のdはd線、二点鎖線のgはg線である。非点収差においては、実線のΔSはd線のサジタル光線、点線のΔMはd線のメリディオナル光線を表している。更に倍率色収差においては、二点鎖線のgはg線を表している。   The third lens unit L3 includes a lens unit (anti-vibration lens unit) LIS that moves in a direction having a component perpendicular to the optical axis and moves the imaging position in a direction perpendicular to the optical axis. 2 and 4 are aberration diagrams of Examples 1 and 2 at an infinite object distance. 2 and 4, the solid line d is the d line, and the two-dot chain line g is the g line. In astigmatism, a solid line ΔS represents a d-line sagittal ray, and a dotted line ΔM represents a d-line meridional ray. Further, in the lateral chromatic aberration, g of the two-dot chain line represents the g line.

各実施例においてhamaxを非球面形状のレンズ面の有効半径とする。xbを非球面形状のレンズ面が光軸と交わる点を原点とし、非球面形状のレンズ面の有効半径hamaxにおける位置から、原点を通り光軸に対し垂直な平面までの距離とする。xaを非球面形状のレンズ面の有効半径hamaxの半分(hamax/2)における位置から原点を通り光軸に対し垂直な平面までの距離とする。Rを原点と非球面形状のレンズ面の有効半径hamaxの半分(hamax/2)における位置を通過する仮想球面の半径とする。そして半径RがR=(4*xa2+ hamax 2)/(8*xa)を満足する。 In each embodiment, ha max is the effective radius of the aspherical lens surface. Let xb be the point where the aspherical lens surface intersects the optical axis, and be the distance from the position of the aspherical lens surface at the effective radius hamax to the plane passing through the origin and perpendicular to the optical axis. Let xa be the distance from a position at half the effective radius ha max ( ha max / 2) of the aspherical lens surface to a plane passing through the origin and perpendicular to the optical axis. Let R be the radius of the phantom sphere passing through the position at half the effective radius ha max of the origin and the aspherical lens surface ( hamax / 2). The radius R satisfies R = (4 * xa 2 + ha max 2 ) / (8 * xa).

xb’を仮想球面上で有効半径hamaxにおける位置から原点を通り、光軸に対し垂直な平面までの距離とする。非球面形状のレンズ面が物体側に凸形状の場合はxb’=R-√(R2-hamax 2)((凹形状の場合はxb’=R+√(R2-hamax 2)となる))を満足する。fgdoeを回折面を含んだ回折光学素子の全体の焦点距離、fgを回折光学素子から回折面を除いた屈折部分のみでの焦点距離とする。fdoeを回折光学素子Ldoeの回折面DOEにおける焦点距離、fを無限遠物体にフォーカスしているときの全系の焦点距離、Lをレンズ全長とする。 Let xb ′ be the distance from the position at the effective radius ha max on the phantom sphere to the plane perpendicular to the optical axis through the origin. Xb '= R-√ (R 2 -h amax 2 ) ((xb' = R + √ (R 2 -h amax 2 for concave shape) when the aspherical lens surface is convex on the object side. Is satisfied)). Let fgdoe be the focal length of the entire diffractive optical element including the diffractive surface, and fg be the focal length of only the refractive part of the diffractive optical element excluding the diffractive surface. Let fdoe be the focal length of the diffraction surface DOE of the diffractive optical element Ldoe, f be the focal length of the entire system when focusing on an object at infinity, and L be the total lens length.

非球面レンズの非球面形状のレンズ面の有効半径における光軸方向の非球面量ΔdbA、回折光学素子Ldoeの回折面DOEにおける非球面成分量を表す焦点距離ΔdbDを次の如く定義する。   The aspherical amount ΔdbA in the optical axis direction at the effective radius of the aspherical lens surface of the aspherical lens and the focal length ΔdbD representing the aspherical component amount on the diffractive surface DOE of the diffractive optical element Ldoe are defined as follows.

ΔdbA=xb-xb’
ΔdbD=(fgdoe-fg)-fdoe
このとき、
1.00×10-6 <|ΔdbA/ΔdbD |<4.30×10-6 ---------(1)
5.0<|(fdoe/f)*(L/f)|<20.0 ---------(2)
なる条件式を満足する。
ΔdbA = xb-xb '
ΔdbD = (fgdoe-fg) -fdoe
At this time,
1.00 × 10 -6 <| ΔdbA / ΔdbD | <4.30 × 10 -6 --------- (1)
5.0 <| (fdoe / f) * (L / f) | <20.0 --------- (2)
The following conditional expression is satisfied.

次に本発明の撮像光学系の特徴について説明する。本発明の撮像光学系は、物体側から像側へ順に、正の屈折力の第1レンズ群L1、無限遠物体から近距離物体へのフォーカシングに際し、光軸上を像面側に移動する第2レンズ群L2、第3レンズ群L3で構成される。   Next, features of the imaging optical system of the present invention will be described. In the imaging optical system of the present invention, the first lens unit L1 having a positive refractive power in order from the object side to the image side, the first moving on the optical axis to the image plane side during focusing from an infinite object to a short-distance object. It consists of two lens units L2 and a third lens unit L3.

本発明の撮像光学系は望遠タイプである。撮像光学系において、軸上近軸光線と瞳近軸光線の通過する光軸上の位置が比較的高い第1レンズ群L1内に、回折光学素子Ldoe及び非球面レンズLasphを設けている。ここで、軸上近軸光線は、光学系全系の焦点距離を1に正規化し、光学系に光軸と平行に、光軸からの高さを1として入射させた近軸光線のことである。 The imaging optical system of the present invention is a telephoto type. In the imaging optical system, the diffractive optical element Ldoe and the aspherical lens L asph are provided in the first lens group L1 having a relatively high position on the optical axis through which the axial paraxial ray and the pupil paraxial ray pass. Here, the on-axis paraxial ray is a paraxial ray that is normalized by setting the focal length of the entire optical system to 1, and entering the optical system parallel to the optical axis and with a height of 1 from the optical axis. is there.

一方、瞳近軸光線は、光学系全系の焦点距離を1に正規化し、光軸に対して-45°で入射する光線の内、光学系の入射瞳と光軸との交点を通過する近軸光線のことである。光学系への入射角度は、光軸から時計回りを正、反時計回りを負とする。回折光学素子Ldoeと非球面レンズLasphを第1レンズ群L1内に設けることで、色収差と高次の色の球面収差と単色の球面収差をバランス良く補正している。 On the other hand, the paraxial ray of the pupil normalizes the focal length of the entire optical system to 1, and passes through the intersection of the entrance pupil of the optical system and the optical axis among the rays incident at -45 ° to the optical axis. It is a paraxial ray. The incident angle to the optical system is positive from the optical axis in the clockwise direction and negative in the counterclockwise direction. By providing the diffractive optical element Ldoe and the aspherical lens L asph in the first lens unit L1, chromatic aberration, higher order spherical aberration and monochromatic spherical aberration are corrected in a balanced manner.

次にその光学作用について説明する。まず回折光学素子Ldoeについては、本発明の撮像光学系において、レンズ全長(第1レンズ面から像面までの距離)の短縮に伴う軸上色収差及び倍率色収差の補正の役割を担っている。それについて、軸上色収差係数及び倍率色収差係数を用いて説明する。   Next, the optical action will be described. First, the diffractive optical element Ldoe plays a role of correcting axial chromatic aberration and lateral chromatic aberration due to shortening of the total lens length (distance from the first lens surface to the image plane) in the imaging optical system of the present invention. This will be described using an axial chromatic aberration coefficient and a magnification chromatic aberration coefficient.

図5は回折光学素子を用いた光学系の光学作用を説明する為の近軸配置の概略図である。図5にて、DOEは回折光学素子を構成する回折光学部(回折面)、Mは複数の通常レンズ(屈折率N1、N2、N3…)で構成された屈折光学系部、Qは軸上近軸光線、Rは瞳近軸光線である。hは軸上近軸光線Qが各光学部を通過する際の光軸からの高さ、hbは瞳近軸光線Rが各光学部を通過する際の光軸からの高さを各々表している。また、Oは光軸、IPは撮像面を表し、構成を簡単にするため、構成するレンズは全て薄肉単レンズとして扱う。   FIG. 5 is a schematic diagram of a paraxial arrangement for explaining the optical action of an optical system using a diffractive optical element. In FIG. 5, DOE is a diffractive optical part (diffractive surface) constituting a diffractive optical element, M is a refractive optical system part composed of a plurality of ordinary lenses (refractive indexes N1, N2, N3...), And Q is on-axis. Paraxial ray, R is the pupil paraxial ray. h is the height from the optical axis when the axial paraxial ray Q passes through each optical part, and hb is the height from the optical axis when the pupil paraxial ray R passes through each optical part. Yes. In addition, O represents an optical axis, and IP represents an imaging surface. In order to simplify the configuration, all the constituting lenses are treated as thin single lenses.

図5の光学系全系での軸上色収差係数L(λ)及び倍率色収差係数T(λ)は、下記の式(a1),(a2)のように表される。   The longitudinal chromatic aberration coefficient L (λ) and the lateral chromatic aberration coefficient T (λ) in the entire optical system of FIG. 5 are expressed by the following equations (a1) and (a2).

ここで、hdoeは回折光学部を構成する薄肉単レンズに入射する軸上近軸光線の光軸から高さ、hbdoeは回折光学部を構成する薄肉単レンズに入射する瞳近軸光線の光軸からの高さ、φdoeは回折光学部を構成する薄肉単レンズの屈折力である。またhMiは屈折光学部内の各薄肉単レンズに入射する軸上近軸光線の光軸からの高さ、hbMiは屈折光学部内の各薄肉単レンズに入射する瞳近軸光線の光軸からの高さ、φMiは屈折光学部を構成する薄肉単レンズの屈折力である。そして、λは任意の波長、λ0は設計波長である。 Here, hdoe is the height from the optical axis of the on-axis paraxial ray incident on the thin single lens constituting the diffractive optical unit, and hbdoe is the optical axis of the pupil paraxial ray incident on the thin single lens constituting the diffractive optical unit Φdoe is the refractive power of the thin single lens constituting the diffractive optical part. H Mi is the height from the optical axis of the on-axis paraxial ray incident on each thin single lens in the refractive optical unit, and hb Mi is the optical axis of the pupil paraxial ray incident on each thin single lens in the refractive optical unit. , Φ Mi is the refractive power of the thin single lens constituting the refractive optical part. Λ is an arbitrary wavelength, and λ 0 is a design wavelength.

上記(a1),(a2)式にて、右辺の第1項は回折光学部DOEの色収差係数を、右辺の第2項は屈折光学部Mの各色収差係数を表している。通常の光学系は、回折光学素子がない状態で各色収差を補正しなければならないので、上記(a1)及び(a2)式にて右辺の第1項がない状態で、第2項が0になるように(0に近づけるように)設計されている。   In the above formulas (a1) and (a2), the first term on the right side represents the chromatic aberration coefficient of the diffractive optical unit DOE, and the second term on the right side represents each chromatic aberration coefficient of the refractive optical unit M. A normal optical system must correct each chromatic aberration in the absence of a diffractive optical element, so the second term is set to 0 without the first term on the right side in the above equations (a1) and (a2). It is designed to be (close to 0).

そこから、光学系を小型化する為各レンズの屈折力φMiを強めていくと、(a1)、(a2)式の第2項は0でなくなってくる。その後、屈折光学系の各構成レンズの硝材を適切に選択して、回折光学素子の特性である波長に対する結像位置の直線性をキャンセルできるような屈折光学系の構成にしなければならない。つまり、(a1)、(a2)式の波長に対する1階微分の値dL(λ)/dλ、dT(λ)/dλにおいて、屈折光学部Mの項が波長特性を持たなくすることであり、下記の(b1)、(b2)式のようにする。 From this point, if the refractive power φ Mi of each lens is increased in order to reduce the size of the optical system, the second term of the equations (a1) and (a2) becomes zero. Thereafter, it is necessary to appropriately select the glass material of each component lens of the refractive optical system so that the linearity of the imaging position with respect to the wavelength, which is a characteristic of the diffractive optical element, can be made to be a refractive optical system configuration. That is, in terms of the first-order differential values dL (λ) / dλ and dT (λ) / dλ with respect to the wavelengths of the equations (a1) and (a2), the term of the refractive optical unit M has no wavelength characteristics, The following formulas (b1) and (b2) are used.

このことは、更に(a1)、(a2)式の波長λに対する2階微分の値d2L(λ)/dλ2、d2T(λ)/dλ2が0になることを意味している。 This means that the values d 2 L (λ) / dλ 2 and d 2 T (λ) / dλ 2 of the second derivative with respect to the wavelength λ in the equations (a1) and (a2) become zero. Yes.

上記(c1),(c2)式が0に近づき、1階微分の値dL(λ)/dλ、dT(λ)/dλの屈折光学部Mの項が波長特性を持たない定数となれば良い。そうすることで、回折光学部DOEの項で、屈折光学部Mの項を打ち消すように高さhdoe、屈折力φdoe(光学系に挿入する位置と屈折力)を最適に与えて、dL(λ)/dλ、dT(λ)/dλを0にすることが可能となる。   The above equations (c1) and (c2) should approach 0 and the first-order differential values dL (λ) / dλ and dT (λ) / dλ should be constants that do not have wavelength characteristics. . By doing so, in the term of the diffractive optical part DOE, the height hdoe and the refractive power φdoe (position to be inserted into the optical system and refractive power) are optimally given so as to cancel the term of the refractive optical part M, and dL (λ ) / dλ and dT (λ) / dλ can be made zero.

軸上色収差及び倍率色収差の各色収差については、前記理論を用いて補正することが可能である。回折光学素子は色収差の補正とは別に、回折光学素子Ldoeの回折面DOEにおける設計次数以外の不要な回折次数光が像面に到達することに起因するフレアを考慮しなければならない。具体的には、太陽光等の高輝度光源光が直接回折光学素子Ldoeの回折面DOEに当たることによって発生するフレアについてであり、その対策として回折面DOEの配置箇所を考慮する必要がある。   Each chromatic aberration of axial chromatic aberration and lateral chromatic aberration can be corrected using the above theory. In addition to the correction of chromatic aberration, the diffractive optical element must take into account flare caused by unnecessary diffraction order light other than the designed order on the diffraction surface DOE of the diffractive optical element Ldoe reaching the image plane. Specifically, this is a flare that occurs when high-intensity light source light such as sunlight directly strikes the diffractive surface DOE of the diffractive optical element Ldoe. As a countermeasure, it is necessary to consider the location of the diffractive surface DOE.

回折光学素子Ldoeの回折面DOEの配置箇所について、図6を用いて説明する。ここで、図6は物体側から順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、第3レンズ群から成る望遠光学系の光学作用を説明するための近軸配置の概略図である。構成を簡単にするため、構成するレンズは全て薄肉単レンズとして扱い、図6中のG1が第1レンズ群を表す薄肉単レンズ、G2が第2レンズ群を表す薄肉単レンズ、G3が第3レンズ群を表す薄肉単レンズである。   The location of the diffractive surface DOE of the diffractive optical element Ldoe will be described with reference to FIG. Here, FIG. 6 is a paraxial diagram for explaining the optical action of the telephoto optical system including the first lens unit having a positive refractive power, the second lens unit having a negative refractive power, and the third lens unit in order from the object side. It is the schematic of arrangement | positioning. In order to simplify the configuration, all the constituting lenses are treated as thin single lenses, G1 in FIG. 6 is a thin single lens that represents the first lens group, G2 is a thin single lens that represents the second lens group, and G3 is the third lens. It is a thin single lens representing a lens group.

他の符号については、Pが瞳近軸光線Rと光軸Oとの交点(開口絞りの位置で、以下開口絞りともいう。)である以外は基本的に図5と同じである。ここで、回折光学素子Ldoeの回折面DOEの配置箇所として、開口絞り(P)よりも像面側に配置すると、前述した設計次数とは異なる高次の回折次数が像面上で集光しやすくフレアが増加する。このため、開口絞り(P)よりも物体側におくことを前提とする。   The other symbols are basically the same as those in FIG. 5 except that P is the intersection of the pupil paraxial ray R and the optical axis O (the position of the aperture stop, hereinafter also referred to as the aperture stop). Here, when the diffraction surface DOE of the diffractive optical element Ldoe is disposed on the image plane side from the aperture stop (P), higher-order diffraction orders different from the above-described design orders are condensed on the image plane. Easy to increase flare. For this reason, it is assumed that the object is located closer to the object side than the aperture stop (P).

開口絞り(P)よりも物体側で、回折面DOEを配置する箇所を設定するのに、回折面DOEを通過する軸上近軸光線Qの高さhdoeと瞳近軸光線Rの高さhbdoeの比率から、Area1からArea3に分けて考えてみる。   The height hdoe of the on-axis paraxial ray Q passing through the diffractive surface DOE and the height hbdoe of the pupil paraxial ray R are set on the object side of the aperture stop (P). Based on the ratio of, let's divide from Area1 to Area3.

この時、
Area1は0.50 < |hdoe/hbdoe| < 0.85、
Area2は0.85 < |hdoe/hbdoe| < 1.30、
Area3は1.30 < |hdoe/hbdoe| < 2.00
を満足する範囲とする。
At this time,
Area1 is 0.50 <| hdoe / hbdoe | <0.85,
Area2 is 0.85 <| hdoe / hbdoe | <1.30,
Area3 is 1.30 <| hdoe / hbdoe | <2.00
Is within the range that satisfies the above.

各Areaに配置した時の回折面をGdoe1、Gdoe2、Gdoe3として、各回折面を通過する際の軸上近軸光線の光軸からの高さをhdoe1、hdoe2、hdoe3とする。また各回折面を通過する際の瞳近軸光線の光軸からの高さをhbdoe1、hbdoe2、hbdoe3とする。   The diffraction surfaces when arranged in each Area are Gdoe1, Gdoe2, and Gdoe3, and the heights of the axial paraxial rays from the optical axis when passing through each diffraction surface are hdoe1, hdoe2, and hdoe3. Further, the heights of the pupil paraxial rays from the optical axis when passing through each diffraction plane are denoted by hbdoe1, hbdoe2, and hbdoe3.

上記(a1),(a2)式より、各色収差係数を0にする為には、高さhdoeがなるべく高い位置(Area1)にある程、より効果的に屈折光学部Mの各色収差係数を打ち消すことができることが分かる。また高さhdoeがなるべく高い位置(Area1)にあれば、色収差補正に必要とする回折面DOEの屈折力が小さくて済み、逆に高さhdoeが低い位置(Area3)にある程、回折面DOEの屈折力がより必要となる。   From the above formulas (a1) and (a2), in order to set each chromatic aberration coefficient to 0, the chromatic aberration coefficient of the refractive optical unit M is more effectively canceled out as the height hdoe is as high as possible (Area1). I can see that If the height hdoe is as high as possible (Area1), the refracting power of the diffractive surface DOE required for chromatic aberration correction is small, and conversely, the lower the height hdoe is in the position (Area3), the diffractive surface DOE. More refractive power is required.

高さhdoeが低い位置(Area3)でも、色収差は可能であるが、回折面DOEの屈折力が大きくなり過ぎると、撮影画角内で設計次数近傍の低次回折次数によるフレアが増加することが懸念される。   Chromatic aberration is possible even at a position where the height hdoe is low (Area 3), but if the refractive power of the diffractive surface DOE becomes too large, flare due to low-order diffraction orders near the design order may increase within the field of view. Concerned.

同じ図6中にて、今度は撮影画角外にある高輝度光源Aが、Gdoe1、Gdoe2、Gdoe3で表される位置にある回折面DOEの光軸と交わる点に入射する光線の光軸に対する角度θ1、θ2、θ3を考える。この角度θ1から角度θ3の値は、前提としている光学系の焦点距離とレンズ全長(第1レンズ面から像面までの長さ)によって異なるが、本発明で想定している撮像光学系では、θ1=約20〜70度、θ2=約10〜20度、θ3=約5〜10度程度となる。   In the same Fig. 6, this time the high-intensity light source A outside the shooting angle of view is relative to the optical axis of the light ray incident on the point where it intersects the optical axis of the diffractive surface DOE at the position represented by Gdoe1, Gdoe2, and Gdoe3. Consider the angles θ1, θ2, and θ3. The values of the angle θ1 to the angle θ3 vary depending on the focal length of the optical system and the total length of the lens (the length from the first lens surface to the image plane), but in the imaging optical system assumed in the present invention, θ1 = about 20 to 70 degrees, θ2 = about 10 to 20 degrees, and θ3 = about 5 to 10 degrees.

この時、我々が現在行っている実機を通しての検討から、θ≦20度(θ2、θ3)であれば、撮影画角外にある高輝度光源が原因となるフレアを許容できることが分かってきている。これらの見解から、回折光学素子Ldoeの回折面DOEを設ける箇所は、θ2=約10〜20度となるArea2(0.85 < |hdoe/hbdoe| < 1.30)の位置に設けることが好ましい。この関係を規定したのが、後述する条件式(4)である。   At this time, it has become clear from our examination through actual devices that we can tolerate flare caused by a high-intensity light source outside the field of view if θ ≦ 20 degrees (θ2, θ3). . From these viewpoints, it is preferable that the position where the diffractive surface DOE of the diffractive optical element Ldoe is provided is provided at the position of Area2 (0.85 <| hdoe / hbdoe | <1.30) where θ2 = about 10 to 20 degrees. This relationship is defined by conditional expression (4) described later.

以上より、回折光学素子を有する光学系、特に望遠光学系における色収差の補正方法とフレア低減の観点からの回折光学素子Ldoeの回折面DOEの配置箇所について説明した。   As described above, the chromatic aberration correction method in the optical system having the diffractive optical element, particularly the telephoto optical system, and the arrangement position of the diffractive surface DOE of the diffractive optical element Ldoe from the viewpoint of flare reduction have been described.

次に、回折光学素子が前述してきた内容を満足した上で、光学系を構成する第1レンズ群内に少なくとも1つの非球面を有する非球面レンズを設けるのが良い。これによれば、光学系のレンズ全長の短縮に伴う色収差以外の諸収差、特に球面収差やコマ収差の補正に有効である。またその際、非球面レンズの非球面量及び回折面DOEにおける屈折力を強め過ぎず効率良く用いることが、光学性能への弊害(例えば、ボケ像内部に発生するムラや回折面に起因するフレア)の低減と収差補正を良好に行うのに重要である。   Next, it is preferable to provide an aspherical lens having at least one aspherical surface in the first lens group constituting the optical system after satisfying the above-described contents of the diffractive optical element. This is effective in correcting various aberrations other than chromatic aberration associated with the shortening of the total lens length of the optical system, particularly spherical aberration and coma aberration. In this case, the aspherical amount of the aspheric lens and the refractive power on the diffractive surface DOE can be used efficiently without overstrengthening the optical performance (for example, unevenness generated in the blurred image or flare caused by the diffractive surface). ) And aberration correction are important.

まず非球面は、非球面を設けた非球面レンズを通過する光線の入射角度分布具合に依存し、通過する光線の入射角度分布の幅ができるだけ少ない箇所に設けることが好ましい。そうすることで、非球面レンズを通過する光線を所望の方向に制御し易くなる。   First, the aspheric surface depends on the incident angle distribution of the light beam passing through the aspheric lens provided with the aspheric surface, and is preferably provided at a position where the width of the incident angle distribution of the light beam passing through is as small as possible. By doing so, it becomes easy to control the light beam passing through the aspheric lens in a desired direction.

本発明が対象とする望遠型の撮像光学系では、第1レンズ群内のより物体側のレンズ面がそれに当たり、その付近に非球面を設けることが、球面収差やコマ収差といった単色系の基本収差の補正上好ましい。その際、回折光学素子Ldoeの回折面DOEより物体側に非球面を設けた方が、諸収差の補正と回折面DOEに起因したフレアの低減のため好ましい。また回折面のより開口絞り側への配置化(インナー配置化)となり、好ましい。   In the telephoto imaging optical system targeted by the present invention, the lens surface closer to the object side in the first lens group hits it, and an aspheric surface is provided in the vicinity thereof, which is the basic of monochromatic systems such as spherical aberration and coma aberration. This is preferable for correcting aberrations. At that time, it is preferable to provide an aspheric surface on the object side of the diffractive surface DOE of the diffractive optical element Ldoe in order to correct various aberrations and reduce flare caused by the diffractive surface DOE. Further, the arrangement of the diffractive surface closer to the aperture stop (inner arrangement) is preferable.

また、光学系の第1レンズ群内に設けた非球面は、第1レンズ群を構成する正レンズ及び負レンズのいずれのレンズ面でも良い。いずれのレンズ面に設けても、レンズ面の周辺部に向かうにつれ、負の屈折力がきつくなるような非球面形状としている。これは、レンズ全長を短縮化する為に、第1レンズ群内の各レンズの、特に周辺部付近において正の屈折力を強め過ぎたことで、高次の球面収差がアンダー側に発生してしまう。それを、非球面を用い周辺部付近に負の屈折力を与えることで、高次の球面収差をオーバー側に発生させ、全体としてキャンセルさせることで、高次の球面収差を良好に補正している。   Further, the aspherical surface provided in the first lens group of the optical system may be any lens surface of a positive lens and a negative lens constituting the first lens group. Regardless of which lens surface is provided, the lens surface is aspherical so that the negative refractive power becomes tighter toward the periphery of the lens surface. This is because, in order to shorten the overall length of the lens, the positive refractive power of each lens in the first lens group, especially in the vicinity of the peripheral portion, is strengthened too much, so that higher-order spherical aberration occurs on the underside. End up. By applying negative refractive power near the periphery using an aspherical surface, high-order spherical aberration is generated on the over side and canceled as a whole, so that high-order spherical aberration is corrected well. Yes.

しかし、前述の通り、非球面の加工量が増すと、成形品若しくは型に研削痕が残る頻度が高くなり、光学性能への影響(ボケ像内部に発生するムラ等)が懸念される。その影響を低減するには、非球面の加工量を低減するのが効果的であるが、所望の光学性能を維持するには単純に非球面量を低減することは困難である。そこで、所望の光学性能は維持しつつ、非球面レンズの非球面量を低減するには、非球面レンズの配置箇所を考慮することと収差補正に必要となる非球面量を回折光学素子Ldoeの回折面DOEにおける非球面成分に分担させることである。   However, as described above, when the processing amount of the aspherical surface increases, the frequency of grinding marks remaining on the molded product or the mold increases, and there is a concern about the influence on the optical performance (unevenness generated in the blurred image). In order to reduce the influence, it is effective to reduce the processing amount of the aspherical surface, but it is difficult to simply reduce the aspherical amount in order to maintain the desired optical performance. Therefore, in order to reduce the aspherical amount of the aspherical lens while maintaining the desired optical performance, the aspherical amount necessary for aberration correction and the aspherical amount necessary for aberration correction are considered in the diffractive optical element Ldoe. It is to share the aspheric component in the diffractive surface DOE.

具体的には、本発明が対象とする撮像光学系では、前者の非球面レンズの配置箇所に関しては、前述の通り収差補正に効果がある第1レンズ群のより物体側に配置することが望ましい。そうすることで、少ない非球面量でより大きな非球面効果を出すことが可能になる。   Specifically, in the imaging optical system targeted by the present invention, it is desirable that the former aspheric lens is disposed closer to the object side than the first lens group effective for aberration correction as described above. . By doing so, it becomes possible to produce a larger aspherical effect with a small amount of aspherical surface.

一方、後者の回折光学素子Ldoeの回折面DOEにおける非球面成分に、収差補正上必要となる非球面量を分担させることについては、次の通りである。回折光学素子Ldoeの回折面DOEの位相形状を表す後述の式(A)において、右辺の位相係数C1は条件式(1)の箇所で定義があるfdoe=-2*C1*(λ/λ0)を満足する係数であり、光学系の色収差を補正するための屈折力に関する係数である。   On the other hand, the aspheric component necessary for aberration correction is shared by the aspheric component on the diffractive surface DOE of the latter diffractive optical element Ldoe as follows. In formula (A), which will be described later, representing the phase shape of the diffractive surface DOE of the diffractive optical element Ldoe, the phase coefficient C1 on the right side is defined at the location of conditional formula (1) fdoe = -2 * C1 * (λ / λ0) Is a coefficient related to refractive power for correcting chromatic aberration of the optical system.

ここで、fdoeは回折光学素子Ldoeの回折面DOEにおける焦点距離であり、焦点距離の逆数でその屈折力を、λは任意の波長を、λ0は設計波長を各々表している。また後述の式(A)の右辺の残りの位相係数(C2、C3、…)は、条件式(1)の箇所で定義があるΔdbD=(fgdoe-fg) - fdoeに関係しており、回折面における非球面効果に関する係数である。   Here, fdoe is a focal length at the diffraction surface DOE of the diffractive optical element Ldoe, and its refractive power is represented by the reciprocal of the focal length, λ represents an arbitrary wavelength, and λ0 represents a design wavelength. The remaining phase coefficients (C2, C3,...) On the right side of equation (A), which will be described later, are related to ΔdbD = (fgdoe-fg)-fdoe, which is defined at the location of conditional equation (1). This is the coefficient for the aspheric effect on the surface.

ここで、ΔdbD は回折面における非球面効果に関連する屈折力を表し、fgdoeは回折面を含んだ回折光学素子全体の焦点距離を、fgは前記回折光学素子から回折面を除いた接合レンズのみでの焦点距離を各々表している。   Where ΔdbD represents the refractive power related to the aspheric effect on the diffractive surface, fgdoe is the focal length of the entire diffractive optical element including the diffractive surface, and fg is only the cemented lens excluding the diffractive surface from the diffractive optical element. Represents the focal length at.

回折面における非球面成分に収差補正上必要となる非球面量を分担させるには、ΔdbDで表される屈折力をより強めることである。更に、非球面レンズと回折面の配置箇所を、同一のレンズ群内で比較的近づけて設けることが、両者の非球面量及び屈折力を強め過ぎず収差補正が容易となるので、好ましい。   In order to share the amount of aspheric surface necessary for aberration correction with the aspheric surface component on the diffractive surface, it is necessary to further increase the refractive power represented by ΔdbD. Further, it is preferable to provide the aspheric lens and the diffraction surface relatively close to each other in the same lens group, because the aspherical amount and refractive power of both lenses are not excessively increased, and aberration correction is facilitated.

以上より、レンズ全長を短縮化した望遠型の撮像光学系において、非球面レンズの非球面量と回折面における屈折力をバランス良く効率的に用いることが、諸収差の補正と各光学素子による光学性能への弊害を低減できる理由である。   From the above, in a telephoto imaging optical system with a shortened overall lens length, the aspherical amount of the aspherical lens and the refractive power on the diffractive surface can be used in a balanced and efficient manner to correct for various aberrations and the optical performance of each optical element. This is the reason why the adverse effects on performance can be reduced.

上記内容を踏まえて、以下に各条件式について説明する。条件式(1),(2)は、回折光学素子Ldoeの回折面DOEにおける屈折力と非球面レンズの非球面量の関係を規定している。非球面レンズLasphの非球面形状を有するレンズ面の有効径位置における光軸方向の非球面量ΔdbA及び回折光学素子Ldoeの回折面DOEにおける非球面成分量を表す焦点距離ΔdbDが、条件式(1)を満足している。 Based on the above contents, each conditional expression will be described below. Conditional expressions (1) and (2) define the relationship between the refractive power at the diffractive surface DOE of the diffractive optical element Ldoe and the aspheric amount of the aspheric lens. Focal length ΔdbD representing the aspherical component amount in the diffraction plane DOE aspherical amount ΔdbA and diffractive optical element Ldoe the optical axis direction in the effective diameter position of the lens surface having an aspherical shape of the aspherical lens L asph is, the conditional expression ( 1) is satisfied.

ここで、hamaxは非球面形状を有するレンズ面における光線が通過する有効半径である。非球面形状を有するレンズ面が光軸と交わる点を原点とする。このときxbは、有効半径hamaxにおける非球面形状のレンズ面の位置から原点を通り、光軸に対して垂直な平面までの距離とする。xaは有効半径hamaxと光軸との中間位置(hamax/2)における非球面形状のレンズ面の位置から原点を通り、光軸に対して垂直な平面までの距離とする。 Here, ha max is an effective radius through which light rays pass through a lens surface having an aspherical shape. The point where the lens surface having an aspheric shape intersects the optical axis is the origin. At this time, xb is a distance from the position of the aspherical lens surface at the effective radius hamax to the plane perpendicular to the optical axis through the origin. xa is the distance from the position of the aspherical lens surface at the intermediate position (h amax / 2) between the effective radius ha max and the optical axis to the plane perpendicular to the optical axis through the origin.

Rは原点と中間位置(hamax/2)における非球面形状上の点を通過する仮想球面の半径であり、R=(4*xa2+ hamax 2)/(8*xa)を満足する値とする。xb’は有効半径hamaxでの仮想球面上の点から、原点を通り光軸に対して垂直な平面までの距離であり、非球面形状を有するレンズ面が物体側に凸形状の場合はxb’=R-√(R2-hamax 2)を満足する値とする。但し、凹形状の場合はxb’=R+√(R2-hamax 2)とする。ここで、各変数の関係を明確にする為、図7を用いて説明する。 R is the radius of the phantom sphere passing through points on the aspheric surface at the origin and the intermediate position (h amax / 2), and satisfies R = (4 * xa 2 + ha max 2 ) / (8 * xa) Value. xb 'is the distance from the point on the phantom sphere at the effective radius hamax to the plane passing through the origin and perpendicular to the optical axis, and xb when the lens surface having an aspherical shape is convex on the object side It is assumed that '= R-√ (R 2 −h amax 2 ) is satisfied. However, in the case of a concave shape, xb ′ = R + √ (R 2 −ha max 2 ). Here, in order to clarify the relationship of each variable, it demonstrates using FIG.

図7は非球面形状を設けたレンズ面を模式的に表した簡略図である。図7において、左右が光軸方向、上下がレンズ面の半径方向を表し、非球面形状(図中実線)が光軸及び半径方向の軸が交わった原点Oを通過している。図7より、光学系の非球面形状を有するレンズ面における光線が通過する有効半径をhamaxとする。このとき有効半径hamaxにおける非球面形状上の光軸方向の座標がxbであり、有効半径hamaxの半径方向の中間位置hamax/2における非球面形状上の光軸方向の座標がxaである。 FIG. 7 is a simplified diagram schematically showing a lens surface provided with an aspherical shape. In FIG. 7, the left and right represent the optical axis direction, the top and bottom represent the radial direction of the lens surface, and the aspherical shape (solid line in the figure) passes through the origin O where the optical axis and the radial axis intersect. From FIG. 7, it is assumed that the effective radius through which light passes through the lens surface having the aspherical shape of the optical system is hamax . Optical axis direction of the coordinates on the non-spherical shape in this case the effective radius h amax is xb, the optical axis direction of the coordinates on the non-spherical shape at an intermediate position h amax / 2 in the radial direction of the effective radius h amax is at xa is there.

原点Oと位置(xa、hamax/2)を通過する半径Rの仮想球面が点線で示されており、有効半径hamaxの位置における前記仮想球面形状上の光軸方向の座標がxb’である。尚、図7は物体側(図中左側)に凸形状を有した非球面形状を示しているが、凹形状になっていても良い。更に、fgdoeは回折面を含んだ回折光学素子Ldoe全体の焦点距離、fgは回折光学素子から回折面DOEを除いた接合レンズのみでの焦点距離、fdoeは回折光学素子Ldoeの回折面DOEにおける焦点距離とする。このとき前述の条件式(1)を満足している。 The phantom spherical surface of radius R passing through the origin O and the position (xa, ha max / 2) is indicated by a dotted line, and the coordinate in the optical axis direction on the virtual spherical shape at the position of the effective radius ha max is xb ′. is there. Although FIG. 7 shows an aspherical shape having a convex shape on the object side (left side in the figure), it may be a concave shape. Further, fgdoe is the focal length of the entire diffractive optical element Ldoe including the diffractive surface, fg is the focal length of only the cemented lens excluding the diffractive surface DOE from the diffractive optical element, fdoe is the focal point of the diffractive optical element Ldoe on the diffractive surface DOE Distance. At this time, the above-described conditional expression (1) is satisfied.

条件式(1)は、本発明の撮像光学系の第1レンズ群L1内に設けた回折光学素子Ldoeの非球面成分量を表す焦点距離と非球面レンズの非球面量の関係を規定する。ここで、非球面量ΔdbAは有効半径hamaxにおける値としているのは、非球面量は半径方向に中心部から周辺部に向けて連続変化しており、且つ、周辺部で負の屈折力を強めている(非球面量が大きくなる)からである。 Conditional expression (1) defines the relationship between the focal length representing the amount of aspherical component of the diffractive optical element Ldoe provided in the first lens unit L1 of the imaging optical system of the present invention and the amount of aspherical surface of the aspherical lens. Here, the aspherical amount ΔdbA is the value of the effective radius h amax is aspherical amount is continuous changes toward the periphery from the center in the radial direction, and the negative refractive power at the peripheral portion This is because it is strengthened (aspheric amount increases).

従って、非球面量は、有効半径hamaxにおける値をみれば良いということになる。条件式(1)より、非球面形状を設けたレンズ面の有効径位置における光軸方向の非球面量ΔdbAは、回折光学素子Ldoeの回折面DOEにおける非球面成分量を表す焦点距離ΔdbDに比べ少ないことを表している。このことは、非球面加工量の低減を意味しており、それに伴い成形品若しくは型に残る研削痕の量も低減でき、光学性能への影響(ボケ像ムラ等)を緩和している。 Therefore, the aspheric amount can be determined by looking at the value at the effective radius hamax . From conditional expression (1), the aspherical amount ΔdbA in the optical axis direction at the effective diameter position of the lens surface provided with the aspherical shape is compared with the focal length ΔdbD representing the aspherical component amount on the diffractive surface DOE of the diffractive optical element Ldoe. It represents less. This means a reduction in the amount of aspherical processing, and accordingly, the amount of grinding marks remaining on the molded product or mold can also be reduced, thereby mitigating the influence on optical performance (blurred image unevenness, etc.).

また非球面レンズLasphの非球面量ΔdbAが低減できる理由は、レンズ全長の短縮化に伴い増加する球面収差をはじめとした諸収差を補正するのに必要となる非球面量を、回折光学素子Ldoeの回折面DOEにおける非球面成分に分担させているからである。条件式(1)において、上限値を超えると、非球面レンズLasphの非球面量ΔdbAが大きくなり過ぎ、それに伴い非球面加工量が増加し、ボケ像やムラ等の光学性能への影響が増す方向にあるので、好ましくない。 The reason why the aspherical amount ΔdbA of the aspherical lens Lasph can be reduced is that the aspherical amount necessary to correct various aberrations including the spherical aberration that increases with the shortening of the total lens length is reduced by the diffractive optical element. This is because the aspherical component in the Ldoe diffraction surface DOE is shared. In conditional expression (1), if the upper limit is exceeded, the aspherical amount ΔdbA of the aspherical lens Lasph becomes too large, and the aspherical processing amount increases accordingly, which affects the optical performance such as blurred images and unevenness. Since it is in the direction of increasing, it is not preferable.

一方、下限値を超えると、非球面レンズLasphの非球面量ΔdbAが小さくなり過ぎ、レンズ全長の短縮化に伴い増加する球面収差をはじめとした諸収差を良好に補正するのが困難になる。条件式(1)は、更に好ましくは以下の範囲内であるのが良い。これによれば非球面レンズLasphの非球面量ΔdbA及び回折光学素子Ldoeの回折面DOEにおける焦点距離fdoeの関係と諸収差補正のバランスの観点から、好ましい。 On the other hand, when the lower limit is exceeded, the aspherical amount ΔdbA of the aspherical lens Lasph becomes too small, and it becomes difficult to satisfactorily correct various aberrations including spherical aberration that increases as the total lens length is shortened. . Conditional expression (1) is more preferably within the following range. This is preferable from the viewpoint of the balance between the aspherical amount ΔdbA of the aspherical lens Lasph and the focal length fdoe on the diffractive surface DOE of the diffractive optical element Ldoe and the correction of various aberrations.

1.50×10-6 < | ΔdbA / ΔdbD | < 4.00×10-6 ------------(1-a)
更に好ましくは、条件式(1a)の数値範囲を次の如く設定するのが良い。
1.50 × 10 -6 <| ΔdbA / ΔdbD | <4.00 × 10 -6 ------------ (1-a)
More preferably, the numerical range of conditional expression (1a) is set as follows.

2.00×10-6 < | ΔdbA / ΔdbD | < 3.80×10-6 ------------(1-b)
条件式(1)を満足した上で、条件式(2)を満足すると、非球面レンズLasphの非球面量の低減と回折光学素子Ldoeの回折面DOEに起因するフレア低減に好ましい。
2.00 × 10 -6 <| ΔdbA / ΔdbD | <3.80 × 10 -6 ------------ (1-b)
If the conditional expression (2) is satisfied after satisfying the conditional expression (1), it is preferable for reducing the aspherical amount of the aspheric lens L asph and reducing the flare caused by the diffractive surface DOE of the diffractive optical element Ldoe.

条件式(2)は、撮像光学系のテレ比(=レンズ全長/光学系全系の焦点距離)に対する回折光学素子Ldoeの回折面DOEにおける焦点距離の関係を規定する。この条件式(2)は、撮像光学系のテレ比に対し、回折光学素子Ldoeの回折面DOEにおける屈折力(=1/焦点距離)を弱くして、回折面に起因するフレアを低減するためのものである。条件式(2)において、上限値を超えて、回折光学素子Ldoeの回折面DOEにおける屈折力が弱くなり過ぎると、軸上色収差及び倍率色収差の補正が困難になる。   Conditional expression (2) defines the relationship of the focal length on the diffractive surface DOE of the diffractive optical element Ldoe with respect to the tele ratio of the imaging optical system (= lens total length / total focal length of the optical system). This conditional expression (2) reduces the flare caused by the diffractive surface by reducing the refractive power (= 1 / focal length) at the diffractive surface DOE of the diffractive optical element Ldoe with respect to the tele ratio of the imaging optical system. belongs to. In conditional expression (2), if the refractive power at the diffractive surface DOE of the diffractive optical element Ldoe becomes too weak beyond the upper limit, correction of axial chromatic aberration and lateral chromatic aberration becomes difficult.

一方、下限値を超えて、回折光学素子Ldoeの回折面DOEにおける屈折力が強くなり過ぎると、回折格子の格子ピッチが細かくなり、設計次数以外の回折光によるフレアが多く発生するので、好ましくない。   On the other hand, if the refractive power at the diffractive surface DOE of the diffractive optical element Ldoe becomes too strong beyond the lower limit, the grating pitch of the diffraction grating becomes finer, and a lot of flare due to diffracted light other than the design order occurs, which is not preferable. .

条件式(2)は更に好ましくは、以下の範囲内であるのが良い。これによれば、回折光学素子Ldoeの回折面DOEに起因するフレアを低減するのに好ましい。   Conditional expression (2) is more preferably within the following range. This is preferable for reducing flare caused by the diffractive surface DOE of the diffractive optical element Ldoe.

8.0 < | (f doe/f) * (L/f) | < 18.0 --------------(2-a)
更に、好ましくは条件式(2a)の数値範囲を次の如く設定するのが良い。
8.0 <| (f doe / f) * (L / f) | <18.0 -------------- (2-a)
Furthermore, it is preferable to set the numerical range of conditional expression (2a) as follows.

10.0 < | (f doe/f) * (L/f) | < 17.0 --------------(2-a)
以上のように各実施例では回折光学素子と非球面レンズを用い、回折面における屈折力と非球面レンズの非球面量等を適切に設定し、これにより高い光学性能を有する撮像光学系を得ている。また各実施例において好ましくは次の条件式のうち1以上を満足するのが良い。第1レンズ群L1内の非球面形状のレンズ面は、回折光学素子Ldoeの回折面よりも物体側に配置するのが良い。
10.0 <| (f doe / f) * (L / f) | <17.0 -------------- (2-a)
As described above, each embodiment uses a diffractive optical element and an aspheric lens, and appropriately sets the refractive power on the diffractive surface and the aspheric amount of the aspheric lens, thereby obtaining an imaging optical system having high optical performance. ing. In each embodiment, it is preferable that at least one of the following conditional expressions is satisfied. The aspherical lens surface in the first lens unit L1 is preferably disposed closer to the object side than the diffractive surface of the diffractive optical element Ldoe.

ここで、hasphを非球面形状のレンズ面に入射する軸上近軸光線の光軸からの高さ、hbasphを非球面形状のレンズ面に入射する瞳近軸光線の光軸からの高さとする。またhdoeを回折光学素子Ldoeの回折面DOEに入射する軸上近軸光線の光軸からの高さ、hbdoeを回折面DOEに入射する瞳近軸光線の光軸からの高さとする。またLadを非球面形状のレンズ面と回折光学素子Ldoeの回折面DOEとの光軸上の距離とする。このとき、
0.70<|hasph/hbasph|<1.00 --------------(3)
0.85<|hdoe/hbdoe|<1.30 --------------(4)
0.01<|Lad/f|<0.30 --------------(5)
なる条件式を満足するのが良い。
Where h asph is the height from the optical axis of the on-axis paraxial ray incident on the aspherical lens surface, and hb asph is the height from the optical axis of the pupil paraxial ray incident on the aspherical lens surface. Say it. Also, h doe is the height from the optical axis of the on-axis paraxial ray incident on the diffractive surface DOE of the diffractive optical element Ldoe, and h b doe is the height from the optical axis of the pupil paraxial ray incident on the diffractive surface DOE. Further, Lad is a distance on the optical axis between the aspherical lens surface and the diffractive surface DOE of the diffractive optical element Ldoe. At this time,
0.70 <| h asph / hb asph | <1.00 -------------- (3)
0.85 <| h doe / hb doe | <1.30 -------------- (4)
0.01 <| Lad / f | <0.30 -------------- (5)
It is good to satisfy the following conditional expression.

第1レンズ群L1内に設けられた非球面形状のレンズ面の非球面形状は、半径方向に中心部から周辺部に向けて連続変化しており、且つ、周辺部で負の屈折力を強めている。第1レンズ群L1内の非球面形状を有するレンズ面と回折光学素子Ldoeの回折面DOEは、条件式(3)乃至条件式(5)を満足すると、各光学素子の光学性能への弊害の低減と諸収差の低減を図るのが可能になる。条件式(3)は、非球面形状を有するレンズ面の第1レンズ群L1内での配置箇所を規定する。一方、条件式(4)は、回折光学素子Ldoeの回折面DOEの同じく第1レンズ群L1内での配置箇所を規定する。   The aspherical shape of the aspherical lens surface provided in the first lens unit L1 is continuously changing in the radial direction from the central part to the peripheral part, and the negative refractive power is strengthened in the peripheral part. ing. If the lens surface having an aspheric shape in the first lens unit L1 and the diffractive surface DOE of the diffractive optical element Ldoe satisfy the conditional expressions (3) to (5), adverse effects on the optical performance of each optical element It is possible to reduce the various aberrations. Conditional expression (3) defines the location of the lens surface having an aspheric shape in the first lens unit L1. On the other hand, the conditional expression (4) defines the location of the diffractive surface DOE of the diffractive optical element Ldoe in the same first lens group L1.

条件式(5)は、非球面形状を有するレンズ面と回折光学素子Ldoeの回折面DOEの配置箇所の関係を規定する。尚、条件式(3)乃至条件式(5)を満足し、且つ、非球面形状を有するレンズ面が回折光学素子Ldoeの回折面DOEよりも物体側に配置するのが良い。これによれば、非球面レンズLasphの非球面量の低減と回折光学素子Ldoeの回折面DOEに起因するフレアの低減に好ましい。 Conditional expression (5) defines the relationship between the lens surface having an aspherical shape and the location of the diffractive surface DOE of the diffractive optical element Ldoe. In addition, it is preferable that the lens surface that satisfies the conditional expressions (3) to (5) and has an aspherical shape is disposed closer to the object side than the diffractive surface DOE of the diffractive optical element Ldoe. This is preferable for reducing the amount of aspheric surface of the aspheric lens L asph and reducing flare caused by the diffractive surface DOE of the diffractive optical element Ldoe.

条件式(3)において、上限値を超えて、非球面の配置箇所が開口絞りSよりの配置になると、球面収差等の諸収差を所望の性能にすることが困難になる。下限値を超えると、非球面がより物体側に配置されることになり、レンズ全長が長くなると共に、鏡筒を含めた重量が重くなるので、好ましくない。   In conditional expression (3), when the aspherical surface is located beyond the aperture stop S beyond the upper limit, it is difficult to achieve various performances such as spherical aberration. Exceeding the lower limit is not preferable because the aspherical surface is arranged closer to the object side, the entire lens length becomes longer, and the weight including the lens barrel increases.

条件式(4)において、上限値を超えて、回折光学素子Ldoeの回折面DOEが開口絞りSよりの配置になると、軸上色収差及び倍率色収差を補正する為に、回折面DOEにおける屈折力を強めなければならない。そうすると、撮影画角内で設計次数近傍の低次回折次数光によるフレアが増加する。   In the conditional expression (4), when the diffractive surface DOE of the diffractive optical element Ldoe exceeds the upper limit value and is arranged from the aperture stop S, the refractive power at the diffractive surface DOE is changed to correct axial chromatic aberration and lateral chromatic aberration. We must strengthen it. Then, flare due to low-order diffraction order light in the vicinity of the design order within the photographing field angle increases.

一方、下限値を超えて、回折面DOEの配置箇所が物体側に寄り過ぎてしまうと、撮影画角外にある高輝度光源が直接、回折面DOEに当たり易くなってしまう。それに伴い高次回折光のフレアの発生が増加するので、好ましくない。   On the other hand, if the location of the diffractive surface DOE is too close to the object side beyond the lower limit, a high-intensity light source outside the shooting angle of view is likely to directly hit the diffractive surface DOE. Accordingly, the generation of flare of high-order diffracted light increases, which is not preferable.

条件式(5)において、上限値を超えると、非球面と回折光学素子の回折面との距離が離れ過ぎてしまい、諸収差を補正するのに必要となる非球面レンズの非球面量を、回折面における非球面成分に分担させることが困難になるので、好ましくない。   In conditional expression (5), if the upper limit value is exceeded, the distance between the aspherical surface and the diffractive surface of the diffractive optical element will be too far, and the aspherical amount of the aspherical lens necessary to correct various aberrations will be calculated. Since it becomes difficult to share the aspherical component on the diffractive surface, it is not preferable.

一方、下限値を超えて、非球面形状を設けたレンズ面と回折光学素子Ldoeの回折面DOEとの距離が近づき過ぎると、高次の球面収差が増大するので好ましくない。条件式(3)乃至条件式(5)は更に好ましくは、下記の範囲内にあることが好ましい。   On the other hand, if the distance between the lens surface provided with the aspherical shape and the diffractive surface DOE of the diffractive optical element Ldoe is too close beyond the lower limit value, high-order spherical aberration increases, which is not preferable. Conditional expressions (3) to (5) are more preferably within the following ranges.

0.72 < | hasph / hbasph | < 0.90 --------------(3-a)
0.88 < | hdoe / hbdoe | < 1.10 --------------(4-a)
0.02 < | Lad / f | < 0.25 --------------(5-a)
更に好ましくは、条件式(3a)乃至条件式(5)の数値範囲を次の如く設定するのが良い。
0.72 <| hasph / hbasph | <0.90 -------------- (3-a)
0.88 <| hdoe / hbdoe | <1.10 -------------- (4-a)
0.02 <| Lad / f | <0.25 -------------- (5-a)
More preferably, the numerical ranges of conditional expressions (3a) to (5) are set as follows.

0.74 < | hasph / hbasph | < 0.88 --------------(3-a)
0.90 < | hdoe / hbdoe | < 1.00 --------------(4-a)
0.03 < | Lad / f | < 0.22 --------------(5-a)
また各実施例において更に好ましくは次の条件式のうち1以上を満足するのが良い。
0.74 <| hasph / hbasph | <0.88 -------------- (3-a)
0.90 <| hdoe / hbdoe | <1.00 -------------- (4-a)
0.03 <| Lad / f | <0.22 -------------- (5-a)
In each embodiment, it is more preferable to satisfy one or more of the following conditional expressions.

第1レンズ群L1の物体側から数えて2番目のレンズG2は正レンズLanmであり、νdanmを正レンズLanmの材料のアッベ数とする。hanmを軸上近軸光線が正レンズLanmの物体側のレンズ面を通過する際の光軸からの高さとする。hbanmを、瞳近軸光線が正レンズLanmの物体側のレンズ面を通過する際の光軸からの高さとする。fanmを正レンズLanmの焦点距離とする。このとき、
70<νdanm<100 --------------(6)
0.70<|hanm/hbanm|<0.90 --------------(7)
0.10<fanm/f<0.50 --------------(8)
なる条件式を満足するのが良い。
The second lens G2 counted from the object side of the first lens unit L1 is a positive lens Lanm , and νd anm is the Abbe number of the material of the positive lens Lanm . Let hanm be the height from the optical axis when the axial paraxial ray passes through the object-side lens surface of the positive lens Lanm . Let hb anm be the height from the optical axis when the pupil paraxial ray passes through the object-side lens surface of the positive lens Lanm . Let f anm be the focal length of the positive lens L anm . At this time,
70 <νd anm <100 -------------- (6)
0.70 <| h anm / hb anm | <0.90 -------------- (7)
0.10 <f anm /f<0.50 -------------- (8)
It is good to satisfy the following conditional expression.

条件式(6)乃至条件式(8)は撮像光学系の小型化かつ高性能化を図るためのものである。条件式(6)は、第1レンズ群L1の物体側から数えたレンズのうち、2番目の正レンズLanmに用いられる材料のアッベ数の範囲を規定する。条件式(7)は、第1レンズ群L1の物体側から数えたレンズのうち2番目の正レンズLanmの配置箇所を規定する。条件式(8)は、正レンズLanmの屈折力の範囲を規定する。 Conditional expressions (6) to (8) are for reducing the size and performance of the imaging optical system. Conditional expression (6) defines the range of the Abbe number of the material used for the second positive lens Lanm among the lenses counted from the object side of the first lens unit L1. Conditional expression (7) defines an arrangement location of the second positive lens Lanm among the lenses counted from the object side of the first lens unit L1. Conditional expression (8) defines the range of the refractive power of the positive lens Lanm .

条件式(6)の上限値を超えて、材料が低分散な特性になり過ぎると、第1レンズ群L1中の負レンズに用いる一般的な高分散材料とのバランスから、回折光学素子Ldoeによって発生する色収差の波長依存特性を補正することが困難になる。一方、下限値を超えて、材料が高分散な特性になり過ぎると、第1レンズ群L1中の負レンズに用いる一般的な高分散材料とのバランスから、その特性を補正させるための回折面の屈折力を強めなくてならなくなる。そうすると、フレアが多く発生してくるので好ましくない。   If the upper limit of conditional expression (6) is exceeded and the material becomes too low-dispersed, the diffractive optical element Ldoe causes a balance with the general high-dispersion material used for the negative lens in the first lens unit L1. It becomes difficult to correct the wavelength-dependent characteristics of the generated chromatic aberration. On the other hand, if the material exceeds the lower limit and the material becomes too highly dispersed, the diffractive surface is used to correct the property from the balance with the general high dispersion material used for the negative lens in the first lens unit L1. It will be necessary to strengthen the refractive power of. Then, since many flares occur, it is not preferable.

条件式(7)の上限値を超えて、正レンズLanmの配置箇所が開口絞りS側に近づきすぎると、色収差を補正するための所望の効果を得るのが困難になる。一方、下限値を超えて、正レンズLanmの配置箇所が物体側に近づきすぎると、色収差の補正は容易になるが、レンズ有効径が大きくなり、全系が大型化するので好ましくない。 If the upper limit value of conditional expression (7) is exceeded and the arrangement position of the positive lens Lanm is too close to the aperture stop S side, it is difficult to obtain a desired effect for correcting chromatic aberration. On the other hand, if the location where the positive lens Lanm is placed too close to the object side beyond the lower limit value, correction of chromatic aberration becomes easy, but this is not preferable because the effective lens diameter becomes large and the entire system becomes large.

条件式(8)の上限値を超えて、正レンズLanmの屈折力が弱くなり過ぎると、色収差を補正するための配置箇所をより物体側に近づけなくてはならなくなる。その結果、レンズ径が大きくなり、全系が大型化してくるので好ましくない。一方、下限値を超えて、正レンズLanmの屈折力が強くなり過ぎると、他の光学要素による色収差の補正とのバランスから、色収差が補正過剰となるので、好ましくない。条件式(6)乃至条件式(8)は更に好ましくは、下記の範囲内にあることである。 If the upper limit of conditional expression (8) is exceeded and the refractive power of the positive lens Lanm becomes too weak, the location for correcting chromatic aberration must be closer to the object side. As a result, the lens diameter becomes large and the entire system becomes large, which is not preferable. On the other hand, if the refractive power of the positive lens Lanm becomes too strong beyond the lower limit value, the chromatic aberration is excessively corrected due to the balance with correction of chromatic aberration by other optical elements, which is not preferable. Conditional expressions (6) to (8) are more preferably within the following range.

75 < νdanm < 97 ------------------(6-a)
0.75 < | hanm/ hbanm | < 0.87 ------------------(7-a)
0.20 < fanm / f < 0.40 ------------------(8-a)
次に、各実施例について説明する。
75 <νd anm <97 ------------------ (6-a)
0.75 <| h anm / hb anm | <0.87 ------------------ (7-a)
0.20 <f anm / f <0.40 ------------------ (8-a)
Next, each example will be described.

実施例1の撮像光学系は、望遠レンズ(焦点距離392.19mm、Fno4.12)であり、図1は物体距離無限遠におけるレンズ断面図である。図1において、L1は正の屈折力の第1レンズ群、L2は負の屈折力の第2レンズ群、L3は負の屈折力の第3レンズ群である。   The imaging optical system of Example 1 is a telephoto lens (focal length 392.19 mm, Fno 4.12), and FIG. 1 is a lens cross-sectional view at an infinite object distance. In FIG. 1, L1 is a first lens group having a positive refractive power, L2 is a second lens group having a negative refractive power, and L3 is a third lens group having a negative refractive power.

Ldoeは回折光学素子である。回折光学素子Ldoeは物体側から数えて4番目のレンズG4と5番目のレンズG5を接合し、その接合面に回折面DOEを設けた接合レンズよりなっている。Lanmは正レンズである。正レンズLanmは第1レンズ群L1の物体側から数えて2番目のレンズG2よりなり、異常部分分散特性を有した材料よりなっている。 Ldoe is a diffractive optical element. The diffractive optical element Ldoe includes a cemented lens in which a fourth lens G4 and a fifth lens G5 counted from the object side are cemented and a diffractive surface DOE is provided on the cemented surface. L anm is a positive lens. The positive lens Lanm is a second lens G2 counted from the object side of the first lens unit L1, and is made of a material having an abnormal partial dispersion characteristic.

Lasphは非球面レンズである。非球面レンズLasphは物体側から数えて3番目のレンズG3よりなっている。レンズG3の像側が非球面asphである。非球面asphは回折面DOEよりも物体側に設けられている。また無限遠物点から至近距離物点へのフォーカシングは、接合レンズLfoよりなる第2レンズ群L2を像面側へ移動させることで行っている。第3レンズ群L3は光軸Oに対して垂直方向の成分を持つ方向に移動させることにより、結像位置を光軸に対し垂直方向に移動させ、手ぶれ等による画像のぶれを補正するレンズユニットLISを有している。 L asph is an aspheric lens. The aspheric lens L asph is composed of a third lens G3 counted from the object side. The image side of the lens G3 is an aspheric surface asph. The aspheric surface asph is provided closer to the object side than the diffractive surface DOE. Further, focusing from an infinite object point to a close object point is performed by moving the second lens unit L2 including the cemented lens Lfo to the image plane side. The third lens unit L3 moves in a direction having a component perpendicular to the optical axis O, thereby moving the imaging position in a direction perpendicular to the optical axis and correcting image blur due to camera shake or the like. I have a LIS.

実施例1では物体側から像側へ順に、第1レンズ群L1は正レンズ、正レンズ、非球面形状のレンズ面を有する負レンズ、負レンズと正レンズを接合し、接合面に回折光学部を形成した接合レンズよりなっている。第2レンズ群L2は正レンズと負レンズを接合した接合レンズより構成されている。実施例1の撮像光学系は、上述してきた各条件式を満足しており、回折光学素子Ldoeの回折面DOEにおける屈折力と非球面レンズLasphの非球面量を適切に設定している。これにより、全系が小型・軽量で且つ諸収差も補正された撮像光学系を実現している。 In Example 1, in order from the object side to the image side, the first lens unit L1 includes a positive lens, a positive lens, a negative lens having an aspherical lens surface, a negative lens and a positive lens cemented, and a diffractive optical unit on the cemented surface. It consists of a cemented lens with The second lens unit L2 includes a cemented lens in which a positive lens and a negative lens are cemented. The imaging optical system of Example 1 satisfies the above-described conditional expressions, and appropriately sets the refractive power at the diffractive surface DOE of the diffractive optical element Ldoe and the aspheric amount of the aspheric lens L asph . This realizes an imaging optical system in which the entire system is small and light and various aberrations are corrected.

本発明の実施例2の撮像光学系は、実施例1と略同じ望遠レンズ(焦点距離392.19,Fno4.12)であり、図3は物体距離無限遠におけるレンズ断面図である。図3中の各符号は図1に示したのと同じである。実施例1と異なるのは非球面asphを設けたレンズ面が最も物体側の光学面であることである。   The imaging optical system of Example 2 of the present invention is a telephoto lens (focal length 392.19, Fno 4.12) substantially the same as that of Example 1, and FIG. 3 is a lens cross-sectional view at an infinite object distance. Each symbol in FIG. 3 is the same as that shown in FIG. The difference from the first embodiment is that the lens surface provided with the aspheric surface asph is the optical surface closest to the object side.

実施例2では物体側から像側へ順に、第1レンズ群L1は非球面形状のレンズ面を有する正レンズ,正レンズ,負レンズ,負レンズと正レンズを接合し、接合面に回折光学部を形成した接合レンズよりなっている。実施例2において第2レンズ群L2の構成は実施例1と同じである。実施例2の撮像光学系も、実施例1と同様、上述してきた各条件式を満足している。そして回折面DOEにおける屈折力と非球面レンズLasphの非球面量を適切に設定している。これにより、全系が小型・軽量で且つ諸収差も補正された撮像光学系を実現している。 In Example 2, in order from the object side to the image side, the first lens unit L1 includes a positive lens having an aspherical lens surface, a positive lens, a negative lens, a negative lens and a positive lens, and a diffractive optical unit on the cemented surface. It consists of a cemented lens with In Example 2, the configuration of the second lens unit L2 is the same as that of Example 1. The imaging optical system of Example 2 also satisfies the above-described conditional expressions as in Example 1. The refractive power at the diffractive surface DOE and the aspheric amount of the aspheric lens Lasph are set appropriately. This realizes an imaging optical system in which the entire system is small and light and various aberrations are corrected.

回折光学素子は、光学面の上に設けられるのであるが、その光学面の曲率半径は球面若しくは平面あるいは非球面でも良い。また各実施例では、回折光学素子が接合レンズの接合面に設けられているが、これに限定されるものではない。   Although the diffractive optical element is provided on the optical surface, the radius of curvature of the optical surface may be spherical, flat, or aspheric. In each embodiment, the diffractive optical element is provided on the cemented surface of the cemented lens. However, the present invention is not limited to this.

各実施例における回折光学素子の製法としては、バイナリオプティクス形状をフォトレジストにより直接レンズ表面に成形する方法が適用できる。この他に、この方法によって作成した型を用いるレプリカ成形やモールド成形を行う方法が適用できる。また、鋸状形状のキノフォームにすれば、回折効率が上がり、理想値に近い回折効率が期待できる。   As a manufacturing method of the diffractive optical element in each embodiment, a method in which a binary optics shape is directly formed on the lens surface with a photoresist can be applied. In addition, a method of performing replica molding or molding using a mold created by this method can be applied. In addition, if a saw-shaped kinoform is used, the diffraction efficiency increases, and a diffraction efficiency close to the ideal value can be expected.

次に本発明の撮像光学系で用いる回折光学素子の構成について説明する。回折光学素子の構成としては、図8(A)に示すような空気層を挟んだ2積層構成のものや、同じく図8(B)に示すような空気層を挟んだ3積層構成のもの、図8(C)に示すような同一の格子厚で2つの層が密着した密着2層構成のもの等が適用可能である。   Next, the configuration of the diffractive optical element used in the imaging optical system of the present invention will be described. As the structure of the diffractive optical element, a two-layer structure having an air layer as shown in FIG. 8 (A), or a three-layer structure having an air layer as shown in FIG. 8 (B), As shown in FIG. 8C, a two-layer structure in which two layers are in close contact with the same lattice thickness can be applied.

図8(A)では、基材4上に紫外線硬化樹脂からなる第1の回折格子6を形成して、第1の回折格子部2を構成している。そしてもう1つの基材5上に第1の回折格子6と異なる紫外線硬化樹脂からなる第2の回折格子7を形成して、第2の回折光学部3を構成している。そして第1の回折光学部2と第2の回折光学部3を間隔Dの空気層8を介して近接配置した構成になっている。これら2つの回折格子6、7を合わせて、1つの回折光学素子1としての働きをなしている。   In FIG. 8A, a first diffraction grating portion 2 is formed by forming a first diffraction grating 6 made of an ultraviolet curable resin on a base material 4. A second diffractive optical unit 3 is configured by forming a second diffraction grating 7 made of an ultraviolet curable resin different from the first diffraction grating 6 on another base material 5. Then, the first diffractive optical part 2 and the second diffractive optical part 3 are arranged close to each other via an air layer 8 with a distance D. Together, these two diffraction gratings 6 and 7 function as one diffractive optical element 1.

この時、第1の回折格子6の格子厚はd1、第2の回折格子6の格子厚はd2である。格子の向きは、第1の回折格子6は上から下に向かうに連れ格子厚が単調減少するが、一方第2の回折格子7は上から下に向かうに連れ格子厚が単調増加する方向である。また、図8(A)に示したように入射光を左側から入れると、右斜め下方向に進むのが1次光であり、直進するのが0次光である。   At this time, the grating thickness of the first diffraction grating 6 is d1, and the grating thickness of the second diffraction grating 6 is d2. The grating direction monotonically decreases as the first diffraction grating 6 moves from top to bottom, while the second diffraction grating 7 tends to monotonically increase the grating thickness from top to bottom. is there. Further, as shown in FIG. 8A, when incident light is entered from the left side, the first-order light travels obliquely downward to the right and the zero-order light travels straight.

図9(A)に、図8(A)に示す2積層構成の回折光学素子における設計次数である1次回折光及び設計次数±1次である0次回折光、2次回折光の回折効率の波長依存特性を
示す。素子構成としては、第1の回折格子6の材料は(nd1,νd1)=(1.636,22.8)で格子厚d1=7.88μmである。第2の回折格子7の材料は(nd2,νd2)=(1.524,51.6)で格子厚d2=10.71μmで、空気間隔D1=1.5μmとしている。
Fig. 9 (A) shows the wavelength dependence of the diffraction efficiency of the first order diffracted light that is the designed order and the 0th order diffracted light that is the designed order ± 1st order and the second order diffracted light in the two-layer diffractive optical element shown in Fig. 8 (A). Show the characteristics. As an element configuration, the material of the first diffraction grating 6 is (nd1, νd1) = (1.636, 22.8) and the grating thickness d1 = 7.88 μm. The material of the second diffraction grating 7 is (nd2, νd2) = (1.524, 51.6), the grating thickness d2 = 10.71 μm, and the air gap D1 = 1.5 μm.

また図8(A)より格子ピッチP=200μmである。前記図9(A)からわかるように、設計次数光(1次光)の回折効率は使用波長全域で約90%以上の高い回折効率で、不要回折次数光(0、2次光)の回折効率も使用波長全域で約5%以下と抑制されている。   Further, from FIG. 8A, the lattice pitch P = 200 μm. As can be seen from FIG. 9A, the diffraction efficiency of the designed order light (primary light) is about 90% or higher over the entire wavelength range, and diffraction of unwanted diffraction order light (0, second order light) is achieved. Efficiency is also suppressed to about 5% or less over the entire operating wavelength range.

図8(B)では、基材4上に紫外線硬化樹脂からなる第1の回折格子6を形成し、もう1つの基材5上に第1の回折格子6と同じ紫外線硬化樹脂からなる第2の回折格子7を形成し、第2の回折格子7を異なる紫外線硬化樹脂9で埋めた構成になっている。そして第1の回折格子6と第2の回折格子7を、間隔Dの空気層8を介して近接配置させている。これら2つの回折格子6、7を合わせて、1つの回折光学素子としての働きをなしている。   In FIG. 8 (B), a first diffraction grating 6 made of an ultraviolet curable resin is formed on a base material 4, and a second made of the same ultraviolet curable resin as the first diffraction grating 6 is formed on another base material 5. The diffraction grating 7 is formed, and the second diffraction grating 7 is filled with a different ultraviolet curable resin 9. Then, the first diffraction grating 6 and the second diffraction grating 7 are arranged close to each other via an air layer 8 having a distance D. These two diffraction gratings 6 and 7 are combined to function as one diffractive optical element.

この時、第1の回折格子6の格子厚はd1、第2の回折格子7の格子厚はd2である。格子の向きは、前記第1の回折格子6及び第2の回折格子7とも上から下に向かうに連れ格子厚が単調増加する方向である。また、図8(B)に示したように入射光を左側から入れると、右斜め下方向に進むのが1次光であり、直進するのが0次光である。   At this time, the grating thickness of the first diffraction grating 6 is d1, and the grating thickness of the second diffraction grating 7 is d2. The direction of the grating is such that the grating thickness monotonously increases from the top to the bottom of both the first diffraction grating 6 and the second diffraction grating 7. Further, as shown in FIG. 8B, when incident light is entered from the left side, the first-order light travels obliquely downward to the right, and the zero-order light travels straight.

図9(B)に、図8(B)に示す3積層構成の回折光学素子1における設計次数である1次回折光及び設計次数±1次である0次回折光、2次回折光の回折効率の波長依存特性を示す。素子構成としては、第1の回折格子6の材料は(nd1,νd1)=(1.636,22.8)で格子厚d1=2.83μmである。第2の回折格子7の材料は(nd2-1,νd2-1)=(1.524,51.6)と(nd2-2,νd2-2)=(1.636,22.8)で格子厚d2=7.88μmで、空気間隔D=1.5μmとしている。   FIG. 9B shows the wavelength of the diffraction efficiency of the first-order diffracted light that is the designed order and the zero-order diffracted light that is the designed order ± 1st order and the second-order diffracted light in the three-layer diffractive optical element 1 shown in FIG. 8B. Shows dependency characteristics. As an element configuration, the material of the first diffraction grating 6 is (nd1, νd1) = (1.636, 22.8) and the grating thickness d1 = 2.83 μm. The material of the second diffraction grating 7 is (nd2-1, νd2-1) = (1.524,51.6) and (nd2-2, νd2-2) = (1.636,22.8), the grating thickness d2 = 7.88 μm, and air The interval D = 1.5 μm.

また図8(B)より格子ピッチP=200μmである。図9(B)からわかるように、図9(A)と同様に設計次数光(1次光)の回折効率は使用波長全域で約90%以上の高い回折効率で、不要回折次数光(0、2次光)の回折効率も使用波長全域で約5%以下と抑制されている。   From FIG. 8B, the grating pitch P = 200 μm. As can be seen from FIG. 9 (B), the diffraction efficiency of the designed order light (first order light) is as high as 90% or more over the entire wavelength range, as in FIG. 9 (A), and the unnecessary diffraction order light (0 The diffraction efficiency of secondary light) is suppressed to about 5% or less over the entire wavelength range.

図8(C)では、基材4上に紫外線硬化樹脂からなる第1の回折格子6を形成し、もう1つの基材5上に第1の回折格子6と異なる紫外線硬化樹脂からなる第2の回折格子7を形成し、それらを同じ格子厚d1で密着させた構成になっている。これら2つの回折格子6、7を合わせて、1つの回折光学素子1としての働きをなしている。   In FIG. 8 (C), a first diffraction grating 6 made of an ultraviolet curable resin is formed on a base material 4, and a second made of an ultraviolet curable resin different from the first diffraction grating 6 is formed on another base material 5. The diffraction grating 7 is formed, and these are closely adhered with the same grating thickness d1. Together, these two diffraction gratings 6 and 7 function as one diffractive optical element 1.

格子の向きは、第1の回折格子6は上から下に向かうに連れ格子厚が単調増加するが、一方、第2の回折格子7は上から下に向かうに連れ格子厚が単調減少する方向である。また、図8(C)に示したように入射光を左側から入れると、右斜め下方向に進むのが1次光であり、直進するのが0次光である。   The direction of the grating is such that the grating thickness monotonously increases as the first diffraction grating 6 goes from top to bottom, while the grating thickness monotonously decreases as the second diffraction grating 7 goes from top to bottom. It is. Also, as shown in FIG. 8 (C), when incident light is entered from the left side, the first-order light travels diagonally downward to the right, and the zero-order light travels straight.

図9(C)に、図8(C)に示す密着2層構成の回折光学素子1における設計次数である1次回折光及び設計次数±1次である0次回折光、2次回折光の回折効率の波長依存特性を示す。素子構成としては、第1の回折格子6の材料は(nd1,νd1)=(1.567,46.6)で、第2の回折格子7の材料は(nd2,νd2)=(1.504,16.3)で同一の格子厚d=9.29μmとしている。また図8(C)中の格子ピッチP=200μmである。   FIG. 9C shows the diffraction efficiencies of the first order diffracted light that is the designed order and the zeroth order diffracted light that is the designed order ± 1st order and the second order diffracted light in the diffractive optical element 1 having the two-layer structure shown in FIG. 8C. The wavelength dependence characteristic is shown. As the element configuration, the material of the first diffraction grating 6 is (nd1, νd1) = (1.567, 46.6), and the material of the second diffraction grating 7 is the same as (nd2, νd2) = (1.504, 16.3). The grating thickness is d = 9.29 μm. Further, the lattice pitch P in FIG. 8C is 200 μm.

図9(C)からわかるように、図9(A),図9(B)より設計次数光(1次光)の回折効率は使用波長全域で約99.5%以上のかなり高い回折効率で、不要回折次数光(0、2次光)の回折効率も使用波長全域で約0.05%以下とかなり抑制されている。前述のように、各実施例に用いる回折光学素子について説明したが、回折効率等の基本性能が前述の回折光学素子と同等以上であれば、これに限定されるものではない。   As can be seen from Fig. 9 (C), the diffraction efficiency of the designed order light (first-order light) is much higher than 99.5% over the entire wavelength range, as shown in Figs. 9 (A) and 9 (B). The diffraction efficiency of diffraction order light (0, 2nd order light) is also considerably suppressed to about 0.05% or less over the entire operating wavelength range. As described above, the diffractive optical element used in each example has been described. However, the present invention is not limited to this as long as the basic performance such as diffraction efficiency is equal to or higher than that of the diffractive optical element described above.

次に本発明の撮像光学系を撮像装置(カメラシステム)に適用した実施例を図10を用いて説明する。図10は一眼レフカメラの要部概略図である。   Next, an embodiment in which the imaging optical system of the present invention is applied to an imaging apparatus (camera system) will be described with reference to FIG. FIG. 10 is a schematic view of the main part of a single-lens reflex camera.

図10において、20は実施例1、2のいずれか1つの撮像光学系11を有する撮像レンズである。撮像光学系11は保持部材である鏡筒12に保持されている。30はカメラ本体である。カメラ本体は撮像レンズ20からの光束を上方に反射するクイックリターンミラー13、撮像レンズ20の像形成位置に配置された焦点板14、焦点板14に形成された逆像を正立像に変換するペンタダハプリズム15を有している。更に、その正立像を観察するための接眼レンズ16等によって構成されている。   In FIG. 10, reference numeral 20 denotes an imaging lens having the imaging optical system 11 of any one of the first and second embodiments. The imaging optical system 11 is held by a lens barrel 12 that is a holding member. Reference numeral 30 denotes a camera body. The camera body includes a quick return mirror 13 that reflects the light beam from the imaging lens 20 upward, a focusing screen 14 that is disposed at an image forming position of the imaging lens 20, and a pentagon that converts an inverted image formed on the focusing screen 14 into an erect image. It has a Dach prism 15. Further, it is constituted by an eyepiece 16 for observing the erect image.

17は感光面であり、像を受光するCCDセンサやCMOSセンサ等の撮像素子(光電変換素子)(撮像部)や銀塩フィルムが配置される。撮影時にはクイックリターンミラー13が光路から退避して、感光面17上に撮影レンズ20によって像が形成される。このように実施例1、2の撮像光学系を写真用カメラや、ビデオカメラ、デジタルスチルカメラ等の撮像装置に適用することにより、軽量で高い光学性能を有する撮像装置を実現している。   Reference numeral 17 denotes a photosensitive surface, on which an image sensor (photoelectric conversion element) (image sensor) such as a CCD sensor or a CMOS sensor that receives an image, or a silver salt film is arranged. At the time of photographing, the quick return mirror 13 is retracted from the optical path, and an image is formed on the photosensitive surface 17 by the photographing lens 20. In this way, by applying the imaging optical system of Embodiments 1 and 2 to an imaging apparatus such as a photographic camera, a video camera, or a digital still camera, a lightweight imaging apparatus having high optical performance is realized.

尚、本実施例ではクイックリターンミラーのないミラーレスのカメラにも同様に適用することができる。   In this embodiment, the present invention can be similarly applied to a mirrorless camera having no quick return mirror.

以下に本発明の実施例1、2に対応する数値実施例1、2を示す。各数値実施例において、iは物体側からの面の順序を示し、riは物体側より第i番目の面の曲率半径、diは物体側より第i番目と第i+1番目の間隔、ndiとνdiは第i番目の光学部材の屈折率とアッベ数である。又、各面の有効径も示す。   Numerical Examples 1 and 2 corresponding to Embodiments 1 and 2 of the present invention are shown below. In each numerical example, i indicates the order of the surfaces from the object side, ri is the radius of curvature of the i-th surface from the object side, di is the i-th and i + 1-th interval from the object side, ndi and νdi Are the refractive index and Abbe number of the i-th optical member. It also shows the effective diameter of each surface.

焦点距離、Fナンバー、半画角(度)、像高、レンズ全長を示す。またバックフォーカス(BF)は最終面(ガラスブロックの面)から像面までの距離である。各数値実施例において最も像側の2つの面はフィルター等のガラスブロックである。間隔d9,d12の可変とは、フォーカスに際して変化する意味である。数値は無限遠物体にフォーカスしているときを示している。更に、非球面形状は、Xを光軸方向の面頂点からの変位量、hを光軸と垂直な方向の光軸からの高さ、Rを近軸曲率半径、kを円錐定数、B、C、D、E…を各次数の非球面係数とした時、次式(B)によって表される。   Indicates focal length, F-number, half angle of view (degrees), image height, and total lens length. The back focus (BF) is a distance from the final surface (the surface of the glass block) to the image surface. In each numerical example, the two surfaces closest to the image side are glass blocks such as filters. The variable of the distances d9 and d12 means that the distances change during focusing. The numerical value indicates when focusing on an object at infinity. Further, the aspherical shape is such that X is the amount of displacement from the surface vertex in the optical axis direction, h is the height from the optical axis in the direction perpendicular to the optical axis, R is the paraxial radius of curvature, k is the conic constant, B, When C, D, E... Are the aspheric coefficients of the respective orders, they are expressed by the following equation (B).

また各実施例の回折光学面の位相関数ψは、回折光の回折次数をm、設計波長をλ0、光軸に対して垂直方向の高さをh、位相係数をCi(i=1,2,3…)としたとき、次式によって表される。   In addition, the phase function ψ of the diffractive optical surface of each example is expressed as follows: the diffraction order of the diffracted light is m, the design wavelength is λ0, the height perpendicular to the optical axis is h, and the phase coefficient is Ci (i = 1, 2 , 3 ...), it is expressed by the following equation.

ψ(h, m) = (2π/mλ0)*(C1・h2+C2・h4+C3・h6+…)
また各実施例における各条件式を表1に示す。
ψ (h, m) = (2π / mλ0) * (C1 · h 2 + C2 · h 4 + C3 · h 6 + ...)
Table 1 shows the conditional expressions in each example.

[数値実施例1]
単位 mm

面データ
面番号 r d nd νd 有効径
1 101.267 17.97 1.48749 70.2 95.20
2 -1421.586 22.11 93.39
3 86.833 14.57 1.49700 81.5 76.00
4 -293.957 0.20 73.61
5 -271.960 3.90 1.77250 49.6 73.59
6* 192.089 14.97 68.73
7 91.543 2.85 1.78590 44.2 58.60
8(回折) 43.425 12.04 1.48749 70.2 54.03
9 321.773 (可変) 52.38
10 289.030 3.07 1.80809 22.8 35.18
11 -202.911 1.80 1.83400 37.2 34.44
12 65.357 (可変) 32.61
13(絞り) ∞ 11.29 26.38
14 76.835 1.30 1.84666 23.9 25.59
15 25.815 5.39 1.67300 38.1 25.28
16 -280.474 0.50 25.31
17 61.261 3.83 1.84666 23.9 25.30
18 -110.422 1.30 1.77250 49.6 24.99
19 30.826 3.63 24.13
20 -76.495 1.30 1.88300 40.8 24.19
21 83.961 1.15 25.23
22 ∞ 0.00 25.12
23 54.285 8.79 1.61340 44.3 26.48
24 -19.696 1.80 1.59282 68.6 27.00
25 156.426 1.28 29.13
26 -4817.483 1.80 1.80809 22.8 29.46
27 50.905 5.15 1.65412 39.7 30.75
28 -127.436 0.15 31.48
29 70.581 3.55 1.74077 27.8 33.04
30 646.175 2.38 33.17
31 ∞ 2.00 1.51633 64.1 33.52
32 ∞ 63.27 33.73
像面 ∞
[Numerical Example 1]
Unit mm

Surface data surface number rd nd νd Effective diameter
1 101.267 17.97 1.48749 70.2 95.20
2 -1421.586 22.11 93.39
3 86.833 14.57 1.49700 81.5 76.00
4 -293.957 0.20 73.61
5 -271.960 3.90 1.77250 49.6 73.59
6 * 192.089 14.97 68.73
7 91.543 2.85 1.78590 44.2 58.60
8 (Diffraction) 43.425 12.04 1.48749 70.2 54.03
9 321.773 (variable) 52.38
10 289.030 3.07 1.80809 22.8 35.18
11 -202.911 1.80 1.83400 37.2 34.44
12 65.357 (variable) 32.61
13 (Aperture) ∞ 11.29 26.38
14 76.835 1.30 1.84666 23.9 25.59
15 25.815 5.39 1.67300 38.1 25.28
16 -280.474 0.50 25.31
17 61.261 3.83 1.84666 23.9 25.30
18 -110.422 1.30 1.77250 49.6 24.99
19 30.826 3.63 24.13
20 -76.495 1.30 1.88300 40.8 24.19
21 83.961 1.15 25.23
22 ∞ 0.00 25.12
23 54.285 8.79 1.61340 44.3 26.48
24 -19.696 1.80 1.59282 68.6 27.00
25 156.426 1.28 29.13
26 -4817.483 1.80 1.80809 22.8 29.46
27 50.905 5.15 1.65412 39.7 30.75
28 -127.436 0.15 31.48
29 70.581 3.55 1.74077 27.8 33.04
30 646.175 2.38 33.17
31 ∞ 2.00 1.51633 64.1 33.52
32 ∞ 63.27 33.73
Image plane ∞

非球面データ
第6面
K = 1.38187e+000 B = 1.48156e-008 C = -6.46138e-012 D = 1.87902e-015
E = -1.34902e-018

第8面(回折面)
C1 = -5.59649e-005 C2 = -1.39074e-008 C3 = 8.27359e-012 C4 = -2.27361e-014
C5 = 1.55673e-017

各種データ

焦点距離 392.19
Fナンバー 4.12
半画角(度) 3.16
像高 21.64
レンズ全長 262.18
BF 63.27

d 9 26.13
d12 22.72

入射瞳位置 519.88
射出瞳位置 -73.10
前側主点位置-456.73
後側主点位置-352.93

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 151.03 88.61 -3.87 -69.64
2 10 -100.02 4.87 3.44 0.74
3 13 -557.05 80.59 -26.25 -100.65

単レンズデータ
レンズ 始面 焦点距離
1 1 194.67
2 3 136.61
3 5 -145.20
4 7 -107.93
5 8 101.54
6 10 147.94
7 11 -59.09
8 14 -46.46
9 15 35.38
10 17 47.02
11 18 -31.07
12 20 -45.16
13 23 24.68
14 24 -29.40
15 26 -62.32
16 27 56.25
17 29 106.68
18 31 0.00
Aspheric data 6th surface
K = 1.38187e + 000 B = 1.48156e-008 C = -6.46138e-012 D = 1.87902e-015
E = -1.34902e-018

8th surface (diffractive surface)
C1 = -5.59649e-005 C2 = -1.39074e-008 C3 = 8.27359e-012 C4 = -2.27361e-014
C5 = 1.55673e-017

Various data

Focal length 392.19
F number 4.12
Half angle of view (degrees) 3.16
Statue height 21.64
Total lens length 262.18
BF 63.27

d 9 26.13
d12 22.72

Entrance pupil position 519.88
Exit pupil position -73.10
Front principal point position -456.73
Rear principal point position -352.93

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 151.03 88.61 -3.87 -69.64
2 10 -100.02 4.87 3.44 0.74
3 13 -557.05 80.59 -26.25 -100.65

Single lens Data lens Start surface Focal length
1 1 194.67
2 3 136.61
3 5 -145.20
4 7 -107.93
5 8 101.54
6 10 147.94
7 11 -59.09
8 14 -46.46
9 15 35.38
10 17 47.02
11 18 -31.07
12 20 -45.16
13 23 24.68
14 24 -29.40
15 26 -62.32
16 27 56.25
17 29 106.68
18 31 0.00

[数値実施例2]
単位 mm

面データ
面番号 r d nd νd 有効径
1* 94.907 17.00 1.48749 70.2 95.20
2 -2762.889 21.51 93.79
3 95.584 14.93 1.49700 81.5 76.59
4 -187.814 0.13 74.44
5 -181.884 3.90 1.77250 49.6 74.43
6 294.362 15.37 69.77
7 77.931 2.85 1.78590 44.2 57.32
8(回折) 39.096 10.62 1.48749 70.2 52.21
9 116.147 (可変) 50.48
10 188.678 2.87 1.80809 22.8 35.18
11 -596.641 1.80 1.83400 37.2 34.44
12 65.402 (可変) 32.78
13(絞り) ∞ 10.55 26.47
14 59.928 1.30 1.84666 23.9 25.68
15 24.737 5.21 1.67300 38.1 25.22
16 1725.376 0.50 25.17
17 57.688 3.79 1.84666 23.9 25.30
18 -133.427 1.30 1.81600 46.6 24.95
19 29.867 3.81 24.07
20 -68.339 1.30 1.81600 46.6 24.14
21 100.805 1.36 25.30
22 ∞ 0.00 25.27
23 53.488 9.28 1.61340 44.3 26.72
24 -21.712 1.80 1.59282 68.6 27.46
25 93.003 1.38 29.47
26 320.402 1.80 1.80809 22.8 29.82
27 46.456 4.87 1.65412 39.7 31.04
28 -312.497 0.15 31.76
29 65.840 4.45 1.63980 34.5 33.39
30 -283.057 2.38 33.64
31 ∞ 2.00 1.51633 64.1 34.06
32 ∞ 34.25
像面 ∞
[Numerical Example 2]
Unit mm

Surface data surface number rd nd νd Effective diameter
1 * 94.907 17.00 1.48749 70.2 95.20
2 -2762.889 21.51 93.79
3 95.584 14.93 1.49700 81.5 76.59
4 -187.814 0.13 74.44
5 -181.884 3.90 1.77250 49.6 74.43
6 294.362 15.37 69.77
7 77.931 2.85 1.78590 44.2 57.32
8 (Diffraction) 39.096 10.62 1.48749 70.2 52.21
9 116.147 (variable) 50.48
10 188.678 2.87 1.80809 22.8 35.18
11 -596.641 1.80 1.83400 37.2 34.44
12 65.402 (variable) 32.78
13 (Aperture) ∞ 10.55 26.47
14 59.928 1.30 1.84666 23.9 25.68
15 24.737 5.21 1.67300 38.1 25.22
16 1725.376 0.50 25.17
17 57.688 3.79 1.84666 23.9 25.30
18 -133.427 1.30 1.81600 46.6 24.95
19 29.867 3.81 24.07
20 -68.339 1.30 1.81600 46.6 24.14
21 100.805 1.36 25.30
22 ∞ 0.00 25.27
23 53.488 9.28 1.61340 44.3 26.72
24 -21.712 1.80 1.59282 68.6 27.46
25 93.003 1.38 29.47
26 320.402 1.80 1.80809 22.8 29.82
27 46.456 4.87 1.65412 39.7 31.04
28 -312.497 0.15 31.76
29 65.840 4.45 1.63980 34.5 33.39
30 -283.057 2.38 33.64
31 ∞ 2.00 1.51633 64.1 34.06
32 ∞ 34.25
Image plane ∞

非球面データ
第1面
K = -1.05229e-002 B = -7.55660e-009 C = 5.97002e-013 D = 9.89658e-017
E = 1.12786e-019

第8面(回折面)
C1 = -6.13697e-005 C2 = -8.78881e-009 C3 = -1.00912e-011
C4 = 2.05921e-015
C5 = 9.82979e-020

各種データ

焦点距離 392.19
Fナンバー 4.12
半画角(度) 3.16
像高 21.64
レンズ全長 261.26
BF 63.27

d 9 27.06
d12 22.72

入射瞳位置 521.30
射出瞳位置 -74.49
前側主点位置-438.60
後側主点位置-352.93

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 164.78 86.32 -22.30 -77.32
2 10 -119.44 4.67 3.92 1.31
3 13 -577.30 81.23 -31.35 -107.65

単レンズデータ
レンズ 始面 焦点距離
1 1 188.59
2 3 129.72
3 5 -145.01
4 7 -103.16
5 8 115.66
6 10 177.68
7 11 -70.59
8 14 -50.61
9 15 37.25
10 17 48.01
11 18 -29.80
12 20 -49.74
13 23 26.42
14 24 -29.52
15 26 -67.44
16 27 62.16
17 29 83.91
18 31 0.00
Aspheric data 1st surface
K = -1.05229e-002 B = -7.55660e-009 C = 5.97002e-013 D = 9.89658e-017
E = 1.12786e-019

8th surface (diffractive surface)
C1 = -6.13697e-005 C2 = -8.78881e-009 C3 = -1.00912e-011
C4 = 2.05921e-015
C5 = 9.82979e-020

Various data

Focal length 392.19
F number 4.12
Half angle of view (degrees) 3.16
Statue height 21.64
Total lens length 261.26
BF 63.27

d 9 27.06
d12 22.72

Entrance pupil position 521.30
Exit pupil position -74.49
Front principal point position -438.60
Rear principal point position -352.93

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 164.78 86.32 -22.30 -77.32
2 10 -119.44 4.67 3.92 1.31
3 13 -577.30 81.23 -31.35 -107.65

Single lens Data lens Start surface Focal length
1 1 188.59
2 3 129.72
3 5 -145.01
4 7 -103.16
5 8 115.66
6 10 177.68
7 11 -70.59
8 14 -50.61
9 15 37.25
10 17 48.01
11 18 -29.80
12 20 -49.74
13 23 26.42
14 24 -29.52
15 26 -67.44
16 27 62.16
17 29 83.91
18 31 0.00

L1:第1レンズ群 L2:第2レンズ群 L3:第3レンズ群
Ldoe:回折光学素子 Lanm:異常部分分散硝材を用いた物体側から2番目の正レンズ
Lfo:フォーカスレンズ群 LIS:防振レンズ群 asph:非球面 S:開口絞り
L1: First lens group L2: Second lens group L3: Third lens group
Ldoe: Diffractive optical element L anm : Second positive lens from the object side using anomalous partial dispersion glass
Lfo: Focus lens group LIS: Anti-vibration lens group asph: Aspheric surface S: Aperture stop

Claims (9)

物体側から像側へ順に、正の屈折力の第1レンズ群、無限遠物体から至近距離物体へのフォーカスに際して光軸上を像側に移動する負の屈折力の第2レンズ群、開口絞り、第3レンズ群より構成される撮像光学系において、
前記第1レンズ群は、回折光学素子と、非球面形状のレンズ面を含む非球面レンズを有し、
前記非球面形状のレンズ面の有効半径をhamax
前記非球面形状のレンズ面が光軸と交わる点を原点とし、前記非球面形状のレンズ面の有効半径hamaxにおける位置から、原点を通り光軸に対し垂直な平面までの距離をxb、
前記非球面形状のレンズ面の有効半径hamaxの半分(hamax/2)における位置から原点を通り光軸に対し垂直な平面までの距離をxa、
前記原点と前記非球面形状のレンズ面の前記有効半径hamaxの半分(hamax/2)における位置を通過する仮想球面の半径をRとし、半径RがR=(4*xa2+ hamax 2)/(8*xa)を満足し、
前記仮想球面の有効半径hamaxにおける位置から原点を通り、光軸に対し垂直な平面までの距離をxb’とし、前記非球面形状のレンズ面が物体側に凸形状の場合はxb’=R-√(R2-hamax 2)((凹形状の場合はxb’=R+√(R2-hamax 2)となる))を満足し、
回折面を含んだ前記回折光学素子の全体の焦点距離をfgdoe、
前記回折光学素子から回折面を除いた屈折部分のみでの焦点距離をfg、
前記回折光学素子の回折面における焦点距離fdoe、
無限遠物体にフォーカスしているときの全系の焦点距離をf、
レンズ全長をLとし、
前記非球面レンズの非球面形状のレンズ面の有効半径における光軸方向の非球面量ΔdbA、
前記回折光学素子の回折面における非球面成分量を表す焦点距離ΔdbDを、
ΔdbA=xb-xb’
ΔdbD=(fgdoe-fg)-fdoe
としたとき、
1.00×10-6 <|ΔdbA/ΔdbD |<4.30×10-6
5.0<|(fdoe/f)*(L/f)|<20.0
なる条件式を満足することを特徴とする撮像光学系。
First lens group with positive refractive power in order from the object side to the image side, second lens group with negative refractive power that moves to the image side on the optical axis when focusing from an object at infinity to a close object, aperture stop In the imaging optical system composed of the third lens group,
The first lens group includes a diffractive optical element and an aspheric lens including an aspheric lens surface,
The effective radius of the aspheric lens surface is hamax ,
The point where the aspherical lens surface intersects the optical axis is the origin, and the distance from the position at the effective radius hamax of the aspherical lens surface to the plane passing through the origin and perpendicular to the optical axis is xb,
The distance from the position at half the effective radius ha max ( hamax / 2) of the aspherical lens surface to the plane passing through the origin and perpendicular to the optical axis is xa,
Let R be the radius of the phantom spherical surface passing through the origin and the half of the effective radius ha max (h amax / 2) of the aspheric lens surface, and the radius R is R = (4 * xa 2 + ha max 2 ) / (8 * xa)
The distance from the position at the effective radius ha max of the virtual spherical surface to the plane passing through the origin and perpendicular to the optical axis is xb ′, and xb ′ = R when the aspherical lens surface is convex on the object side -√ (R 2 -h amax 2 ) ((xb '= R + √ (R 2 -h amax 2 ) for concave shape))
Fgdoe the overall focal length of the diffractive optical element including the diffractive surface,
The focal length of only the refractive part excluding the diffraction surface from the diffractive optical element is fg,
Focal length fdoe at the diffractive surface of the diffractive optical element,
The focal length of the entire system when focusing on an object at infinity is f,
Let the total lens length be L,
An aspherical amount ΔdbA in the optical axis direction at an effective radius of the aspherical lens surface of the aspherical lens,
Focal length ΔdbD representing the amount of aspheric component on the diffractive surface of the diffractive optical element
ΔdbA = xb-xb '
ΔdbD = (fgdoe-fg) -fdoe
When
1.00 × 10 -6 <| ΔdbA / ΔdbD | <4.30 × 10 -6
5.0 <| (fdoe / f) * (L / f) | <20.0
An imaging optical system that satisfies the following conditional expression:
前記非球面形状のレンズ面は、前記回折光学素子の回折面よりも物体側に配置されており、
前記非球面形状のレンズ面に入射する軸上近軸光線の光軸からの高さをhasph
前記非球面形状のレンズ面に入射する瞳近軸光線の光軸からの高さをhbasph
前記回折光学素子の回折面に入射する軸上近軸光線の光軸からの高さをhdoe
前記回折光学素子の回折面に入射する瞳近軸光線の光軸からの高さをhbdoe
前記非球面形状のレンズ面と前記回折光学素子の回折面との光軸上の距離をLadとするとき、
0.70<|hasph/hbasph|<1.00
0.85<|hdoe/hbdoe|<1.30
0.01<|Lad/f|<0.30
なる条件式を満足することを特徴とする請求項1に記載の撮像光学系。
The aspherical lens surface is disposed closer to the object side than the diffractive surface of the diffractive optical element,
The height from the optical axis of the on-axis paraxial ray incident on the aspherical lens surface is asph ,
Hb asph is the height from the optical axis of the paraxial ray of the pupil incident on the aspherical lens surface,
The height from the optical axis of the on-axis paraxial ray incident on the diffraction surface of the diffractive optical element is h doe ,
Hb doe is the height from the optical axis of the paraxial ray of the pupil incident on the diffractive surface of the diffractive optical element,
When the distance on the optical axis between the aspheric lens surface and the diffractive surface of the diffractive optical element is Lad,
0.70 <| h asph / hb asph | <1.00
0.85 <| h doe / hb doe | <1.30
0.01 <| Lad / f | <0.30
2. The imaging optical system according to claim 1, wherein the following conditional expression is satisfied.
前記非球面形状のレンズ面の非球面形状は、半径方向に中心部から周辺部に向けて連続変化しており、且つ、周辺部で負の屈折力を強めることを特徴とする請求項1又は2に記載の撮像光学系。   The aspherical shape of the aspherical lens surface is continuously changing in the radial direction from the center to the periphery, and the negative refractive power is increased at the periphery. The imaging optical system according to 2. 前記第1レンズ群の物体側から数えて2番目のレンズは正レンズであり、
前記正レンズの材料のアッベ数をνdanm
軸上近軸光線が前記正レンズの物体側のレンズ面を通過する際の光軸からの高さをhanm
瞳近軸光線が前記正レンズの物体側のレンズ面を通過する際の光軸からの高さをhbanm
前記正レンズの焦点距離をfanmとするとき、
70<νdanm<100
0.70<|hanm/hbanm|<0.90
0.10<fanm/f<0.50
なる条件式を満足することを特徴とする請求項1乃至3のいずれか1項に記載の撮像光学系。
The second lens counting from the object side of the first lens group is a positive lens,
The Abbe number of the material of the positive lens is νd anm ,
The height from the optical axis when the axial paraxial ray passes through the object-side lens surface of the positive lens is h anm ,
Hb anm , the height from the optical axis when the pupil paraxial ray passes through the object-side lens surface of the positive lens,
When the focal length of the positive lens is fanm ,
70 <νd anm <100
0.70 <| h anm / hb anm | <0.90
0.10 <f anm /f<0.50
4. The imaging optical system according to claim 1, wherein the following conditional expression is satisfied.
物体側から像側へ順に、前記第1レンズ群は正レンズ、正レンズ、非球面形状のレンズ面を有する負レンズ、負レンズと正レンズを接合し、接合面に回折光学部を形成した接合レンズよりなることを特徴とする請求項1乃至4のいずれか1項の撮像光学系。   In order from the object side to the image side, the first lens group includes a positive lens, a positive lens, a negative lens having an aspherical lens surface, a negative lens and a positive lens cemented, and a cemented optical unit formed on the cemented surface. 5. The imaging optical system according to claim 1, comprising a lens. 物体側から像側へ順に、前記第1レンズ群は非球面形状のレンズ面を有する正レンズ、正レンズ、負レンズ、負レンズと正レンズを接合し、接合面に回折光学部を形成した接合レンズよりなることを特徴とする請求項1乃至4のいずれか1項の撮像光学系。   In order from the object side to the image side, the first lens unit includes a positive lens having an aspheric lens surface, a positive lens, a negative lens, a negative lens and a positive lens, and a cemented surface in which a diffractive optical part is formed. 5. The imaging optical system according to claim 1, comprising a lens. 前記第2レンズ群は正レンズと負レンズを接合した接合レンズより構成されることを特徴とする請求項1乃至6のいずれか1項の撮像光学系。   7. The imaging optical system according to claim 1, wherein the second lens group includes a cemented lens in which a positive lens and a negative lens are cemented. 前記第3レンズ群は、光軸に対して垂直方向の成分を持つ方向に移動して結像位置を光軸に対して垂直方向に移動させるレンズユニットを有することを特徴とする請求項1乃至7のいずれか1項の撮像光学系。   The third lens group includes a lens unit that moves in a direction having a component perpendicular to the optical axis to move an imaging position in a direction perpendicular to the optical axis. 7. The imaging optical system according to any one of 7 above. 請求項1乃至8のいずれか1項の撮像光学系と該撮像光学系によって形成された像を受光する撮像素子とを有することを特徴とする撮像装置。   9. An imaging apparatus comprising: the imaging optical system according to claim 1; and an imaging element that receives an image formed by the imaging optical system.
JP2013059712A 2013-03-22 2013-03-22 Imaging optical system and imaging apparatus having the same Active JP6192325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013059712A JP6192325B2 (en) 2013-03-22 2013-03-22 Imaging optical system and imaging apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013059712A JP6192325B2 (en) 2013-03-22 2013-03-22 Imaging optical system and imaging apparatus having the same

Publications (3)

Publication Number Publication Date
JP2014186101A true JP2014186101A (en) 2014-10-02
JP2014186101A5 JP2014186101A5 (en) 2016-05-12
JP6192325B2 JP6192325B2 (en) 2017-09-06

Family

ID=51833765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013059712A Active JP6192325B2 (en) 2013-03-22 2013-03-22 Imaging optical system and imaging apparatus having the same

Country Status (1)

Country Link
JP (1) JP6192325B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018146879A (en) * 2017-03-08 2018-09-20 キヤノン株式会社 Optical system and imaging apparatus having the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090271354A1 (en) * 2006-10-05 2009-10-29 International Business Machines Corporation Method and system for obtaining a combination of faulty parts from a dispersed parts tree
JP2010145797A (en) * 2008-12-19 2010-07-01 Canon Inc Photographic optical system
JP2012002999A (en) * 2010-06-16 2012-01-05 Canon Inc Photographic optical system and imaging device having the same
JP2012189679A (en) * 2011-03-09 2012-10-04 Canon Inc Photographic optical system and imaging device including the same
JP2012242742A (en) * 2011-05-23 2012-12-10 Canon Inc Photographing optical system and imaging apparatus with the same
JP2013025087A (en) * 2011-07-21 2013-02-04 Canon Inc Photographic optical system and imaging apparatus having the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090271354A1 (en) * 2006-10-05 2009-10-29 International Business Machines Corporation Method and system for obtaining a combination of faulty parts from a dispersed parts tree
JP2010145797A (en) * 2008-12-19 2010-07-01 Canon Inc Photographic optical system
JP2012002999A (en) * 2010-06-16 2012-01-05 Canon Inc Photographic optical system and imaging device having the same
JP2012189679A (en) * 2011-03-09 2012-10-04 Canon Inc Photographic optical system and imaging device including the same
JP2012242742A (en) * 2011-05-23 2012-12-10 Canon Inc Photographing optical system and imaging apparatus with the same
JP2013025087A (en) * 2011-07-21 2013-02-04 Canon Inc Photographic optical system and imaging apparatus having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018146879A (en) * 2017-03-08 2018-09-20 キヤノン株式会社 Optical system and imaging apparatus having the same

Also Published As

Publication number Publication date
JP6192325B2 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
US8654456B2 (en) Photographic optical system and image pickup apparatus including the photographic optical system
US7133221B2 (en) Lens system and optical device having the same
JP5366673B2 (en) Optical system and optical apparatus having the same
JP2002244044A (en) Zoom lens and optical instrument using it
JP5900057B2 (en) OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP2019008047A (en) Optical system and imaging apparatus having the same
CN111812800B (en) Optical system and imaging device with optical system
JP5641461B2 (en) Zoom optical system and imaging apparatus having the same
JP2014109700A (en) Image capturing optical system and image capturing device having the same
JP6661363B2 (en) Optical system and optical device using diffractive optical element
JP5935879B2 (en) Zoom lens and optical device
JP2008008981A (en) Finder optical system and optical apparatus with the same
JP6634742B2 (en) Imaging lens and imaging system
JP6961366B2 (en) Optical system and imaging device with it
JP2004252101A (en) Super wide angle lens
JP6192325B2 (en) Imaging optical system and imaging apparatus having the same
JP6579843B2 (en) Optical system and imaging apparatus
JP4323595B2 (en) Imaging optical system and camera
WO2015163368A1 (en) Variable power optical system, optical device, and method of manufacturing variable power optical system
JP6112936B2 (en) Optical system and optical equipment
JP4650715B2 (en) Front teleconverter lens
WO2014069446A1 (en) Variable magnification optical system, optical device, and production method for variable magnification optical system
JP2004258238A (en) Catadioptric afocal converter
JP2004126397A (en) Telephotographic lens
JP7159499B2 (en) converter lens, interchangeable lens, and imaging device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170808

R151 Written notification of patent or utility model registration

Ref document number: 6192325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03