JP2010145797A - Photographic optical system - Google Patents

Photographic optical system Download PDF

Info

Publication number
JP2010145797A
JP2010145797A JP2008323639A JP2008323639A JP2010145797A JP 2010145797 A JP2010145797 A JP 2010145797A JP 2008323639 A JP2008323639 A JP 2008323639A JP 2008323639 A JP2008323639 A JP 2008323639A JP 2010145797 A JP2010145797 A JP 2010145797A
Authority
JP
Japan
Prior art keywords
group
lens
optical system
refractive power
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008323639A
Other languages
Japanese (ja)
Other versions
JP5371412B2 (en
Inventor
Kenji Obe
健司 大部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008323639A priority Critical patent/JP5371412B2/en
Publication of JP2010145797A publication Critical patent/JP2010145797A/en
Application granted granted Critical
Publication of JP5371412B2 publication Critical patent/JP5371412B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a small telephoto lens favorably corrected in the aberration at a reference wavelength, axial chromatic aberration and chromatic aberration of magnification. <P>SOLUTION: An optical system is provided, comprising a first group having a positive refractive power, a second group that moves on focusing, and a third group including a diaphragm, wherein the first group has one aspheric face where the negative refractive power increases in the peripheral part, and the third group includes a first lens having a negative refractive power. The focal length of the whole optical system, focal length of the first group, Fno of the whole optical system, aspheric quantity, partial dispersion ratio, Abbe number or the like of the first lens are appropriately set. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、最も物体側に正の屈折力を持つレンズ群を備える光学系であって、特に撮像光学系に好適な光学系に関する。   The present invention relates to an optical system including a lens group having a positive refractive power closest to the object side, and particularly to an optical system suitable for an imaging optical system.

一般的に、望遠レンズでは焦点距離が伸びるに従って、軸上色収差が増大する傾向がある。また、全長が小型化するに従って軸上色収差及び倍率色収差が増大する傾向がある。そこで、特許文献1、2では、これらの色収差を補正するために、蛍石等の異常部分分散性を持った低分散の正レンズと高分散の負レンズとを組み合わせて、色収差の補正を行った望遠レンズが開示されている。   Generally, in a telephoto lens, axial chromatic aberration tends to increase as the focal length increases. Moreover, there is a tendency that axial chromatic aberration and lateral chromatic aberration increase as the overall length becomes smaller. Therefore, in Patent Documents 1 and 2, in order to correct these chromatic aberrations, a low-dispersion positive lens having anomalous partial dispersion such as fluorite and a high-dispersion negative lens are combined to correct chromatic aberration. A telephoto lens is disclosed.

しかしながら、蛍石等の異常部分分散ガラスは色収差の補正に関して効果がある反面で、比重が他の低分散ガラスに比べて高いため、光学系が重くなってしまうという欠点がある。   However, abnormal partial dispersion glass such as fluorite is effective in correcting chromatic aberration, but has a disadvantage that the optical system becomes heavy because the specific gravity is higher than other low dispersion glasses.

特許文献3、4では、これらの欠点を補うために、回折光学素子を用いて色収差を補正している。例えば、特許文献3では、第1群中に正の屈折力を有する回折光学素子と非球面形状を持たせて、レンズ枚数が4枚と少なく安価ながら、色収差を小さく抑えた望遠レンズを得ている。また、特許文献4では、屈折光学素子と回折光学素子を組み合わせて、大口径比で色収差をはじめとした結像性能を向上した望遠レンズを得ている。
特開平08−327897号公報 特開2004−258571号公報 特開平10−186227号公報 特開2002−072082号公報
In Patent Documents 3 and 4, chromatic aberration is corrected using a diffractive optical element in order to compensate for these drawbacks. For example, in Patent Document 3, a diffractive optical element having a positive refractive power and an aspherical shape are provided in the first lens unit, and a telephoto lens with a small chromatic aberration is obtained while the number of lenses is as small as four and inexpensive. Yes. In Patent Document 4, a telephoto lens having a large aperture ratio and improved imaging performance including chromatic aberration is obtained by combining a refractive optical element and a diffractive optical element.
Japanese Patent Laid-Open No. 08-327897 JP 2004-258571 A Japanese Patent Laid-Open No. 10-186227 JP 2002-072082 A

しかしながら、上述の特許文献1に開示された従来技術では、色収差は良好に補正されているが、望遠比が1.0程度と大きくなってしまっている。特許文献2に開示された従来技術では、倍率色収差の補正が十分でなく、Fnoが4に対して望遠比は0.7程度となっておりまだ小型化の余地を残している。特許文献3に開示された従来技術では、球面収差や非点収差、色収差の補正が十分でなく、更にはFnoが4に対して望遠比が0.8程度と大きくなってしまっている。特許文献4に開示された従来技術では、Fnoが4に対して望遠比が0.65程度となっておりまだ小型化の余地を残している。   However, in the conventional technique disclosed in Patent Document 1 described above, chromatic aberration is corrected well, but the telephoto ratio is as large as about 1.0. In the prior art disclosed in Patent Document 2, the chromatic aberration of magnification is not sufficiently corrected, and the telephoto ratio is about 0.7 with respect to Fno of 4, and there is still room for downsizing. In the prior art disclosed in Patent Document 3, correction of spherical aberration, astigmatism, and chromatic aberration is insufficient, and further, the telephoto ratio is as large as about 0.8 for Fno of 4. In the prior art disclosed in Patent Document 4, the telephoto ratio is about 0.65 with respect to Fno of 4, and there is still room for downsizing.

本発明はこれら問題点に鑑みてなされたものであり、基準波長の収差と軸上色収差、倍率色収差がともに良好に補正された小型な光学系を得ることを目的とする。   The present invention has been made in view of these problems, and an object of the present invention is to obtain a compact optical system in which both the aberration of the reference wavelength, the longitudinal chromatic aberration, and the lateral chromatic aberration are well corrected.

上記課題を解決するために、本発明の光学系は、物体側から順に、正の屈折力を有する第1群、フォーカスの際に光軸方向に移動する第2群、絞りを含む第3群を有する光学系であって、
前記第1群が、周辺部で負の屈折力が強くなる非球面を1面有し、前記第3群が、負の屈折力を有する第1レンズを有しており、
前記光学系全系の焦点距離をf、前記第1群の焦点距離をf1、前記光学系全系のFnoをFno、前記第1群中の非球面の有効端部における前記非球面と近軸球面との光軸方向の離れ量をDas(物体側から像側に向かう方向を正とする)、前記第1レンズのg線、F線、C線に対する屈折率をng、nF、nC、(ng−nF)/(nF−nC)で表される部分分散をθgF、前記第1レンズのアッベ数をvd、前記第1レンズの屈折力(複数枚ある場合は総和)をφUDRとするとき、
0.03<f1/f・Fno<1.30
−0.03<Das/f<−0.001
θgF+1.3×10−3・vd>0.625
vd>60
−0.8<1/(φUDR・f)・Fno<0
を満足することを特徴としている。
In order to solve the above problems, an optical system according to the present invention includes, in order from the object side, a first group having positive refractive power, a second group that moves in the optical axis direction during focusing, and a third group that includes a stop. An optical system having
The first group has one aspherical surface whose negative refractive power is increased at the periphery, and the third group has a first lens having negative refractive power,
The focal length of the entire optical system is f, the focal length of the first group is f1, Fno of the entire optical system is Fno, and the aspheric surface and paraxial at the effective end of the aspheric surface in the first group. The distance from the spherical surface in the optical axis direction is Das (the direction from the object side to the image side is positive), and the refractive indices of the first lens with respect to g-line, F-line, and C-line are ng, nF, nC, ( ng−nF) / (nF−nC) when the partial dispersion is θgF, the Abbe number of the first lens is vd, and the refractive power of the first lens (the sum in the case of multiple lenses) is φUDR,
0.03 <f1 / f · Fno <1.30
−0.03 <Das / f <−0.001
θgF + 1.3 × 10−3 · vd> 0.625
vd> 60
−0.8 <1 / (φUDR · f) · Fno <0
It is characterized by satisfying.

本発明によれば基準波長の収差と軸上色収差、倍率色収差がともに良好に補正された、小型な望遠レンズを得ることができる。   According to the present invention, it is possible to obtain a small telephoto lens in which both the reference wavelength aberration, the axial chromatic aberration, and the lateral chromatic aberration are well corrected.

本発明は、最も物体側(拡大側、拡大共役側、前側)に配置された正の屈折力の第1レンズ群を持つ光学系に関する発明であり、特に、銀塩写真カメラ、デジタル一眼レフカメラ等の撮像光学系に好適な発明である。その中でも、基準波長の収差や色収差などの結像性能を良好にした望遠型の撮影光学系に対して特に好適である。   The present invention relates to an optical system having a first lens unit having a positive refractive power disposed on the most object side (enlargement side, enlargement conjugate side, front side), and in particular, a silver halide photographic camera and a digital single-lens reflex camera. It is an invention suitable for an imaging optical system. Among them, it is particularly suitable for a telephoto imaging optical system that has good imaging performance such as aberration of reference wavelength and chromatic aberration.

以下に記載する各実施例に示した光学系は、物体側から像側(縮小側、縮小共役側、後側)に向かって順に、正のパワー(屈折力)を有する第1群、フォーカスの際に光軸方向に移動する(合焦動作を行う際に可動な)第2群、絞りを有する第3群を有している。ここで、以下に記載した実施例1、2、3においては、第2群は負のパワー(屈折力)を有しており、第3群も負のパワー(屈折力)を有している。しかしながら、第2群と第3群については、いずれか一つは正のパワー(屈折力)を有していても構わない。但し、光学系の全長を短縮する際に、光学系全体をより強いテレフォトタイプにした方が有利であるため、第3群は負の屈折力を有する構成とした方が好ましい。   The optical system shown in each embodiment described below includes, in order from the object side to the image side (reduction side, reduction conjugate side, rear side), a first group having positive power (refractive power), The second group moves in the optical axis direction (movable when performing the focusing operation), and the third group has a stop. Here, in Examples 1, 2, and 3 described below, the second group has negative power (refractive power), and the third group also has negative power (refractive power). . However, one of the second group and the third group may have positive power (refractive power). However, when shortening the total length of the optical system, it is advantageous to make the entire optical system a stronger telephoto type. Therefore, the third group is preferably configured to have negative refractive power.

本発明の光学系は、光学系全系の焦点距離をf、第1群の焦点距離をf1、光学系全系のFnoをFnoとするとき、
0.03<f1/f・Fno<1.30 ・・・(1)
を満足することが特徴である。条件式(1)は、第1群の焦点距離を規定したものである。上限値を超える(上回る)と、全長が大きく(光軸方向の長さが長く)なってしまうため好ましくない。また、下限値を超える(下回る)と第1群の正レンズの曲率がきつくなりすぎてしまうため、収差発生量が大きくなってしまったり、正レンズの加工が困難になったり、また正レンズの製造敏感度が高くなったりしてしまうため好ましくない。また、これらのf1、f、Fnoは以下の条件式(1a)を満足すると更に好ましい。
In the optical system of the present invention, when the focal length of the entire optical system is f, the focal length of the first group is f1, and Fno of the entire optical system is Fno,
0.03 <f1 / f · Fno <1.30 (1)
It is the feature to satisfy. Conditional expression (1) defines the focal length of the first group. If the upper limit is exceeded (exceeded), the total length becomes large (the length in the optical axis direction becomes long), which is not preferable. If the lower limit is exceeded (below), the curvature of the positive lens in the first lens group becomes too tight, resulting in an increased amount of aberration, making it difficult to process the positive lens, This is not preferable because the manufacturing sensitivity increases. Further, it is more preferable that these f1, f and Fno satisfy the following conditional expression (1a).

0.95<f1/f・Fno<1.30 ・・・(1a)
また、本実施例の光学系は、第1群中に周辺部で負の屈折力が強くなる(正の屈折力が弱くなる)非球面を少なくとも1面有している。ここで、この第1群中の非球面の有効端部において、この非球面と近軸球面との光軸方向の離れ量(ズレ、非球面量)をDas(物体側から像側に向かう方向を正とする)とするとき、
−0.03<Das/f<−0.001 ・・・(2)
を満足することを特徴としている。この非球面と近軸球面との、物体側から像側への離れ量(物体側から像側へ向かう方向を正とする)は、光軸方向(光軸と平行な方向)における離れ量(2つの面の距離、差)のことである。
0.95 <f1 / f · Fno <1.30 (1a)
In addition, the optical system of the present example has at least one aspheric surface in the first group that has a strong negative refractive power (a weak positive refractive power) at the periphery. Here, at the effective end of the aspheric surface in the first group, the distance (deviation, aspheric amount) between the aspheric surface and the paraxial spherical surface in the optical axis direction is expressed as Das (direction from the object side to the image side). Is positive)
−0.03 <Das / f <−0.001 (2)
It is characterized by satisfying. The distance between the aspherical surface and the paraxial spherical surface from the object side to the image side (the direction from the object side to the image side is positive) is the distance in the optical axis direction (direction parallel to the optical axis) ( The distance between two surfaces.

この条件式(2)はレンズ全長を短くしたときに第1群の屈折力が強くなることにより発生する球面収差やコマ収差、像面湾曲を補正するために必要な非球面の条件を規定したものである。上限値を超えると球面収差やコマ収差、像面湾曲が補正不足になる。下限値を超えると非球面がきつくなりすぎ、球面収差やコマ収差、像面湾曲が補正過剰なるので好ましくない。   Conditional expression (2) defines the aspherical conditions necessary for correcting spherical aberration, coma aberration, and field curvature, which are generated by increasing the refractive power of the first group when the total lens length is shortened. Is. If the upper limit is exceeded, spherical aberration, coma aberration, and field curvature will be insufficiently corrected. Exceeding the lower limit is not preferable because the aspherical surface becomes too tight, and spherical aberration, coma aberration, and field curvature are overcorrected.

本実施例の光学系は、更に好ましくは
−0.01<Das/f<−0.001 ・・・(2a)
を満足すると尚良い。
The optical system of the present embodiment is more preferably -0.01 <Das / f <-0.001 (2a)
It is still better to satisfy.

また、この非球面は、物体側に凸の形状(凸形状)を有する面であることが尚望ましい。逆に、物体側の凹面上に前記非球面を導入すると、凹面が周辺部で更にきつい形状になるため、コマ収差を十分に低減できなくなってしまう。この非球面は、像側に凸の形状を有する面であっても構わない。   The aspheric surface is preferably a surface having a convex shape (convex shape) on the object side. On the other hand, when the aspherical surface is introduced on the concave surface on the object side, the concave surface has a tighter shape at the peripheral portion, so that the coma aberration cannot be sufficiently reduced. This aspherical surface may be a surface having a convex shape on the image side.

また、本発明の各実施例は、第1群中に正のパワー(屈折力)を有する回折光学素子を有することが望ましい。   In addition, each embodiment of the present invention preferably includes a diffractive optical element having positive power (refractive power) in the first group.

次に、本発明の各実施例において、第3群が負の屈折力の光学素子UD(第1レンズ)を有しており、この光学素子UDが以下の条件を満足することを特徴としている。ここで、この条件とは、光学素子UD(第1レンズ)のg線、F線、C線の屈折率における屈折率をng,nF,nC、(ng−nF)/(nF−nC)で表される部分分散をθgF、光学素子UDのアッベ数をvd、光学素子UDの屈折力(複数枚ある場合は総和)をφUDRとする。このとき、上記の条件は、
θgF+1.3×10−3・vd>0.625 ・・・(3)
vd>60 ・・・(4)
−0.8<1/(φUDR・f)・Fno<0 ・・・(5)
であり、これらを満足することが望ましい。
Next, in each embodiment of the present invention, the third group has an optical element UD (first lens) having a negative refractive power, and this optical element UD satisfies the following conditions. . Here, this condition means that the refractive index of the refractive index of the optical element UD (first lens) for the g-line, F-line, and C-line is ng, nF, nC, (ng-nF) / (nF-nC). The expressed partial dispersion is θgF, the Abbe number of the optical element UD is vd, and the refractive power of the optical element UD (the sum in the case where there are a plurality of optical elements) is φUDR. At this time, the above condition is
θgF + 1.3 × 10−3 · vd> 0.625 (3)
vd> 60 (4)
−0.8 <1 / (φUDR · f) · Fno <0 (5)
It is desirable that these be satisfied.

バックフォーカスを維持しつつ全長を短くすると、光学系の(屈折力の)非対称性が生じ(大きくなり)、画角の狭い超望遠レンズでも倍率色収差が顕著に大きくなってくる。そこで、第1群中の回折光学素子では通常オーバー側に残存する軸上色収差の2次スペクトルをアンダー側まで補正し(過補正状態にし)、通常マイナス側に残存する倍率色収差の2次スペクトルを強く補正させる必要が生じてくる。第3群中の光学素子UDは、第1群で過補正にされた軸上色収差をオーバー側に逆補正し、倍率色収差をプラス側に補正する役割を担っている。条件式(3)、(4)は光学素子UDの屈折率特性を規定したものである。いわゆる異常分散材料であることを示している。ここで、この条件式(3)、(4)で規定されたθgFやvdは、
0.700>θgF+1.3×10−3・vd>0.630 ・・・(3a)
105>vd>75 ・・・(4a)
を満足すると尚好ましい。
If the total length is shortened while maintaining the back focus, the asymmetry (refractive power) of the optical system is generated (increased), and the lateral chromatic aberration is significantly increased even in a super telephoto lens having a narrow field angle. Therefore, in the diffractive optical element in the first group, the secondary spectrum of axial chromatic aberration that normally remains on the over side is corrected to the under side (set to an overcorrected state), and the secondary spectrum of lateral chromatic aberration that normally remains on the negative side is corrected. It will be necessary to make strong corrections. The optical element UD in the third group plays a role of reversely correcting the axial chromatic aberration overcorrected in the first group to the over side and correcting the lateral chromatic aberration to the plus side. Conditional expressions (3) and (4) define the refractive index characteristics of the optical element UD. It is a so-called anomalous dispersion material. Here, θgF and vd defined by the conditional expressions (3) and (4) are
0.700> θgF + 1.3 × 10−3 · vd> 0.630 (3a)
105>vd> 75 (4a)
Is more preferable.

また、条件式(5)は異常分散材料で構成された光学素子UDの適切な屈折力を規定したものである。上限値を超えると光学素子UDの屈折力が強くなりすぎ、加工上の問題や偏心敏感度の問題が生じる。下限値を超えると光学素子UDの屈折力が弱くなり、倍率色収差を補正しきれず残存してしまう。また、本実施例の光学系は、更に好ましくは以下の条件式(5a)を満足するとよい。
−0.67<1/(φUDR・f)・Fno<−0.20 ・・・(5a)
また、本発明の実施例の第1群の中で、第1群の最も物体側の面の面頂点と第1群の最も像側の面頂点との中間点よりも物体側に存在する光学面の焦点距離をf1Fとするとき、
1.8<f/f1F<8.5 ・・・(6)
を満足すると良い。言い方を変えて、第1群の最も物体側の面の面頂点をP1F、最も像側の面頂点をP1R、P1FとP1Rの中間点をP1Mとし、P1FからP1Mまでの間に存在する光学面の集合体を1F群とし、その1F群の焦点距離をf1Fとしても良い。
Conditional expression (5) defines an appropriate refractive power of the optical element UD made of an anomalous dispersion material. If the upper limit is exceeded, the refractive power of the optical element UD becomes too strong, which causes processing problems and eccentricity sensitivity problems. When the lower limit is exceeded, the refractive power of the optical element UD becomes weak, and the lateral chromatic aberration cannot be corrected and remains. The optical system of the present embodiment more preferably satisfies the following conditional expression (5a).
−0.67 <1 / (φUDR · f) · Fno <−0.20 (5a)
Further, in the first group of the embodiment of the present invention, the optical element located on the object side of the intermediate point between the surface vertex of the surface closest to the object side of the first group and the surface vertex of the surface closest to the image side of the first group. When the focal length of the surface is f1F,
1.8 <f / f1F <8.5 (6)
It is good to be satisfied. In other words, the surface vertex of the first object side surface of the first group is P1F, the surface vertex of the most image side is P1R, the intermediate point between P1F and P1R is P1M, and the optical surface exists between P1F and P1M The 1F group may be used as the aggregate, and the focal length of the 1F group may be f1F.

この条件式(6)は、光学系全長を小型化するのに有利な第1群内の屈折力配置を規定したものである。第1群内の物体側に正の屈折力を配置することで、第1群内を望遠タイプにすることができ、全系の小型化に対して有利である。上限値を超えると第1群内の物体側の正屈折力が強くなりすぎ、加工上の問題や偏心敏感度の問題が大きくなり好ましくない。下限値を超えると第1群内の物体側の正屈折力が弱くなりすぎ、レンズ全長短縮に不利である。   Conditional expression (6) defines the refractive power arrangement in the first group that is advantageous for reducing the overall length of the optical system. By arranging positive refractive power on the object side in the first group, the first group can be made into a telephoto type, which is advantageous for downsizing of the entire system. If the upper limit is exceeded, the positive refractive power on the object side in the first group becomes too strong, which increases the processing problems and the problem of eccentricity sensitivity, which is not preferable. If the lower limit is exceeded, the positive refractive power on the object side in the first group becomes too weak, which is disadvantageous for shortening the overall lens length.

このf、f1Fは、更に好ましくは、
1.8<f/f1F<7.2 ・・・(6a)
を満足すると良い。
These f and f1F are more preferably
1.8 <f / f1F <7.2 (6a)
It is good to be satisfied.

また、第1群の中で、第1群の最も物体側の面の面頂点と第1群の最も像側の面頂点との中間点よりも像側に存在する光学面の焦点距離をf1Rとする。このとき、
−3.5<f/f1R<1.0 ・・・(7)
を満足すると良い。言い方を変えると、前述のP1MからP1Rまでの間に存在する光学面の集合体を1R群とし、その焦点距離をf1Rとしても良い。
Further, in the first group, the focal length of the optical surface existing on the image side with respect to the intermediate point between the surface vertex of the most object side surface of the first group and the surface vertex of the first image side of the first group is defined as f1R. And At this time,
-3.5 <f / f1R <1.0 (7)
It is good to be satisfied. In other words, the assembly of optical surfaces existing between P1M and P1R described above may be a 1R group, and the focal length may be f1R.

この条件式(7)は、レンズ全長を小型化するのに有利な第1群内の屈折力配置を規定したものである。第1群内の像側に負の屈折力を配置することで、第1群内を望遠タイプにすることができ、全系の小型化に対して有利である。上限値を超えると第1群内の像側の負屈折力が弱くなりすぎ、レンズ全長短縮に不利である。下限値を超えると第1群内の像側の負屈折力が強くなりすぎ、加工上の問題や偏心敏感度の問題が大きくなり好ましくない。このf、f1Rは、更に好ましくは、
−3.1<f/f1R<0.5 ・・・(7a)
を満足すると良い。
Conditional expression (7) defines a refractive power arrangement in the first lens unit that is advantageous for reducing the total lens length. By disposing negative refractive power on the image side in the first group, the first group can be made into a telephoto type, which is advantageous for downsizing of the entire system. If the upper limit is exceeded, the negative refractive power on the image side in the first group becomes too weak, which is disadvantageous for shortening the total lens length. If the lower limit is exceeded, the negative refracting power on the image side in the first group becomes too strong, which increases the processing problem and the problem of eccentricity sensitivity. These f and f1R are more preferably
-3.1 <f / f1R <0.5 (7a)
It is good to be satisfied.

また、本発明の光学系が負の屈折力を有する第2レンズを備えており、この第2レンズの焦点距離をfn、この第2レンズよりも物体側に配置された光学面の合成焦点距離をfppとするとき、
0.05<fpp/f<0.32 ・・・(8)
−1.0<fn/f ・・・(9)
を満足すると良い。
Further, the optical system of the present invention includes a second lens having a negative refractive power, and the focal length of the second lens is fn, and the combined focal length of the optical surface disposed on the object side of the second lens Let fpp be
0.05 <fpp / f <0.32 (8)
-1.0 <fn / f (9)
It is good to be satisfied.

この条件式(8)は第1群内を望遠タイプにするために好適な第1群中の物体側の正レンズ群の合成屈折力を規定したものである。条件式(9)を満足する負レンズよりも物体側で、正の屈折力を大きくすることで第1群内をより強い望遠タイプにしている。上限値を超えると全長短縮が十分に行えなくなる。下限値を超えると正レンズの曲率がきつくなりすぎ加工が困難になったり、製造敏感度が高くなりすぎたりするため、好ましくない。ここで、上述の条件式(8)、(9)それぞれは、好ましくは以下のように書き換えても良い。
0.10<fpp/f<0.30 ・・・(8a)
−0.450<fn/f<−0.120 ・・・(9a)
また、前述の正のパワー(屈折力)を有する回折光学素子の焦点距離をfDOとするとき、
20<fDO/f1<130 ・・・(10)
を満足することが望ましい。
Conditional expression (8) defines the combined refractive power of the positive lens unit on the object side in the first group, which is suitable for making the first group a telephoto type. By increasing the positive refractive power on the object side of the negative lens that satisfies the conditional expression (9), the first lens unit is made a stronger telephoto type. If the upper limit is exceeded, the overall length cannot be shortened sufficiently. Exceeding the lower limit is not preferable because the curvature of the positive lens becomes too tight and the processing becomes difficult and the manufacturing sensitivity becomes too high. Here, each of the above conditional expressions (8) and (9) may preferably be rewritten as follows.
0.10 <fpp / f <0.30 (8a)
−0.450 <fn / f <−0.120 (9a)
When the focal length of the diffractive optical element having the positive power (refractive power) is fDO,
20 <fDO / f1 <130 (10)
It is desirable to satisfy

この条件式(10)は第1群中の回折光学素子と第3群中の光学素子UDで軸上色収差と倍率色収差を補正するために好適な、第1群中の回折光学素子の適切な屈折力配置を規定したものである。上限値を超えると、軸上色収差の2次スペクトルが補正不足になり、下限値を超えると補正過剰になる。   This conditional expression (10) is suitable for correcting axial chromatic aberration and lateral chromatic aberration with the diffractive optical element in the first group and the optical element UD in the third group. It defines the refractive power arrangement. If the upper limit value is exceeded, the secondary spectrum of axial chromatic aberration will be undercorrected, and if the upper limit value is exceeded, it will be overcorrected.

同理由から更に好ましくは以下の条件式(10a)を満足するとよい。
40<fDO/f1<130 ・・・(10a)
また、前述の光学素子UD(第1レンズ)は、物体側に凹形状の面を有しており、この凹形状の面の曲率をRud1とするとき、
−0.2<Rud1/f<0.0 ・・・(11)
を満足することが望ましい。
For the same reason, the following conditional expression (10a) is more preferably satisfied.
40 <fDO / f1 <130 (10a)
The optical element UD (first lens) described above has a concave surface on the object side, and when the curvature of the concave surface is Rud1,
-0.2 <Rud1 / f <0.0 (11)
It is desirable to satisfy

この条件式(11)は光学素子UDの適切な形状を規定しているものである。上限値を超えると倍率色収差が補正不足となる。下限値を超えると光学素子UDの加工が困難になったり、偏心敏感度上の問題が生じたりしてしまうため好ましくない。この条件式(11)は、更に好ましくは以下のように書き換えても良い。
−0.15<Rud1/f<−0.01 ・・・(11a)
以下に、本発明の光学系の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。
Conditional expression (11) defines an appropriate shape of the optical element UD. If the upper limit is exceeded, lateral chromatic aberration will be undercorrected. Exceeding the lower limit value is not preferable because the processing of the optical element UD becomes difficult or a problem in the sensitivity to eccentricity occurs. This conditional expression (11) may more preferably be rewritten as follows.
−0.15 <Rud1 / f <−0.01 (11a)
Hereinafter, preferred embodiments of an optical system of the present invention will be described in detail with reference to the accompanying drawings.

以下に、図1、2、3を参照して本発明の実施例1(以下に示す数値実施例1)の光学系について説明する。ここで、図1は実施例1のレンズ断面図、図2は実施例1の無限遠物体に対して合焦した時の収差図、図3は実施例1の至近物体に対して合焦した時の収差図である。   The optical system of Example 1 (Numerical Example 1 shown below) of the present invention will be described below with reference to FIGS. Here, FIG. 1 is a lens cross-sectional view of Example 1, FIG. 2 is an aberration diagram when focused on an object at infinity of Example 1, and FIG. 3 is focused on a close object of Example 1. It is an aberration diagram at the time.

ここで、図1(図2や図3も同じ)のレンズ断面図において、Liは第i群、DFは第1の回折光学素子、DRは第2の回折光学素子、SPは絞り、ISは防振レンズ群、IPは像面をあらわしている。図中及び下記の数値実施例1(2や3も同じ)の*印は非球面位置をあらわしている。また、各収差図において、d、gは各々d線及びg線、ΔM、ΔSはメリディオナル像面、サジタル像面を表している。また、倍率色収差はg線であらわしている。   Here, in the lens cross-sectional view of FIG. 1 (the same applies to FIGS. 2 and 3), Li is the i-th group, DF is the first diffractive optical element, DR is the second diffractive optical element, SP is the stop, and IS is The anti-vibration lens group, IP, represents the image plane. In the figure and the following numerical example 1 (the same applies to 2 and 3), the * mark represents the aspherical position. In each aberration diagram, d and g represent d-line and g-line, respectively, and ΔM and ΔS represent a meridional image surface and a sagittal image surface, respectively. Further, the chromatic aberration of magnification is represented by the g-line.

以下、図1を参照して、本発明の第1の実施例による、レンズ構成について説明する。   Hereinafter, a lens configuration according to the first embodiment of the present invention will be described with reference to FIG.

図1に示す実施例1の光学系は、物体側から順に、正の屈折力を有する第1群(第1レンズ群)L1、負の屈折力を有して無限から至近へのフォーカス時に物体側から像側に移動する第2群(第2レンズ群)L2、負の屈折力を有して、絞りを有する第3群(第3レンズ群)を備えている。   The optical system of Embodiment 1 shown in FIG. 1 includes, in order from the object side, a first lens unit (first lens unit) L1 having a positive refractive power, an object having a negative refractive power, and focusing from infinity to the nearest object. A second group (second lens group) L2 moving from the image side to the image side, and a third group (third lens group) having a negative refractive power and having a stop.

L1は、物体側から順に、正レンズと正レンズの接合レンズ、正レンズと負レンズの接合レンズ、負レンズと正レンズの接合レンズを有している。L1中の正レンズと正レンズの接合レンズの物体側の面に周辺部で負の屈折力が強くなる非球面を導入し、全長短縮時に発生する球面収差やコマ収差、像面湾曲を低減(補正)している。更に、それに続く正レンズと負レンズの接合レンズの物体側の面に周辺部で負の屈折力が強くなる非球面を導入している。また、L1中最も物体側の接合レンズの接合面に、正の屈折力を有する回折光学素子DOを導入することにより、全長短縮時に発生する軸上色収差及び倍率色収差を低減(補正)している。   L1 has, in order from the object side, a positive lens and a positive lens cemented lens, a positive lens and a negative lens cemented lens, and a negative lens and a positive lens cemented lens. Introducing an aspherical surface that has a negative refractive power at the periphery on the object side surface of the cemented lens of the positive lens and the positive lens in L1 to reduce spherical aberration, coma aberration, and field curvature that occur when the total length is shortened ( Correction). Furthermore, an aspherical surface in which negative refractive power is increased at the peripheral portion is introduced to the object side surface of the subsequent cemented lens of the positive lens and the negative lens. Further, by introducing a diffractive optical element DO having a positive refractive power into the cemented surface of the cemented lens closest to the object side in L1, axial chromatic aberration and lateral chromatic aberration that occur when the overall length is shortened are reduced (corrected). .

L2は負レンズ1枚から構成されており、フォーカス時の色収差変動を小さくするために低分散な材料を用いている。   L2 is composed of a single negative lens, and uses a low-dispersion material to reduce chromatic aberration fluctuations during focusing.

L3は物体側から絞りSPを含み、絞りよりも像側に1面の非球面を有し、軸外光線高さの高くなる位置に部分分散の大きな材料からなり屈折力が大きな負レンズ(第1レンズ)UDを有している。このL3は、L1で補正しきれない基準波長の収差、倍率色収差をそれぞれ補正している。尚、回折光学素子DOの回折効率を向上させるために、光線入射角が小さな面に導入している。また、色収差は回折光学素子DO、負レンズUDで補正可能なため、L1中の正レンズに異常部分分散を持つ材料を用いていないが、勿論L1の中の正レンズの材料を異常部分分散性を持つ材料としても良い。   L3 includes a stop SP from the object side, has a single aspheric surface on the image side of the stop, and is a negative lens (first lens) made of a material having a large partial dispersion at a position where the off-axis ray height is high. 1 lens) UD. This L3 corrects the aberration of the reference wavelength and the lateral chromatic aberration which cannot be corrected by L1. In addition, in order to improve the diffraction efficiency of the diffractive optical element DO, the light incident angle is introduced into a small surface. Further, since chromatic aberration can be corrected by the diffractive optical element DO and the negative lens UD, a material having an abnormal partial dispersion is not used for the positive lens in L1, but of course the material of the positive lens in L1 is an abnormal partial dispersion. It may be a material with

以下に、図4、5、6を参照して本発明の実施例2(以下に示す数値実施例2)の光学系について説明する。ここで、図4は実施例2のレンズ断面図、図5は実施例2の無限遠物体に対して合焦した時の収差図、図6は実施例2の至近物体に対して合焦した時の収差図である。   The optical system of Example 2 (Numerical Example 2 shown below) of the present invention will be described below with reference to FIGS. 4 is a lens cross-sectional view of Example 2, FIG. 5 is an aberration diagram when focusing on an object at infinity of Example 2, and FIG. 6 is focused on a close object of Example 2. It is an aberration diagram at the time.

本発明の実施例2の光学系について説明する。この実施例2の光学系は、物体側から順に、正の屈折力を有する第1群L1、負の屈折力を有して無限から至近へのフォーカス時に物体側から像側に移動する第2群L2、絞りを含み、負の屈折力の第3群を備えている。   An optical system according to Example 2 of the present invention will be described. The optical system of the second embodiment has a first lens unit L1 having a positive refractive power in order from the object side, and a second lens unit having a negative refractive power and moving from the object side to the image side during focusing from infinity to the closest distance. The lens unit L2 includes a stop and includes a third lens unit having a negative refractive power.

L1は物体側から順に屈折力の弱い保護ガラス、正レンズと正レンズの接合レンズ、正レンズ、負レンズ、正レンズから構成されている。L1の中で最も像側の正レンズの物体側の面に周辺部で負の屈折力が強くなる非球面を導入することにより、全長短縮時に発生する球面収差やコマ収差、像面湾曲を低減(補正)している。また、L1の中で最も物体側の接合レンズの接合面に正の屈折力を有する回折光学素子DOを導入し、全長短縮時に発生する軸上色収差及び倍率色収差を低減している。   L1 includes a protective glass having a weak refractive power, a cemented lens of a positive lens and a positive lens, a positive lens, a negative lens, and a positive lens in order from the object side. By introducing an aspherical surface that has a negative refractive power at the periphery on the object side surface of the most positive lens on the image side in L1, spherical aberration, coma aberration, and field curvature that occur when shortening the overall length are reduced. (Correction). In addition, a diffractive optical element DO having a positive refractive power is introduced into the cemented surface of the cemented lens closest to the object side in L1, and axial chromatic aberration and lateral chromatic aberration that occur when the total length is shortened are reduced.

L2は正レンズと負レンズの接合レンズから構成されており、フォーカス時の色収差変動を少なくしている。   L2 includes a cemented lens of a positive lens and a negative lens, and reduces chromatic aberration fluctuations during focusing.

L3は物体側に絞りSPを含み、絞りよりも像側に1面の非球面を含み、軸外光線高さの高くなる位置に部分分散の大きな材料からなり屈折力が大きな負レンズUDを含んでいる。本実施例の光学系は、L3をこのような構成とすることにより、L1で補正しきれない基準波長の収差、倍率色収差をそれぞれ補正している。   L3 includes a stop SP on the object side, a single aspheric surface on the image side of the stop, and a negative lens UD having a high refractive power made of a material having a large partial dispersion at a position where the off-axis ray height is high. It is out. The optical system of the present embodiment corrects the aberration of the reference wavelength and the lateral chromatic aberration that cannot be corrected by L1 by configuring L3 as described above.

尚、回折光学素子DOの回折効率を向上させるために、光線入射角が小さな面に導入している。また、色収差は回折光学素子DO、負レンズUDで補正可能なため、L1中の正レンズに異常部分分散材料を用いていないが、勿論L1の中の正レンズの材料を異常部分分散性を持つ材料としても良い。   In addition, in order to improve the diffraction efficiency of the diffractive optical element DO, the light incident angle is introduced into a small surface. Further, since chromatic aberration can be corrected by the diffractive optical element DO and the negative lens UD, no abnormal partial dispersion material is used for the positive lens in L1, but of course the material of the positive lens in L1 has abnormal partial dispersion. It is good as a material.

以下に、図7、8、9を参照して本発明の実施例3(以下に示す数値実施例3)の光学系について説明する。ここで、図7は実施例3のレンズ断面図、図8は実施例3の無限遠物体に対して合焦した時の収差図、図9は実施例3の至近物体に対して合焦した時の収差図である。   The optical system of Example 3 (Numerical Example 3 shown below) of the present invention will be described below with reference to FIGS. 7 is a lens cross-sectional view of Example 3, FIG. 8 is an aberration diagram when focusing on an object at infinity of Example 3, and FIG. 9 is focused on a close object of Example 3. It is an aberration diagram at the time.

実施例3の光学系は、図7に示した通り、物体側から順に、正の屈折力を有する第1群L1、負の屈折力を有して無限から至近へのフォーカス時に物体側から像側に移動する第2群L2、負の屈折力を有して、絞りを有する第3群を備えている。   As shown in FIG. 7, the optical system of Example 3 includes, in order from the object side, the first lens unit L1 having a positive refractive power, an image from the object side at the time of focusing from infinity to the nearest object having a negative refractive power. A second group L2 that moves to the side, a third group that has a negative refractive power and has a stop.

L1は、物体側から順に、正レンズと正レンズの接合レンズ、正レンズと負レンズの接合レンズ、負レンズと正レンズの接合レンズを備えている。L1中の正レンズと正レンズの接合レンズの物体側の面に周辺部で負の屈折力が強くなる非球面を導入し、全長短縮時に発生する球面収差やコマ収差、像面湾曲を補正している。更に、それに続く正レンズと負レンズの接合レンズの物体側の面に周辺部で負の屈折力が強くなる非球面を導入している。また、L1中最も物体側の接合レンズの接合面に正の屈折力を有する回折光学素子DOを導入し、全長短縮時に発生する軸上色収差及び倍率色収差を補正している。   L1 includes, in order from the object side, a cemented lens of a positive lens and a positive lens, a cemented lens of a positive lens and a negative lens, and a cemented lens of a negative lens and a positive lens. Introducing an aspheric surface with negative refractive power at the periphery to the object side surface of the cemented lens between the positive lens and the positive lens in L1 to correct spherical aberration, coma aberration, and field curvature that occur when the total length is shortened. ing. Furthermore, an aspherical surface in which negative refractive power is increased at the peripheral portion is introduced to the object side surface of the subsequent cemented lens of the positive lens and the negative lens. In addition, a diffractive optical element DO having a positive refractive power is introduced into the cemented surface of the cemented lens closest to the object in L1, and axial chromatic aberration and lateral chromatic aberration that occur when the total length is shortened are corrected.

L2は負レンズ1枚から構成されており、フォーカス時の色収差変動を少なくするために低分散な材料を用いている。   L2 is composed of a single negative lens, and uses a low dispersion material in order to reduce chromatic aberration fluctuations during focusing.

L3は物体側から絞りSPを有し、絞りよりも像側に1面の非球面を有し、軸外光線高さの高くなる位置に部分分散の大きな材料からなり屈折力が大きな負レンズUDを有し、L1で補正しきれない基準波長の収差、倍率色収差をそれぞれ補正している。尚、回折光学素子DOの回折効率を向上させるために、光線入射角が小さな面に導入している。また、色収差は回折光学素子DO、負レンズUDで補正可能なため、L1中の正レンズに異常部分分散材料を用いていないが、勿論L1の中の正レンズの材料を異常部分分散性を持つ材料としても良い。   L3 has a stop SP from the object side, has one aspheric surface on the image side of the stop, and is made of a material having a large partial dispersion at a position where the off-axis ray height is high, and a negative lens UD having a large refractive power. The reference wavelength aberration and lateral chromatic aberration that cannot be corrected by L1 are corrected. In addition, in order to improve the diffraction efficiency of the diffractive optical element DO, the light incident angle is introduced into a small surface. Further, since chromatic aberration can be corrected by the diffractive optical element DO and the negative lens UD, no abnormal partial dispersion material is used for the positive lens in L1, but of course the material of the positive lens in L1 has abnormal partial dispersion. It is good as a material.

次に、上述の実施例1、2、3に対応する数値実施例1、2、3の光学データを示す。ここで、各数値実施例において、fは焦点距離、FnoはFナンバー、2ωは包括画角である。Riは物体側より順に第i番目のレンズ面の曲率半径、Diは第i番目のレンズ厚または空気間隔、NiとViは第i番目のレンズの材質の屈折率とアッベ数である。また、非球面形状はレンズ面の中心部の曲率半径をRとし、光軸方向をX軸とし、光軸と垂直方向をY軸とし、非球面係数をAi(i=1,2,3…)としたとき、
X= (1/R)Y2
1+{1―(K+1)(Y/R)2}1/2
+A4Y4+A6Y6+A8Y8+A10Y10+・・・
であらわされるものとする。
Next, optical data of numerical examples 1, 2, and 3 corresponding to the above-described examples 1, 2, and 3 will be shown. Here, in each numerical example, f is a focal length, Fno is an F number, and 2ω is a comprehensive angle of view. Ri is the radius of curvature of the i-th lens surface in order from the object side, Di is the i-th lens thickness or air spacing, and Ni and Vi are the refractive index and Abbe number of the material of the i-th lens. The aspherical shape has a radius of curvature at the center of the lens surface as R, the optical axis direction as the X-axis, the direction perpendicular to the optical axis as the Y-axis, and the aspheric coefficient as Ai (i = 1, 2, 3... )
X = (1 / R) Y2
1+ {1- (K + 1) (Y / R) 2} 1/2
+ A4Y4 + A6Y6 + A8Y8 + A10Y10 + ...
It shall be represented by

また、回折面の位相形状φは、光軸に対して垂直方向の高さをh、回折光の回折次数をm、設計波長をλ0、位相係数をAi(i=1,2,3…)としたとき、
φ(h,m)={2π/(mλ0)}(A2Y2+A4Y4+A6Y6+・・・)
であらわされるものとする。各実施例において、回折光の回折次数mは1であり、設計波長λ0はd線の波長(587.56nm)である。

数値実施例 1
単位 mm
面データ
面番号 r d nd vd
1* 70.057 14.00 1.48749 70.2
2(回折) 175.248 10.00 1.48749 70.2
3 991.665 6.00
4* 64.577 15.50 1.48749 70.2
5 2061.532 3.30 1.74100 52.6
6 302.438 9.50
7 136.628 3.00 1.83481 42.7
8 30.399 13.00 1.48749 70.2
9 -2477.682 (可変)
10 351.570 1.80 1.43387 95.1
11 37.297 (可変)
12(絞り) ∞ 4.02
13 -313.023 1.30 1.80518 25.4
14 32.780 4.70 1.51742 52.4
15 -49.402 2.30
16 58.242 3.30 1.75520 27.5
17 -50.314 1.30 1.81600 46.6
18 41.966 2.34
19 313.763 1.30 1.83481 42.7
20 53.391 3.60
21 42.779 7.20 1.64769 33.8
22 -19.470 1.40 1.83481 42.7
23* 46.582 0.44
24 57.578 8.00 1.51742 52.4
25 -19.943 0.00
26 -22.932 2.00 1.43387 95.1
27 44.999 0.50
28 38.754 4.80 1.51742 52.4
29 1425.717 0.50
30 ∞ 2.20 1.51633 64.1
31 ∞
像面 ∞

非球面データ
第1面
K =-1.43855e-001 A 4=-1.93099e-010 A 6=-2.74985e-011 A 8= 1.37063e-015 A10=-2.18842e-018
第2面(回折面)
A 2=-4.70000e-005 A 4=-1.54677e-009 A 6= 1.48064e-012 A 8=-2.78650e-016
第4面
K = 8.12883e-002 A 4=-3.09766e-007 A 6=-1.38173e-011 A 8=-1.30814e-014 A10= 8.97456e-018
第23面
K =-2.20153e-001 A 4= 6.33415e-007 A 6=-9.37707e-012 A 8= 2.58779e-012 A10=-2.54583e-014

各種データ
ズーム比 1.00

焦点距離 389.99
Fナンバー 4.12
画角 3.18
像高 21.64
レンズ全長 212.07
BF 52.70

物体距離 -3500
d 9 13.83 20.34
d11 18.24 11.73

レンズ群データ
群 始面 焦点距離
1 1 114.82
2 10 -95.98
3 12 -86.05

数値実施例 2
単位 mm
面データ
面番号 r d nd vd
1 ∞ 4.50 1.51633 64.1
2 ∞ 0.90
3 79.911 13.00 1.48749 70.2
4(回折) 180.000 12.00 1.48749 70.2
5 -410.392 6.00
6 78.598 12.50 1.48749 70.2
7 783.108 3.80
8 -240.575 3.00 1.80610 40.9
9 73.587 0.14
10* 65.709 12.50 1.48749 70.2
11 -211.470 (可変)
12 225.694 4.60 1.78472 25.7
13 925.141 2.20 1.83481 42.7
14 90.756 (可変)
15(絞り) ∞ 10.00
16* 586.982 1.80 1.84666 23.9
17 53.892 5.20 1.71999 50.2
18 52.114 1.20
19 74.287 6.25 1.84666 23.9
20 -52.079 1.65 1.60311 60.6
21 -419.815 5.52
22 -329.581 1.60 1.77250 49.6
23 42.356 2.82
24 143.913 9.30 1.71999 50.2
25 -19.617 1.80 1.83400 37.2
26 396.634 0.50
27 58.569 10.50 1.54072 47.2
28 -30.000 2.00 1.49700 81.5
29 -2239.456 2.00
30 ∞ 2.00 1.51633 64.1
31 ∞
像面 ∞

非球面データ
第4面(回折面)
A 2=-3.50000e-005 A 4= 4.64752e-010

第10面
K = 4.90788e-001 A 4=-6.09902e-007 A 6=-1.41185e-010 A 8=-3.80264e-014 A10= 5.22218e-018

第16面
K =-2.26102e+001 A 4= 8.30526e-007 A 6=-6.52746e-011 A 8= 2.21720e-012 A10=-2.55480e-015

各種データ
ズーム比 1.00

焦点距離 284.97
Fナンバー 2.91
画角 4.34
像高 21.64
レンズ全長 218.75
BF 55.47

物体距離 -∞ -6000
d11 11.50 16.12
d14 12.50 7.88

レンズ群データ
群 始面 焦点距離
1 1 114.65
2 12 -179.33
3 15 -117.33

数値実施例 3

単位 mm
面データ
面番号 r d nd vd
1* 66.840 12.94 1.48749 70.2
2(回折) 122.932 12.44 1.48749 70.2
3 1072.527 5.85
4* 68.786 15.70 1.48749 70.2
5 1909.848 3.22 1.74100 52.6
6 347.428 9.26
7 192.222 2.92 1.83481 42.7
8 31.142 15.50 1.48749 70.2
9 -1876.226 (可変)
10 167.205 1.75 1.43387 95.1
11 35.165 (可変)
12(絞り) ∞ 3.92
13 199.016 1.27 1.80518 25.4
14 46.568 0.00
15 46.568 5.08 1.51742 52.4
16 -95.666 2.24
17 44.521 4.22 1.75520 27.5
18 389.659 1.27 1.81600 46.6
19 60.363 2.28
20 3746.396 1.27 1.83481 42.7
21 63.462 3.51
22 146.214 3.00 1.64769 33.8
23 -69.451 1.36 1.83481 42.7
24* 63.140 0.80
25 111.379 11.00 1.51742 52.4
26 -21.017 0.00
27 -21.006 1.95 1.43387 95.1
28 63.736 0.49
29 48.454 5.68 1.51742 52.4
30 1402.397 0.49
31 ∞ 2.14 1.51633 64.1
32 ∞
像面 ∞

非球面データ
第1面
K =-3.49165e-001 A 4= 3.92214e-008 A 6=-2.32827e-011 A 8= 5.26911e-015 A10=-2.28687e-018

第2面(回折面)
A 2=-5.04353e-005 A 4=-2.62726e-010 A 6= 4.90495e-013 A 8=-4.98370e-017

第4面
K =-1.18277e-002 A 4=-2.20294e-007 A 6= 4.18510e-011 A 8=-3.48675e-014 A10= 1.79742e-017

第24面
K =-2.91125e+000 A 4= 1.39454e-006 A 6=-1.31073e-009 A 8= 5.38346e-012 A10=-1.07741e-014

各種データ
ズーム比 1.00

焦点距離 291.00
Fナンバー 2.88
画角 4.17
像高 21.64
レンズ全長 208.00
BF 54.00

物体距離 -∞ -3500
d 9 4.69 11.33
d11 17.78 11.13

レンズ群データ
群 始面 焦点距離
1 1 124.05
2 10 -102.68
3 12 -383.79
Further, the phase shape φ of the diffraction surface is such that the height in the direction perpendicular to the optical axis is h, the diffraction order of the diffracted light is m, the design wavelength is λ0, and the phase coefficient is Ai (i = 1, 2, 3,...). When
φ (h, m) = {2π / (mλ0)} (A2Y2 + A4Y4 + A6Y6 +...)
It shall be represented by In each embodiment, the diffraction order m of the diffracted light is 1, and the design wavelength λ0 is the wavelength of the d-line (587.56 nm).

Numerical example 1
Unit mm
Surface data surface number rd nd vd
1 * 70.057 14.00 1.48749 70.2
2 (Diffraction) 175.248 10.00 1.48749 70.2
3 991.665 6.00
4 * 64.577 15.50 1.48749 70.2
5 2061.532 3.30 1.74 100 52.6
6 302.438 9.50
7 136.628 3.00 1.83481 42.7
8 30.399 13.00 1.48749 70.2
9 -2477.682 (variable)
10 351.570 1.80 1.43387 95.1
11 37.297 (variable)
12 (Aperture) ∞ 4.02
13 -313.023 1.30 1.80518 25.4
14 32.780 4.70 1.51742 52.4
15 -49.402 2.30
16 58.242 3.30 1.75520 27.5
17 -50.314 1.30 1.81600 46.6
18 41.966 2.34
19 313.763 1.30 1.83481 42.7
20 53.391 3.60
21 42.779 7.20 1.64769 33.8
22 -19.470 1.40 1.83481 42.7
23 * 46.582 0.44
24 57.578 8.00 1.51742 52.4
25 -19.943 0.00
26 -22.932 2.00 1.43387 95.1
27 44.999 0.50
28 38.754 4.80 1.51742 52.4
29 1425.717 0.50
30 ∞ 2.20 1.51633 64.1
31 ∞
Image plane ∞

Aspheric data 1st surface
K = -1.43855e-001 A 4 = -1.93099e-010 A 6 = -2.74985e-011 A 8 = 1.37063e-015 A10 = -2.18842e-018
Second surface (diffractive surface)
A 2 = -4.70000e-005 A 4 = -1.54677e-009 A 6 = 1.48064e-012 A 8 = -2.78650e-016
4th page
K = 8.12883e-002 A 4 = -3.09766e-007 A 6 = -1.38173e-011 A 8 = -1.30814e-014 A10 = 8.97456e-018
23rd page
K = -2.20153e-001 A 4 = 6.33415e-007 A 6 = -9.37707e-012 A 8 = 2.58779e-012 A10 = -2.54583e-014

Various data Zoom ratio 1.00

Focal length 389.99
F number 4.12
Angle of View 3.18
Statue height 21.64
Total lens length 212.07
BF 52.70

Object distance -3500
d 9 13.83 20.34
d11 18.24 11.73

Lens group data group Start surface Focal length
1 1 114.82
2 10 -95.98
3 12 -86.05

Numerical example 2
Unit mm
Surface data surface number rd nd vd
1 ∞ 4.50 1.51633 64.1
2 ∞ 0.90
3 79.911 13.00 1.48749 70.2
4 (Diffraction) 180.000 12.00 1.48749 70.2
5 -410.392 6.00
6 78.598 12.50 1.48749 70.2
7 783.108 3.80
8 -240.575 3.00 1.80610 40.9
9 73.587 0.14
10 * 65.709 12.50 1.48749 70.2
11 -211.470 (variable)
12 225.694 4.60 1.78472 25.7
13 925.141 2.20 1.83481 42.7
14 90.756 (variable)
15 (Aperture) ∞ 10.00
16 * 586.982 1.80 1.84666 23.9
17 53.892 5.20 1.71999 50.2
18 52.114 1.20
19 74.287 6.25 1.84666 23.9
20 -52.079 1.65 1.60311 60.6
21 -419.815 5.52
22 -329.581 1.60 1.77250 49.6
23 42.356 2.82
24 143.913 9.30 1.71999 50.2
25 -19.617 1.80 1.83400 37.2
26 396.634 0.50
27 58.569 10.50 1.54072 47.2
28 -30.000 2.00 1.49700 81.5
29 -2239.456 2.00
30 ∞ 2.00 1.51633 64.1
31 ∞
Image plane ∞

Aspheric data 4th surface (diffractive surface)
A 2 = -3.50000e-005 A 4 = 4.64752e-010

10th page
K = 4.90788e-001 A 4 = -6.09902e-007 A 6 = -1.41185e-010 A 8 = -3.80264e-014 A10 = 5.22218e-018

16th page
K = -2.26102e + 001 A 4 = 8.30526e-007 A 6 = -6.52746e-011 A 8 = 2.21720e-012 A10 = -2.55480e-015

Various data Zoom ratio 1.00

Focal length 284.97
F number 2.91
Angle of View 4.34
Statue height 21.64
Total lens length 218.75
BF 55.47

Object distance -∞ -6000
d11 11.50 16.12
d14 12.50 7.88

Lens group data group Start surface Focal length
1 1 114.65
2 12 -179.33
3 15 -117.33

Numerical example 3

Unit mm
Surface data surface number rd nd vd
1 * 66.840 12.94 1.48749 70.2
2 (Diffraction) 122.932 12.44 1.48749 70.2
3 1072.527 5.85
4 * 68.786 15.70 1.48749 70.2
5 1909.848 3.22 1.74 100 52.6
6 347.428 9.26
7 192.222 2.92 1.83481 42.7
8 31.142 15.50 1.48749 70.2
9 -1876.226 (variable)
10 167.205 1.75 1.43387 95.1
11 35.165 (variable)
12 (Aperture) ∞ 3.92
13 199.016 1.27 1.80518 25.4
14 46.568 0.00
15 46.568 5.08 1.51742 52.4
16 -95.666 2.24
17 44.521 4.22 1.75520 27.5
18 389.659 1.27 1.81600 46.6
19 60.363 2.28
20 3746.396 1.27 1.83481 42.7
21 63.462 3.51
22 146.214 3.00 1.64769 33.8
23 -69.451 1.36 1.83481 42.7
24 * 63.140 0.80
25 111.379 11.00 1.51742 52.4
26 -21.017 0.00
27 -21.006 1.95 1.43387 95.1
28 63.736 0.49
29 48.454 5.68 1.51742 52.4
30 1402.397 0.49
31 ∞ 2.14 1.51633 64.1
32 ∞
Image plane ∞

Aspheric data 1st surface
K = -3.49165e-001 A 4 = 3.92214e-008 A 6 = -2.32827e-011 A 8 = 5.26911e-015 A10 = -2.28687e-018

Second surface (diffractive surface)
A 2 = -5.04353e-005 A 4 = -2.62726e-010 A 6 = 4.90495e-013 A 8 = -4.98370e-017

4th page
K = -1.18277e-002 A 4 = -2.20294e-007 A 6 = 4.18510e-011 A 8 = -3.48675e-014 A10 = 1.79742e-017

24th page
K = -2.91125e + 000 A 4 = 1.39454e-006 A 6 = -1.31073e-009 A 8 = 5.38346e-012 A10 = -1.07741e-014

Various data Zoom ratio 1.00

Focal length 291.00
F number 2.88
Angle of View 4.17
Statue height 21.64
Total lens length 208.00
BF 54.00

Object distance -∞ -3500
d 9 4.69 11.33
d11 17.78 11.13

Lens group data group Start surface Focal length
1 1 124.05
2 10 -102.68
3 12 -383.79

次に、以下の表1に、本発明の各実施例における、条件式(1)〜(11)の計算結果を示す。   Next, Table 1 below shows the calculation results of conditional expressions (1) to (11) in each example of the present invention.

Figure 2010145797
Figure 2010145797

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、本発明の実施例の中では主に単焦点の光学系について説明を行ったが、本発明をズームレンズに適用しても構わないし、また、前述した通り、第2群或いは第3群に正の屈折力を持たせても構わない。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary. For example, in the embodiments of the present invention, the description has been mainly made of the single-focus optical system. However, the present invention may be applied to a zoom lens, and as described above, the second group or the third group. May have a positive refractive power.

また、この光学系を含む光学機器にも適用可能である。例えば、CCD等の撮像素子と、本実施例の光学系とを備え、本実施例の光学系によって被写体の像を撮像素子の上に形成するような撮像装置にも適用可能である。また、液晶パネル(画像表示素子)と本実施例の光学系とを備え、本実施例の光学系で液晶パネルからの光を被投射面に投射する液晶プロジェクタ(画像投射装置)にも適用可能である。   Moreover, it is applicable also to the optical apparatus containing this optical system. For example, the present invention can also be applied to an image pickup apparatus that includes an image pickup device such as a CCD and the optical system of this embodiment and forms an image of a subject on the image pickup device by the optical system of this embodiment. In addition, the liquid crystal panel (image display element) and the optical system of the present embodiment can be applied to a liquid crystal projector (image projection apparatus) that projects light from the liquid crystal panel onto the projection surface with the optical system of the present embodiment. It is.

本発明の数値実施例1のレンズ断面図Lens sectional view of Numerical Example 1 of the present invention 本発明の数値実施例1の無限遠物体合焦時における収差図Aberration diagram when focusing on an object at infinity according to Numerical Example 1 of the present invention 本発明の数値実施例1の至近物体合焦時における収差図Aberration diagram at the time of focusing on the closest object according to Numerical Example 1 of the present invention 本発明の数値実施例2のレンズ断面図Lens sectional view of Numerical Example 2 of the present invention 本発明の数値実施例2の無限遠物体合焦時における収差図Aberration diagram when focusing on an object at infinity according to Numerical Example 2 of the present invention 本発明の数値実施例2の至近物体合焦時における収差図Aberration diagram at the time of focusing on the closest object according to Numerical Example 2 of the present invention 本発明の数値実施例3のレンズ断面図Lens sectional view of Numerical Example 3 of the present invention 本発明の数値実施例3の無限遠物体合焦時における収差図Aberration diagram when focusing on an object at infinity according to Numerical Example 3 of the present invention 本発明の数値実施例3の至近物体合焦時における収差図Aberration diagram at the time of focusing on the closest object according to Numerical Example 3 of the present invention

符号の説明Explanation of symbols

1 L1 第1レンズ群
2 L2 第2レンズ群
3 L3 第3レンズ群
4 SP 絞り
5 IP 像面
6 * 非球面
7 DO 本発明に記載の回折光学素子
8 UD 本発明に記載の負の屈折力を有する光学素子
9 d d線
10 g g線
11 ΔS サジタル像面
12 ΔM メリディオナル像面
DESCRIPTION OF SYMBOLS 1 L1 1st lens group 2 L2 2nd lens group 3 L3 3rd lens group 4 SP Aperture 5 IP Image surface 6 * Aspherical surface 7 DO Diffractive optical element according to the present invention 8 UD Negative refractive power according to the present invention 9 d d line 10 g g line 11 ΔS sagittal image plane 12 ΔM meridional image plane

Claims (10)

物体側から順に、正の屈折力を有する第1群、フォーカスの際に光軸方向に移動する第2群、絞りを含む第3群を有する光学系において、
前記第1群が、周辺部で負の屈折力が強くなる非球面を1面有し、
前記第3群が、負の屈折力を有する第1レンズを有しており、
前記光学系全系の焦点距離をf、前記第1群の焦点距離をf1、前記光学系全系のFnoをFno、前記第1群中の非球面の有効端部における前記非球面と近軸球面との像側への離れ量をDas、前記第1レンズのg線、F線、C線に対する屈折率をng、nF、nC、(ng−nF)/(nF−nC)で表される部分分散をθgF、前記第1レンズのアッベ数をvd、前記第1レンズの屈折力をφUDRとするとき、
0.03<f1/f・Fno<1.30
−0.03<Das/f<−0.001
θgF+1.3×10−3・vd>0.625
vd>60
−0.8<1/(φUDR・f)・Fno<0
を満足することを特徴とする光学系。
In order from the object side, in an optical system having a first group having positive refractive power, a second group that moves in the optical axis direction during focusing, and a third group that includes a stop,
The first group has one aspherical surface whose negative refractive power is strong at the peripheral part,
The third group includes a first lens having negative refractive power;
The focal length of the entire optical system is f, the focal length of the first group is f1, Fno of the entire optical system is Fno, and the aspheric surface and paraxial at the effective end of the aspheric surface in the first group. The distance from the spherical surface to the image side is expressed as Das, and the refractive indexes of the first lens with respect to the g-line, F-line, and C-line are expressed as ng, nF, nC, (ng-nF) / (nF-nC). When the partial dispersion is θgF, the Abbe number of the first lens is vd, and the refractive power of the first lens is φUDR,
0.03 <f1 / f · Fno <1.30
−0.03 <Das / f <−0.001
θgF + 1.3 × 10−3 · vd> 0.625
vd> 60
−0.8 <1 / (φUDR · f) · Fno <0
An optical system characterized by satisfying
前記第2群が負の屈折力を有し、前記第3群が負の屈折力を有することを特徴とする請求項1に記載の光学系。   The optical system according to claim 1, wherein the second group has a negative refractive power and the third group has a negative refractive power. 前記非球面が、物体側に凸形状の面であることを特徴とする請求項1又は2に記載の光学系。   The optical system according to claim 1, wherein the aspheric surface is a surface convex toward the object side. 前記第1群の中で、前記第1群の最も物体側の面の面頂点と前記第1群の最も像側の面頂点との中間点よりも物体側に存在する光学面の焦点距離をf1Fとするとき、
1.8<f/f1F<8.5
を満足することを特徴とする請求項1乃至3いずれかに記載の光学系。
In the first group, the focal length of the optical surface existing on the object side relative to the intermediate point between the surface vertex of the surface closest to the object side of the first group and the surface vertex of the surface closest to the image side of the first group. When f1F
1.8 <f / f1F <8.5
The optical system according to claim 1, wherein:
前記第1群の中で、前記第1群の最も物体側の面の面頂点と前記第1群の最も像側の面頂点との中間点よりも像側に存在する光学面の焦点距離をf1Rとするとき、
−3.5<f/f1R<1.0
を満足することを特徴とする請求項1乃至4いずれかに記載の光学系。
In the first group, the focal length of the optical surface existing on the image side with respect to the intermediate point between the surface vertex of the surface closest to the object side of the first group and the surface vertex of the surface closest to the image of the first group. When f1R is assumed,
−3.5 <f / f1R <1.0
The optical system according to claim 1, wherein:
前記光学系が負の屈折力を有する第2レンズを備えており、前記第2レンズの焦点距離をfn、前記第2レンズよりも物体側に配置された光学面の合成焦点距離をfppとするとき、
−1.0<fn/f
0.05<fpp/f<0.32
を満足することを特徴とする請求項1乃至5いずれかに記載の光学系。
The optical system includes a second lens having a negative refractive power, and the focal length of the second lens is fn, and the combined focal length of an optical surface disposed on the object side of the second lens is fpp. When
-1.0 <fn / f
0.05 <fpp / f <0.32
The optical system according to claim 1, wherein:
前記第1群が正の屈折力を有する回折光学素子を有することを特徴とする請求項1乃至6いずれかに記載の光学系。   The optical system according to claim 1, wherein the first group includes a diffractive optical element having a positive refractive power. 前記正の屈折力を有する回折光学素子の焦点距離をfDOとするとき、
20<fDO/f1<130
を満足することを特徴とする請求項7記載の光学系。
When the focal length of the diffractive optical element having positive refractive power is fDO,
20 <fDO / f1 <130
The optical system according to claim 7, wherein:
前記第1レンズは、物体側に凹面を有しており、前記物体側の凹面の曲率をRud1とするとき、
−0.2<Rud1/f<0.0
を満足することを特徴とする請求項1乃至8いずれかに記載の光学系。
The first lens has a concave surface on the object side, and when the curvature of the concave surface on the object side is Rud1,
−0.2 <Rud1 / f <0.0
The optical system according to claim 1, wherein:
請求項1乃至9いずれかに記載の光学系を備えることを特徴とする光学機器。   An optical apparatus comprising the optical system according to claim 1.
JP2008323639A 2008-12-19 2008-12-19 Imaging optical system Expired - Fee Related JP5371412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008323639A JP5371412B2 (en) 2008-12-19 2008-12-19 Imaging optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008323639A JP5371412B2 (en) 2008-12-19 2008-12-19 Imaging optical system

Publications (2)

Publication Number Publication Date
JP2010145797A true JP2010145797A (en) 2010-07-01
JP5371412B2 JP5371412B2 (en) 2013-12-18

Family

ID=42566291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008323639A Expired - Fee Related JP5371412B2 (en) 2008-12-19 2008-12-19 Imaging optical system

Country Status (1)

Country Link
JP (1) JP5371412B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014186101A (en) * 2013-03-22 2014-10-02 Canon Inc Image capturing optical system and image capturing device having the same
US10379272B2 (en) 2017-03-08 2019-08-13 Canon Kabushiki Kaisha Optical system and image pickup apparatus including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327897A (en) * 1995-05-26 1996-12-13 Nikon Corp Internal focusing type telephoto lens
JP2008096656A (en) * 2006-10-11 2008-04-24 Canon Inc Photographic optical system and imaging apparatus having the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327897A (en) * 1995-05-26 1996-12-13 Nikon Corp Internal focusing type telephoto lens
JP2008096656A (en) * 2006-10-11 2008-04-24 Canon Inc Photographic optical system and imaging apparatus having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014186101A (en) * 2013-03-22 2014-10-02 Canon Inc Image capturing optical system and image capturing device having the same
US10379272B2 (en) 2017-03-08 2019-08-13 Canon Kabushiki Kaisha Optical system and image pickup apparatus including the same

Also Published As

Publication number Publication date
JP5371412B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5388446B2 (en) Optical system and optical apparatus having the same
JP5495800B2 (en) Optical system and imaging apparatus having the same
US8411361B2 (en) Zoom lens, and optical apparatus and method for forming an image of an object using the zoom lens
JP2006301416A (en) Optical system
US20120092779A1 (en) Optical system with long focal length and optical apparatus having the same
JP5358227B2 (en) Inner zoom type and inner focus type zoom lens
JPH08313804A (en) Wide angle lens
US9164291B2 (en) Optical system including diffractive optical element and optical apparatus
JP2019197125A (en) Image-forming optical system
JP2016139087A (en) Imaging optical system
US11372201B2 (en) Optical system and imaging apparatus having the same
JP2018005099A (en) Large-aperture lens
JP2008203304A (en) Optical system and optical apparatus including the same
JP4929902B2 (en) Single focus lens and imaging apparatus having the same
JP5082431B2 (en) Magnification optical system having image stabilization function, imaging device, and magnifying method
JP2018072367A (en) Zoom lens and imaging apparatus having the same
JPH11119097A (en) Zoom lens
JP6164894B2 (en) Zoom lens and imaging apparatus having the same
JP2019144441A (en) Macro lens
JP5059210B2 (en) Zoom lens and imaging apparatus having the same
JP5371412B2 (en) Imaging optical system
JP2014202806A5 (en)
JP2008015418A (en) Eyepiece
JPH09211323A (en) Zoom lens for finite distance
JP2005316052A (en) Image forming optical system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130917

R151 Written notification of patent or utility model registration

Ref document number: 5371412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees