JP2014184468A - Brazing method for aluminium material and brazed structure - Google Patents

Brazing method for aluminium material and brazed structure Download PDF

Info

Publication number
JP2014184468A
JP2014184468A JP2013061103A JP2013061103A JP2014184468A JP 2014184468 A JP2014184468 A JP 2014184468A JP 2013061103 A JP2013061103 A JP 2013061103A JP 2013061103 A JP2013061103 A JP 2013061103A JP 2014184468 A JP2014184468 A JP 2014184468A
Authority
JP
Japan
Prior art keywords
brazing
atmosphere
aluminum
oxygen concentration
reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013061103A
Other languages
Japanese (ja)
Other versions
JP6110173B2 (en
Inventor
Masakazu Edo
正和 江戸
Hideyuki Miyake
秀幸 三宅
Yuji Nomura
祐司 野村
Norihiro Nose
憲宏 能瀬
Hiroki Amano
宏紀 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd, Taiyo Nippon Sanso Corp filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2013061103A priority Critical patent/JP6110173B2/en
Publication of JP2014184468A publication Critical patent/JP2014184468A/en
Application granted granted Critical
Publication of JP6110173B2 publication Critical patent/JP6110173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable successful brazing without using flux without requiring flux and a vacuum facility.SOLUTION: An aluminum alloy material including Al-Si-Mg-based brazing filler metal is heated within a brazing furnace in a pressure reduction state lower than the atmospheric pressure, is heated in a first reduced-pressure atmosphere preferably having 50 ppm or less of an oxygen concentration at least in a temperature range from 450°C until before melting of the brazing filler metal during temperature rise, and is heated in a second reduced-pressure atmosphere preferably having 25 ppm or less of the oxygen concentration and preferably 10 vol.% or less of a nitrogen gas concentration at least at a temperature equal to or higher than that enabling the brazing filler metal to start to melt, so that a brazing object including the aluminum alloy material is joined by using the Al-Si-Mg-based brazing filler metal without using flux. Thus the oxygen concentration and the nitrogen concentration in the atmosphere in the middle of brazing are controlled, so as to suppress cost increase and dramatically improve reliability of joined portions, compared to a conventional brazing method without using flux.

Description

この発明は、Al−Si−Mg系ろう材を用いてアルミニウム合金材を含むろう付け対象物をフラックスを使用せずに接合するアルミニウム材のろう付方法および該ろう付方法により接合されたろう付構造体に関する。   The present invention relates to a brazing method for an aluminum material in which a brazing object including an aluminum alloy material is bonded using an Al—Si—Mg-based brazing material without using a flux, and a brazing structure joined by the brazing method. About the body.

ラジエータやコンデンサをはじめ、インタークーラー等を代表とする自動車用熱交換器やその他アルミニウム合金にて製造される熱交換器や放熱器等は、現在、不活性ガス雰囲気下で非腐食性のフッ化物系フラックスを用いてろう付されるか、ろう材に0.5〜1.5質量%程度のMgを添加して真空雰囲気下でろう付される工法が主流となっている。   In addition to radiators and condensers, automotive heat exchangers such as intercoolers, and other heat exchangers and radiators manufactured from aluminum alloys are currently non-corrosive fluorides in an inert gas atmosphere. The mainstream method is brazing using a flux or brazing in a vacuum atmosphere by adding about 0.5 to 1.5% by mass of Mg to the brazing material.

上記フラックスを用いる場合、多くがろう付対象部材をプレス成形等で加工後、所望の組み付け状態とし、フラックス粉末を溶媒に溶いた混濁液を組み付け体に塗着・乾燥させ、高純度窒素ガスによる非酸化性雰囲気中で加熱ろう付している。この場合、フラックスを使用すること自体、あるいは、その塗布工程の設置や管理にコストを要するという問題がある。   When using the above-mentioned flux, many members to be brazed are processed by press molding or the like, and then put into a desired assembled state. A turbid liquid in which flux powder is dissolved in a solvent is applied to the assembled body and dried, and high purity nitrogen gas is used. Heat brazing in a non-oxidizing atmosphere. In this case, there is a problem that the use of the flux itself, or the installation and management of the coating process, requires cost.

また、フラックスはその一部がろう付加熱過程で蒸発し、炉内壁に付着、堆積することが知られており、堆積物の除去を目的とした定期的な炉のメンテナンスも必要コストとして生じる。そして昨今、自動車の軽量化促進に伴い、自動車用熱交換器でもさらなる材料の薄肉高強度化が求められている。アルミニウム材料の高強度化には、アルミニウム合金へのMg添加が非常に有効であるが、フラックスを用いたろう付ではMgとフラックスが反応して高融点のMgFを生成することから、これがろう付の阻害要因となったり、材料中のMgを消費してしまうため、折角添加したMgが高強度化に寄与しないという問題がある。すなわち、フラックスろう付では製品中のMg添加部位や量に制限があり、積極的に材料の高強度化手法として用いることができないのが現状である。また、近年はハイブリッド車や電気自動車に使用されるインバータ冷却器等ではフラックス残渣自体が半導体部品のはんだ付性等を阻害するなどの理由から、フラックスの使用が制限される場合もある。 Further, it is known that a part of the flux evaporates in the process of brazing heat and adheres to and accumulates on the inner wall of the furnace, and periodic maintenance of the furnace for the purpose of removing the deposit also occurs as a necessary cost. And nowadays, with the promotion of weight reduction of automobiles, there is a demand for further thinning and strengthening of materials in automobile heat exchangers. Addition of Mg to an aluminum alloy is very effective for increasing the strength of aluminum materials. However, brazing using a flux reacts with Mg to produce a high melting point MgF 2 , which is brazed. As a result, the Mg added in the material does not contribute to the increase in strength. That is, in flux brazing, there are restrictions on the site and amount of Mg added in the product, and the current situation is that it cannot be actively used as a technique for increasing the strength of materials. In recent years, in inverter coolers and the like used for hybrid vehicles and electric vehicles, the use of flux may be restricted because the flux residue itself hinders the solderability of semiconductor components.

一方、0.01Pa以下にするような高真空ろう付では、ろう材に添加されたMgがろう付昇温過程で材料中から蒸発し、その際に、ろう付阻害要因であるアルミニウム材料表面の酸化膜を破壊、雰囲気中では水分や酸素と結合するゲッター作用により、炉内雰囲気をろう付可能な状態としている。本手法では、フラックス塗布工程は必要ないものの、高真空用の真空炉が高価な設備であること、炉の気密性の管理等に相応のコストが生じる問題がある。また、自動車用熱交換器等では、製品の耐食性確保を目的にZnが添加されるが、高真空加熱下ではZnが蒸発するため、材料中に十分なZnが残存せず、十分な耐食性を確保できないというデメリットもある。さらに、炉の内壁には蒸発したMgやZnが堆積することから、定期的な炉内清掃も必要となる。   On the other hand, in high-vacuum brazing such that the pressure is 0.01 Pa or less, Mg added to the brazing material evaporates from the material in the process of raising the brazing temperature. The oxide film is destroyed, and the atmosphere in the furnace can be brazed by the getter action combined with moisture and oxygen in the atmosphere. Although this method does not require a flux coating process, there is a problem that a high-vacuum vacuum furnace is an expensive facility, and there is a corresponding cost in managing the airtightness of the furnace. In addition, in heat exchangers for automobiles, Zn is added for the purpose of ensuring the corrosion resistance of products. However, since Zn evaporates under high vacuum heating, sufficient Zn does not remain in the material, and sufficient corrosion resistance is achieved. There is also a demerit that it cannot be secured. Furthermore, since evaporated Mg and Zn are deposited on the inner wall of the furnace, periodic cleaning in the furnace is also required.

これらに対し、最近では上記問題を解消し得るろう付法として大気圧下のフラックスレスろう付が提案されている(特許文献1〜5参照)。
例えば特許文献1では、被ろう付部材、もしくはそれ以外の部位にMg含有物を配置し、且つ、被ろう付物に覆いをすることによって非酸化性雰囲気大気圧下のフラックスレスろう付を提案している。
On the other hand, fluxless brazing under atmospheric pressure has recently been proposed as a brazing method that can solve the above problems (see Patent Documents 1 to 5).
For example, Patent Document 1 proposes flux-less brazing under a non-oxidizing atmosphere and atmospheric pressure by placing an Mg-containing material on a brazed member or other part and covering the brazed material. doing.

特許文献2では、予めろう付炉内で加熱された風除け冶具(覆い)によって炉内で被ろう付部材を覆うような仕組みを提案し、昇温速度の低下を改善している。
一方、覆いを必要としないフラックスレスろう付としては、特許文献3では、クラッド材のろう材にMgを添加し、そのクラッド材で成形された熱交換器チューブの内側を不活性雰囲気中大気圧下でフラックスレスろう付する方法が提案されている。
また、同じく覆いを必要としないものとして、特許文献4では、ろう材表面に酸化防止層をクラッドし、そのクラッド材を積層構造としたもので大気雰囲気中のろう付を可能にするという提案もある。
Patent Document 2 proposes a mechanism in which a brazing member (cover) heated in advance in a brazing furnace is used to cover a brazed member in the furnace, thereby improving the decrease in the heating rate.
On the other hand, as fluxless brazing that does not require a cover, in Patent Document 3, Mg is added to a clad brazing material, and the inside of the heat exchanger tube formed by the clad material is set to atmospheric pressure in an inert atmosphere. A fluxless brazing method has been proposed below.
Also, as a device that does not require a cover, Patent Document 4 also proposes a method in which a brazing material surface is clad with an antioxidant layer and the clad material is laminated to enable brazing in an air atmosphere. is there.

さらに、特許文献5では、芯材の表面にAl−Si−Mg系合金からなるろう材をクラッドし、且つ、ろう付前に材料表面を酸洗浄し酸化膜の厚みを20Å以下とすれば、非酸化性雰囲気中でのフラックスレスろう付が可能になるという提案がある。   Furthermore, in Patent Document 5, if the surface of the core material is clad with a brazing material made of an Al—Si—Mg-based alloy, and the material surface is acid-washed before brazing and the thickness of the oxide film is 20 mm or less, There is a proposal that fluxless brazing in a non-oxidizing atmosphere becomes possible.

特開平9−85433号公報JP-A-9-85433 特開2006−175500号公報JP 2006-175500 A 特許第4037477号公報Japanese Patent No. 4037477 特許第3701847号公報Japanese Patent No. 3701847 特開平10−180489号公報Japanese Patent Laid-Open No. 10-180489 国際公開2012−057197号公報International Publication No. 2012-057197

しかし、特許文献1で提案されている技術では覆いをすることが必須となっており、覆いを製品サイズ別に用意したり、量産で想定される使用個数を準備する必要があったり、さらに、覆いのメンテナンス等が必要となり、量産適用においては 手間やコストがかかるという問題がある。また、覆いをすることにより被ろう付物の昇温速度が低下してしまい、生産性を低下させてしまうという問題もある。
また、特許文献2に示される方法では、炉内に風除け冶具の動作を制御する機構を設ける必要があり、設備の導入や維持にコストと手間が掛かるという問題がある。
However, in the technique proposed in Patent Document 1, it is indispensable to cover, and it is necessary to prepare a cover for each product size, to prepare a number to be used for mass production, and to cover Maintenance is required, and there is a problem that it takes time and cost for mass production. Moreover, there is also a problem that the temperature rise rate of the brazed object is lowered by covering, and the productivity is lowered.
Moreover, in the method shown in Patent Document 2, it is necessary to provide a mechanism for controlling the operation of the windbreaker in the furnace, and there is a problem that it takes cost and labor to install and maintain the equipment.

また、覆いを必要とせずに、大気圧下でのろう付を可能にする特許文献3〜5においても以下の課題がある。
特許文献3で提案されている方法では、チューブ外面とフィンの接合はフラックスを使用しており、フラックスを使用することによるデメリットは完全に解消されていないという問題がある。
また、特許文献4で提案されている技術では、従来の高真空ろう付やノコロックろう付に用いる材料に対し、ろう材表面に酸化防止層を設けたクラッド材を準備する必要があり、材料コストが高くなるという問題があり、さらに、製品形状が積層構造に限定されるという汎用性の問題がある。
さらに、特許文献5に示される方法では、酸洗浄の工程管理が煩雑となり、酸洗浄工程分のコストが増加するという問題がある。
Further, Patent Documents 3 to 5 that enable brazing under atmospheric pressure without requiring a cover also have the following problems.
In the method proposed in Patent Document 3, a flux is used to join the outer surface of the tube and the fin, and there is a problem that the disadvantages of using the flux are not completely eliminated.
Moreover, in the technique proposed in Patent Document 4, it is necessary to prepare a clad material in which an anti-oxidation layer is provided on the surface of the brazing material with respect to the material used for the conventional high vacuum brazing or nocolok brazing, and the material cost In addition, there is a problem of versatility that the product shape is limited to a laminated structure.
Furthermore, the method disclosed in Patent Document 5 has a problem that the process management of the acid cleaning becomes complicated and the cost for the acid cleaning process increases.

さらに、従来のフラックスレスろう付法ではろう材表面の酸化皮膜がろう付熱処理時に十分に破壊、分断されないため、接合不良が発生し、著しく接合強度が低下する問題がある。また、製造工程中やろう付熱処理時の雰囲気中の酸素濃度が高いと部材中のMgと雰囲気中の酸素が反応し、Mgの酸化皮膜(MgO)が成長し、接合率が著しく低下し、安定した接合状態が得られにくい課題もある。   Further, in the conventional fluxless brazing method, the oxide film on the surface of the brazing material is not sufficiently broken or divided during the brazing heat treatment, and thus there is a problem that bonding failure occurs and the bonding strength is remarkably reduced. In addition, when the oxygen concentration in the atmosphere during the manufacturing process and brazing heat treatment is high, Mg in the member reacts with oxygen in the atmosphere, an Mg oxide film (MgO) grows, and the bonding rate decreases significantly. There is also a problem that it is difficult to obtain a stable bonded state.

このような課題に鑑み、本発明は、フラックス塗布工程や真空設備等の導入運用コストや、ろう付時に使用する覆い等の副資材コスト、材料酸洗浄等の新たな工程コストを発生させず、且つ、熱交換器等の形状によらずに全ての部位で安定的な接合状態を得ることが可能なアルミニウム材の汎用的なフラックスレスろう付方法を提供することを目的とする。   In view of such a problem, the present invention does not generate new operation costs such as introduction operation costs such as flux application process and vacuum equipment, secondary material costs such as a cover used at the time of brazing, material acid cleaning, And it aims at providing the versatile fluxless brazing method of the aluminum material which can obtain the stable joining state in all the parts irrespective of shapes, such as a heat exchanger.

アルミニウムは下記(1)式の反応によって非常に酸化しやすく、酸化皮膜を形成するとろう付性が低下する。
2Al+3/2O→Al (1)
フラックスレスろう付では、接合部の酸化皮膜を緻密なフィルム状の形態からなるべく微細な粒子状に分断して、溶融ろうの濡れ性や流動性を向上させる必要がある。またろう付性向上という点で、炉内雰囲気中の酸素濃度の低下が有効であることが確認されている。
酸化皮膜の分断のためにろう材やろう付対象部材などの材料中にMgが添加された場合でも、ろう付時に雰囲気中の酸素濃度が高いと、下記(2)式に示すように、部材中のMgの酸化が促進され、表面に安定なMgO酸化物層が厚く形成されるため、ろう付性が著しく低下する。ろう付け時は高温で長時間保存されるほど表面の酸化皮膜は成長するが、酸化反応は550℃以上で急激に進み、固相であってもその反応は起こる。
Mg+1/2O→MgO (2)
一方、酸素濃度が低い状態では、下記(3)式に示すように、アルミニウム表面の酸化膜Alが材料中のMgにより還元分解されて粒状のMgAlに変化し、微細な酸化物として分散するため、良好な接合が行われる。
3Mg+4Al→3MgAl+2Al (3)
したがって、良好な接合状態を得るには雰囲気中の酸素濃度をなるべく低く制御することが望ましい。
Aluminum is very easily oxidized by the reaction of the following formula (1), and when an oxide film is formed, the brazing property is lowered.
2Al + 3 / 2O 2 → Al 2 O 3 (1)
In fluxless brazing, it is necessary to improve the wettability and fluidity of the molten brazing by dividing the oxide film at the joint into fine particles as much as possible. Further, it has been confirmed that the reduction of the oxygen concentration in the furnace atmosphere is effective in terms of improving the brazeability.
Even when Mg is added to a material such as a brazing material or a brazing target member for dividing an oxide film, if the oxygen concentration in the atmosphere is high at the time of brazing, the member as shown in the following formula (2) The oxidation of Mg is promoted and a stable MgO oxide layer is formed thick on the surface, so that the brazing property is remarkably lowered. During brazing, the oxide film on the surface grows as it is stored at a high temperature for a long time, but the oxidation reaction proceeds rapidly at 550 ° C. or higher, and the reaction occurs even in the solid phase.
Mg + 1 / 2O 2 → MgO (2)
On the other hand, in the state where the oxygen concentration is low, as shown in the following formula (3), the oxide film Al 2 O 3 on the aluminum surface is reduced and decomposed by Mg in the material to be changed into granular MgAl 2 O 4 , which is fine. Since it is dispersed as an oxide, good bonding is performed.
3Mg + 4Al 2 O 3 → 3MgAl 2 O 4 + 2Al (3)
Therefore, in order to obtain a good bonding state, it is desirable to control the oxygen concentration in the atmosphere as low as possible.

酸素濃度の低下には一般には、最も安価な窒素ガスが使用されるが、Mgを含有した溶融ろうでは表面酸化皮膜が破壊され活性な状態となっているため、下記(4)式に示すように、ろうが溶融した時点で雰囲気中の窒素と反応し、溶融ろう表面に窒化物を主体とする反応層が形成され、隙間充填性が低下してろうの濡れ性が著しく低下すると考えられる。但し、この反応は溶融ろう(液相)と雰囲気ガス(気相)の反応であり、固相状態では起こらないため、炉内のろう溶融域で雰囲気中のO、N濃度を低下することが重要となる。
M(Al,Mg,Si)+N→M (4)
上記(1)〜(4)式の反応では、(2)、(1)、(3)、(4)の順に反応が起こりやすいと考えられる。
In general, the cheapest nitrogen gas is used to lower the oxygen concentration. However, in the molten brazing containing Mg, since the surface oxide film is destroyed and activated, the following equation (4) is obtained. In addition, it is considered that when the wax is melted, it reacts with nitrogen in the atmosphere, and a reaction layer mainly composed of nitride is formed on the surface of the molten wax, so that the gap filling property is lowered and the wettability of the wax is remarkably lowered. However, this reaction is a reaction between molten brazing (liquid phase) and atmospheric gas (gas phase) and does not occur in the solid phase, so the O 2 and N 2 concentrations in the atmosphere are lowered in the brazing melting region in the furnace. It becomes important.
M (Al, Mg, Si) + N 2 → M x N y (4)
In the reactions of the above formulas (1) to (4), the reactions are likely to occur in the order of (2), (1), (3), and (4).

ガス以外で、ろう付性改善に有効なガスとしては、アルゴンが提案(特許文献6参照)されているが、アルゴンはNに比べ高価であるためろう付のコストが増大する。これらのガスをろうが溶融している領域のみに効率よく利用することで、使用量を低減し、ろう付性の向上とコスト面の両立が図れる。 Argon has been proposed as a gas other than N 2 gas that is effective for improving brazing properties (see Patent Document 6). However, since argon is more expensive than N 2 , the cost of brazing increases. By efficiently using these gases only in the region where the wax is melted, the amount used can be reduced, and the improvement in brazing and cost can be achieved.

そこで、本発明者らは上記課題に鑑み鋭意検討を重ねた結果、Al−Si系ろう材に適正量のMgを添加し、減圧雰囲気で加熱するものとし、ろう付昇温過程における炉内の酸素濃度ならびに窒素ガス濃度を温度範囲に従って最適に管理し、コスト増を抑えた上で著しく接合状態が改善できることを見出し、本発明を完成するに至ったものである。   Therefore, as a result of intensive studies in view of the above problems, the present inventors added an appropriate amount of Mg to the Al—Si brazing material and heated in a reduced pressure atmosphere. The present inventors have found that the oxygen concentration and the nitrogen gas concentration are optimally managed according to the temperature range, and that the joining state can be remarkably improved while suppressing an increase in cost, and the present invention has been completed.

すなわち、本発明のアルミニウム材のろう付方法のうち、第1の本発明は、Al−Si−Mg系ろう材を備えるアルミニウム合金材を、ろう付炉内で大気圧より低い減圧状態にて加熱するろう付方法であって、
昇温時に少なくとも450℃からろう溶融前までの温度範囲で、酸素濃度が第1の所定値以下である第1の減圧雰囲気中で加熱し、少なくともろうが溶融を開始する温度以上で、酸素濃度が第1の所定値よりも低い第2の所定値以下、窒素ガス濃度が所定濃度以下の第2の減圧雰囲気中で加熱して、フラックスを使用せずに前記Al−Si−Mg系ろう材により前記アルミニウム合金材を含むろう付対象物を接合することを特徴とする。
That is, among the brazing methods for an aluminum material of the present invention, the first invention is that an aluminum alloy material provided with an Al—Si—Mg-based brazing material is heated in a brazing furnace at a reduced pressure lower than atmospheric pressure. A brazing method,
Heating is performed in a first reduced-pressure atmosphere having an oxygen concentration equal to or lower than a first predetermined value at a temperature range of at least 450 ° C. before the wax melting at the time of temperature rise, and at least above the temperature at which the wax starts melting The Al—Si—Mg-based brazing material is heated without using a flux by heating in a second reduced pressure atmosphere having a nitrogen gas concentration equal to or lower than a second predetermined value lower than the first predetermined value. The brazing object containing the aluminum alloy material is joined by the above.

第2の本発明のアルミニウム材のろう付方法は、前記第1の本発明において、前記Al−Si−Mg系ろう材と前記アルミニウム合金材とが、前記アルミニウム合金材を芯材としてクラッドされてブレージングシートを構成していることを特徴とする。   The method for brazing an aluminum material according to a second aspect of the present invention is the method according to the first aspect, wherein the Al—Si—Mg brazing material and the aluminum alloy material are clad using the aluminum alloy material as a core material. It is characterized by constituting a brazing sheet.

第3の本発明のアルミニウム材のろう付方法は、前記第1または第2の本発明において、 前記第1の減圧雰囲気は、酸素濃度の第1の所定値が50ppm、圧力が1Pa以上であり、前記第2の減圧雰囲気は、酸素濃度の第2の所定値が25ppm、前記窒素ガス濃度の所定値が10体積%、圧力が0.01Pa以上であることを特徴とする。   The brazing method for an aluminum material according to a third aspect of the present invention is the method according to the first or second aspect, wherein the first reduced-pressure atmosphere has a first predetermined value of oxygen concentration of 50 ppm and a pressure of 1 Pa or more. The second reduced-pressure atmosphere is characterized in that a second predetermined value of oxygen concentration is 25 ppm, a predetermined value of the nitrogen gas concentration is 10% by volume, and a pressure is 0.01 Pa or more.

第4の本発明のアルミニウム材のろう付方法は、前記第3の本発明において、前記第1の減圧雰囲気は、圧力が10,000Pa以下であり、前記第2の減圧雰囲気は、圧力が5,000Pa以下であることを特徴とする。   In the method of brazing an aluminum material according to a fourth aspect of the present invention, in the third aspect of the present invention, the first reduced-pressure atmosphere has a pressure of 10,000 Pa or less, and the second reduced-pressure atmosphere has a pressure of 5 , 000 Pa or less.

第5の本発明のアルミニウム材のろう付方法は、前記第3または第4の本発明において、ろうが溶融を開始する温度以上で加熱する工程後の冷却過程で、400℃に冷却されるまでの温度範囲で酸素濃度を50ppm以下に維持することを特徴とする。   The aluminum material brazing method according to the fifth aspect of the present invention is the method according to the third or fourth aspect of the present invention, until the brazing is cooled to 400 ° C. in the cooling process after the step of heating at a temperature higher than the temperature at which melting starts. The oxygen concentration is maintained at 50 ppm or less in a temperature range of

第6の本発明のアルミニウム材のろう付方法は、前記第1〜第5の本発明のいずれかにおいて、前記第2の減圧雰囲気が、希ガスまたは希ガスを含む混合ガスをキャリアガスとして形成されることを特徴とする。   The aluminum material brazing method of the sixth aspect of the present invention is the method according to any one of the first to fifth aspects of the present invention, wherein the second reduced-pressure atmosphere forms a rare gas or a mixed gas containing a rare gas as a carrier gas. It is characterized by being.

第7の本発明のアルミニウム材のろう付方法は、前記第1〜第6の本発明のいずれかにおいて、前記第1の減圧雰囲気が、希ガスまたは希ガスを含む混合ガスをキャリアガスとして形成されることを特徴とする。   The aluminum material brazing method according to a seventh aspect of the present invention is the method according to any one of the first to sixth aspects, wherein the first reduced-pressure atmosphere is formed by using a rare gas or a mixed gas containing a rare gas as a carrier gas. It is characterized by being.

第8の本発明のアルミニウム材のろう付方法は、前記第6または第7の本発明において、前記希ガスがアルゴンであることを特徴とする。   An aluminum material brazing method according to an eighth aspect of the present invention is characterized in that, in the sixth or seventh aspect of the present invention, the rare gas is argon.

第9の本発明のアルミニウム材のろう付方法は、前記第1〜第8の本発明のいずれかにおいて、前記ろう材が、質量%で、Si:5.0〜13.0%、Mg:0.1〜3.0%を含有し、残部がAlと不可避不純物からなることを特徴とする。   A brazing method for an aluminum material according to a ninth aspect of the present invention is the method according to any one of the first to eighth aspects, wherein the brazing material is in mass%, Si: 5.0 to 13.0%, Mg: It contains 0.1 to 3.0%, and the balance is made of Al and inevitable impurities.

第10の本発明のアルミニウム材のろう付方法は、前記第9の本発明において、前記ろう材が、さらに質量%でBe:0.0001〜0.1%、Bi:0.01〜0.3%、Ca:0.002〜0.3%のうち1種または2種以上を含有することを特徴とする。   The brazing method for an aluminum material according to a tenth aspect of the present invention is the method according to the ninth aspect of the present invention, wherein the brazing material further contains Be: 0.0001 to 0.1% and Bi: 0.01 to 0.0. It is characterized by containing one or more of 3% and Ca: 0.002 to 0.3%.

第11の本発明のアルミニウム材のろう付方法は、前記第1〜第10の本発明のいずれかにおいて、前記アルミニウム合金材が、質量%でMn:0.2〜2.5%、Cu:0.05〜1.0%、Si:0.1〜1.0%の内1種または2種以上を含有し、残部がAlと不可避不純物からなる組成を有することを特徴とする。   The aluminum material brazing method of the eleventh aspect of the present invention is the aluminum alloy material according to any one of the first to tenth aspects of the present invention, wherein the aluminum alloy material is Mn: 0.2 to 2.5% by mass, Cu: It is characterized by containing one or more of 0.05 to 1.0% and Si: 0.1 to 1.0%, with the balance being composed of Al and inevitable impurities.

第12の本発明のアルミニウム材のろう付方法は、前記第1〜第11の本発明のいずれかにおいて、前記アルミニウム合金材が、質量%でMg:0.01〜1.0%を含有し、さらにMn:0.2〜2.5%、Cu:0.05〜1.0%、Si:0.1〜1.0%の内1種または2種以上を含有し、残部がAlと不可避不純物からなる組成を有することを特徴とする。   The aluminum material brazing method according to a twelfth aspect of the present invention is the aluminum material according to any one of the first to eleventh aspects, wherein the aluminum alloy material contains Mg: 0.01 to 1.0% by mass. Further, Mn: 0.2 to 2.5%, Cu: 0.05 to 1.0%, Si: 0.1 to 1.0%, or one or more of them are contained, with the balance being Al. It has a composition comprising inevitable impurities.

第13の本発明のろう付構造体は、前記第1〜第12の本発明のいずれかのろう付方法によってろう付け対象物が接合されていることを特徴とする。   The brazing structure of the thirteenth aspect of the present invention is characterized in that a brazing object is joined by the brazing method of any of the first to twelfth aspects of the present invention.

ろう付加熱時にアルミニウム部材の酸化は温度の上昇とともに進むため、雰囲気中の酸素濃度の低下は必須であるが、ろうが溶融する前の段階であれば、アルミニウムと窒素ガスは反応性を持たないため、最も安価な窒素ガスを使用して酸化を抑制することがコスト上有利となる。しかし、ろう溶融後は雰囲気中の窒素ガス濃度が高いと溶融ろうの表面に窒化物層が形成されるため、ろうの濡れ性が著しく低下し、十分な接合が得られない。すなわち窒素との反応層は液相の溶融ろうと気相の窒素ガスとの反応であり、本発明によれば、減圧下でろう溶融前の酸素濃度及び雰囲気と、ろう溶融後の雰囲気中の酸素濃度と窒素濃度を制御することで、接合の安定性が向上し、かつ高価なアルゴンガスなどの使用量が低減し、ろう付性とコストの両立を図ることができる。しかも、酸素濃度と窒素濃度の制御を行うことで、減圧に際しての真空度を低くすることができ、Mgなどの蒸散を抑制することができる。
なお、アルゴンガス等の使用量が低減可能な場合は第1の減圧雰囲気からアルゴンガスなどを含むキャリアガスとすることも有効である。なお、第1の減圧雰囲気と、第2の減圧雰囲気における減圧雰囲気ガスは、同種、異種のいずれであってもよい。
以下に、本発明で規定する条件について説明する。
Since the oxidation of the aluminum member progresses as the temperature rises during brazing addition heat, it is essential to lower the oxygen concentration in the atmosphere, but aluminum and nitrogen gas are not reactive at the stage before the brazing melts Therefore, it is advantageous in terms of cost to suppress oxidation using the least expensive nitrogen gas. However, if the nitrogen gas concentration in the atmosphere is high after the wax is melted, a nitride layer is formed on the surface of the molten solder, so that the wettability of the solder is remarkably lowered and sufficient bonding cannot be obtained. That is, the reaction layer with nitrogen is a reaction between the liquid phase melting wax and the gas phase nitrogen gas. According to the present invention, under reduced pressure, the oxygen concentration and atmosphere before wax melting and the oxygen in the atmosphere after wax melting. By controlling the concentration and the nitrogen concentration, the stability of bonding is improved, the amount of expensive argon gas used is reduced, and both brazability and cost can be achieved. In addition, by controlling the oxygen concentration and the nitrogen concentration, the degree of vacuum at the time of decompression can be lowered, and evaporation of Mg and the like can be suppressed.
When the amount of argon gas used can be reduced, it is also effective to use a carrier gas containing argon gas or the like from the first reduced pressure atmosphere. Note that the reduced-pressure atmosphere gas in the first reduced-pressure atmosphere and the second reduced-pressure atmosphere may be the same type or different types.
Below, the conditions prescribed | regulated by this invention are demonstrated.

(ろう付過程の雰囲気制御)
ろう付炉内を減圧し、熱交換器内部のガス(大気)の持ち込みや材料表面の吸着物質(残油や水分など)を軽減し、ろう付性を改善する。
450℃〜ろう溶融前までの温度範囲
・酸素濃度および減圧雰囲気(第1の減圧雰囲気)
450℃以上のろう付加熱中に材料表面の酸化皮膜が成長し、ろう付性が低下するのを抑制するため酸素濃度を規制することが必要になる。酸素濃度が高くても接合は可能であるが、接合部の形状によっては、接合率や接合強度が低下する。
なお、ろう溶融前は窒素ガスとアルミニウム材は反応性を持たないため、安価な窒素ガス雰囲気にして酸素濃度を低下させることがコスト上有利となるが、減圧雰囲気ガスの種類は特に規定されるものではない。なお、任意の減圧雰囲気ガスを用いる場合、窒素ガス濃度を特に規制する必要はない。
第1の減圧雰囲気は、ろう溶融前であれば、その温度上限は特に限定されないが、できるだけろう溶融に近い温度までとするのが望ましく、ろう溶融温度直前がより望ましい。
(Atmosphere control during brazing process)
Reduce the pressure inside the brazing furnace to reduce the amount of gas (atmosphere) brought into the heat exchanger and the adsorbed substances (residual oil, moisture, etc.) on the material surface to improve brazing.
Temperature range from 450 ° C to before melting, oxygen concentration and reduced pressure atmosphere (first reduced pressure atmosphere)
It is necessary to regulate the oxygen concentration in order to prevent the oxide film on the surface of the material from growing during brazing addition heat at 450 ° C. or higher and reducing brazing. Bonding is possible even when the oxygen concentration is high, but depending on the shape of the bonded portion, the bonding rate and bonding strength are reduced.
In addition, since the nitrogen gas and the aluminum material have no reactivity before the solder melting, it is advantageous in terms of cost to reduce the oxygen concentration in an inexpensive nitrogen gas atmosphere, but the type of the reduced-pressure atmosphere gas is particularly defined. It is not a thing. In addition, when using arbitrary decompression atmosphere gas, it is not necessary to regulate nitrogen gas concentration in particular.
The upper limit of the temperature of the first reduced-pressure atmosphere is not particularly limited as long as it is before the wax melting, but it is preferably as close to the wax melting as possible, and more preferably just before the wax melting temperature.

第1の減圧雰囲気における酸素濃度は、第2の減圧雰囲気における酸素濃度の第2の所定値よりも高い第1の所定値を上限とする。第1の減圧雰囲気の酸素濃度規制は、固相での酸化成長抑制であるため、溶融時の酸化抑制よりも緩い規制とすることができる。具体的には、例えば酸素濃度を50ppm以下とすることができる。50ppmを越える酸素濃度では、ろう付加熱時にAlやMgの酸化皮膜の成長が進み、ろう溶融時の濡れ性が低下するため接合状態が不安定となり、特に隙間充填性や接合強度が低下する。なお、温度が高い領域ほど酸素濃度が低い方が酸化皮膜の成長が抑制される。このため500℃以上からろう溶融までの温度範囲では、酸素濃度25ppm以下に規制するようにしてもよい。なお、第1の減圧雰囲気の酸素濃度は20ppm以下が一層望ましい。
雰囲気中の酸素濃度を低下するほど接合率は向上するが、炉の気密性向上や減圧雰囲気ガス使用量の著しい増加が必要となり、コストアップ要因となる。
また、第1の減圧雰囲気は、大気圧よりも低い減圧状態にしてろう付面の酸化を防止する。圧力は10,000Pa以下が望ましい。10,000Pa超とすると、酸素濃度の低下が困難となり、ろう付対象物の表面クリーニング効果が十分得られないため、ろう付性が低下する。なお、同様の理由で、5,000Pa以下が一層望ましい。
また、第1の減圧雰囲気は、圧力が1Pa以上であるのが望ましい。これは、圧力が低い方が酸素濃度の低下や表面クリーニング効果は十分得られるが、ろう付炉の気密性や真空ポンプの能力が必要となり、炉のメンテナンス性や生産維持管理のコストが増大する。
なお、前記のようにろう付炉の管理面と生産性の観点から第一の減圧雰囲気は圧力が100Pa以上であるのが一層望ましく、また、圧力が5,000Pa以下であるのが一層望ましいためである。
The upper limit of the oxygen concentration in the first reduced pressure atmosphere is a first predetermined value higher than the second predetermined value of the oxygen concentration in the second reduced pressure atmosphere. Since the oxygen concentration restriction in the first reduced-pressure atmosphere is to suppress the oxidative growth in the solid phase, it can be made more lenient than the oxidation restriction at the time of melting. Specifically, for example, the oxygen concentration can be 50 ppm or less. When the oxygen concentration exceeds 50 ppm, the growth of the oxide film of Al or Mg proceeds during the heat of brazing addition, and the wettability during the melting of the braze decreases, so that the joining state becomes unstable, and particularly the gap filling property and the joining strength are lowered. Note that the growth of the oxide film is suppressed when the oxygen concentration is lower in the region where the temperature is higher. For this reason, in the temperature range from 500 degreeC or more to wax melting, you may make it regulate oxygen concentration to 25 ppm or less. The oxygen concentration in the first reduced pressure atmosphere is more preferably 20 ppm or less.
As the oxygen concentration in the atmosphere is lowered, the bonding rate is improved. However, it is necessary to improve the air tightness of the furnace and to significantly increase the amount of use of the reduced-pressure atmosphere gas, which causes a cost increase.
Further, the first reduced-pressure atmosphere is brought into a reduced pressure state lower than the atmospheric pressure to prevent the brazed surface from being oxidized. The pressure is desirably 10,000 Pa or less. If it exceeds 10,000 Pa, it is difficult to lower the oxygen concentration, and the surface cleaning effect of the brazing object cannot be sufficiently obtained, so that the brazing property is lowered. For the same reason, 5,000 Pa or less is more desirable.
Further, it is desirable that the first decompressed atmosphere has a pressure of 1 Pa or more. This is because the lower the pressure, the lower the oxygen concentration and the surface cleaning effect, but the airtightness of the brazing furnace and the capacity of the vacuum pump are required, and the furnace maintenance and production maintenance management costs increase. .
In addition, from the viewpoint of brazing furnace management and productivity as described above, the first reduced-pressure atmosphere is more preferably a pressure of 100 Pa or more, and more preferably a pressure of 5,000 Pa or less. It is.

なお、第1の減圧雰囲気を形成するためのガスとしてはアルミニウムと反応性を持たないアルゴン、ヘリウム、キセノンなどの希ガスの1種または混合ガスが挙げられるが、コスト面からアルゴンが最も望ましい。なお、時機を異にして異なる希ガスを用いることも可能である。上記ガスはキャリアガスとして用いることができる。
前記雰囲気を得る方法としては炉内に仕切板を設けたり、ガスの吹き込み方法を最適化するなどの多くの方法があるため、ここではろう付炉の構造等は特に規定しない。また、コストダウンのため使用したアルゴンガスを回収し、再循環を行う方法等も有効となる。
Note that as a gas for forming the first reduced-pressure atmosphere, one kind or a mixed gas of a rare gas such as argon, helium, and xenon that is not reactive with aluminum is used, and argon is most preferable from the viewpoint of cost. It is also possible to use different rare gases at different times. The above gas can be used as a carrier gas.
Since there are many methods for obtaining the atmosphere, such as providing a partition plate in the furnace and optimizing the gas blowing method, the structure of the brazing furnace is not particularly defined here. In addition, a method of recovering the argon gas used for cost reduction and performing recirculation is also effective.

少なくともろうが溶融を開始する温度以上
・酸素濃度および窒素ガス濃度(第2の減圧雰囲気)
ろうが溶融を開始する温度以上では、第2の減圧雰囲気として酸素濃度及び窒素ガス濃度を規制し、低真空に減圧する。Zn、Mgなどの蒸発抑制には圧力は高い方が良いため、真空度は5,000Pa以下とすることが望ましい。5,000Pa超とすると、酸素濃度の低下が困難となり、多量のキャリアガスが必要となる。なお、前記真空度は2,500Pa以下が一層望ましい。第2の減圧雰囲気は、相対的には第1の減圧雰囲気よりも低真空度、すなわち高い圧力にすることができる。第2の減圧雰囲気は、ろうが溶融を開始する温度未満から開始してもよい。
また、第2の減圧雰囲気は、圧力が0.01Pa以上であるのが望ましい。これは、ろう付性を確保するためには、圧力が低い方が良いが、高価な真空ポンプが必要となり、また、圧力が低いとろう付時に部材中からZnが蒸発するため、耐食性の確保が困難となるためである。
なお、上記と同様の理由で第2の減圧雰囲気は、圧力が0.1Pa以上であるのが一層望ましく、また、圧力が2,500Pa以下であるのが一層望ましい。
At least the temperature at which the wax begins to melt ・ Oxygen concentration and nitrogen gas concentration (second reduced pressure atmosphere)
Above the temperature at which the wax starts to melt, the oxygen concentration and the nitrogen gas concentration are regulated as the second reduced pressure atmosphere, and the pressure is reduced to a low vacuum. Since higher pressure is better for suppressing evaporation of Zn, Mg, etc., the degree of vacuum is desirably 5,000 Pa or less. If it exceeds 5,000 Pa, it is difficult to lower the oxygen concentration, and a large amount of carrier gas is required. The degree of vacuum is more preferably 2,500 Pa or less. The second reduced-pressure atmosphere can be relatively lower in vacuum, that is, higher pressure than the first reduced-pressure atmosphere. The second reduced pressure atmosphere may start below the temperature at which the wax begins to melt.
Further, it is desirable that the second reduced pressure atmosphere has a pressure of 0.01 Pa or more. In order to ensure brazing, it is better to have a low pressure, but an expensive vacuum pump is required, and if the pressure is low, Zn will evaporate from the member during brazing, ensuring corrosion resistance. This is because it becomes difficult.
For the same reason as described above, it is more desirable that the second reduced-pressure atmosphere has a pressure of 0.1 Pa or more, and it is more desirable that the pressure be 2,500 Pa or less.

溶融ろうが生成すると、雰囲気中のガスとの反応が著しく促進される。すなわちろうが溶融を開始する温度域以上の酸素濃度ならびに窒素濃度を低下しなければ、反応層が形成され、濡れ性が著しく低下する。Mgを含有するろう材の場合、ろう材表面が活性化しているため、酸素濃度だけでなく、窒素濃度も制御し、反応層の成長を抑制する必要がある。   When the molten wax is formed, the reaction with the gas in the atmosphere is significantly accelerated. That is, unless the oxygen concentration and the nitrogen concentration above the temperature range where the wax starts to melt are not lowered, a reaction layer is formed and the wettability is remarkably lowered. In the case of a brazing material containing Mg, since the brazing material surface is activated, it is necessary to control not only the oxygen concentration but also the nitrogen concentration to suppress the growth of the reaction layer.

第2の減圧雰囲気における酸素濃度については、溶融時の酸化抑制であるため、第1の減圧雰囲気における酸素濃度の規制値よりも低い規制値を定める。具体的には、例えば25ppm以下とする。25ppmを越える酸化濃度では、マグネシウムの酸化膜(MgO)が著しく成長するため、(3)式の反応を十分に進行させることが難しくなる。より望ましい酸素濃度は20ppm以下である。ただし、さらなる酸素濃度の低下は炉の気密性向上や減圧雰囲気ガス使用量の増加を招くため、コストアップ要因となる。   The oxygen concentration in the second reduced-pressure atmosphere is determined to be lower than the restriction value for the oxygen concentration in the first reduced-pressure atmosphere because it is an oxidation suppression during melting. Specifically, for example, it is 25 ppm or less. When the oxidation concentration exceeds 25 ppm, the magnesium oxide film (MgO) grows remarkably, making it difficult to sufficiently advance the reaction of the formula (3). A more desirable oxygen concentration is 20 ppm or less. However, further reduction in the oxygen concentration causes an increase in the airtightness of the furnace and an increase in the amount of reduced-pressure atmospheric gas used, which increases the cost.

また、第2の減圧雰囲気では、窒素濃度を規制することで、(4)式の反応を進行させないようにして雰囲気ガスによるろう付性阻害要因を排除する。具体的には、例えば、雰囲気中の窒素濃度を10体積%以下とする。10体積%を越えると、(4)式の反応が進行しやすくなり、窒化物層の成長が著しく助長されてろう付性が低下する。望ましくは、5体積%以下とする。雰囲気中の窒素ガス濃度をさらに低下すると接合率は向上するが、より高価なアルゴンやヘリウムなどの減圧雰囲気ガスの使用量が増加するため、コスト面から望ましくない。   Further, in the second reduced-pressure atmosphere, by restricting the nitrogen concentration, the cause of the brazing property inhibition by the atmospheric gas is eliminated so that the reaction of the formula (4) does not proceed. Specifically, for example, the nitrogen concentration in the atmosphere is set to 10% by volume or less. If it exceeds 10% by volume, the reaction of the formula (4) tends to proceed, the growth of the nitride layer is remarkably promoted, and the brazing property is lowered. Desirably, it is 5 volume% or less. When the nitrogen gas concentration in the atmosphere is further reduced, the bonding rate is improved. However, since the amount of the use of a more expensive reduced-pressure atmosphere gas such as argon or helium is increased, it is not desirable from the viewpoint of cost.

なお、第2の減圧雰囲気を形成するためのガスとしてはアルミニウムと反応性を持たないアルゴン、ヘリウム、キセノンなどの希ガスの1種または混合ガスが挙げられるが、コスト面からアルゴンが最も望ましい。なお、時機を異にして異なる希ガスを用いることも可能である。
すなわち、アルゴン、ヘリウムといったガスをろうが溶融している領域のみに効率よく利用することで、これらガスの使用量を低減し、ろう付性の向上とコスト面の両立が図れる。上記ガスはキャリアガスとして用いることができる。
前記雰囲気を得る方法としては炉内に仕切板を設けたり、ガスの吹き込み方法を最適化するなどの多くの方法があるため、ここではろう付炉の構造等は特に規定しない。また、コストダウンのため使用したアルゴンガスを回収し、再循環を行う方法等も有効となる。
In addition, as a gas for forming the second reduced pressure atmosphere, one kind or a mixed gas of rare gas such as argon, helium, and xenon which is not reactive with aluminum is used, but argon is most preferable from the viewpoint of cost. It is also possible to use different rare gases at different times.
In other words, by efficiently using only gas such as argon and helium only in the region where the wax is melted, the amount of these gases used can be reduced, and improvement in brazing and cost can be achieved. The above gas can be used as a carrier gas.
Since there are many methods for obtaining the atmosphere, such as providing a partition plate in the furnace and optimizing the gas blowing method, the structure of the brazing furnace is not particularly defined here. In addition, a method of recovering the argon gas used for cost reduction and performing recirculation is also effective.

なお、第1の減圧雰囲気と第2の減圧雰囲気とでは、酸素濃度の規制値は異なるが、濃度自体の大小関係は特に限定されるものではない。但し、第1の減圧雰囲気は、通常、大気雰囲気を窒素ガス等の減圧雰囲気ガスで置換することにより得られ、第2の減圧雰囲気は第1の減圧雰囲気からの雰囲気調整で得られるため、第1の減圧雰囲気の酸素濃度が第2の減圧雰囲気の酸素濃度よりも高い方が効率的である。   In addition, although the regulation value of oxygen concentration differs in the 1st decompression atmosphere and the 2nd decompression atmosphere, the magnitude relationship of density | concentration itself is not specifically limited. However, the first reduced-pressure atmosphere is usually obtained by replacing the atmospheric atmosphere with a reduced-pressure atmosphere gas such as nitrogen gas, and the second reduced-pressure atmosphere is obtained by adjusting the atmosphere from the first reduced-pressure atmosphere. It is more efficient that the oxygen concentration in the first reduced pressure atmosphere is higher than the oxygen concentration in the second reduced pressure atmosphere.

本願発明では、ろう材およびアルミニウム合金材の成分は特定のものに限定されないが、以下に好適な組成を例示する。以下の成分はいずれも質量%で示される。
なお、ろう材とアルミニウム合金材とは、アルミニウム合金材を芯材としてろう材がクラッドされたブレージングシートとして提供することができる。この他に、ろう材単体、あるいはアルミニウム合金材単体をろう付構造部材として、前記ブレージングシート等と組み合わせて使用することもできる。
In the present invention, the components of the brazing material and the aluminum alloy material are not limited to specific ones, but suitable compositions are exemplified below. All of the following components are shown in mass%.
The brazing material and the aluminum alloy material can be provided as a brazing sheet in which the brazing material is clad with the aluminum alloy material as a core material. In addition, a brazing material alone or an aluminum alloy material alone can be used as a brazing structural member in combination with the brazing sheet or the like.

また、ろう付加熱後の冷却過程で、400℃に至るまでは加熱炉内の酸素濃度を規制するのが望ましく、具体的には50ppm以下にするのが望ましい。これにより、ろうが凝固する際の表面酸化皮膜の成長を抑え、表面変色等を抑制することができる。   Further, in the cooling process after the brazing addition heat, it is desirable to regulate the oxygen concentration in the heating furnace until it reaches 400 ° C., specifically 50 ppm or less. Thereby, the growth of the surface oxide film when the wax solidifies can be suppressed, and the surface discoloration and the like can be suppressed.

(ろう材合金成分)
Mg:0.1〜3.0%
ろう材中のMgは、材料表面に生成する緻密な酸化皮膜(Al)を還元し、微細な粒子状の酸化物にすることで、ろうの濡れ性や流動性が向上し、接合率が向上する。その結果、接合界面における金属/金属接合面積が増加し、接合強度が向上する。これら作用のためには0.1%以上の含有が望ましい。0.1%未満の含有ではAl酸化皮膜の還元、分解作用が不十分となるため、十分な接合状態が得られにくくなる。一方、3.0%を超えて含有すると、ろう材の強度が増加し、圧延が困難となる。また、Mgの酸化皮膜が厚く成長しやすくなり、ろう付性が阻害される。これらのため、Mgの含有量は、上記範囲が望ましい。なお、同様の理由で、下限を0.25%、上限を2.0%とするのが一層望ましい。
(Brazing alloy component)
Mg: 0.1-3.0%
Mg in the brazing material reduces the dense oxide film (Al 2 O 3 ) generated on the surface of the material to form a fine particulate oxide, which improves the wettability and fluidity of the brazing and joins. The rate is improved. As a result, the metal / metal bonding area at the bonding interface is increased, and the bonding strength is improved. For these effects, a content of 0.1% or more is desirable. If the content is less than 0.1%, the reduction and decomposition action of the Al 2 O 3 oxide film becomes insufficient, and it becomes difficult to obtain a sufficient bonding state. On the other hand, if the content exceeds 3.0%, the strength of the brazing material increases and rolling becomes difficult. Further, the Mg oxide film becomes thick and easy to grow, and the brazing property is hindered. For these reasons, the Mg content is preferably within the above range. For the same reason, it is more desirable to set the lower limit to 0.25% and the upper limit to 2.0%.

Si:5.0〜13.0%
Siは、Alろう材に含有することにより、その融点を低下させ、ろう付温度にてろう材として溶融し所定の継手を形成するための必須含有元素である。また、ろう材表面に存在するSi粒子上ではアルミニウムの緻密な酸化膜の成長が抑制され、酸化皮膜の欠陥部が生成する。すなわち、アルミニウム材料表面の酸化膜がろう付熱処理中に厚膜となっても、Si粒子の周辺から溶融ろうの染み出しが発生し、この部位を起点に酸化皮膜の破壊や分断が進み、溶融ろうの濡れ性が向上するため、より安定した接合状態を得ることが可能となる。これら作用を得るためには5.0%以上の含有が望ましい。5.0%未満の含有では生成する液相量が不足するため十分な接合が得られない。一方、13.0%を超えると初晶Siが急激に増加し、素材としての加工性が悪化するとともに、ろう付時に接合部のろう侵食が著しく促進される。このため、Siの含有量は上記範囲が望ましい。なお、同様の理由で下限を6.5%、上限を11.0%とするのが一層望ましい。
Si: 5.0 to 13.0%
When Si is contained in the Al brazing material, it is an essential element for lowering its melting point and melting as a brazing material at a brazing temperature to form a predetermined joint. Further, the growth of a dense oxide film of aluminum is suppressed on the Si particles existing on the surface of the brazing filler metal, and a defective portion of the oxide film is generated. That is, even if the oxide film on the surface of the aluminum material becomes thick during brazing heat treatment, melting of the brazing filler metal begins to occur from the periphery of the Si particles, and the oxide film breaks up and breaks off starting from this site. Since the wettability of the wax is improved, a more stable joined state can be obtained. In order to obtain these effects, a content of 5.0% or more is desirable. If the content is less than 5.0%, the amount of liquid phase to be produced is insufficient, so that sufficient bonding cannot be obtained. On the other hand, if it exceeds 13.0%, the primary crystal Si rapidly increases, the workability as a raw material deteriorates, and the brazing erosion of the joint is remarkably promoted during brazing. For this reason, the above range is desirable for the Si content. For the same reason, it is more desirable to set the lower limit to 6.5% and the upper limit to 11.0%.

Be:0.0001〜0.1%
Beは、溶融ろうの表面に形成するMgを主体とする反応層(酸化物や窒化物)の生成ならびに成長を抑制し、ろう溶融時の雰囲気中の酸素濃度や窒素濃度が高い場合でも良好な接合が得られやすくなるので、所望により含有させる。上記作用を得るためには、0.0001%以上含有するのが望ましい。0.0001%未満の含有では効果が不十分となる。一方、0.1%を超えて含有しても効果が飽和する。これらのため、Beの含有量は上記範囲が望ましい。なお、同様の理由で、下限を0.0002%、上限を0.01%とするのが一層望ましい。
Be: 0.0001 to 0.1%
Be suppresses generation and growth of a reaction layer (oxide or nitride) mainly composed of Mg formed on the surface of the molten brazing, and is good even when the oxygen concentration and nitrogen concentration in the atmosphere at the time of brazing are high. Since joining becomes easy to obtain, it is contained as desired. In order to acquire the said effect | action, it is desirable to contain 0.0001% or more. If the content is less than 0.0001%, the effect is insufficient. On the other hand, even if the content exceeds 0.1%, the effect is saturated. For these reasons, the content of Be is preferably in the above range. For the same reason, it is more desirable to set the lower limit to 0.0002% and the upper limit to 0.01%.

Bi:0.01〜0.3%
Biは、Mgと共存することで融点が低下し、低い温度からろうの染み出しが発生し、この部位を起点に酸化皮膜の破壊や分断が進み、溶融ろうの濡れ性が向上し、より安定した接合状態を得ることが可能となるため所望により含有させる。上記作用を得るためには0.01%以上の含有が望ましく、0.01%未満の含有では効果が不十分となる。一方、0.3%を超えて含有すると、ろう材の圧延性低下を招く。これらのためBiの含有量は上記範囲が望ましい。なお、同様の理由で下限を0.05%、上限を0.2%とするのが一層望ましい。
Bi: 0.01 to 0.3%
Bi has a lower melting point due to coexistence with Mg, and exudation of wax occurs from a low temperature. Oxide film breaks up and breaks away from this site, improving the wettability of the molten wax and making it more stable. Since it becomes possible to obtain the joined state, it is contained if desired. In order to acquire the said effect | action, containing 0.01% or more is desirable, and an effect will become inadequate if it contains less than 0.01%. On the other hand, when it contains exceeding 0.3%, the rolling property of a brazing material will fall. For these reasons, the Bi content is preferably within the above range. For the same reason, it is more desirable to set the lower limit to 0.05% and the upper limit to 0.2%.

Ca:0.002〜0.3%
Caは、ろう材表面に生成したAlおよびMgの酸化皮膜を還元分解し、溶融ろうの濡れ性を改善するので所望により含有させる。この作用を得るため0.002%以上含有するのが望ましく、0.002%未満では効果が不十分となる。一方、0.3%を超えて含有すると、ろう材表面の酸化が促進され、接合率が低下する。これらのため、Caの含有量は上記範囲が望ましい。なお、同様の理由で下限を0.005%、上限を0.2%とするのが一層望ましい。
Ca: 0.002 to 0.3%
Ca is contained as desired because it reduces and decomposes the oxide film of Al and Mg formed on the surface of the brazing material and improves the wettability of the molten braze. In order to acquire this effect | action, it is desirable to contain 0.002% or more, and if it is less than 0.002%, the effect will be insufficient. On the other hand, if the content exceeds 0.3%, oxidation of the brazing filler metal surface is promoted and the joining rate is lowered. For these reasons, the Ca content is preferably within the above range. For the same reason, it is more desirable to set the lower limit to 0.005% and the upper limit to 0.2%.

(アルミニウム合金材成分)
Mn:0.2〜2.5%
Mnは、金属間化合物として晶出または析出し、ろう付後の強度を向上させる。また、芯材の電位を貴にして耐食性も向上させるので所望により含有させる。この作用を得るため0.2%以上含有するのが望ましい、0.2%未満の含有では上記効果が不十分となる。一方、2.5%を超えて含有すると、鋳造時に巨大金属間化合物が生成し、鋳造性や圧延性を阻害する。これらのため、Mn含有量は、0.2〜2.5%が望ましい。なお、同様の理由で下限を1.0%、上限を1.7%とするのが一層望ましい。
(Aluminum alloy material component)
Mn: 0.2 to 2.5%
Mn crystallizes or precipitates as an intermetallic compound, and improves the strength after brazing. Further, since the potential of the core material is made noble and the corrosion resistance is improved, it is contained as desired. In order to acquire this effect | action, it is desirable to contain 0.2% or more. If it contains less than 0.2%, the said effect will become inadequate. On the other hand, when it contains exceeding 2.5%, a huge intermetallic compound will produce | generate at the time of casting, and castability and rolling property will be inhibited. For these reasons, the Mn content is desirably 0.2 to 2.5%. For the same reason, it is more desirable to set the lower limit to 1.0% and the upper limit to 1.7%.

Cu:0.05〜1.0%
Cuは、材料中に固溶してろう付後の強度を向上させるとともに、芯材の電位を貴にして耐食性を向上させるので所望により含有させる。この作用を得るために0.05%以上含有するのが望ましく、0.05%未満の含有では上記効果が不十分となる。一方、1.0%を超えて含有すると、鋳造時に割れが生じたり、圧延性が低下する。これらのため、Cu含有量は0.05〜1.0%が望ましい。なお、同様の理由で下限を0.1%、上限を0.8%とするのが一層望ましい。
Cu: 0.05 to 1.0%
Cu is dissolved in the material to improve the strength after brazing and to increase the corrosion resistance by making the potential of the core material noble, so it is contained as desired. In order to acquire this effect | action, it is desirable to contain 0.05% or more, and the said effect will become inadequate if it contains less than 0.05%. On the other hand, when it contains exceeding 1.0%, a crack will arise at the time of casting, or rolling property will fall. For these reasons, the Cu content is desirably 0.05 to 1.0%. For the same reason, it is more desirable to set the lower limit to 0.1% and the upper limit to 0.8%.

Si:0.1〜1.0%
Siは、単体でマトリックスに固溶して材料強度を向上させる他、Mnと同時に含有されるとAl−Mn−Si化合物として分散して、材料強度を向上させる効果を有する。また、Mgが存在すると、ろう付熱処理後にMgSiが析出し、時効硬化により材料強度が飛躍的に向上するので所望により含有させる。これら作用を得るため0.1%以上含有するのが望ましく、0.1%未満の含有では、上記効果が不十分となる。一方、1.0%を超えて含有すると、融点が低下するため、ろう付時に芯材が溶融する。これらのため、Si含有量は、0.1〜1.0%が望ましい。なお、同様の理由で下限を0.4%、上限を0.8%とするのが一層望ましい。
Si: 0.1 to 1.0%
Si alone dissolves in the matrix to improve the material strength. When Si is contained together with Mn, it is dispersed as an Al—Mn—Si compound and has the effect of improving the material strength. If Mg is present, Mg 2 Si precipitates after the brazing heat treatment, and the material strength is dramatically improved by age hardening. In order to obtain these actions, it is desirable to contain 0.1% or more. If the content is less than 0.1%, the above effect is insufficient. On the other hand, when it contains exceeding 1.0%, since melting | fusing point falls, a core material will fuse | melt at the time of brazing. For these reasons, the Si content is desirably 0.1 to 1.0%. For the same reason, it is more desirable to set the lower limit to 0.4% and the upper limit to 0.8%.

Mg:0.01〜1.0%
Mgは、単独では固溶強化により、また、Siと同時に含有されるとろう付後に微細な金属間化合物MgSiとして析出し、時効硬化により著しく材料強度を向上させる効果を有する。また、ろう付加熱中にろう材から拡散してきたSiとも同様の強度効果を発揮する。さらに一部はろう材中に拡散し、ろう材表面の酸化膜の破壊を促進する効果を有するので所望により含有させる。上記作用のために0.01%以上含有するのが望ましく、0.01%未満の含有では上記効果が不十分となる。一方、1.0%を超えて含有すると、融点が低下し、ろう付時に芯材が溶融する。これらのため、Mgの含有量は0.01〜1.0%とする。なお、同様の理由で下限を0.2%、上限を0.6%とするのが一層望ましい。
Mg: 0.01 to 1.0%
Mg alone has the effect of solid solution strengthening, and if it is contained simultaneously with Si, it precipitates as a fine intermetallic compound Mg 2 Si after brazing and has the effect of significantly improving the material strength by age hardening. Moreover, the same strength effect is exhibited with Si diffused from the brazing material during the brazing heat. Further, a part thereof diffuses into the brazing material and has an effect of promoting the destruction of the oxide film on the surface of the brazing material. It is desirable to contain 0.01% or more for the said effect | action, and if it contains less than 0.01%, the said effect will become inadequate. On the other hand, when it contains exceeding 1.0%, melting | fusing point will fall and a core material will fuse | melt at the time of brazing. For these reasons, the Mg content is set to 0.01 to 1.0%. For the same reason, it is more desirable to set the lower limit to 0.2% and the upper limit to 0.6%.

以上のように、本発明によれば、ろう付途中の雰囲気中の酸素濃度ならびに窒素濃度を制御し、大気圧よりも低い減圧状態にすることで、大気圧下の場合に比べ、減圧雰囲気ガス使用量を著しく低減することが可能となり、減圧することで熱交換器内部のガスの持ち込みや材料表面の吸着物質(残油や水分など)も軽減され、ろう付性が劇的に向上する。また、従来の高真空雰囲気の真空ろう付では、材料中のZnが蒸発するためZn含有による耐食性の確保が課題であったが、本発明では、低真空で目的達成が可能であり、ろう付でのZnなどの成分の蒸発を抑制でき、良好な耐食性などを維持することが可能である。また、ろう付炉の構造を簡素化できるため、炉の設備費用が低減し、メンテナンス性も向上するため、生産性改善とろう付の信頼性改善の両立が可能となった。   As described above, according to the present invention, the oxygen concentration and the nitrogen concentration in the atmosphere during brazing are controlled, and the reduced pressure atmosphere gas is reduced to a reduced pressure state lower than the atmospheric pressure. It is possible to significantly reduce the amount used, and by reducing the pressure, the introduction of gas inside the heat exchanger and the adsorbed substances (residual oil, moisture, etc.) on the surface of the material are reduced, and brazing performance is dramatically improved. In addition, in conventional vacuum brazing in a high vacuum atmosphere, Zn in the material evaporates, so ensuring corrosion resistance due to the inclusion of Zn has been a problem. However, in the present invention, the object can be achieved with low vacuum, and brazing. It is possible to suppress evaporation of components such as Zn and maintain good corrosion resistance. In addition, since the structure of the brazing furnace can be simplified, the equipment cost of the furnace is reduced and the maintainability is improved, so that it is possible to improve productivity and improve the reliability of brazing.

本発明の実施例における供試材の模式図である。It is a schematic diagram of the sample material in the Example of this invention.

本ろう付に使用するアルミニウム部材の製造方法は特に限定されるものではないが、ろう付前の素材の酸化皮膜厚さはなるべく薄い方が望ましい。製造工程中の熱負荷時にもわずかであるが酸化皮膜は成長するため、熱処理工程は可能な範囲で低温かつ短時間で行うことが望ましい。また、焼鈍等の熱処理時に雰囲気中の酸素濃度低減も有効である。
以下、本発明の一実施形態を説明する。
Although the manufacturing method of the aluminum member used for this brazing is not specifically limited, It is desirable that the oxide film thickness of the material before brazing is as thin as possible. Although the oxide film grows slightly even during heat load during the manufacturing process, it is desirable to perform the heat treatment process at a low temperature and in a short time as much as possible. Also, it is effective to reduce the oxygen concentration in the atmosphere during heat treatment such as annealing.
Hereinafter, an embodiment of the present invention will be described.

好適には、Si:5.0〜13.0%、Mg:0.1〜3.0%を含有し、残部がAlと不可避不純物からなるAl−SiーMg系ろう材と、アルミニウム合金部材である芯材とは常法により製造することができ、両者またはこれに犠牲材などの他の材料とを重ねて熱間圧延でクラッド圧延する。該クラッド圧延での製造条件は本発明としては特に限定されるものではない。また、各層のクラッド率も本発明としては特定されるものではない。
なお、芯材としては、質量%でMn:0.2〜2.5%、Cu:0.05〜1.0%、Si:0.1〜1.0%の内1種または2種以上を含有し、さらに所望によりMg:0.01〜1.0%を含有し、残部がAlと不可避不純物からなる組成を有するものが例示される。
Preferably, an Al—Si—Mg-based brazing material containing Si: 5.0 to 13.0%, Mg: 0.1 to 3.0%, the balance being Al and inevitable impurities, and an aluminum alloy member The core material can be manufactured by a conventional method, and both or another material such as a sacrificial material is overlapped with each other and hot-rolled and clad-rolled. The production conditions in the clad rolling are not particularly limited as the present invention. Further, the cladding ratio of each layer is not specified as the present invention.
In addition, as a core material, it is 1 type (s) or 2 or more types in Mn: 0.2-2.5%, Cu: 0.05-1.0%, Si: 0.1-1.0% in the mass%. In addition, if desired, Mg: 0.01 to 1.0% is contained, and the balance is composed of Al and inevitable impurities.

熱間圧延クラッド材はさらに冷間圧延を行って所定の最終板厚とし、その後、所望により、組織制御や調質のための熱処理を行うことができる。   The hot-rolled clad material can be further cold-rolled to a predetermined final thickness, and then subjected to heat treatment for structure control and tempering as desired.

(熱処理の内容)
材料の物性を調整するための中間焼鈍や最終焼鈍は、通常バッチ炉や連続焼鈍炉で実施されるがその熱処理温度は100〜420℃の範囲が一般的である。本ろう付に使用するアルミニウム部材の製造方法は特に限定されるものではないが、前記焼鈍時にもわずかであるが酸化皮膜は成長するため、熱処理工程は可能な範囲で低温かつ短時間で行う事が望ましい。ただし、材料の均熱を考慮すると一定の保持時間を付与するのが望ましく、バッチ式焼鈍の場合は所定温度に1〜3時間保持される。また、焼鈍等の雰囲気は大気中で実施しても、酸化皮膜が著しく成長することはないが、DXガス(発熱性変成ガス)、窒素ガス、水素ガスなどを用いて炉内の酸素濃度を低下し、酸化皮膜の成長を抑制することも有効である。
(Content of heat treatment)
Intermediate annealing and final annealing for adjusting the physical properties of the material are usually carried out in a batch furnace or a continuous annealing furnace, but the heat treatment temperature is generally in the range of 100 to 420 ° C. The manufacturing method of the aluminum member used for the brazing is not particularly limited, but the oxide film grows even during the annealing, but the heat treatment process should be performed at a low temperature and in a short time as much as possible. Is desirable. However, in consideration of soaking of the material, it is desirable to give a certain holding time, and in the case of batch-type annealing, it is held at a predetermined temperature for 1 to 3 hours. Even if the atmosphere such as annealing is carried out in the air, the oxide film does not grow remarkably, but the oxygen concentration in the furnace is adjusted using DX gas (exothermic metamorphic gas), nitrogen gas, hydrogen gas, etc. It is also effective to reduce and suppress the growth of the oxide film.

常法により得られるアルミニウムクラッド材は、上記Al−SiーMg系ろう材が最表面に位置しており、初期酸化膜厚として20〜500Åの酸化皮膜が形成されている。上記アルミニウムクラッド材は、ベアフィン、無垢材コネクタなどのろう付け対象部材と組み付けられて、好適には熱交換器組立体などを構成する。なお、ろう付け対象部材としては種々の組成のアルミニウム材料を用いることができ、本発明としては特定のものに限定されるものではない。   In the aluminum clad material obtained by a conventional method, the Al—Si—Mg-based brazing material is located on the outermost surface, and an oxide film having an initial oxide film thickness of 20 to 500 mm is formed. The aluminum clad material is assembled with a member to be brazed such as a bare fin or a solid material connector, and preferably constitutes a heat exchanger assembly or the like. Note that aluminum materials having various compositions can be used as the brazing target member, and the present invention is not limited to a specific one.

上記組立体は、加熱炉内に配置され、加熱炉内は、昇温時に少なくとも450℃からろう溶融前までの温度範囲で減圧状態とされる。この減圧状態は本発明の第1の減圧雰囲気に相当し、ロータリーポンプなどを用いて減圧状態にする。第1の減圧雰囲気では、酸素濃度が体積比で50ppm以下、圧力が1Pa以上、10,000Pa以下とするのが望ましい。第1の減圧雰囲気は、希ガスまたは希ガスを含む混合ガスをキャリアガスとして形成することができる。
上記減圧状態は、メカニカルブースターポンプなどを使用せず、上記のようにロータリーポンプのみの使用で得ることができる。
さらに加熱炉では、ろう材が溶融する温度となる領域では、溶融ろうと反応性を持たない希ガスまたは希ガスを含む混合ガスをキャリアガスで第2の減圧雰囲気を形成する。第2の減圧雰囲気では、酸素濃度を25ppm以下、窒素濃度を10体積%以下、圧力を0.01Pa以上、5,000Pa以下に調整するのが望ましい。該減圧状態は、メカニカルブースターポンプなどを使用せず、上記のようにロータリーポンプのみの使用で得ることができる。
上記雰囲気下で559〜620℃で加熱をしてろう付けを行う。ろう付けにおいては、ろう付け対象部材との接触密着部がフラックスレスで良好に接合される。
また、ろう付加熱後の冷却過程で、400℃に至るまでは加熱炉内の酸素濃度を50ppm以下にするのが望ましい。
The assembly is disposed in a heating furnace, and the inside of the heating furnace is in a reduced pressure state at a temperature range from at least 450 ° C. to before melting of the solder when the temperature is raised. This reduced pressure state corresponds to the first reduced pressure atmosphere of the present invention, and the reduced pressure state is set using a rotary pump or the like. In the first reduced pressure atmosphere, it is desirable that the oxygen concentration is 50 ppm or less by volume and the pressure is 1 Pa or more and 10,000 Pa or less. The first reduced-pressure atmosphere can be formed using a rare gas or a mixed gas containing a rare gas as a carrier gas.
The reduced pressure state can be obtained by using only a rotary pump as described above without using a mechanical booster pump or the like.
Further, in the heating furnace, in the region where the temperature of the brazing material is melted, a second reduced pressure atmosphere is formed by using a carrier gas and a rare gas or a mixed gas containing a rare gas that is not reactive with the molten solder. In the second reduced pressure atmosphere, it is desirable to adjust the oxygen concentration to 25 ppm or less, the nitrogen concentration to 10% by volume or less, and the pressure to 0.01 Pa or more and 5,000 Pa or less. The reduced pressure state can be obtained by using only a rotary pump as described above without using a mechanical booster pump or the like.
It brazes by heating at 559-620 degreeC under the said atmosphere. In brazing, the contact and adhesion portion with the brazing target member is satisfactorily joined without flux.
Further, in the cooling process after the brazing heat, it is desirable that the oxygen concentration in the heating furnace be 50 ppm or less until reaching 400 ° C.

なお、上記説明では、ろう材とアルミニウム合金部材とがクラッドされたブレージングシートとして提供されるものとしたが、この他に、ろう材単体、あるいは、アルミニウム合金材単体を組み合わせてろう付構造体とすることができる。   In the above description, the brazing sheet and the aluminum alloy member are provided as a brazing sheet clad. can do.

表1に示す組成の芯材(本発明のアルミニウム合金部材に相当、残部はAlと不可避不純物)に、同じく表1に示す組成のろう材(残部はAlと不可避不純物)を表面に貼り合せたアルミニウムブレージングシートを用意した。ろう材クラッド率を10%とし、H14相当調質の0.25mm厚のO材に仕上げた。本ブレージングシート1を板厚0.1mmのAl−1%Mn−1.5%Znベア材のコルゲートフィン2と組合せて、幅(W)50mm、奥行き(D)25mmの図1に示す形状の供試材に対しろう付試験を実施した。コルゲートフィン2は本発明のろう付対象物に相当する。   The core material (corresponding to the aluminum alloy member of the present invention, the balance being Al and unavoidable impurities) of the composition shown in Table 1, and the brazing material (the balance being Al and unavoidable impurities) similarly shown in Table 1 were bonded to the surface. An aluminum brazing sheet was prepared. The brazing material clad rate was set to 10%, and finished to an 0.25 mm-thickness O material having a tempering equivalent to H14. This brazing sheet 1 is combined with a corrugated fin 2 made of Al-1% Mn-1.5% Zn bare material having a thickness of 0.1 mm, and has a shape shown in FIG. 1 having a width (W) of 50 mm and a depth (D) of 25 mm. A brazing test was performed on the specimen. The corrugated fin 2 corresponds to the brazing object of the present invention.

ろう付に際しては、加熱昇温に際しロータリーポンプによる減圧雰囲気とし、ろう溶融までの雰囲気中の酸素濃度低下は窒素やアルゴンなどの不活性ガスで行い、ろう溶融域における雰囲気制御はアルゴンならびにヘリウムおよびその混合ガスを使用した。ろう付中の各温度域における雰囲気中の圧力、酸素濃度、窒素濃度を測定し、ろう付性との関係を調査した。なお、圧力は広帯域型真空度計、酸素濃度はジルコニア式酸素濃度計、窒素ガス濃度はガスクロマトグラフィーで測定した。
ろう付性は以下の式にてフィンの接合率を求めて判断した。
フィン接合率=(フィンとチューブの総ろう付接合長さ/フィンとチューブの総接触長さ)×100
At the time of brazing, a reduced pressure atmosphere with a rotary pump is used for heating and heating, and the oxygen concentration in the atmosphere until brazing is reduced with an inert gas such as nitrogen or argon. A mixed gas was used. The pressure, oxygen concentration, and nitrogen concentration in the atmosphere at each temperature range during brazing were measured, and the relationship with brazing properties was investigated. The pressure was measured by a broadband vacuum meter, the oxygen concentration was measured by a zirconia oxygen meter, and the nitrogen gas concentration was measured by gas chromatography.
Brazing property was determined by obtaining the bonding rate of fins by the following formula.
Fin joint rate = (total brazed joint length of fin and tube / total contact length of fin and tube) × 100

また、ろう付後のフィン材表面のZn残留率はEPMA(電子線アナライザ)を用いて、以下の式により算出した。
フィン材表面Zn残留率=(ろう付後の表面Zn濃度)/(ろう付前の表面Zn濃度)×100
Moreover, the Zn residual rate on the fin material surface after brazing was calculated by the following formula using EPMA (electron beam analyzer).
Fin material surface Zn residual ratio = (surface Zn concentration after brazing) / (surface Zn concentration before brazing) × 100

Figure 2014184468
Figure 2014184468

Figure 2014184468
Figure 2014184468

1 ブレージングシート
2 コルゲートフィン
1 Brazing sheet 2 Corrugated fin

Claims (13)

Al−Si−Mg系ろう材を備えるアルミニウム合金材を、ろう付炉内で大気圧より低い減圧状態にて加熱するろう付方法であって、
昇温時に少なくとも450℃からろう溶融前までの温度範囲で、酸素濃度が第1の所定値以下である第1の減圧雰囲気中で加熱し、少なくともろうが溶融を開始する温度以上で、酸素濃度が第1の所定値よりも低い第2の所定値以下、窒素ガス濃度が所定濃度以下の第2の減圧雰囲気中で加熱して、フラックスを使用せずに前記Al−Si−Mg系ろう材により前記アルミニウム合金材を含むろう付対象物を接合することを特徴とするアルミニウム材のろう付方法。
A brazing method for heating an aluminum alloy material including an Al-Si-Mg brazing material in a brazing furnace at a reduced pressure lower than atmospheric pressure,
Heating is performed in a first reduced-pressure atmosphere having an oxygen concentration equal to or lower than a first predetermined value at a temperature range of at least 450 ° C. before the wax melting at the time of temperature rise, and at least above the temperature at which the wax starts melting The Al—Si—Mg-based brazing material is heated without using a flux by heating in a second reduced pressure atmosphere having a nitrogen gas concentration equal to or lower than a second predetermined value lower than the first predetermined value. A method of brazing an aluminum material, comprising joining a brazing object containing the aluminum alloy material by the method described above.
前記Al−Si−Mg系ろう材と前記アルミニウム合金材とが、前記アルミニウム合金材を芯材としてクラッドされてブレージングシートを構成していることを特徴とする請求項1記載のアルミニウム材のろう付方法。   The brazing sheet for an aluminum material according to claim 1, wherein the Al-Si-Mg-based brazing material and the aluminum alloy material are clad with the aluminum alloy material as a core material to constitute a brazing sheet. Method. 前記第1の減圧雰囲気は、酸素濃度の第1の所定値が50ppm、圧力が1Pa以上であり、前記第2の減圧雰囲気は、酸素濃度の第2の所定値が25ppm、前記窒素ガス濃度の所定値が10体積%、圧力が0.01Pa以上であることを特徴とする請求項1または2に記載のアルミニウム材のろう付方法。   The first depressurized atmosphere has a first predetermined value of oxygen concentration of 50 ppm and a pressure of 1 Pa or more, and the second depressurized atmosphere has a second predetermined value of oxygen concentration of 25 ppm and the nitrogen gas concentration. The method for brazing an aluminum material according to claim 1 or 2, wherein the predetermined value is 10% by volume and the pressure is 0.01 Pa or more. 前記第1の減圧雰囲気は、圧力が10,000Pa以下であり、前記第2の減圧雰囲気は、圧力が5,000Pa以下であることを特徴とする請求項3記載のアルミニウム材のろう付方法。   4. The aluminum material brazing method according to claim 3, wherein the first reduced pressure atmosphere has a pressure of 10,000 Pa or less, and the second reduced pressure atmosphere has a pressure of 5,000 Pa or less. ろうが溶融を開始する温度以上で加熱する工程後の冷却過程で、400℃に冷却されるまでの温度範囲で酸素濃度を50ppm以下に維持することを特徴とする請求項3または4に記載のアルミニウム材のろう付方法。   5. The oxygen concentration is maintained at 50 ppm or less in a temperature range until cooling to 400 ° C. in a cooling process after the step of heating at a temperature higher than the temperature at which the wax starts to melt. 5. Brazing method of aluminum material. 前記第2の減圧雰囲気が、希ガスまたは希ガスを含む混合ガスをキャリアガスとして形成されることを特徴とする請求項1〜5のいずれかに記載のアルミニウム材のろう付方法。   The method for brazing an aluminum material according to any one of claims 1 to 5, wherein the second reduced-pressure atmosphere is formed using a rare gas or a mixed gas containing a rare gas as a carrier gas. 前記第1の減圧雰囲気が、希ガスまたは希ガスを含む混合ガスをキャリアガスとして形成されることを特徴とする請求項1〜6のいずれかに記載のアルミニウム材のろう付方法。   The aluminum material brazing method according to claim 1, wherein the first reduced-pressure atmosphere is formed using a rare gas or a mixed gas containing a rare gas as a carrier gas. 前記希ガスがアルゴンであることを特徴とする請求項6または7に記載のアルミニウム材のろう付方法。   The method for brazing an aluminum material according to claim 6 or 7, wherein the rare gas is argon. 前記ろう材が、質量%で、Si:5.0〜13.0%、Mg:0.1〜3.0%を含有し、残部がAlと不可避不純物からなることを特徴とする請求項1〜8のいずれかに記載のアルミニウム材のろう付方法。   The brazing material contains, by mass%, Si: 5.0 to 13.0% and Mg: 0.1 to 3.0%, and the balance is made of Al and inevitable impurities. The brazing method of the aluminum material in any one of -8. 前記ろう材が、さらに質量%でBe:0.0001〜0.1%、Bi:0.01〜0.3%、Ca:0.002〜0.3%のうち1種または2種以上を含有することを特徴とする請求項9記載のアルミニウム材のろう付方法。   The brazing material further contains at least one of Be: 0.0001 to 0.1%, Bi: 0.01 to 0.3%, and Ca: 0.002 to 0.3% by mass%. It contains, The brazing method of the aluminum material of Claim 9 characterized by the above-mentioned. 前記アルミニウム合金材が、質量%でMn:0.2〜2.5%、Cu:0.05〜1.0%、Si:0.1〜1.0%の内1種または2種以上を含有し、残部がAlと不可避不純物からなる組成を有することを特徴とする請求項1〜10のいずれかに記載のアルミニウム材のろう付方法。   The aluminum alloy material contains at least one of Mn: 0.2 to 2.5%, Cu: 0.05 to 1.0%, and Si: 0.1 to 1.0% by mass%. The aluminum material brazing method according to claim 1, wherein the aluminum material has a composition comprising Al and inevitable impurities. 前記アルミニウム合金材が、質量%でMg:0.01〜1.0%を含有し、さらにMn:0.2〜2.5%、Cu:0.05〜1.0%、Si:0.1〜1.0%の内1種または2種以上を含有し、残部がAlと不可避不純物からなる組成を有することを特徴とする請求項1〜11のいずれかに記載のアルミニウム材のろう付方法。   The aluminum alloy material contains Mg: 0.01 to 1.0% by mass, Mn: 0.2 to 2.5%, Cu: 0.05 to 1.0%, Si: 0.00. The brazing of an aluminum material according to any one of claims 1 to 11, wherein the brazing material contains one or more of 1 to 1.0%, and the balance is composed of Al and inevitable impurities. Method. 請求項1〜12いずれかに記載のろう付方法にてろう付け対象物が接合されていることを特徴とするろう付構造体。   A brazing structure in which a brazing object is joined by the brazing method according to claim 1.
JP2013061103A 2013-03-22 2013-03-22 Brazing method and brazing structure of aluminum material Active JP6110173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013061103A JP6110173B2 (en) 2013-03-22 2013-03-22 Brazing method and brazing structure of aluminum material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013061103A JP6110173B2 (en) 2013-03-22 2013-03-22 Brazing method and brazing structure of aluminum material

Publications (2)

Publication Number Publication Date
JP2014184468A true JP2014184468A (en) 2014-10-02
JP6110173B2 JP6110173B2 (en) 2017-04-05

Family

ID=51832551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013061103A Active JP6110173B2 (en) 2013-03-22 2013-03-22 Brazing method and brazing structure of aluminum material

Country Status (1)

Country Link
JP (1) JP6110173B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017018959A (en) * 2015-07-07 2017-01-26 三菱アルミニウム株式会社 Brazing method of aluminum alloy member
JP2017136610A (en) * 2016-02-02 2017-08-10 株式会社カンドリ工業 Fluxless brazing method of aluminum material and processing device for brazing
CN110116296A (en) * 2019-03-28 2019-08-13 任耀文 A kind of production method of high temperature alloy thin-walled cooling cone component

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471749A (en) * 1977-11-21 1979-06-08 Mitsubishi Aluminium Soldering of easily evaporative element containing aluminium alloy without using flux
JPS59113969A (en) * 1982-12-21 1984-06-30 Kobe Steel Ltd Fluxless soldering method of large-sized plate fin type heat exchanger
JPS6083770A (en) * 1983-10-12 1985-05-13 Sumitomo Precision Prod Co Ltd Vacuum brazing method
JPH01133696A (en) * 1987-08-08 1989-05-25 Nippon Denso Co Ltd Vacuum brazing method
JPH0890220A (en) * 1994-09-13 1996-04-09 Honda Motor Co Ltd Brazing method for aluminum alloy material
JP2005254320A (en) * 2004-03-15 2005-09-22 Calsonic Kansei Corp Manufacturing method of heat exchanger
JP2010042439A (en) * 2008-08-12 2010-02-25 Toyo Universal Co Ltd Brazing method of combination type of convection heat and radiant heat, and brazing furnace
JP2012061483A (en) * 2010-09-14 2012-03-29 Mitsubishi Alum Co Ltd Flux-less brazing method of aluminum material
JP2014054667A (en) * 2012-09-14 2014-03-27 Showa Denko Kk Brazing method for aluminum
JP2014121728A (en) * 2012-12-21 2014-07-03 Mitsubishi Alum Co Ltd Brazing method and brazing structure of aluminum material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471749A (en) * 1977-11-21 1979-06-08 Mitsubishi Aluminium Soldering of easily evaporative element containing aluminium alloy without using flux
JPS59113969A (en) * 1982-12-21 1984-06-30 Kobe Steel Ltd Fluxless soldering method of large-sized plate fin type heat exchanger
JPS6083770A (en) * 1983-10-12 1985-05-13 Sumitomo Precision Prod Co Ltd Vacuum brazing method
JPH01133696A (en) * 1987-08-08 1989-05-25 Nippon Denso Co Ltd Vacuum brazing method
JPH0890220A (en) * 1994-09-13 1996-04-09 Honda Motor Co Ltd Brazing method for aluminum alloy material
JP2005254320A (en) * 2004-03-15 2005-09-22 Calsonic Kansei Corp Manufacturing method of heat exchanger
JP2010042439A (en) * 2008-08-12 2010-02-25 Toyo Universal Co Ltd Brazing method of combination type of convection heat and radiant heat, and brazing furnace
JP2012061483A (en) * 2010-09-14 2012-03-29 Mitsubishi Alum Co Ltd Flux-less brazing method of aluminum material
JP2014054667A (en) * 2012-09-14 2014-03-27 Showa Denko Kk Brazing method for aluminum
JP2014121728A (en) * 2012-12-21 2014-07-03 Mitsubishi Alum Co Ltd Brazing method and brazing structure of aluminum material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017018959A (en) * 2015-07-07 2017-01-26 三菱アルミニウム株式会社 Brazing method of aluminum alloy member
JP2017136610A (en) * 2016-02-02 2017-08-10 株式会社カンドリ工業 Fluxless brazing method of aluminum material and processing device for brazing
CN110116296A (en) * 2019-03-28 2019-08-13 任耀文 A kind of production method of high temperature alloy thin-walled cooling cone component

Also Published As

Publication number Publication date
JP6110173B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
JP5352001B1 (en) Brazing method and brazing structure of aluminum material
JP4547032B1 (en) Fluxless brazing method of aluminum material and aluminum clad material for fluxless brazing
WO2016017716A1 (en) Aluminium alloy brazing sheet
JP5619538B2 (en) Fluxless brazing method of heat exchanger having narrow channel inner fin and aluminum clad material used therefor
WO2017122384A1 (en) Heat exchanger and method for producing same
JP2012061483A (en) Flux-less brazing method of aluminum material
EP3131696B1 (en) Lead-free eutectic solder alloy comprising zinc as the main component and aluminum as an alloying metal
JP2012050993A (en) Fluxless brazing method of aluminum material and aluminum clad material for fluxless brazing
JP6109615B2 (en) Aluminum alloy fin clad material for brazing
WO2017065191A1 (en) Aluminum alloy brazing sheet, and brazing method
WO2016056306A1 (en) Aluminum alloy brazing sheet and brazing method
JP6405020B1 (en) Flux-free brazing method for aluminum material and aluminum alloy member for flux-free brazing
JP2012050995A (en) Aluminum alloy brazing material sheet for fluxless brazing and fluxless brazing method for aluminum material
JP2012024827A (en) Fluxless brazing method of aluminum material and aluminum alloy brazing sheet for fluxless brazing
JP6110173B2 (en) Brazing method and brazing structure of aluminum material
JP5889705B2 (en) Fluxless brazing method for aluminum material and method for manufacturing brazed structure
JP5614883B2 (en) Fluxless brazing method of aluminum material, aluminum alloy brazing sheet for fluxless brazing, and aluminum alloy brazing material for fluxless brazing
JP2014037576A (en) Brazing sheet made of aluminum alloy, and method for brazing the same
JP5904853B2 (en) Fluxless brazing method for aluminum material and method for manufacturing brazed structure
JP2012030244A (en) Fluxless brazing method for aluminum material
JP6226642B2 (en) Brazing method of aluminum alloy material and manufacturing method of brazing structure
JP5687849B2 (en) Aluminum alloy brazing sheet
JP2013049085A (en) Fluxless brazing method of aluminum material
JP6282444B2 (en) Aluminum alloy brazing sheet, aluminum alloy assembly for brazing, and method of brazing aluminum alloy material
JP2018099725A (en) Aluminum alloy brazing sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170309

R150 Certificate of patent or registration of utility model

Ref document number: 6110173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250